Energy efficiency and Cloud Computing
Works in SEPIA Team

Jean-Marc Pierson

SEPIA Team
Distributed systems, Cloud, HPC
IRIT – Institut de Recherche en Informatique de Toulouse
UPS – Université Toulouse 3 Paul Sabatier

CloudDays, Nantes, Septembre 2014
SEPIA

Distributed Operating Systems, from Architecture to Middleware

26 researchers. 11 permanent.
MCF: G. Da Costa, P. Stolf, J. Jorda, A. Tchana, L. Broto.
IE: F. Thiebolt.

- Placement, scheduling, migration of Tasks and Virtual Machines in Datacenters: performance, energy, thermal.
- Autonomic management of Clouds and HPC systems (software and hardware levels): DSL Language and MAPE-K loop: Monitoring, Analysis, Planning, Execution, Knowledge.
- Distributed and secured file systems for HPC and Clouds
- Replication and Maliciousness
Outline

1. Context

2. Platforms: Grid5000, CloudMIP, RECS

3. Modeling power consumption

4. Adapting at system level

5. Heterogeneous Computing and Clouds

6. Scheduling and Placement

7. Conclusion
Green IT

ICT consumes a lot:
- Estimated to 4-5% of global consumption of electricity (930 TWh per year)
- Annual growth between 5 to 10%
- Data Centers themselves account for 2% of the global electrical consumption
- Reminder: 1 nuclear reactor is producing about 900 MWe. (7 TWh per year)
What is it all about?

- A Datacenter: 10000 m²
- Exploitation costs: 20 Meuros per year
- 40000 physical servers
- 500000 VMs
- Electrical Consumption: 10 MW
- PUE: 1.2
Facts, resources:

- Fluids consumption annual cost (est.) : between 4keuros and 10keuros.
- Part of the FG Cloud Federation. May become an EGI node.

Hardware, OS:

- 32 blades (8 cores @ 2.4Ghz, 32GB ram, 2 x 146GB SAS 15ktpm RAID0), means up to 256 Amazon EC2 M1 instance (1 physical dedicated CPU and 4GB ram)
- System : Scientific Linux 6.5 x86_64,
- OpenNebula 4.2 (KVM) with Qcow2 delta images to speedup deployment (a hundred of VMs in just a few seconds)
Power consumption on CloudMIP

248 VM started: `> onetemplate instantiate SL64 -m 248`

- Leads to 8 VMs on each of the nodes
Stress: \(\texttt{pdsh} -w \texttt{wn[1..32]} \) – \texttt{openssl speed -multi 8}

- Power consumption is 6.6kw
RECS:

Hardware, OS:
- 18 nodes in 1U: 6 i7, 6 Atom, 6 mainboards
- System: Scientific Linux 6.4 x86_64
- Monitoring 1s: Zabbix http://cloudmip.univ-tlse3.fr/zabbix
Modeling power consumption

Modeling power consumption
Modeling power consumption

Why measuring, monitoring, estimating power consumed by applications?

1. Make applications’ users energy-aware → CO2 labels.
2. Make applications’ developers energy aware → applications become energy-friendly
3. Make the operating system energy-friendly:
 ▶ the OS can optimize its behavior according to the profiles of applications
4. Make the middleware energy-aware and energy-friendly:
 ▶ energy-aware: it can redistribute costs to individual users (e.g. in commercial Clouds)
 ▶ energy-friendly: it can optimize dynamically the placement and scheduling of applications on machines
Existing Approaches to Energy Consumption Estimation

Three possibilities for evaluating energy of an application

- Instrument the code of the application, then relate it to actual measures or modeled estimates.
- Monitor the power with (internal or external) power meters, then distribute shares to each process / application based on their resources consumption (CPU, memory, disk, network, ...);
- Monitor the usage of resources at the hardware and operating system level (e.g. hardware performance counters, CPU load, ...), then use mathematical models to estimate power consumption share for each process / application;
 - The Energy Consumption Tools Pack\(^1\)
 - Energy consumption library (libec)
 - Data Acquisition tool (ecdaq). Easy to extend for new power estimators.
 - Data Monitoring tool (ectop and ganglia plugin)
 - Energy profiler (valgreen)

\(^1\)Available under GPL3 licence.
Data Monitoring Tool: ectop

ectop command line tool (a-like 'top', and extensible), based on libec.

<table>
<thead>
<tr>
<th>PID</th>
<th>COMMAND</th>
<th>EJIFS</th>
<th>CPUu</th>
<th>MEM_RSS</th>
<th>MEMu</th>
<th>PE_MMC</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>11647</td>
<td>qemu-kvm</td>
<td>93</td>
<td>0.227941</td>
<td>194670</td>
<td>0.047595</td>
<td>7.66042</td>
<td></td>
</tr>
<tr>
<td>26177</td>
<td>qemu-kvm</td>
<td>52</td>
<td>0.127451</td>
<td>71492</td>
<td>0.017479</td>
<td>4.34425</td>
<td></td>
</tr>
<tr>
<td>28561</td>
<td>lookbusy</td>
<td>17</td>
<td>0.0416667</td>
<td>149</td>
<td>3.64291e-</td>
<td>1.51336</td>
<td></td>
</tr>
<tr>
<td>28560</td>
<td>lookbusy</td>
<td>16</td>
<td>0.0392157</td>
<td>149</td>
<td>3.64291e-</td>
<td>1.43248</td>
<td></td>
</tr>
<tr>
<td>28562</td>
<td>lookbusy</td>
<td>15</td>
<td>0.0367647</td>
<td>149</td>
<td>3.64291e-</td>
<td>1.3516</td>
<td></td>
</tr>
<tr>
<td>28563</td>
<td>lookbusy</td>
<td>12</td>
<td>0.0294118</td>
<td>149</td>
<td>3.64291e-</td>
<td>1.10895</td>
<td></td>
</tr>
<tr>
<td>29014</td>
<td>ectop</td>
<td>3</td>
<td>0.0073529</td>
<td>738</td>
<td>0.0001804</td>
<td>0.381012</td>
<td></td>
</tr>
<tr>
<td>2223</td>
<td>zabbix_agentd</td>
<td>0</td>
<td>0</td>
<td>455</td>
<td>0.0001112</td>
<td>0.138365</td>
<td></td>
</tr>
<tr>
<td>2224</td>
<td>zabbix_agentd</td>
<td>0</td>
<td>0</td>
<td>406</td>
<td>9.92632e-</td>
<td>0.138365</td>
<td></td>
</tr>
<tr>
<td>2102</td>
<td>nrpe</td>
<td>0</td>
<td>0</td>
<td>325</td>
<td>7.94594e-</td>
<td>0.138365</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>khelper</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.138365</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>sync_supers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.138365</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>bdi-default</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.138365</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>integrityd/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.138365</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>netns</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.138365</td>
<td></td>
</tr>
</tbody>
</table>

It exists also in HTML format, with pan view, accumulated values, ...
Lightweight tool: 3 Kb of memory, 0.3% (unsorted columns) to 2% of CPU (when sorted/sum bar/html)

Open source software. Deliverable 5.2 of the CoolEmAll project - October 2012 - Leandro Fontoura-Cupertino
Tested on RECS platform, Grid5000 and CloudMIP
Neural networks models results

High accuracy of the power estimation, compared to actual measurements with precise and reactive power meters.
Following the consumption of VMs
VM are processes, hence we can follow their consumption.

Example on CloudMIP

Power Monitoring of VMs running on the same PM

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
</tr>
</tbody>
</table>

- VM1
- VM2

pierson@irit.fr (IRIT) Energy efficiency and Cloud Computing
Adapting at system level
Adapting at system level: A three step methodology

Definitions:
- Phase: region of execution of the application/system stable with respect to a given metric
- System: computing or storage node

Phase detection
- Discover system’s runtime execution patterns

Phase characterization
- Associate useful information with known execution patterns

Phase identification and system reconfiguration
- Reuse of optimal configuration information for recurring phases

Implemented as MREEF Framework.
MREEF in cloud: experimental protocol and set-up

- 8 VMs deployed on a node having 8 CPU cores
- Each VM executes the following workloads 20 times
 - Cloud applications:
 - Transactional database system (sysbench + MySQL)
 - Web application (siege + Apache HTTP server)
 - IO intensive application (IOzone)
 - HPC application: CG
- Three system configurations
 - on demand, powersave, MREEF
 - Workloads are the same for each system configuration (a random execution order is provided to each VM)
MREEF in cloud: results

- MREEF configuration:
 - Majority-rule-based phase characterization for phase characterization
 - EV classification for workload prediction

MREEF reduces the energy consumption of up to 8% with less than 1% performance degradation

Outperforms powersave

Figure: Baseline on demand versus powersave and MREEF in a cloud environment.
Heterogeneous Computing and Clouds
Needs to achieve Energy Proportionality

- Average load of servers between 10 and 50%
 Most energy inefficient region

- High idle consumption
 Can be up to 50% of the peak power

→ A perfect proportional curve would bring huge energy savings
 Especially need to reduce energy consumption for low to medium loads

Server power consumption and energy efficiency from 0 to 100% utilization
Heterogeneous architectures - Example of ARM big.LITTLE

2 coupled processors:
- **big**: Cortex-A15
- **LITTLE**: Cortex-A7

Interconnected by a Cache Coherence system

GOAL: Extend battery life time of mobile devices

⇒ Application of the concept to datacenters:
ARM is not powerful enough for all applications, we need to extend the range of heterogeneous hardware:
low power processors for low load, regular x86 servers for high performance
First experiments

Summary of selected hardware:

<table>
<thead>
<tr>
<th>Codename</th>
<th>Chromebook</th>
<th>Taurus</th>
<th>Parapluie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fullname</td>
<td>Samsung</td>
<td>Dell</td>
<td>HP Proliant</td>
</tr>
<tr>
<td></td>
<td>Chromebook</td>
<td>PowerEdge R720</td>
<td>DL165 G7</td>
</tr>
<tr>
<td>Architecture</td>
<td>ARMv7 32 bits</td>
<td>x86 64 bits</td>
<td>x86 64 bits</td>
</tr>
<tr>
<td>CPU</td>
<td>2 x Cortex-A15</td>
<td>2 x Intel Xeon E5-2630</td>
<td>2 x AMD Opteron 6164</td>
</tr>
<tr>
<td>Total cores</td>
<td>2</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Power consumption</td>
<td>5 - 25 W</td>
<td>96 - 227 W</td>
<td>180 - 280 W</td>
</tr>
<tr>
<td>Release year</td>
<td>2012</td>
<td>2012</td>
<td>2010</td>
</tr>
</tbody>
</table>

Two alternatives for VM architecture:

- KVM for virtualization
- QEMU for emulation when VM arch is different from host arch
First results and Perspectives

Comparison execution of nbench benchmark for the two VM alternatives:

- **ARM VM**

- **x86 VM**

→ Still some work to do to reach perfect energy proportionality

Challenges and Perspectives:
- Effective migrations between heterogeneous architectures
- Other solutions than emulation to benefit from native performances
- Find adaptive solutions to applications types
- Predict applications evolutions to take decisions
Placement and Scheduling

Placing and Moving applications in the physical infrastructure to optimize energy with losses in QoS.

Questions:

- Where to move / place a VM?
- Which VMs to move?
- When to do it?
Answering the question

- Optimal solutions (using Linear Programming)
- Heuristics
- Centralized algorithm (First-Fit, Vector Packing, Credit-based, Genetic Algorithm)
- Cooperative algorithm
Credit-based Algorithm
Credit-based Algorithm

Algorithm for anti-loadbalancing the load

- The proposed algorithm works by associating a credit value with each node.
- This Credit algorithm is an adaptation of the Comet Algorithm: Each agent is trying to maximize its own credit by moving between nodes.

Adaptation to Cloud:

- In our case, each host will try to maximize its own credit by offloading VMs to other nodes.
Credit-based Algorithm: Credit calculation

✓ Credit of a node depends on its current load \(c_{i,j} \), its communications behavior and history of task execution.

\[\sigma_{i,j} = c_{i,j} - t_{i,j} s_{i,j} + \varepsilon - \gamma \]

\(s_{i,j} = \frac{c_{i,j}}{r_{i,j}} \), job satisfaction of node \(j \) in site \(i \)

- the aggregated demand load of all tasks on node \(j \) in site \(i \)

\[r_{i,j} = \sum_{k=1}^{T_i} (1_{i,j,k}) \]

- demand load of VM \(k \) in node \(j \) in site \(i \)

\[t_{i,j} = c_{i,j} + (\varepsilon - c_{i,j})(c_{i,j} - \gamma)(0.1 c_{i,j} 20)/ s_{i,j} \]

- The Credit of a node will be used in the selection policy

\[\gamma = 50 \quad \varepsilon = 80 \]
Credit-based Algorithm: Energy Results

Simulation with an extension of CloudSim.

Impact of threshold in energy gain with the EACAB Lower is better
Credit-based Algorithm: Hosts ON and Makespan

Maximum nodes switched on with EACAB

Makespan
SOP
SOP: think global Services for persOnal comPuters:
- aims to make the use of computers as simply as mobile phones
- builds a hybrid working model
- takes benefit from a mix between local execution and remote access to software and services located in distant dedicated datacenters or even in other non-used consumers machines

Partners:
- Degetel,
- LAAS,
- IRIT,
- Sysfera,
- QoSDesign

IRIT is involved:
- on machine placement: multi-cloud energy-aware scheduling
- on autonomic manager: graph based approach
SOP VM Scheduling and Hosts Management

- Small experimental cloud with OpenNebula on a RECS platform
- Dynamically manage VMs via consolidation
- Manage hosts to save energy
Host Management Strategies

Powering on and off take time and resource, avoiding unnecessary operations is important. We used a Pivot based host management strategy:

- Compute expected number H of physical hosts needed
- Add N pivot hosts
- Keep the number of powered on hosts at $H + N$

Figure: Green is Energy (J) / Red is effective duration (%)
VM migration overhead

VM Live migration time depends on VM size, profile, and environmental conditions (other VM migrating).

- According to our infrastructure, we tried to estimate a number of average VMs it is acceptable to migrate at the same time, on the same link.

- Based on the VM size and host capacity, we can compute x, the number of host the consolidation algorithm will try to offload.

<table>
<thead>
<tr>
<th>Nb. migrations</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Time (s)</td>
<td>5.5</td>
<td>7.44</td>
<td>11.68</td>
<td>12.55</td>
<td>14.05</td>
<td>16.62</td>
</tr>
</tbody>
</table>
SOPVP Approach

- Vector Packing based reallocation algorithm. Aims at reducing resource consumption imbalance on hosts
- Tries to offload \(x \) hosts. Enforce migrations only if the host can be emptied
- Comparison between SOPVP and OpenNebula’s \textit{mm_sched}
Figure: Energy consumption vs System Load
Results

Figure: VM durations\(^2\) vs System Load

\(^2\)Higher is better
Cooperative Scheduling
Cooperative scheduling Anti-load balancing Algorithm for cloud (CSAAC)

- Based on CASA
 - CASA is a cooperative algorithm which minimize response time
 - A participating node calculates estimated response time if a job is on it
 - Makes job allocation decisions based on contacted nodes real-time responses
 - Allows for rescheduling jobs through time

N1 : 1Mips
N2 : 10Mips

CASA : chooses the execution (1) because it has the smallest makespan
CASA: Global view of algorithm

Flowchart diagram showing the process of task assignment.
Adaptation to Cloud and Energy: CSAAC

- A participating node calculates estimated response time and energy if a VM is on it.
- Makes VM allocation decisions based on contacted nodes estimated energy to finish, then response time.
- Allows for VM migration.

Diagram showing the concepts of energy and makespan in relation to cloud and energy adaptation.
CSAAC: results

![Graphs showing energy consumption and gains compared to CASA and CSAAC](attachment:graphs.png)
Conclusion
Conclusion

- Energy consumption of VM: measuring at platform level (and where even at platform level) or inside VM?
- Acting to reduce energy: at system level, at hypervisor level, at middleware level, or at application level?
- Centralized decision centers vs decentralized ones?
Credits:

- Platforms: Francois Thiebolt
- Energy Consumption Modeling: Leandro Fontoura Cupertino, Georges Da Costa, Amal Sayah
- System Adaptation: Landry Ghislain Tsfack Chetsa, Georges Da Costa, Laurent Lefevre, Patricia Stolf
- Power proportionality: Violaine Villebonnet, Georges Da Costa, Laurent Lefevre, Patricia Stolf
- Scheduling, Placement: Damien Borgetto, Thiam Chekhou, Georges Da Costa, Patricia Stolf

Questions?

Jean-Marc.Pierson@irit.fr
www.irit.fr/~Jean-Marc Pierson