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Abstract
Programming in an open environment remains challenging because
it requires combining modularity, security, concurrency, distribu-
tion, and dynamicity. In this paper, we propose an approach to open
distributed programming that exploits the notion of locality, which
has been used in the past decade as a basis for several distributed
process calculi such as Mobile Ambients, Dπ, and Seal. We use
the locality concept as a form of component that serves as a unit
of modularity, of isolation, and of passivation. Specifically, we in-
troduce in this paper OZ/K, a kernel programming language, that
adds to the OZ computation model a notion of locality borrowed
from the Kell calculus. We present an operational semantics for
the language and several examples to illustrate how OZ/K supports
open distributed programming.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Theory

Keywords Components, Locality, Open Programming

1. Introduction
Open environments involve distributed users that access and com-
bine multiple services. These services interact, fail, and evolve con-
stantly. Programming in such environments remains challenging
because it requires, as pointed out in [24] by the designers of the
Alice programming language, the combination of several features,
notably: (i) modularity, the ability to build systems by combining
and composing multiple elements; (ii) security, the ability to deal
with unknown and untrusted system elements, and to enforce if
necessary their isolation from the rest of the system; (iii) distribu-
tion, the ability to build systems out of multiple elements executing
separately on multiple interconnected machines, which operate at
different speed and under different capacity constraints, and which
may fail independently; (iv) concurrency, the ability to deal with
multiple concurrent events, and non-sequential tasks; and (v) dy-
namicity, the ability to introduce new systems, as well as to remove,
update, and modify existing ones, possibly during their execution.

Each of these features has been, and continues to be, the subject
of active research on its own. Combining them into a coherent and
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practical programming language, however, is still an open question,
despite interesting developments in the past two decades, including
languages such as Acute [29], Alice [24], ArchJava [1], Classages
[20], Erlang [3], Java [4], JoCaml [13], Nomadic Pict [35], OZ
[34]. Among these, Acute, Alice, and OZ (with its environment
MOZART [14, 25]) provide the most extensive support for open
programming, but they still fall short, we argue below, of providing
enough support for isolation and dynamic reconfiguration.

In this paper, we propose an approach to open programming
that exploits the notion of locality. This notion has been studied in
several families of process calculi such as Mobile Ambients [9],
Dπ [15], Klaim [5], or the Seal calculus [10]. We suggest to use
the locality concept as a primitive form of component that can be
used simultaneously as a unit of modularity, of isolation, and of
passivation (we call passivation the ability to freeze and marshall
a component during its execution). Conflating these different kinds
of units into a single notion provides a way to address the different
concerns of open programming with few programming constructs.
Specifically, we introduce the OZ/K kernel programming language
that extends the OZ kernel language with a notion of locality,
called kell1, borrowed from the Kell calculus [27], together with
a passivation operation, borrowed from the M-calculus [26].

With respect to OZ and MOZART, OZ/K makes a number of
contributions: (i) it generalizes the pickling operation in MOZART
(i.e. the ability to make values in the language persistent – e.g. for
storing them in a file or for sending them in a message) to cover
not only stateless values but also complete execution structures;
(ii) it allows to define different distributed programming abstrac-
tions without depending on a single, pre-defined distribution se-
mantics for the different language entities as is currently the case in
MOZART; (iii) it enhances security in OZ through first-class isola-
tion units, and the ability to program sandboxes and security wrap-
pers; (iv) it extends the classical exception handling mechanisms
in OZ with failure handling facilities that operate at the component
level; and (v) it provides basic support for strong mobility and dy-
namic reconfiguration through passivation.

Technically, the main contributions of this paper are: (i) the in-
troduction of an extension of the kell concept from the Kell calcu-
lus [27] and the Kell calculus with sharing [16], with the ability to
control communication channels of subordinate kells; (ii) the intro-
duction of a passivation operation, called packing, which general-
izes the passivation operator of the M-calculus [26] to an execution
model with a shared store and logic variables; (iii) the introduction
of operations on packed values (values resulting from the packing
of kells) that provide support for dynamic linking and component
replacement; (iv) the introduction of failure handling mechanisms
that can deal with thread and component-level failures; (v) a formal
operational semantics for the above constructs.

1 Localities are called kells in a loose analogy to biological cells.



The paper is organized as follows. Section 2 discusses current
OZ limitations and introduces our approach. Section 3 presents in-
formally the main concepts behind OZ/K and its syntax. Section
4 illustrates, via several examples, how OZ/K supports open dis-
tributed programming. Section 5 defines a formal operational se-
mantics for OZ/K. Section 6 discusses related work and Section 7
concludes the paper.

2. Extending OZ for open programming
The OZ language and its MOZART environment already provide
several features for open programming. These include in partic-
ular: first class modules (records that group together related lan-
guage entities such as procedures) and functors (functions that take
modules and functors as arguments, and return modules); module
managers, that allow access to modules referenced by URLs; pick-
les, that can be used to save complete values (i.e. values that do
not contain unbound variables) to files; tickets, that constitute ref-
erences to arbitrary language entities; connections, that support the
establishment of communication links between remote sites using
tickets for cross-site references; a distributed semantics (described
in [14, 25]) that assigns sites to certain languages entities such as
variables, and cells, together with associated communication proto-
cols tailored for achieving network transparency with the different
kinds of language entities, namely stateless entities (e.g. base val-
ues, records, procedures, functors), and stateful entities (e.g. vari-
ables, cells). Despite these features, we can single out three main
areas where OZ and MOZART fall short of supporting open pro-
gramming: isolation, support for dynamic reconfiguration, and dis-
tribution semantics.

Isolation. Systems operating in an open environment should be
ready to deal with unknown, potentially malicious components.
A basic strategy to deal with untrusted components is to set up
sandboxes, as formalized e.g. by the notion of wrappers in the
Boxed-π calculus [31]. A sandbox is an execution context that iso-
lates encapsulated computations from the rest of their environment,
and that prevents unwanted or suspicious communication attempts.
More generally, isolating different parts of a running system from
one another is required for performance isolation and for prevent-
ing denial of service (e.g. to prevent a component interfering with
the execution of another one merely through inordinate resource
consumption).

The current OZ language and its MOZART environment fail to
support sandboxes formalized as Boxed-π wrappers, which allow
a strict control of communications between a module or compo-
nent and its environment. For instance, while it is possible, through
the subclassing of the base MOZART module manager, to forbid a
downloaded module to access local resources on installation, it is
not possible to control the communication of a module with its en-
vironment while it executes, and thus to prevent it from discovering
– and accessing – forbidden resources in the process.

Support for dynamic reconfiguration. An open distributed envi-
ronment is a highly dynamic one, where failures, updates, adapta-
tions, and unplanned changes can occur all the time. A language for
open distributed programming should provide the means to change
a system’s structure and behavior on-the-fly, with no need to stop
the whole system in order to perform modifications. Dynamic re-
configuration typically involves: the ability to circumscribe the part
of a system which needs changing (the target); the ability to sus-
pend the execution of the target in a well-defined state; the ability
to replace the suspended target by a different subsystem.

The higher-order character of the OZ language allows to pro-
gram systems as collections of components (e.g. in the form of
port objects as described in [34]), and to program these compo-
nents so that their behavior include some operation to change their

state (see for instance the upgradable compute server in Chapter 11
of [34]). However, it is not possible to suspend the execution of a
component or to delete it (e.g. if some unwanted behavior like un-
warranted resource consumption is detected), unless such behavior
is already part of the component program. Thus replacing a faulty
or malicious component that does not support the appropriate up-
date behavior is not possible in OZ. In addition, it is not possible to
capture as a value the state of an ongoing execution (e.g. to take a
checkpoint or to reinstate a failed system from a saved checkpoint).

Distribution semantics. An open environment is essentially het-
erogeneous, with a wide variety of networks and protocols, sup-
porting different communication semantics and providing differ-
ent guarantees. Furthermore, depending on the application, differ-
ent levels of distribution transparency and different views of a net-
worked infrastructure may need to be provided. For instance, a de-
ployment application will likely require an explicit view of the in-
dividual sites in the target network, so as to control the placement,
installation, and configuration of different software components on
different sites. This view may be quite detailed, depending on de-
ployment requirements. For instance, one could consider separate
spaces for different users, separate component containers for differ-
ent applications, different tiers in site clusters, with different inter-
connection schemas, different sub-networks for fault-tolerance and
enhanced performance, etc.

It is this very diversity that has lead the designers of the Acute
language to abstain from incorporating in their language any spe-
cific means of remote interaction. In their words, “a general-
purpose distributed programming language should not have a built-
in commitment to any particular means of interaction” [30, 28].
The current MOZART environment relies on a predefined distribu-
tion semantics. We wish to avoid that dependency to keep in line
with the above philosophy, and, in contrast to OZ and MOZART, to
allow the definition of a distribution semantics and its supporting
protocols within the language itself.

Our approach. To deal with the above issues, we extend the OZ
kernel language with a locality construct. The aim is to provide
a small and uniform formal basis for open programming capabil-
ities that subsume those of the MOZART environment. As a con-
sequence, open programming features in MOZART which are not
expressible in the OZ kernel language (e.g. distribution protocols,
or module placement), can now be defined in OZ/K. The OZ kernel
language is built using a layered approach, with successive layers
adding expressive power and capabilities. The first layer combines
logic variables and higher-order procedures. The second layer adds
explicit concurrency, in the form of threads. The third layer adds
explicit state, in the form of updatable memory cells. The last layer
adds lazy execution, in the form of by-need triggers. Our approach
adds a new layer to the language, consisting of three main features:
(i) a primitive form of component, which we call kell; (ii) a primi-
tive operation for passivating kells, which we call packing; and (iii)
a set of primitive operations for communication between kells, and
for manipulating packed values.

A kell acts as a unit of modularity (kells encapsulate data and
behavior behind well defined interfaces, called gates), a unit of
isolation (a kell may fail independently of other kells, and a kell can
act as a sandbox for its subkells, i.e. for kells that it contains), and
a unit of reconfiguration (a kell can be passivated, independently
from other kells, then moved, replaced, or deleted). The conflation
of these different units in the single notion of kell is the key element
of our approach. A kell encapsulates both activity, in the form of
threads and other (sub) kells, and state, in the form of a private
data store. Kells can thus be understood as hierarchically organized
components, with the same granularity as port objects or active
objects in OZ.



In order to achieve isolation, means of communication between
kells are restricted to the emission and receipt of messages on gates,
which are similar to channels in the (synchronous) π-calculus. As
a consequence, logic variables, memory cells, and by-need triggers
remain private to a kell and cannot be shared between different
kells. This design choice is similar to the one made in the Erlang
language, where processes, which are the unit of modularity and
isolation, only communicate through mailboxes. It is also similar to
the one made in the E language, where vats, which are units of con-
currency and isolation, only communicate through asynchronous
message exchanges (with futures). There are several reasons for
this choice, including those well-documented in disfavor of shared
state concurrency (see e.g. [18], [2] for a discussion in the context
of the Erlang language ). The overarching consideration in OZ/K
is to avoid any form of shared state between kells to guarantee iso-
lation.

OZ/K does not come equipped with a predefined distribution
semantics. Instead, kells provide a basic notion of separation, from
which different forms of remote interaction can be built, in line
with the Acute philosophy discussed above. Communication on
gates, which takes the form of atomic rendez-vous, should thus be
seen as local communication. Remote interaction in OZ/K can be
modeled by a program mediating communications between two or
more peer kells (communication can take place via gates between
a thread situated in a kell and a thread situated in the immediate
parent kell).

One may ask why we did not consider adding this last layer to
OZ as a library instead of language extension. The reason can be
given as a three-pronged argument: (i) we wish to have a simple
formal semantics for our kernel language; (ii) we consider that a li-
brary ought to be programmable (even if not actually implemented)
in terms of its host language, so as to avoid introducing constructs
that are not definable in the host language semantics; (iii) the isola-
tion achieved by kells, and the passivation operation cannot strictly
be expressed in OZ. Consideration (ii) ensures that different forms
of remote interaction can be defined and understood by OZ/K pro-
grammers as programs that relay information between peer kells.

3. Syntax and overview
The OZ/K kernel language is built as a conservative extension of
the OZ kernel language as formally described in chapter 13 of [34].
We first recall briefly the main constructs of the OZ kernel lan-
guage, and then present the OZ/K-specific constructs. For more in-
formation on OZ and its supporting MOZART environment, please
refer to [34].

3.1 OZ core
The basis for OZ/K is the OZ kernel language [14, 25, 34], fea-
turing logic variables (single assignment variables), higher-order
procedures, memory cells (which support multiple assignments),
exception handling, concurrent threads, and by-need synchroniza-
tion. We just present here the constructs of OZ which we use in
our programming examples, the full language description may be
found in the references above. The OZ execution model consists
of dataflow threads that operate on a shared store. Threads contain
statement sequences and communicate through shared references
in the store.

The syntax of the OZ kernel language constructs we use in this
paper is given in Table 1, where S and its decorated variants denote
statements; P, X, Y, C, and their decorated variants denote variable
identifiers; v denotes base values (integers and literals – i.e. names
or atoms); and J denotes patterns.

Variables and values. The store includes logic variables (or vari-
ables, for brevity) that can be bound or unbound. An unbound vari-

S ::= skip empty statement
| S1 S2 sequential composition
| thread{X} S end thread creation
| local X1 ... Xn in S end variable introduction
| X = Y imposing equality
| X = v binding to base value
| X = l(f1:X1 ... fn:Xn) binding to record
| if X then S1 else S2 end branch statement
| case X of J then S1 else S2 end pattern matching
| {NewName X} name creation
| proc{P X1 ... Xn} S end procedure definition
| {P X1 ... Xn} procedure call
| . . .

Table 1. Syntax: OZ core

able does not yet refer to a value. A bound variable X refers to
a definite value, which can be a base value (an integer, an atom,
or a name), or a record. Atoms are values whose identity is de-
termined by a sequence of printable characters. A record takes
the form l(f1:X1 ..... fn:Xn), where l is the label of the
record, f1,...,fn are the features of the record, and variables
X1,...,Xn (which can be bound or unbound) are the fields of
the record. Assuming R is a record with feature f, record selection
is written R.f (i.e. if R = l(... f:X ...), then R.f evaluates
to X). Tuples are records with consecutive integer features, start-
ing with 1. A tuple lab(X1 ... Xn) corresponds precisely to the
record lab(1:X1 ... n:Xn).

New variables are introduced with the statement:

local X1 ... Xn in S end

where S is an arbitrary statement, and X1,...,Xn are the n new
variables being introduced2. Variables are introduced unbound. To
bind a variable to a value, one can use equality statements of the
forms (where v is an arbitrary base value, and X1,...,Xq are
variables):

X = v X = l(f1:X1 ... fq:Xq)

Note that in statement: X = l(f1:X1 ... fq:Xq) variables
X1,...,Xq may be unbound. Two variables X and Y can be con-
strained to be bound to the same value through the statement X = Y
(unifying the two values if X and Y are already bound).

Names. Names are unforgeable constants that are typically used
to identify, and refer to, various execution entities, such as proce-
dures and threads. There are three special names with reserved key-
words: unit, true, and false. Names true and false denote
the boolean values true and false, respectively. The name unit is
typically used as a synchronization token. Names are created with
the statement:{NewName N} which binds the variable N to a fresh
name, guaranteed to be unique among OZ/K computations.

Procedural abstraction. A procedure definition takes the form:

proc{P X1 ... Xn} S end

where the variable P is bound to the newly created procedure, the
identifiers X1 ... Xn correspond to the formal parameters of the
procedure, and S is a statement that constitutes the body of the
newly created procedure. The scope of the identifiers X1 ... Xn
is the body S of the procedure. Note that formal parameters of a

2 We adopt the OZ syntactic constraint that variables start with an upper
case letter. A lexical token that is not a keyword and that starts with a lower
case letter is deemed to be an atom. Thus Var is an identifier for a variable,
whereas var denotes the atom ‘var’. Keywords are written in boldface.



procedure can be input parameters (variables bound prior to the
procedure execution) or output parameters (variables bound during
the procedure execution). This means that a procedure may return
any number of results, including none. A call to the procedure
named P takes the form: {P A1 ... An}, where A1 ... An are
variables corresponding to the actual parameters of the call. Note
that procedures can be higher-order, i.e. take variables bound to
procedures as parameters.

Concurrency. Sequential composition of statement S1 with state-
ment S2 is written S1 S2. The empty statement is skip. Statement
thread{T} S end creates a new thread that executes statement S,
and binds its (freshly generated) name to variable T.

Control flow. Two conditional statements from OZ are used in
our examples:

if X then S1 else S2 end
case X of J then S1 else S2 end

Both constructs block until the variable X is bound. When X is
bound to a value v, this value is matched against true (for the
if construct) or J (for the case construct). If the match succeeds,
statement S1 is executed, otherwise statement S2 is executed. For
instance, if X is bound to the record rec(a:V1 b:V2), then the
statement

case X of rec(a:X1 b:X2)
then {P X1 X2} else skip end

evaluates to {P V1 V2} (pattern variables X1 and X2 are bound
during pattern matching to V1 and V2, respectively).

3.2 OZ/K constructs
To the OZ core, OZ/K adds three main elements: kells, gates, and
packing. The syntax for the OZ/K-specific constructs is given in
Table 2, where K, X, Y, Z, G denote variable identifiers.

S ::= . . .
| kell{K} S end kell creation
| {NewGate X} gate creation
| {Send G X} emitting message X on gate G
| {Receive G X} receiving message X on gate G
| {Open K G} grant kell K access to gate G
| {Close K G} revoke access to gate G for kell K
| {Pack K X} packing kell K
| {Unpack X Y} unpacking packed value X
| {Mark X Y Z} marking X with names in Y
| {Status K X} get status of thread K

Table 2. Syntax: OZ/K extensions

Kells. A kell is a computational location, i.e. a form of concurrent
component, which associates a named locality to part of an OZ/K
computation. Localities are organized in a tree where each node
contains a (logically) private store and several running threads.
Kells are created via statements of the form:

kell{K} S end

where K is bound to the (freshly generated) name of the newly
created kell. Statement S corresponds to the body of the kell. Upon
creation of kell K, the execution of S starts in a new thread running
within K. In order to ensure isolation, S must contain only strict
variables (except for K which is bound during the creation of the
kell). Strict variables are variables which are bound to strict values,
i.e. values which, recursively, do not contain unbound variables.

In effect, kells partition OZ/K computations into isolated subsets
that can only communicate through gates. Note that strictness is
not difficult to implement since it involves the same traversal of the
value graph than unification.

Gates and communication. A gate in OZ/K denotes an inter-
action point for a kell. It is similar to a π-calculus channel: two
kells can only communicate through a gate, and gate names can
be sent across gates. A gate can be created via a call of the form:
{NewGate G}. Once the gate has been created, it can be used to
send values ({Send G X}) or to receive them ({Receive G X}).

Communication through gates is by atomic rendez-vous: a
Receive statement is successful only if there is a matching Send
statement available in a different thread. This mode of communica-
tion on gates, together with the isolation property, allows locality
passivation (packing) to take place at any point in time during
an execution. Having an atomic rendez-vous as a primitive form
of communication allows to derive other forms of interaction, in-
cluding ones that implement flow control between emitters and re-
ceivers. In particular, component connectors can be realized as kells
that mediate communication between two or more peer kells. Only
strict values can be sent through a gate. This restriction ensures
that kells remain isolated during execution, and that gates form the
only means of communication between kells. Communication on
gates should be understood as local, i.e. as taking place on a sin-
gle machine. Remote communication in OZ/K can be modeled, as
illustrated in the next section, by programs that relay information
between two or more peer kells, using two or more gates.

Controlling communication. In order to support sandboxing,
kell boundaries can impose restrictions on communications. By
default, communication may cross at most one kell boundary: it is
allowed within a kell, and between a kell and its parent-kell. Di-
rect communication on some gate G between two kells separated
by more than one boundary is only allowed if every kell boundary
crossed by the communication has this gate open. A gate G can
be opened in the boundary of a kell K by its parent-kell using the
procedure call {Open K G}. Hence, to allow two sibling kells K1
and K2, children of kell K, to communicate directly on a gate G, one
has to open G for both K1 and K2 via this statement in kell K:

{Open K1 G} {Open K2 G}

To make a parent kell transparent for some or all of its child-kells,
one can use the key-word all to reference all the child-kells, or all
the gates in a kell. For instance, the statement {Open all all}
opens all the gates for all the children-kells of the current kell.

Packing and unpacking. {Pack K V} is the statement imple-
menting passivation. It suspends the execution of the child K of
the current kell and marshalls it, together with the relevant por-
tion of the store, in a packed value bound to the variable V. Packed
values can be modified using the Mark operation. Specifically,
{Mark V1 R V2} returns in V2 the packed value V1 modified ac-
cording to the instruction given by tuple R. If R=gate(G1 G2), the
gate G1 is replaced in V2 by G2. If R=prc(P Q), the procedure
P is replaced by Q. If R=top(K), the top-kell of the packed value
is replaced by K. A side-effect of Mark is that it prevents marked
names to be changed during unpacking of the packed value. Thus,
the statement {Mark V1 gate(G G) V2} only marks gate G to
prevent it being renamed when unpacking V2.

The statement {Unpack V R} can be used to unpack a packed
value V. Unpacking creates an execution structure similar to the
one which has been packed, with new names for its gates, kells,
and procedures, with the exception of the ones which have been
marked. These new names are returned in the record R, which
consists of old names as features with corresponding new names as
fields. A Mark operation on a packed value can be understood as a



dynamic linking operation that connects a kell about to be unpacked
to its new environment.

Failure handling. OZ has only classical exception handling. In
our context, we need to deal with thread-level and kell-level fail-
ures. This is made possible by the detection of thread failures, via
the Status statement, which is explained in Section 5.

4. Open programming in OZ/K: examples
In this section, we present some simple OZ/K programs illustrating
open programming in OZ/K. In the code fragments presented be-
low, we often replace “local X in S end” by “X in S” (a licit
OZ syntactic convenience).

Distribution As explained above, OZ/K has no built-in support
for remote communications. However, because of their inherent
separation, kells can be used to model different sites, communi-
cating using different communication semantics.

Here is for instance a simple configuration, with two sites
Site1 and Site2, running programs P1 and P2 respectively. The
kell Net acts like an interconnecting asynchronous network, relay-
ing messages from one site to another: we suppose that S1 (resp.
S2) listen on the gate In1 (resp. In2) and emit on Out1 (resp.
Out2).

kell{Site1} {P1} end
kell{Site2} {P2} end
kell{Net}
Relay in
proc{Relay G1 G2}

M in
{Receive G1 M} thread {Send G2 M} end
{Relay G1 G2}

end
thread {Relay Out1 In2} end
thread {Relay Out2 In1} end

end

{Open Net all}
{Open Site1 In1}{Open Site1 Out1}
{Open Site2 In2}{Open Site2 Out2}

Note that the statement {Open Net all} ensures that the Net
is allowed to communicate on all the gates (In1, In2, Out1, Out2),
with its sibling kells Site1 and Site2. On the other hand, Site1 is
only allowed to communicate with its sibling Net on gates In1 and
Out1. This prevents its direct communication with Site2, which
is only allowed to communicate on gates In2 and Out2.

This (evidently simplistic) example illustrates how the separa-
tion between different loci of computation can be used to model a
networked environment. Note that we encapsulated the network in a
separate kell: this would allow us, for instance, to model failures of
the Net component independent from failures of sites. A program-
mer can thus be provided with a semantics for distributed compu-
tation in terms of the OZ/K computation model. Importantly, this
semantics can be adapted to different network environments, and
arbitrary details of the supporting infrastructure revealed to the pro-
grammer, without having to change the language semantics. One
can thus provide different abstractions to distributed programmers,
depending on their needs, the network environment considered, and
the level of distribution transparency required, as in [6].

Modules and pickling. The notion of kell unifies notions of soft-
ware modules and components, and packing generalizes the pick-
ling construct provided by the MOZART environment. Consider for
instance the following code, where G is a gate:

kell{Mod}
Proc Rec T in

proc{Proc Param} ... end
proc{T X} {Send G X}{T X} end
Rec = m(op:Proc)
{T Rec}

end

This code fragment creates a new kell which defines a unary
procedure, Proc, and puts it in a record Rec which is continuously
available on gate G. In effect, Rec corresponds to a simple software
module that consists of just one procedure, accessed through the
feature op.

Using the module is straightforward, one just has to bind to the
output gate to retrieve the module and call the module’s procedure:

{Receive G Y}
{Y.op M}

Importantly, kell Mod can be packed and sent to a different
location (another kell), so that the module can be made available
there. For instance, assuming Out is a gate on a channel to a
different site, as in the distribution example, then the program

{Pack Mod Z}
{Send Out Z}

illustrates how to marshall the kell Mod using the packing operation,
and how to send the resulting packed value for use of the module
at a different site. Note that programs that retrieved the module
prior to its packing can still use its procedure, since it has been
communicated prior to packing.

Strong mobility and dynamic linking. The previous module ex-
ample works fine as long as the client program does not move. In-
deed, assume the client was running on the site S1 and is transferred
to some other site S2. The client may now be required to use the
module’s implementation local to site S2.

We show how to change the definition of the module, which will
ensure that each copy of the module dynamically retrieves the local
implementation upon each call, so as to take into account possible
moves of clients of the module. The module code now is:

kell{Mod}
Proc Rec T P in

proc{Proc Param} ... end
proc{T X} {Send G X}{T X} end
proc{P Param}

Z in {Receive G Z}{Z.loc Param}
end
Rec = m(op:P loc:Proc)
{T Rec}

end

As before, the procedure Proc is the local implementation of the
module’s functionality, and the procedure P corresponds to the
front-end of the module, that retrieves at each call the local imple-
mentation of the module, and then executes the proper procedure.
Using the module Mod in this case remains similar to the previ-
ous example: just access the procedure through the module’s op
feature. The loc feature, storing the local implementation of the
procedure and is not supposed to be directly used by the client3.

Now, as the client moves from the site S1 to the site S2, the
gate where the module is available changes, raising the necessity
to modify the reference of the gate in the client’s code. This mod-
ification of the client’s code is done using the procedure mark, as
shown below (we suppose that the module is available at G1 – resp.
G2 – at site S1 – resp. S2):

3 The privacy of the loc feature can be enforced using names and proce-
dures. See chapter 3 in [34]. A slightly more complex version would use
two gates, one to send the module containing op, the other to send the local
implementation.



%% Site 1
{Pack Client Z}
{Send Out1 msg(service:G1 pack:Z)}

%% Site 2
Mes K Z1 Z2 List in
{Receive In2 Mes}
case Mes of msg(service:G pack:Z) then

kell{K}
{Mark Z gate(G G2) Z1}
{Mark Z1 top(K) Z2}
{Unpack Z2 List}

end
else skip end
end

Isolation The kell construct allows to build configurable sand-
boxes. Consider the case of a plug-in of dubious origin. It is possi-
ble to isolate it in different ways.

A first approach is a straightforward application of marking
and communication control. In this case, the only communication
allowed by the Sandbox is on gate G, unknown initially to the plug-
in. Thus the plug-in must be configured to use this gate. To this
end, the output gate used by the plug-in is specified under the gate
feature. Using the mark procedure, it is replaced by gate G. Then
the plug-in is unpacked inside a kell K, itself inside the sandbox.
This double inclusion prevents any communication of the plug-in
with the environment of the sandbox, apart from the ones explicitly
allowed on G. This gate is opened for both kells K and Sandbox.

Sandbox Mes in
{Receive In Mes}
case Mes of msg(gate:PG plugin:Z) then
kell{Sandbox}
K Z1 Z2 List in
kell{K}
{Mark Z gate(PG G) Z1}{Mark Z1 top(K) Z2}
{Unpack Z2 List}

end
{Open K G}

end
{Open Sandbox G}

else skip end

The behavior of a sandbox can be more complex. For instance,
we may allow the plug-in to request the opening of some gate for
communication. The program can then check the security of such
an opening, using the procedure Check, and allow it or not. In
the following program, the plug-in can request a gate opening by
sending on channel G a record of the form r(gate:G1 Resp:R),
where G1 is the gate to open and R is the gate used to give the plug-
in the answer of the Check procedure. The procedure Control
receives the message and calls the Check procedure to validate
the request. As before, the gate has to be open for kells K and
Sandbox, sending a message on G0 for the later. The installation
of the plug-in is done as in the previous example, launching an
additional Control thread.

Check Control Sandbox OpenSandbox Mes G0 in
{NewGate G0}
proc{OpenSandbox}
{Receive G0 GateName}
{Open Sandbox GateName}
{OpenSandbox}

end
thread {OpenSandbox} end

proc{Check K G1 Resp} ... end

proc{Control K G}

Mes in
{Receive G Mes}
case Mes of r(gate:G1 resp:R)
then B in

{Check K G1 Resp}
if Resp then {Open K G1} {Send G0 G1} {Send R ok}
else {Send R nok} end

else skip end
{Control K G}

end

{Receive In Mes}
case Mes of msg(gate:PG plugin:Z) then
kell{Sandbox}
K Z1 Z2 List G in
{NewGate G}
kell{K}

{Mark Z gate(PG G) Z1}{Mark Z1 top(K) Z2}
{Unpack Z2 List}

end
thread {Control K G} end

end
else skip end

The encapsulation realized by the kell construct allows in par-
ticular to build wrappers as in the Boxed-π calculus [31]. For in-
stance, we can build a simple filtering wrapper for some untrusted
plugin, where the used service is made available on gate SV.

Filter Mes Sandbox in
proc{Filter G1 G2} ... end
{Receive In Mes}
case Mes of msg(gate:PG plugin:Z) then

kell{Sandbox}
K Z1 Z2 List G in

{NewGate G}
kell{K}
{Mark Z gate(PG G) Z1}{Mark Z1 top(K) Z2}
{Unpack Z2 List}

end
thread {Filter G SV} end

end
else skip end

In this example, the procedure Filter acts as a partial relay be-
tween the gates G1 and G2, transmitting only valid messages and
erasing the others.

Handling failures Failure handling in OZ/K bears some strong
similarity with failure handling in Erlang [2], and with a recent
proposal for enhanced failure handling in OZ [11]. Units of failure
in OZ/K are threads and kells. Handling a failure in a thread or a
kell requires setting up an independent thread that can monitor state
changes in the supervised thread or kell. Setting up a monitoring
thread can be done as in the following program:

proc {NewMonThread Body Gate}
Th Monitor in
thread{Th} {Body} end
thread{Monitor}
S in {Status Th S}
case S of failed(Z) then {Send Gate failed(Th Z)}
else skip end

end
end

The above program creates two threads, the monitor thread Monitor,
and the monitored thread Th. The behavior of Monitor is simple:
it waits for Th to fail, and then notifies this failure on gate Gate.
Notice that the case statement here matches the thread name with
the execution status of the thread (see Section 5 for a definition of
the execution status of a thread or of a kell). Using Pack, it is also
possible to force a kell to abort upon the occurrence of some failure



in one of its threads, thereby obtaining a similar effect to process
linking in Erlang, which causes a group of Erlang processes to fail
together if one of the processes in the group fails. In our case, we
can link threads by placing them in a kell and setting up an ap-
propriate monitoring structure. This is illustrated by the following
fragment, where two threads are linked in a kell, which is aborted
as soon as one the two threads fails:

K Gate Mes Z in
{NewGate Gate}
kell{K}
{NewMonThread Body1 G} {NewMonThread Body2 G}

end
{Receive G Mes}
case Mes of failed(T Z) then
{Pack K Z} {Send MG failed(K Z)}

else skip end

Note also that when the kell K fails, a failure message is sent on the
monitoring gate MG. This illustrates how kells can be monitored for
failure as well.

5. Operational semantics
To facilitate comparison and cross-reference, we adopt for the
OZ/K semantics the same approach as that in Chapter 13 of [34].
The OZ/K operational semantics is given in terms of a reduction
relation → ⊆ (Store × Task)2. We call execution structure an
element of Store×Task, i.e. a pair consisting of a store and a task.
We assume given the following infinite countable and mutually
disjoint sets: Ident, the set of variable identifiers, Var the set of
logical variables, Name the set of names, Atom the set of atoms.

Statements. For the purpose of the presentation of the operational
semantics, we consider extended statements where logical variables
can be substituted to some or all variable identifiers in a state-
ment S. The effect of such a substitution is defined classically, the
binding constructs including variable introduction, procedure defi-
nition, and pattern matching.

Tasks. The set of tasks, Task, consists of elements T given by
the following grammar (where τ denotes a thread name):

T ::= τT | T T tasks

T ::= 〈〉 | 〈S T 〉 thread stacks

Intuitively, a task T is a set (parallel composition) of named threads
τT .

Stores. A store consists of a conjunction (noted ∧) of primitive
assertions. Primitive assertions comprise:

• Variable bindings, of the form x = M , where x is a variable
and M can either be ⊥, meaning that x is unbound, or some
value (integer, atom, name, record, or packed value).
• Name bindings, of the form ξ : N , whereN is some semantical

value such as a procedure, a gate, or a kell.
• Additional assertions, of the form pred(. . .), where pred is

some predicate qualifying or relating names or variables. For
instance, read(r) means that r is a read-only variable.

A packed value pack(κ, T , σ, µ) consists of four elements: the
name κ of the kell that has been packed, a suspended thread set T ,
its associated store σ, and the set of names µ that have been marked
with a call to the procedure Mark: these names must not be changed
during unpacking.

A name binding τ : thread(x) refers to a thread named τ ,
whose execution status is given by the variable x. While the thread
is running, variable x remains unbound. If the thread terminates
normally, then x becomes bound to the value terminated. If the

thread fails because of an uncaught exception, x becomes bound to
a failed value of the form failed(y), where y is the exception that
caused the thread to fail. The status of a thread K can be obtained
using the statement {Status K X}, which returns the status of K
in variable X. A name binding of the form κ : kell(π, x) states
that κ is a kell name. In this statement, π is a set of pairs of the
form κ′ · γ, defining that the gate γ is open for the child-kell κ′.
The variable x defines the execution status of the kell: it is either
unbound when kell is active or bound to the value packed when
the kell is passivated.

The predicate in(κ, κ′) indicates that the kell κ′ is located
inside kell κ. The predicate inth(κ, τ) indicates that the thread
τ is located inside kell κ. We note σ |= φ, where φ is conjunction
of primitive assertions, to indicate that σ = σ′ ∧ φ, for some σ′.

5.1 Reduction relation
We can now define the reduction relation→ as the smallest relation
that satisfies the set of inference rules given below, together with
the inference rules in chapter 13 of [34] (that give the operational
semantics of the OZ core).

To facilitate the comparison with the original OZ operational
semantics, we use the same notational conventions as in [34],

noting (T, σ)→ (T ′, σ′) as
T T ′

σ σ′
. The reduction rules take

the form of inference rules of the form
T T ′

σ σ′
if C

where C is some condition on T , σ, T ′, and σ′.
Before giving the reduction rules4, we define informally some

auxiliary functions and predicates. The appendix provides addi-
tional formal details. The function dom takes a store σ as parameter
and returns the set of all the names and variables used in σ. The
predicate strictσ(v) is true if v is a strict value in the store σ. We
extend this predicate on variables x and statements S. The predicate
strictσ(S, y) is true if all the free variables in extended statement
S, except y, are strict. The assertion accessσ(γ, κ, κ

′) means that
gate γ is accessible for communication between the kells κ and κ′.
For this to be true, γ must have been opened for communication for
all the kells on the path that connects κ1 and κ2 in the kell tree, un-
less they are separated by at most one kell boundary. The function
grantσ associates to the pair of variables (k, g) a set: the singleton
pair corresponding to their names if k denotes a kell and g denotes
a gate, and ∅ otherwise. The last auxiliary functions are subkσ and
subthσ: subthσ(κ) returns the set of names of all the threads con-
tained by the kell κ and all its descendant kells, subkσ(κ) returns
the set of names of all the descendant kells of kell κ.

Contextual rules The contextual rules define reductions under
parallel task contexts and for equivalent configurations. For lack
of space, we only give the rule pertaining to parallel contexts.

[PAR]
T1 T2 T ′1 T2
σ σ′

if
T1 T ′1
σ σ′

Kell abstraction The rules pertaining to the kell abstraction deal
with the creation and the replacement of kells. The rule for kell
creation is given below.

[NEWK]
τ〈kell{y} S end T 〉 τT τ ′〈S 〈〉〉

σ σ ∧ σ′ if C

4 For lack of space, we only give the main rules. Rules which have been
left out, which can be found in the full paper [?], include the rule for
kell replacement, the rules that cater to various exception conditions – in
particular dynamic typing errors –, the rule of thread creation, the rule for
Status, and rules that give access to certain names held in a packed value.



C ≡ κ′, τ ′, w, r 6∈ dom(σ) ∧ strictσ(S, {y}) ∧ y = ⊥ ∧ inth(κ, τ)

σ′ ≡ y = κ′ ∧ κ′ : kell(∅, w) ∧ read(w) ∧ τ ′ : thread(r) ∧ read(r)

∧ inth(κ′, τ ′) ∧ in(κ, κ′)

Gate abstraction The rule for the creation of new gates follows.

[NEWG]
τ〈{NewGate x} T 〉 τT

σ σ ∧ x = γ ∧ γ : gate
if γ 6∈ dom(σ) ∧ σ |= x = ⊥

The rule COM below governs communication through gates.

[COM]
τ〈{Send g x} T 〉 τ ′〈{Receive h y} T ′〉 τT τ ′T ′

σ σ ∧ y = x
if C

C ≡ strictσ(x) ∧ accessσ(γ, κ, κ′)

∧ σ |= y = ⊥ ∧ g = γ ∧ h = γ ∧ γ : gate

∧ σ |= inth(κ, τ) ∧ inth(κ′, τ ′)

Opening and closing The next two rules define the semantics of
operations Open and Close.

[OPEN]
τ〈{Open k g} T 〉 τT
σ ∧ κ : kell(π,w) σ ∧ κ : kell(π ∪ grantσ(k, g), w)

if grantσ(k, g) 6= ∅ ∧ σ |= inth(κ, τ)

[CLOSE]
τ〈{Close k g} T 〉 τT
σ ∧ κ : kell(π,w) σ ∧ κ : kell(π \ grantσ(k, g), w)

if grantσ(k, g) 6= ∅ ∧ σ |= inth(κ, τ)

Packed values The operation Mark allows to modify a packed
value, by replacing a gate, a procedure, or the top level kell in
the packed value, with an existing gate, an existing procedure,
or an existing kell, respectively. We only present below the rule
concerning the replacement of gates. The rules concerning the
replacement of the top level kell or a procedure in the packed value
are similar.

[MARKG]
τ〈{Mark z gate(x y) p} T 〉 τT

σ σ ∧ σ′ if C

C ≡ σ |= φ ∧ p = ⊥ ∧ σ′′ |= γ : gate θ = {γ → γ′}
φ ≡ z = pack(ω, T , σ′′, µ) ∧ x = γ ∧ γ : gate ∧ y = γ′ ∧ γ′ : gate
σ′ ≡ p = pack(ω, T θ, σ′′θ, µ ∪ {γ′})

Packing The rule for packing is given below. Notice that packing
implies passivating the target kell, together with all of its subkells.
Packing produces a packed value, which encapsulates the part of
the current execution structure corresponding to the target kell. The
set of marks of the resulting packed value is initially empty.

[PACK]
τ〈{Pack x y} T 〉 τ1T1 . . . τnTn τT

σ σ ∧ σ′ if C

C ≡ subthσ(κ) = {τ1, . . . , τn} ∧ subkσ(κ) = {κ1, . . . , κm}

∧σ |=
m̂

i=1

φi ∧ y = ⊥ ∧ inth(κ′, τ) ∧ κ′ : kell(π′, z′) ∧ z′ = ⊥ ∧ φ

φ ≡ x = κ ∧ κ : kell(π, z) ∧ z = ⊥ ∧ in(κ′, κ)

φi ≡ κi : kell(πi, wi) ∧ wi = ⊥

σ′ ≡
m̂

i=1

wi = packed ∧ y = pack(κ, T , σ, ∅) ∧ z = packed

T ≡ τ1T1 . . . τnTn

The rule for unpacking is given below. Unpacking creates an
execution structure which is similar to the packed one, except all
the variables and all the non-marked names in the packed structure
are renamed (substitution θ below) to avoid any potential conflict

between the current store, σ, and the packed one, σ′. In addition,
unpacking returns a tuple whose elements are pairs of the form
(ξ, θ(ξ)), where ξ is a name in the packed store σ′ and θ(ξ) is the
corresponding new name after unpacking. Condition C implies a
renaming of the top-level kell so that it becomes that of the current
kell. Care must be taken if the top kell in the packed value has been
previously marked: in this case, the top-level kell in the packed
value must match the current kell. Finally, tknσ′(T ) denotes all
the children kells of kell κ′ in task T .

[UNPACK]
τ〈{Unpack y x} T 〉 τT T θθ′

σ σ ∧ σ′′
if C

C ≡ σ |= κ : kell(π, z) ∧ x = ⊥ ∧ y = pack(κ′, T , σ′, µ) ∧ inth(κ, τ)

∧ (σ′ ≡ σ′′ ∧ κ′ : kell(π′, z′)) ∧ (κ′ = κ =⇒ π = π′ ∧ z = z′)

∧ (dom(θ) = dom(σ′) \ µ) ∧ ∀l ∈ ran(θ), l 6∈ dom(σ ∧ σ′)
∧ θ′ = {κ′ → κ}

σ′′ ≡
^

η∈tknσ′ (T )

in(κ, ηθ) ∧ x = n((ξ1 θ(ξ1)) . . . (ξn θ(ξn))) ∧ σ′′θθ′

5.2 OZ/K properties
We give here two properties of the OZ/K operational semantics.
We let →∗ denote the reflexive and transitive closure of the re-
duction relation →. We say that an execution structure (σ, T ) re-
sults from the execution of an OZ/K statement, if there exists a
OZ/K statement S such that (σ0, τ〈S 〈〉〉) →∗ (σ, T ), where
σ0 ≡ τ : thread(w) ∧ inth(>, τ), and > is the name of the
top-level kell (i.e. the root of the kell tree). We say that a set of
threads T belongs to a kell κ if for all names τ of threads in T , we
either have inth(κ, τ) or inth(κ′, τ), where κ′ is a descendant
kell of the kell κ. We note v(T , σ) the set of variables in store σ
that are reachable by T .

The first proposition establishes the separation property for
OZ/K computation. It asserts that two distinct kells in an execu-
tion structure cannot hold references to the same unbound variable
(either directly, or indirectly, through cells, procedures, etc).

PROPOSITION 1. Assume (T , σ), with T ≡ T1 T2 T ′, is an execu-
tion structure that result from the execution of an OZ/K statement,
where T1 belongs to kell κ1, T2 belongs to kell κ2, and κ1 6= κ2. If
σ = σ′∧x = ⊥, for some σ′, and x ∈ v(T1, σ), then x 6∈ v(T2, σ).

The second proposition asserts a form of perfect firewall prop-
erty for OZ/K, namely, that there exists an execution structure
where a task can be completely isolated from the rest of the other
tasks in the execution structure. Let (T , σ) be an execution struc-
ture. We say that κ appears at the top level in (T , σ), if σ =
σ′ ∧ in(>, κ), for some σ′. We also say that κ is not referenced
in T if there exists no variable x such that x ∈ v(T , σ) and
σ = σ′ ∧ x = κ, for some σ′.

PROPOSITION 2. Let (T Tκ, σ) be an execution structure that
results from the execution of an OZ/K statement, where: κ appears
at the top level; Tκ is the set of all threads that belong to κ;
κ is not referenced in T ; there is no thread named τ such that
σ |= inth(κ, τ); and σ = σ0 ∧ κ : kell(∅, w), for some σ0, w.
The reductions possible from 〈σ, T Tη〉 can only be of one of the
following two forms:

T Tκ T ′ Tκ
σ σ′

or
T Tκ T T ′κ
σ σ′

where T ′κ is the set of threads that belong to κ in execution structure
(T T ′κ, σ′), and σ′ is such that there is no τ such that σ′ |=
inth(κ, τ), and σ′ = σ′0 ∧ κ : kell(∅, w), for some σ′0.



Informally, if we denote by κ[T ] a task T whose threads be-
long to κ, the proposition asserts that a kell structure of the form
κ[κ1[T1] . . . κn[Tn]] at the top level, where κ is not referenced out-
side of κ[. . .] (and thus cannot be packed), constitutes a perfect
firewall for the tasks T1, . . . , Tn. This can be understood intuitively
since there is no thread in kell κ (condition there is no thread named
τ such that σ |= inth(κ, τ)) that can act as a relay of communica-
tion between threads in T1, . . . , Tn and the outer environment, and
since there is no gate opened in κ for such communication (condi-
tion σ = σ0 ∧ κ : kell(∅, w)).

6. Related work
OZ/K is related to work in several areas: programming languages,
architecture description languages, process calculi with localities,
and component-based programming models. Here we consider
only related work on programming languages. A more detailed
analysis of related work is available in the full paper [?].

The reference language for open programming is the Java lan-
guage [4], with its comprehensive environment. However, Java still
suffers from important limitations in relation to open programming:
limited form of modules and marshalling, no serialization of code,
no generic pickling mechanism, dynamic linking and sandboxing
available through complex APIs with no formal semantics.

A few programming languages are built around a notion of lo-
cality, notably JoCaml [13], Nomadic Pict [35], O’Klaim [5], ULM
[7]. None of these languages provide the ability to build sandboxes
with strong isolation properties as OZ/K provides. Except for Jo-
Caml (which supports hierarchical localities and strong mobility),
localities in these languages essentially represent execution sites.

ArchJava [1] and Classages [20] consider a notion of compo-
nent close to that of OZ/K, and which allows an explicit control
other component communications (through notions of connectors).
However, in contrast to OZ/K, ArchJava or Classages components
are not units of fault isolation, and rely on the underlying class
loading Java mechanisms for handling code modules and shipping
code. As a result, AchJava and Classages do not properly support
strong mobility, and they do not provide the ability to build proper
sandboxes, as OZ/K does.

Alice [23] and Acute [29], target open programming, with its
whole range of issues. Alice can be understood as an extension of
Standard ML [22] that offers higher-order modules, packages (es-
sentially, an extension of the notion of dynamics, which combines
a higher-module with its dynamic signature), pickles (marshalled
forms of packages), components, and concurrency with futures and
laziness. The Alice notion of component (or dynamic module) can
be understood, following [23] as a function, taking packages as ar-
guments (imports), and that evaluates to a package (containing the
export module). The Alice notions of packages, pickles and com-
ponents, formalize, in a strongly typed setting, similar notions of
notions of functors and pickles that appear in OZ. Still, compared
to OZ/K, Alice does not provide support for passivation, and sup-
port for isolation and sandboxing in Alice, is as limited as in OZ.

Acute is also a language in the ML family, with extensive sup-
port for open distributed programming in a strongly typed setting,
including explicit marshalling, dynamic linking, dynamic mod-
ules, support for versioning constraints, support for concurrency
through threads, and even a form of passivation through the abil-
ity to thunkify running threads. Acute also introduces the notion of
mark to control the extent of dynamic linking in module. Compared
to OZ/K, Acute does not provide support for programmable sand-
boxing and isolation, and it supports open programming through a
relatively complex set of mechanisms that are subsumed in OZ/K
by a smaller set of constructs (namely via kells, gates, and packing).

The Sing# language [12], developed as part of the Microsoft
Singularity operating system, that extends the C# programming

language with isolated processes and asynchronous message pass-
ing communication. Processes in Sing# are isolated by virtue of
their code being unmodifiable at run-time, and by communicat-
ing only through message passing with other processes. However,
Sing# does not provide the sandboxing and capabilities of OZ/K,
nor its dynamic update capabilities.

Our work on OZ/K is also related to work on OZ. The notion
of locality can be seen as a generalization of the notion of compu-
tation space in Oz, introduced by C. Schulte to program constraint
services. An attempt at exploiting a locality concept inspired by
the Kell calculus was made in [17]. In this paper, localities (named
“membranes”) are finer grained than kells in OZ/K, but they are
used only for communication control (confinement), and do not
constitute units of failure isolation, or of passivation. The kell con-
struct in OZ/K seems in line with the proposed design guidelines
for a secure OZ, presented in [32].

Like OZ, OZ/K is an essentially untyped language. This is in
contrast to most of the languages cited above, which are statically
typed (with forms of dynamics for some, such as Acute and Al-
ice). Static type checking has well-known advantages, however an
untyped setting provides more flexibility when trying to combine
different forms of programming, as OZ and OZ/K attempt to do.
Actually, OZ/K demonstrates that it is possible to achieve strong
isolation and proper sandboxing of untrusted components without
relying on static type checking.

7. Conclusion
We have presented OZ/K, a kernel language for open distributed
programming, that extends the OZ computation model with lo-
calities and passivation, and its formal operational semantics. In-
troducing localities and passivation in OZ brings several benefits,
chief among them is the ability to interpret, with a compact set of
constructs, related notions such as modules, pickles, components,
while providing strong sandboxing capabilities.

Much work remains ahead, however. First, one could improve
the connection between loclaity constructs and OZ constructs, no-
tably sharing logical variables between localities. How this can be
done without sacrificing isolation remains to be seen. Apart from
developing an efficient implementation, one of our ongoing work is
to define higher-level abstractions for component-based program-
ming, typically along the lines of object-oriented programming
support in OZ (abstractions defined as syntactic sugar on the kernel
language). The full paper [?] provide some indication by propos-
ing an interpretation in OZ/K of the FRACTALreflective component
model [8]. Another issue concerns support for dynamic reconfigu-
ration. The passivation construct in OZ/K only constitutes a first
basis, which needs to be completed with capabilities for analyzing
and manipulating packed values. This should involve introspection
capabilities for packed values, some form of multistage program-
ming, and probably the development of an updateability analysis,
e.g. along the lines of [33].
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A. Appendix
The predicate accessσ is defined by cases as follows. The first case is
when κ and κ′ are the same. In this case, communication is always pos-
sible on any gate, hence we have accessσ(γ, κ, κ), for all γ, κ. The
second case is when κ is a child-kell of κ′ or conversely, i.e. σ |=
in(κ, κ′) or σ |= in(κ′, κ). In this case we have accessσ(γ, κ, κ′), and
accessσ(γ, κ′, κ). The last case is when κ and κ′ are different and are not
an immediate child of one another. In this case, let κ0, κ1, . . . , κn, κn+1,
n ≥ 1, be a sequence of kells, such that κ0 = κ and κn+1 = κ′,
and σ |= in(κi, κi+1) or σ |= in(κi+1, κi) for all i ∈ {0, . . . , n} (i.e.
κ0, . . . , κn+1 is a path from κ to κ′ in the kell tree, where we assume a top-
level kell exists). Let π0, . . . , πn+1 be such that σ |= κi : kell(πi, xi).
We define accessσ(γ, κ, κ′) by:

accessσ(γ, κ, κ′)
∆
=

n̂

i=0

authσ(γ, κi, κi+1)

authσ(γ, κi, κi+1)
∆
= κi · γ ∈ πi+1 if σ |= in(κi+1, κi)

authσ(γ, κi, κi+1)
∆
= κi+1 · γ ∈ πi if σ |= in(κi, κi+1)

If the store σ is of the form σ′ ∧ σ′′, where σ′′ is of the form

(
^
i∈I

inth(κ, τi) ∧ τi : thread(xi)) ∧ (
^
j∈J

in(κ, κj) ∧ κj : kell(πj , xj))

and where σ′ has no occurrence of predicates of the form in(κ, _) or
inth(κ, _), then we can define inductively the function subthσ as:

subthσ(κ) =
[
j∈J

subthσ(κj) ∪ {τi | i ∈ I}

The function grantσ gives the set of pairs of names corresponding to a
pair (k, g) denoting a kell and a gate. For lack of space, we do not give the
full specification of the function here, but the simplest case is given below:

grantσ(k, g)
∆
= κ·γ if σ |= k = κ∧κ : kell(. . .)∧g = γ∧γ : gate


