
Formal Semantics and Certified Analyses of Hop.js

Alan Schmitt

May 31, 2018

Goal

+

Agenda

Formalizing JavaScript is tricky
The evolution of our approach (JSCert and JSExplain)
Challenges of applying it to Hop

JavaScript

A quick history of JavaScript and ECMAScript

1995 Brendan Eich hired by Netscape to embed Scheme
May 1995 as Java is included in Netscape, scripting should have a

similar syntax; JavaScript prototype developed in 10 days
Dec. 1995 JavaScript deployed in Netscape Navigator 2.0 beta 3
Aug. 1996 JScript deployed in Internet Explorer 3.0

code is supposed to run identically in every browser

⇒ strong need for standardization
Nov. 1996 JavaScript submitted to Ecma International
June 1997 first edition of ECMA-262 (110 pages)

A quick history of JavaScript and ECMAScript

1995 Brendan Eich hired by Netscape to embed Scheme
May 1995 as Java is included in Netscape, scripting should have a

similar syntax; JavaScript prototype developed in 10 days
Dec. 1995 JavaScript deployed in Netscape Navigator 2.0 beta 3
Aug. 1996 JScript deployed in Internet Explorer 3.0

code is supposed to run identically in every browser

⇒ strong need for standardization

Nov. 1996 JavaScript submitted to Ecma International
June 1997 first edition of ECMA-262 (110 pages)

A quick history of JavaScript and ECMAScript

1995 Brendan Eich hired by Netscape to embed Scheme
May 1995 as Java is included in Netscape, scripting should have a

similar syntax; JavaScript prototype developed in 10 days
Dec. 1995 JavaScript deployed in Netscape Navigator 2.0 beta 3
Aug. 1996 JScript deployed in Internet Explorer 3.0

code is supposed to run identically in every browser

⇒ strong need for standardization
Nov. 1996 JavaScript submitted to Ecma International
June 1997 first edition of ECMA-262 (110 pages)

A quick history of JavaScript and ECMAScript

Year

W
or

ds

1995 2000 2005 2010 2015

50000

100000

150000

200000

ES1
ES2

ES3

ES4

ES5

ES2015
ES2016

ES2017

The specification

new version every year
6 meetings of TC39 each year
transparent process, on github
don’t break the web

JSCert

What is JSCert?

Two JavaScript semantics in Coq
descriptive given a program and a result, say if they are related
executable given a program, compute the result

Correctness
If program P executes to v, then P and v are related

2 years, 8 people
18 klocs of Coq

Positive Outcomes

good coverage of the core of ECMAScript 5.1
code extraction from JSRef

1 instrumented to report coverage
2 run the test suite
3 find places not executed (not tested)
4 relate to parts of the spec not tested
5 discover discrepancies between implementations

Scaling Issues

Hard to keep pace with the standardisation
need to update two formalizations and a correctness proof

JSCert inductive definition is too big
no inversion possible, preventing most proofs

Lessons

Many low hanging fruits from an implementation close to the spec
Maintain a single artefact, derive other formats from it
Coq formalization should be usable for proofs

JSExplain

An OCaml interpreter of JavaScript

close to the specification
uses a tiny subset of OCaml in monadic style

functions, tuples, shallow pattern matching, records

1. Let lprim be ? ToPrimitive(lval).
2. Let rprim be ? ToPrimitive(rval).
3. If Type(lprim) is String or Type(rprim) is String, then

a. Let lstr be ? ToString(lprim).
b. Let rstr be ? ToString(rprim).
c. Return the string-concatenation of lstr and rstr.

4. Let lnum be ? ToNumber(lprim).
5. Let rnum be ? ToNumber(rprim).
6. Return the result of applying the addition operation to lnum and rnum.

An OCaml interpreter of JavaScript

close to the specification
uses a tiny subset of OCaml in monadic style

functions, tuples, shallow pattern matching, records

and run_binary_op_add s0 c v1 v2 =
let%prim (s1, w1) = to_primitive_def s0 c v1 in
let%prim (s2, w2) = to_primitive_def s1 c v2 in
if (type_compare (type_of (Coq_value_prim w1)) Coq_type_string)
|| (type_compare (type_of (Coq_value_prim w2)) Coq_type_string)

then
let%string (s3, str1) = to_string s2 c (Coq_value_prim w1) in
let%string (s4, str2) = to_string s3 c (Coq_value_prim w2) in
res_out (Coq_out_ter (s4, (res_val (Coq_value_prim (Coq_prim_string (strappend str1 str2))))))

else
let%number (s3, n1) = to_number s2 c (Coq_value_prim w1) in
let%number (s4, n2) = to_number s3 c (Coq_value_prim w2) in
res_out (Coq_out_ter (s4, (res_val (Coq_value_prim (Coq_prim_number (n1 +. n2))))))

Compiled to JavaScript

motivation: run it in a browser
uses compiler-libs to generate a typed AST, which we translate
target is a tiny subset of JS

functions, objects (no prototype), arrays, string, numbers
no type conversion

var run_binary_op_add = function (s0, c, v1, v2) {
return (if_prim(to_primitive_def(s0, c, v1), function(s1, w1) {

return (if_prim(to_primitive_def(s1, c, v2), function(s2, w2) {
if ((type_compare(type_of(Coq_value_prim(w1)), Coq_type_string())

|| type_compare(type_of(Coq_value_prim(w2)), Coq_type_string()))) {
return (if_string(to_string(s2, c, Coq_value_prim(w1)), function(s3, str1) {

return (if_string(to_string(s3, c, Coq_value_prim(w2)), function(s4, str2) {
return (res_out(Coq_out_ter(s4, res_val(

Coq_value_prim(Coq_prim_string(strappend(str1, str2))))))); }));}));
} else { ... }})); }));

};

JSExplain

request by Shu-yu Guo (Dagstuhl, 2014): a step by step execution of
the spec
instrument the generated JavaScript to record events

Enter (enter a function)
CreateCtx(ctx) (new function scope)
Add(ident,value) (let binding)
Return (return from a function)

executing the instrumented interpreter generates a trace of events
web tool to navigate these traces

Architecture

Interpreter
and libraries

(OCaml)

Libraries
(JS)

Interpreter
with traces

(JS)

AST of
interpreted
program

interpreted
program

web page

trace

generator

tracing
generator

Esprima

Demo

HopExplain

Extensions of JSExplain

extension to current version of JavaScript
ongoing, we now can debug it using JSexplain itself
engineer hired to work on this in September

towards a typed specification?
PR 1135: Explicitly note mathematical values
Issue 496: abstract operations don’t always return Completion Records

continuous participation in the committee
better trace navigator

links to the specification

Coq Extraction

needed to prove invariants of the specification and certify analyses
modular description of the semantics with a simpler induction
principle

POC for a small language

postdoctoral topic in SPAI, recruitment ongoing

Challenges for HopExplain

JSExplain easily adapted to other languages (MLExplain1)
challenge: capture the distributed and concurrent aspects

close collaboration with Indes, co-supervising a PhD student

framework and rule format to describe semantics (collaboration with
Imperial College London)
use the Coq extraction to certify selected analyses of Hop.js programs

1https://github.com/Docteur-Lalla/mlexplain/tree/mlexplain

https://github.com/Docteur-Lalla/mlexplain/tree/mlexplain

	JavaScript
	JSCert
	JSExplain
	HopExplain

