AVALON
Algorithms and Software Architectures for Distributed & High Performance Computing Platforms

Christian Perez
LIP, ENS Lyon
Agenda

Team Members

Avalon Research Activities

Overview of Some Research Activities

• Measuring and Modeling Energy Consumptions
• Scientific Applications and multi-Clouds
• Modeling Scientific Applications With Software Components
• Large Scale Data management
• Two European Projects

Conclusion
Avalon Members @ August 1st, 2014

Faculty Members (8)
(4 INRIA, 1 CNRS, 2 UCBL, 1 ENSL)
• Eddy Caron, MCF ENS Lyon, HDR (80%)
• Frédéric Desprez, DR INRIA, HDR (30%)
• Gilles Fedak, CR INRIA
• Jean-Patrick Gelas, MCF UCBL
• Olivier Glück, MCF UCBL
• Laurent Lefèvre, CR INRIA, HDR
• Christian Perez, DR INRIA, HDR, Project leader
• Frédéric Suter, CR CNRS

PhD students (7)
• Maurice-Djibril Faye, ENS-Lyon / Université Gaston Berger (Sénégal)
• Sylvain Gault, MapReduce, INRIA
• Anthony Simonet, MapReduce, INRIA
• Vincent Lanore, ENSL
• Arnaud Lefray, SEED4C, ENSIB
• Daniel Balouek, CIFRE New Generation SR
• Violaine Villebonnet, INRIA

Engineers (3+4+1)
• Simon Delamare, IR CNRS (80%)
• Jean-Christophe Mignot, IR CNRS (20%)
• Matthieu Imbert, INRIA SED (40%)
• François Rossigneux, XCLOUD
• Guillaume Verger, SEED4C
• Yulin Zhang Huaxi, SEED4C
• Laurent Pouilloux (IPL Héméra)

Postdoc / Temporary Researcher
• Jonathan Rouzaud-Cornabas, CNRS
• Marcos Dias de Asuncao, Inria

Temporary Teacher-Researcher
• Ghislain Landry Tsafack, UCBL

Assistant
• Evelyne Blesle, INRIA
Avalon: Research Activities

CPU/data-intensive Scientific Applications
- From “simple” to code coupling
 - Structure complexity
 - “New” forms of interactions (MR)

Computing platforms
- Different characteristics
 - Performance, energy, size, cost, reliability, QoS, etc.
- Hybridization
 - Sky computing, HPC@Cloud, Exascale, Spot instance

Objectives
- Expressiveness simplicity
- Application portability
- Resource specific optimizations
 - Elastic resource management
 - Energy consumption

Supercomputers (Exascale)
Large scale

Grids (EGI)
Heterogeneity

Desktop Grids
Volatility

Clouds (IaaS, PaaS)
On demand
Avalon: Research Activities

CPU/data-intensive Scientific Applications
- From “simple” to code coupling
 - Structure complexity
 - “New” forms of interactions (MR)

Computing platforms
- Different characteristics
 - Performance, energy, size, cost, reliability, QoS, etc.
- Hybridization
 - Sky computing, HPC@Cloud, Exascale, Spot instance

Objectives
- Expressiveness simplicity
- Application portability
- Resource specific optimizations
 - Elastic resource management
 - Energy consumption

Applications
- Supercomputers (Exascale)
- Grids (EGI)
- Desktop Grids
- Clouds (IaaS, PaaS)

Large scale
Heterogeneity
Volatility
On demand
Avalon: Research Activities

CPU/data-intensive Scientific Applications
- From “simple” to code coupling
 - Structure complexity
 - “New” forms of interactions (MR)

Computing platforms
- Different characteristics
 - Performance, energy, size, cost, reliability, QoS, etc.
- Hybridization
 - Sky computing, HPC@Cloud, Exascale, Spot instance

Objectives
- Expressiveness simplicity
- Application portability
- Resource specific optimizations
 - Elastic resource management
 - Energy consumption
Avalon: Four Research Axes

Energy Application Profiling and Modeling
J.-P. Gelas, O. Glück, L. Lefèvre, J.-C. Mignot
• Large Scale Energy Consumption Analysis for Physical and Virtual Resources
• Energy Efficiency of Next Generation Large Scale Platforms

Data-intensive Application Profiling, Modeling, and Management
F. Desprez, G. Fedak, F. Suter,
• Performance Prediction of Parallel Regular Applications
• Modeling Large Scale Storage Infrastructure
• Data Management for Hybrid Computing Infrastructures

Resource Agnostic Application Description Model
E. Caron, L. Lefèvre, C. Pérez
• Moldable Application Description Model
• Dynamic Adaptation of the Application Structure

Application Mapping and Scheduling
E. Caron, F. Desprez, L. Lefèvre, C. Pérez, F. Suter
• Application Mapping and Software Deployment
• Non-Deterministic Workflow Scheduling
• Security Management in Cloud Infrastructure
Measuring and Modeling Energy Consumptions

Profiling and Understanding Energy Consumption of Real Applications
Energy Efficient Software in HPC

Two focus: fault tolerance and data broadcast

Help users to choose the best service

Applications on exascale infrastructures

Virtual Home Gateway (vHGW)

Within GreenTouch project (1000 factor)

Virtualizing home gateway services to reduce energy consumption at the last mile

- Combining with quasi passive CPE
- Taking care of Quality of Service
- Evaluating energy usage reduction
- Studying consolidation effects
DataCenter (1/2)

Energy-aware layer for DC automation with direct knowledge of resources
- Smart allocation of tasks (consolidation)
- Dynamic profiling of the hardware
- Smart management of resources (on/off)

Challenge: Align supply with demand on-the-fly by using the power/energy data as input information for central software to perform actions

Most of the operations costs is dedicated to cooling
DataCenter (2/2)

Real-life experiments on the Grid'5000 platform on 1000+ jobs

Regulation of the infrastructure power consumption
- Schedule of energy provider
- Local conditions of temperature
- Exploitation incidents

Up to 25% of energy saving with minimal performance degradation
Power Measurement @ Grid’5000 [Hemera/G5K]

What users need

• Live visualization of the experiment
• Use instantaneous power consumption in your application
• Access data post mortem

Only available on Lyon site
Kwapi Architecture (Soon in production) [Hemera/Grid’5000]

Uniformization with one VM by site

- API: allow to retrieve instantaneous data
- RRD: store data (but temporal resolution decrease with time)
- GANGLIA: push the data on the Grid'5000 supervision service
- HDF5: store data without and provide an interface to retrieve post-mortem data
- LIVE: allow to follow in live your experiment
Kwaapi: User Tools

Available on Lyon, Rennes, Nancy, Reims

Real-time data
• curl energy.<site>:5000/probes

Live visualization
• https://intranet.grid5000.fr/supervision/<site>/energy/last/minute/

Post mortem data retrieval
• curl http://energy.<site>:12000/timeseries/?job_id=XXXXXX

More information
• https://www.grid5000.fr/mediawiki/index.php/Kwapi
Mapping (Scientific) Applications onto multi-Clouds

J. Rouzaud-Cornabas, F. Desprez, C. Perez, E. Caron, A. Lefray
Scientific Applications and multi-Clouds

Emergence of data-intensive science and Big Data
Still a lot of heavy computing

Tightly coupled applications (e.g. MPI)
- Executed on supercomputers
- Performance issues on Clouds
- 10-20% of scientific applications

Loosely coupled applications: Bag Of Tasks and Workflows
- Not suitable for supercomputers
- 80-90% of scientific applications
- Increasing number (and domains) of applications
- Dramatic increase of the quantity of data and compute

Using federated Clouds to run these applications
Application and multi-Clouds

Two steps
- Provisioning Virtual Machines
- Scheduling tasks in Virtual Machines

Related Work
- Only taking into account processor speed
- Homogenous, static, and reliable resources
- Do not take into account data
Application Model: Bag Of Tasks

x Tasks and no dependency between them but a large number of parameters

Three parameters (I, O and FLOPS) for tasks in BoT (impact task allocations)
 • Homogenous
 • Stochastic (uniform/bimodal/heavytail)

Different task arrival (impact on provisioning) models
 • At the beginning
 • Poisson
 • Dependency and think time

Different objectives
 • Cost
 • Performance
 • Deadline
 • Etc.
SimGrid Cloud Broker

Multi-clouds environment (Not only EC2/S3 API) (ANR SONGS project)
- Can simulate any public or private Cloud (need to implement performance models)
- All AWS implemented
 - All AWS regions, instance types (resources and prices), On-demand and spot instances, S3 and EBS Storage, Accounting of resources usage (Network, Compute, Storage), Spot Instances (random, file, model dynamic price policies)
 - Resources performance models based on information given by Amazon and extracted from scientific papers

Examples

Impact of Storage Policies on Completion Time
Impact of Storage Policies on Billing
PaaSage Overview

CAMEL
- Architectural model
- Dependency model
- Data flow model
- Extra functional utility model

New application

Legacy application

Speculative profiler

Reasoner

Extra functional adaption

Design time optimisation loop

Metadata collection

Metadata sharing

Community expertise

Platform specific mapping

Execution monitoring

Execution control

Execution environments

Metadata

Speculative profiler
Context
- Development of a toolbox for deploying application services providers with a hierarchical architecture for scalability

Main Research Issue
- security, scheduling, heterogeneity, automatic deployment, interoperability, high performance data transfer and management, monitoring, fault tolerance, static and dynamic analysis of performance, ...

Validation: Large validation over Grid'5000.
DIET used case: The Decrypthon project - DIET was selected by IBM -
Collaborations: Celtic+, RNTL GASP, ACI GRID ASP, TLSE, ACI MD GDS, ANR LEGO, ANR GWENDIA, Grid’5000
Start’up: SysFera (created in march 2010).
Contact: Eddy.Caron@ens-lyon.fr
Avalon Team, Inria, LIP ENS Lyon
Web: http://graal.ens-lyon.fr/DIET
Seed4C Project motivation

- Secure Embedded Element and Data protection for Cloud
- Can we get a Seed to build trusted Clouds?
- One that transforms the way we trust Cloud based Services
- Building a Trusted Cloud Computing Base (TCCB)
- A Cloud of minimal Trusted Computing Bases: the SEEDs.
Seed4C Project (con’t)

- From isolated Security to coordinated Security

Isolated Security by secure elements or not

Coordinated Security by Network of Secure Elements Extended

NoSE^E
Modeling Scientific Applications With Software Components

C. Perez, J. Bigot
Software Component

Technology that advocates for composition
- Old idea (late 60’s)
- Assembling rather than developing

Many models
- Salome, CCA, CCM, Fractal, OGSi, SCA, …

Pre-defined set of interactions
- Usually function/method invocation oriented

Provide communication abstraction
- (Limited) Language interoperability (~IDL)
- Network transparency (overhead?)

Programming model vs execution model
HLCM: High Level Component Model

Major concepts
- Component model (hierarchical)
 - Primitive and composite
- Connector based
 - Primitive and composite
- Generic model
 - Support meta-programming (template à la C++)
- Currently static

HLCMi: an implementation of HLCM
- Model-transformation based (EMF)
- Connectors
 - Use/Provide
 - Shared Data
 - Collective Communications
 - MxN
 - Some skeletons
 - Replication, Simple Domain Decomposition, MapReduce
MapReduce Skeleton in HLCM

Component MapReduce<Component Map, Component Reduce> exposes \{ In, Out \}
I/O stream

Word count

2 processes
Blobseer
Word Count
2 processes
Large Scale Data management

G. Fedak, H. He, A. Simonet
BitDew: Large Scale Data Management

Set of services for high level data management on hybrid distributed platforms

- Data scheduler services
 - Steer distribution of data items according to *data distribution abstraction*
 - Affinity
- Multi-protocol and reliable file transfer service
 - Supports legacy protocols (ssh, http, ftp), P2P (bittorrent), Grid protocol (JSAGA, gftp), Cloud (Amazon S3, Dropbox)
- Decentralized data catalog: DHT, DLPT

Some Applications Prototyped with Bitdew

- Distributed Checkpoint Server (Univ Paris XI, ANR Clouds@Home)
- Desktop Grid <-> Service Grid Bridge (FP7 EDGeS)
- Akratos: Decentralized, Social and Collaborative File Sharing (ADT INRIA)
- WukaStore: Hybrid and Configurable Cloud and Desktop Storage
- MapReduce for Desktop Grids (Internet deployment, n-faults resilience, decentralized result checking)
MapReduce for Large, Distributed, and Dynamic Datasets

Scheduling algorithms for optimizing shuffle phase

MapReduce runtime for
- Distributed over hybrid and widely distributed infrastructures
 - Cloud, Desktop PCs, sensors, smartphones…
 - Dynamic, i.e. that grow or shrink during time, or partially unavailable because of infrastructure failures.

MapReduce/BitDew
- First implementation of MapReduce for Internet Desktop Grid
 - 2-level scheduler, latency hiding, p-failures resilient, collective communications
- Algorithm distributed result checking of intermediate
- MapReduce/ActiveData: incremental processing of dynamic datasets
- Storage on hybrid Cloud + Desktop PCs nodes
- Privacy computing on hybrid infrastructures using Information Dispersal Algorithms

Execution time reduced by up to 47%!

Time of map phase and shuffle w.r.t number of mappers and reducers

Throughput of WordCount application on Grid’5000 (512 nodes) up to 2 TB
Active-Data: A Programming Model for Data Life-Cycle Management

A data life cycle model
- Data management systems to expose data life cycle
- Well-formalized representation
 - Inspired by Petri Net

A programming model and a runtime environment
- Associate a code to each step of the data life cycle

```java
TransitionHandler md5Handler = new ...
public void handler(LifeCycle lc, String ...
  transitionName, boolean isLocal) {
    MessageDigest md = ...
    MessageDigest.getInstance("MD5");
    String path = getPath(lc, getId());
    InputStream input = new ...
    FileInputStream(path);
    byte[] buffer[] = new byte[2048];
    int n = 0;
    while((n = input.read(buffer)) > 0)
      md.update(buffer, 0, n);
    byte[] digest = md.digest();
    BigInteger bigInt = new ...
    BigInteger(1, digest);
    String hash = bigInt.toString(16);
    while(hash.length() < 32)
      hash = "0" + hash;
    OutputStream output = new ...
    FileOutputStream(path + ".md5");
    output.write(hash.getBytes());
    output.close();
}
```

Figure: Representation of the “Write-Once, Read-Many” data life cycle.
Conclusion

Efficient usage of resources (clouds, hpc, etc) require to master many aspects

Avalon team focuses on
• Energy Application Profiling and Modeling
• Data-intensive Application Profiling, Modeling, and Management
• Resource Agnostic Application Description Model
• Application Mapping and Scheduling

Research from theory to software development and experimental validation
• Diet, Simgrid, BitDew, HLCMi, L2C, etc.
• Access to research platform (Grid’5000) and production platforms through CC-IN2P3

Important involvement in international and national projects
• INRIA-UIUC-NCSA-ANL joint laboratory for petascale computing
• Green’Touch (2012-2015) -- Reduce energy consumption in networks

• PRACE-2IP (FP7 RI, 2011-2013) -- Auto-tuning of component based applications for supercomputers
• PaaSage (FP7 ICT, 2012-16) -- Model Based Cloud Platform Upperware
• Seed4C (Celtic-Plus, 2012-14) -- Secured Embedded Element for Cloud
• COST IC804 (2009-2013) -- On Energy efficiency for large scale systems

• ANR MapReduce (2010-2014) -- Advanced data management, scheduling and algorithmic skeletons
• ANR Songs (2012-16) -- SimGrid for Clouds and High Performance Computation systems
• FSN XL CLOUD (11-14) -- Energy Efficient HPC as a Service (Openstack)
Thank you