
Controlling Reversibility in Higher-Order Pi?

Ivan Lanese1, Claudio Antares Mezzina2,
Alan Schmitt2, and Jean-Bernard Stefani2

1 University of Bologna & INRIA, Italy
2 INRIA Grenoble-Rhône-Alpes, France

Abstract. We present in this paper a fine-grained rollback primitive
for the higher-order π-calculus (HOπ), that builds on the reversibility
apparatus of reversible HOπ [9]. The definition of a proper semantics for
such a primitive is a surprisingly delicate matter because of the potential
interferences between concurrent rollbacks. We define in this paper a
high-level operational semantics which we prove sound and complete with
respect to reversible HOπ backward reduction. We also define a lower-
level distributed semantics, which is closer to an actual implementation
of the rollback primitive, and we prove it to be fully abstract with respect
to the high-level semantics.

1 Introduction

Motivation and contributions. Reversible computing, or related notions, can be
found in many areas, including hardware design, program debugging, discrete-
event simulation, biological modeling, and quantum computing (see [2] and the
introduction of [10] for early surveys on reversible computing). Of particular in-
terest is the application of reversibility to the study of programming abstractions
for fault-tolerant systems. In particular, most fault tolerance schemes based on
system recovery techniques [1], including rollback/recovery schemes and transac-
tion abstractions, imply some form of undo. The ability to undo any single action
in a reversible computation model provides an ideal setting to study, revisit, or
imagine alternatives to these different schemes. This is in part the motivation
behind the recent development of the reversible process calculi RCCS [4] and
ρπ [9], with [5] showing how a general notion of interactive transaction emerges
from the introduction of irreversible (commit) actions in RCCS. However, these
calculi provide very little in the way of controlling reversibility. The notion of
irreversible action in RCCS only prevents a computation from rolling back past a
certain point. Exploiting the low-level reversibility machinery available in these
models of computation for fault-recovery purposes would require more extensive
control on the reversal of actions, including when they can take place and how
far back (along a past computation) they apply.

We present in this paper the study of a fine-grained rollback control primi-
tive, where potentially every single step in a concurrent execution can be undone.

? Partly funded by the EU project FP7-231620 HATS, the ANR-2010-SEGI-013
project AEOLUS, and the ANR-2010-BLAN-0305-01 project PiCoq.

Specifically, we introduce a rollback construct for an asynchronous higher-order
π-calculus (HOπ [11]), building on the machinery of ρπ, the reversible higher-
order π-calculus presented in [9]. We chose HOπ as our substrate because we find
it a convenient starting point for studying distributed programming models with
inherently higher-order features such as dynamic code update, which we aim to
combine with abstractions for system recovery and fault tolerance. Surprisingly,
finding a suitable definition for a fine-grained rollback construct in HOπ is more
difficult than one may think, even with the help of the reversible machinery from
[9]. There are two main difficulties. The first one is in actually pinning down the
intended effect of a rollback operation, especially in presence of concurrent roll-
backs. The second one is in finding a suitably distributed semantics for rollback,
dealing only with local information and not relying on complex atomic transi-
tions involving a potentially unbounded number of distinct processes.

We show in this paper how to deal with these difficulties by making the
following contributions: (i) we define a high-level operational semantics for a
rollback construct in an asynchronous higher-order π-calculus, which we prove
maximally permissive, in the sense that it makes reachable all past states in a
given computation; (ii) we present a low-level semantics for the proposed rollback
construct which can be understood as a fully distributed variant of our high-level
semantics, and we prove it to be fully abstract with respect to the high-level one.

Paper Outline. In Section 2, we informally present our rollback calculus, which
we call roll-π, and illustrate the difficulties that may arise in defining a fine-
grained rollback primitive. In Section 3, we formalize roll-π and its high-level
operational semantics. In Section 4, we present a distributed operational seman-
tics for roll-π, and we prove that it is fully abstract with respect to the high-level
one. Section 5 discusses related work and concludes the paper. The interested
reader can find proofs of the main results in [8].

2 Informal presentation

To define roll-π and its rollback construct, we rely on the same support for
reversibility as in ρπ [9]. Let us review briefly its basic mechanisms.

Reversibility in ρπ. We attach to each process P a unique tag κ (either simple,
written as k, or composite, denoted as 〈hi, h̃〉 · k). The uniqueness of tags for
processes is achieved thanks to the following structural congruence rule that
defines how tags and parallel composition commute.

k :
n∏
i=1

τi ≡ νh̃.
n∏
i=1

(〈hi, h̃〉 · k : τi) with h̃ = {h1, . . . , hn} n ≥ 2 (1)

In equation (1),
n∏
i=1

is n-ary parallel composition and ν is the restriction operator,

both standard from the π-calculus. Each thread τi is either a message, of the form

2

a〈P 〉 (where a is a channel name), or a receiver process (also called a trigger),
of the form a(X) . P . A forward computation step (or forward reduction step,
noted with arrow�) consists of the reception of a message by a receiver process,
and takes the following form (note that ρπ is an asynchronous calculus).

(κ1 : a〈P 〉) | (κ2 : a(X) . Q)� νk. k : Q{P /X} | [M ; k] (2)

In this forward step, κ1 identifies a thread consisting of message a〈P 〉 on channel
a, and κ2 identifies a thread consisting of a trigger process a(X).Q that expects
a message on channel a. The result of the message input yields, as usual, an
instance Q{P /X} of the body of the trigger Q with the formal parameter X
instantiated by the received value, i.e., the process P (ρπ is higher-order). Mes-
sage input also has two side effects: (i) the tagging of the newly created process
Q{P /X} by a fresh tag k, and (ii) the creation of a memory [M ; k], which records
the original two threads, M = (κ1 : a〈P 〉) | (κ2 : a(X) .Q), together with tag k.

In ρπ, a forward reduction step such as (2) above is systematically associated
with a backward reduction step (noted with arrow) of the form:

(k : Q) | [M ; k] M (3)

which undoes the communication between threads κ1 and κ2. When necessary to
avoid confusion, we will add a ρπ subscript to arrows representing ρπ reductions.

Given a configuration M , the set of memories present in M provides us
with an ordering :> between tags in M that reflects their causal dependency: if
memory [κ1 : P1 | κ2 : P2; k] occurs in M , then κi > k. Also, k > 〈hi, h̃〉 · k, and
we define the relation :> as the reflexive and transitive closure of the > relation.
We say that tag κ has κ′ as a causal antecedent if κ′ :> κ.

Reversibility in roll-π. The notion of memory introduced in ρπ is in some way a
checkpoint, uniquely identified by its tag. In roll-π, we exploit this intuition to
introduce an explicit form of backward reduction. Specifically, backward reduc-
tion is not allowed by default as in ρπ, but has to be triggered by an instruction
of the form roll k, whose intent is that the current computation be rolled back to
a state just prior to the creation of the memory bearing the tag k. To be able to
form an instruction of the form roll k, one needs a way to pass the knowledge of
a memory tag to a process. This is achieved in roll-π by adding a bound variable
to each trigger process, which now takes the form a(X) .γ P , where γ is the
tag variable bound by the trigger construct and whose scope is P . A forward
reduction step in roll-π therefore is:

(κ1 : a〈P 〉) | (κ2 : a(X) .γ Q)� νk. k : Q{P,k/X,γ} | [M ; k] (4)

where the only difference with (2) lies in the fact that the newly created tag k
is passed as an argument to the trigger body Q. We write a(X) . P in place of
a(X) .γ P if the tag variable γ does not appear free in P .

Now, given the above intent for the rollback primitive roll, how does one de-
fine its operational semantics? As hinted at in the introduction, this is actually

3

a subtler affair than one may expect. A big difference with ρπ, where commu-
nication steps are undone one by one, is that the k in roll k may refer to a
communication step far in the past. So the idea behind a roll k is to restore the
content of a memory [M ; k] and to delete all its forward history. Consider the
following attempt at a rule for roll:

(Naive)
N I k complete(N | [M ; k] | (κ : roll k))

N | [M ; k] | (κ : roll k) M | N k

The different predicates and the operator used in the rule are defined formally
in the next section, but an informal explanation should be enough to understand
how the rule works. Briefly, the assertion N I k states that all the active threads
and memories in N bear tags κ that have k as causal antecedent, i.e., k :> κ (N
does not contain unrelated processes). The assertion complete(Mc) states that
configuration Mc gathers all the threads (inside or outside memories) whose tags
have as a causal antecedent the tag of a memory in Mc itself, i.e., if a memory
in Mc is of the form [M ′; k′] (the communication M ′ created a process tagged
with k′), then a process or a memory containing a process tagged with k′ has to
be in Mc (Mc contains every related process). The premises of rule Naive thus
asserts that the configuration Mc = N | [M ; k] | κ : roll k, on the left hand side
of the reduction in the conclusion of the rule, gathers all (and only) the threads
and memories which have originated from the process tagged by k, itself created
by the interaction of the message and trigger recorded in M . Being complete,
Mc is thus ready to be rolled back and replaced by the configuration M which
is at its origin. Rolling back Mc has another effect, noted as N k in the right
hand side of the conclusion, which is to release from memories those messages
or triggers which do not have k as a causal antecedent, but which participated
in communications with causal descendants of k.

For instance, the configuration M0 = M1 | (κ2 : c(Y) .δ Y), where M1 =
(κ0 : a〈P 〉) | (κ1 : a(X) .γ c〈roll γ〉), has the following forward reductions (where
M2 = (k : c〈roll k〉) | (κ2 : c(Y) .δ Y)):

M0 � νk. [M1; k] | (k : c〈roll k〉) | (κ2 : c(Y) .δ Y)

� νk, l. [M1; k] | [M2; l] | (l : roll k) = M3

Applying rule Naive (and structural congruence, defined later) on M3 we get:

M3 M1 | [M2; l] k = M1 | (κ2 : c(Y) .δ Y) = M0

where (κ2 : c(Y) .δ Y) is released from memory [M2; l] because it does not have
k as a causal antecedent.

Rule Naive looks reasonable enough, but difficulties arise when concurrent
rollbacks are taken into account. Consider the following configuration:

M = (k1 : τ1) | (k2 : a〈0〉) | (k3 : τ3) | (k4 : b〈0〉)

where1 τ1 = a(X) .γ d〈0〉 | (c(Y) . roll γ) and τ3 = b(Z) .δ c〈0〉 | (d(U) . roll δ).

1 We assume parallel composition has precedence over trigger.

4

M1 a
** **

M3 d
** **

M a
))))

b 55 55
M ′ d

** **

c 44 44
M ′′

roll δ

gg

roll γ

ww

M2

b 44 44
M4

c 44 44

Fig. 1. Concurrent rollback anomaly

The most interesting reductions of M are depicted in Figure 1. Forward
reductions are labelled by the name of the channel used for communication,
while backward reductions are labelled by the executed roll instruction. The
main processes and short-cuts are detailed below:

M1 = νl2, h3, h4. σ1 | [σ2; l2] | (κ3 : c〈0〉) | (κ4 : τ4)

M2 = νl1, h1, h2. [σ1; l1] | (κ1 : d〈0〉) | (κ2 : τ2) | σ2
M ′′ = νl1 . . . l4, h1 . . . h4. [σ1; l1] | [σ2; l2] | [σ3; l3] | [σ4; l4] | (l3 : roll l1) | (l4 : roll l2)

σ1 = (k1 : τ1) | (k2 : a〈0〉) σ2 = (k3 : τ3) | (k4 : b〈0〉) τ2 = c(Y) . roll l1

σ3 = (κ2 : τ2) | (κ3 : c〈0〉) σ4 = (κ1 : d〈0〉) | (κ4 : τ4) τ4 = d(U) . roll l2

The anomaly here is that there is no way from M1 or M2 to get back to the
original configuration M , despite the fact that M ′′ has two roll instructions which
would seem sufficient to undo all the reductions which lead from M to M ′′. Note
that M1 and M2 are configurations which could both have been reached from
M . Thus rule Naive is not unsound, but incomplete or insufficiently permissive,
at least with respect to what is possible in ρπ: if we were to undo actions in M ′′

step by step, using ρπ’s backward reductions, we could definitely reach all of M ,
M1, and M2. Note that the higher-order aspects do not matter here.

The main motivation to have a complete rule comes from the fact that, in an
abstract semantics, one wants to be as liberal as possible, and not unduly restrict
implementations. If we were to pick the Naive rule as our semantics for rollback,
then a correct implementation would have to enforce the same restrictions with
respect to states reachable from backward reductions, restrictions which, in the
case of rule Naive, are both complex to characterize (in terms of conflicting
rollbacks) and quite artificial since they do not correspond to any clear execution
policy. In the next section, we present a maximally permissive semantics for
rollback, using ρπ as our benchmark for completeness.

3 The roll-π calculus and its high-level semantics

3.1 Syntax

Names, keys, and variables. We assume the existence of the following denumer-
able infinite mutually disjoint sets: the set N of names, the set K of keys, the

5

P,Q ::= 0 | X | νa. P | (P | Q) | a〈P 〉 | a(X) .γ P | roll k | roll γ
M,N ::= 0 | νu.M | (M | N) | κ : P | [µ; k] | [µ; k]•

κ ::= k | 〈h, h̃〉 · k
µ ::= ((κ1 : a〈P 〉) | (κ2 : a(X) .γ Q))

a ∈ N X ∈ VP γ ∈ VK u ∈ I h, k ∈ K

Fig. 2. Syntax of roll-π

set VK of tag variables, and the set VP of process variables. The set I = N ∪K
is called the set of identifiers. We note N the set of natural integers. We let
(together with their decorated variants): a, b, c range over N ; h, k, l range over
K; u, v, w range over I; δ, γ range over VK; X,Y, Z range over VP . We note ũ a
finite set of identifiers {u1, . . . , un}.

Syntax. The syntax of the roll-π calculus is given in Figure 2 (we often add bal-
anced parenthesis around roll-π terms to disambiguate them). Processes, given
by the P,Q productions in Figure 2, are the standard processes of the asyn-
chronous higher-order π-calculus, except for the presence of the roll primitive
and the extra bound tag variable in triggers. A trigger in roll-π takes the form
a(X) .γ P , which allows the receipt of a message of the form a〈Q〉 on channel a,
and the capture of the tag of the receipt event with tag variable γ.

Processes in roll-π cannot directly execute, only configurations can. Configu-
rations in roll-π are given by the M,N productions in Figure 2. A configuration
is built up from tagged processes and memories.

In a tagged process κ : P the tag κ is either a single key k or a pair of the
form 〈h, h̃〉 · k, where h̃ is a set of keys with h ∈ h̃. A tag serves as an identifier
for a process. As in ρπ [9], tags and memories help capture the flow of causality
in a computation.

A memory is a configuration of the form [µ; k], which keeps track of the
fact that a configuration µ was reached during execution, that triggered the
launch of a process tagged with the fresh tag k. In a memory [µ; k], we call
µ the configuration part of the memory, and k the tag of the memory. The
configuration part µ = (κ1 : a〈P 〉) | (κ2 : a(X) .γ Q) of a memory records the
message a〈P 〉 and the trigger a(X).γQ involved in the message receipt, together
with their respective thread tags κ1, κ2. A marked memory is a configuration of
the form [µ; k]•, which just serves to indicate that a rollback operation targeting
this memory has been initiated.

We note P the set of roll-π processes, and C the set of roll-π configurations.
We call agent an element of the set A = P ∪ C. We let (together with their
decorated variants) P,Q,R range over P; L,M,N range over C; and A,B,C
range over A. We call thread, a process that is either a message a〈P 〉, a trigger
a(X) .γ P , or a rollback instruction roll k. We let τ and its decorated variants
range over threads.

6

Free identifiers and free variables. Notions of free identifiers and free variables
in roll-π are usual. Constructs with binders are of the following forms: νa. P
binds the name a with scope P ; νu.M binds the identifier u with scope M ; and
a(X) .γ P binds the process variable X and the tag variable γ with scope P .
We note fn(P), fn(M), and fn(κ) the set of free names, free identifiers, and
free keys, respectively, of process P , of configuration M , and of tag κ. Note in
particular that fn(κ : P) = fn(κ) ∪ fn(P), fn(roll k) = {k}, fn(k) = {k} and
fn(〈h, h̃〉 · k) = h̃ ∪ {k}. We say that a process P or a configuration M is closed
if it has no free (process or tag) variable. We note Pcl, Ccl and Acl the sets of
closed processes, configurations, and agents, respectively.

Initial and consistent configurations. Not all configurations allowed by the syn-
tax in Figure 2 are meaningful. For instance, in a memory [µ; k], tags occurring
in the configuration part µ must be different from the key k; if a tagged process
κ1 : roll k occurs in a configuration M , we expect a memory [µ; k] to occur in M
as well. In the rest of the paper, we only will be considering well-formed, or con-
sistent, closed configurations. A configuration is consistent if it can be derived
using the rules of the calculus from an initial configuration. A configuration is
initial if it does not contain memories, all the tags are distinct and simple (i.e.,
of the form k), and the argument of each roll is bound by a trigger.

We do not give here a syntactic characterization of consistent configurations
as it is not essential to understand the developments in this paper (the interested
reader may find some more details in [9], where a syntactic characterization of
ρπ consistent configurations is provided).

Remark 1. We have no construct for replicated processes or guarded choice in roll-π:

as in HOπ, these can easily be encoded.

Remark 2. In the remainder of the paper, we adopt Barendregt’s Variable Convention:

if terms t1, . . . , tn occur in a certain context (e.g., definition, proof), then in these terms

all bound identifiers and variables are chosen to be different from the free ones.

3.2 Operational semantics

The operational semantics of the roll-π calculus is defined via a reduction relation
→, which is a binary relation over closed configurations (→ ⊂ Ccl × Ccl), and a
structural congruence relation ≡, which is a binary relation over processes and
configurations (≡ ⊂ P2 ∪ C2). We define evaluation contexts as “configurations
with a hole ·”, given by the following grammar:

E ::= · | (M | E) | νu.E

General contexts C are just processes or configurations with a hole ·. A congru-
ence on processes or configurations is an equivalence relation R that is closed
for general contexts: P RQ =⇒ C[P]RC[Q] or M RN =⇒ C[M]RC[N].

The relation ≡ is defined as the smallest congruence on processes and con-
figurations that satisfies the rules in Figure 3. We note t =α t′ when terms

7

(E.ParC) A | B ≡ B | A (E.ParA) A | (B | C) ≡ (A | B) | C

(E.ParN) A | 0 ≡ A (E.NewN) νu.0 ≡ 0 (E.NewC) νu. νv.A ≡ νv. νu.A

(E.NewP) (νu.A) | B ≡ νu. (A | B) (E.α) A =α B =⇒ A ≡ B

(E.TagN) κ : νa. P ≡ νa. κ : P

(E.TagP) k :

n∏
i=1

τi ≡ νh̃.
n∏
i=1

(〈hi, h̃〉 · k : τi) h̃ = {h1, . . . , hn} n ≥ 2

Fig. 3. Structural congruence for roll-π

t, t′ are equal modulo α-conversion. If ũ = {u1, . . . , un}, then νũ. A stands for
νu1. . . . νun. A. We note

∏n
i=1Ai for A1 | . . . | An (there is no need to indi-

cate how the latter expression is parenthesized because the parallel operator
is associative by rule E.ParA). In rule E.TagP, processes τi are threads. Re-
call the use of the variable convention in these rules: for instance, in the rule
(νu.A) | B ≡ νu. (A | B) the variable convention makes implicit the condition
u 6∈ fn(B). The structural congruence rules are the usual rules for the π-calculus
(E.ParC to E.α) without the rule dealing with replication, and with the addi-
tion of two new rules dealing with tags: E.TagN and E.TagP. Rule E.TagN is
a scope extrusion rule to push restrictions to the top level. Rule E.TagP allows
to generate unique tags for each thread in a configuration. An easy induction on
the structure of terms provides us with a kind of normal form for configurations
(by convention

∏
i∈I Ai = 0 if I = ∅, and [µ; k]◦ stands for [µ; k] or [µ; k]•):

Lemma 1 (Thread normal form). For any configuration M , we have

M ≡ νũ.
∏
i∈I

(κi : ρi) |
∏
j∈J

[µj ; kj]
◦

with ρi = 0, ρi = roll ki, ρi = ai〈Pi〉, or ρi = ai(Xi) .γi Pi.

We say that a binary relation R on closed configurations is evaluation-closed
if it satisfies the inference rules:

(R.Ctx)
M R N

E[M] R E[N]
(R.Eqv)

M ≡M ′ M ′ R N ′ N ′ ≡ N
M R N

The reduction relation → is defined as the union of two relations, the forward
reduction relation � and the backward reduction relation : → = � ∪ .
Relations � and are defined to be the smallest evaluation-closed binary re-
lations on closed configurations satisfying the rules in Figure 4 (note again the
use of the variable convention: in rule H.Com the key k is fresh).

The rule for forward reduction H.Com is the standard communication rule
of the higher-order π-calculus with three side effects: (i) the creation of a new

8

(H.Com)
µ = (κ1 : a〈P 〉) | (κ2 : a(X) .γ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) .γ Q)� νk. (k : Q{P,k/X,γ}) | [µ; k]

(H.Start) (κ1 : roll k) | [µ; k] (κ1 : roll k) | [µ; k]•

(H.Roll)
N I k complete(N | [µ; k])

N | [µ; k]• µ | N k

Fig. 4. Reduction rules for roll-π

memory to record the configuration that gave rise to it; (ii) the tagging of the
continuation of the message receipt with the fresh key k; (iii) the passing of
the newly created tag k as a parameter to the newly launched instance of the
trigger’s body Q.

Backward reduction is subject to the rules H.Roll and H.Start. Rule
H.Roll is similar to rule Naive defined in the previous section, except that
it relies on the presence of a marked memory instead of on the presence of the
process κ : roll k to roll back a given configuration. Rule H.Start just marks a
memory to enable rollback.

The definition of rule H.Roll exploits several predicates and relations which
we define below.

Definition 1 (Causal dependence). Let M be a configuration and let TM be
the set of tags occurring in M . The binary relation >M on TM is defined as the
smallest relation satisfying the following clauses:

– k >M 〈hi, h̃〉 · k;
– κ′ >M k if κ′ occurs in µ for some memory [µ; k]◦ that occurs in M .

The causal dependence relation :>M is the reflexive and transitive closure of
>M .

Relation κ :>M κ′ reads “κ is a causal antecedent of κ′ according to M”. When
configuration M is clear from the context, we write κ :> κ′ for κ :>M κ′.

Definition 2 (κ dependence). Let M ≡ νũ.
∏
i∈I κi : ρi |

∏
j∈J [µj ;κj]

◦.
Configuration M is κ-dependent, written M I κ, if ∀i ∈ I ∪ J, κ :>M κi.

We now define the projection operation on configurations M κ, that captures
the parallel composition of all tagged processes that do not depend on κ occurring
in memories in M .

Definition 3 (Projection). Let M ≡ νũ.
∏
i∈I(κi : ρi) |

∏
j∈J [µj ;κj]

◦, with
µj = κ′j : Rj | κ′′j : Tj. Then:

M κ = νũ. (
∏
j′∈J′

κ′j′ : Rj′) | (
∏

j′′∈J′′

κ′′j′′ : Tj′′)

where J ′ = {j ∈ J | κ 6:> κ′j} and J ′′ = {j ∈ J | κ 6:> κ′′j }.

9

Finally we define the notion of complete configuration, used in the premise
of rule H.Roll.

Definition 4 (Complete configuration). A configuration M contains a tag-
ged process κ : P , written κ : P ∈M , if M ≡ νũ. (κ : P) | N or M ≡ νũ. [κ : P |
κ1 : Q; k]◦ | N .

A configuration M is complete, noted complete(M), if for each memory
[µ; k]◦ that occurs in M , one of the following holds:

1. There exists a process P such that k : P ∈M .

2. There is h̃ such that for each hi ∈ h̃ there exists a process Pi such that
〈hi, h̃〉 · k : Pi ∈M .

Barbed bisimulation. The operational semantics of the roll-π calculus is com-
pleted classically by the definition of a contextual equivalence between configu-
rations, which takes the form of a barbed congruence. We first define observables
in configurations. We say that name a is observable in configuration M , noted
M ↓a, if M ≡ νũ. (κ : a〈P 〉) | N , with a 6∈ ũ. Keys are not observable: this is
because they are just an internal device used to support reversibility. We note
⇒, �∗, ∗ the reflexive and transitive closures of →, �, and , respectively.

One of the aims of this paper is to define a low-level semantics for roll-π, and
show that it is equivalent to the high-level one. We want to use weak barbed
congruence for this purpose. Thus we need a definition of barbed congruence
able to relate roll-π configurations executed under different semantics. These se-
mantics will also rely on different runtime syntaxes. Thus, we define a family of
relations, each labeled by the semantics to be used on the left and right compo-
nents of its elements. We also label sets of configurations with the corresponding
semantics, thus highlighting that the corresponding runtime syntax has to be
included. However, contexts do not include runtime syntax, since we never add
contexts at runtime.

Definition 5 (Barbed bisimulation and congruence). A relation s1Rs2 ⊆
Ccls1 × Ccls2 on closed consistent configurations is a strong (resp. weak) barbed
simulation if whenever M s1Rs2N

– M ↓a implies N ↓a (resp. N ⇒s2↓a)

– M →s1 M ′ implies N →s2 N ′, with M ′s1Rs2N ′ (resp. N ⇒s2 N ′ with
M ′s1Rs2N ′)

A relation s1Rs2 ⊆ Ccls1 × Ccls2 is a strong (resp. weak) barbed bisimulation if

s1Rs2 and (s1Rs2)−1 are strong (resp. weak) barbed simulations. We call strong
(resp. weak) barbed bisimilarity and note s1∼s2 (resp. s1≈s2) the largest strong
(resp. weak) barbed bisimulation with respect to semantics s1 and s2.

We say that two configurations M and N are strong (resp. weak) barbed
congruent, written s1∼cs2 (resp. s1≈cs2), if for each roll-π context C such that
C[M] and C[N] are consistent, then C[M] s1∼s2 C[N] (resp. C[M] s1≈s2 C[N]).

10

3.3 Soundness and completeness of backward reduction in roll-π

We present in this section a Loop Theorem, that establishes the soundness of
backward reduction in roll-π, and we prove the completeness (or maximal per-
missiveness) of backward reduction in roll-π.

Theorem 1 (Loop Theorem - Soundness of backward reduction). For
any (consistent) configurations M and M ′ with no marked memories, if M ∗

M ′, then M ′ �∗ M .

To state the completeness result for backward reduction in roll-π, we define
a family of functions φe : Croll-π → Cρπ, where e ∈ N , mapping a roll-π configu-
ration to a ρπ configuration. Function φe is defined by induction as follows:

φe(νu.A) = νu. φe(A) φe(A | B) = φe(A) | φe(B) φe(κ : P) = κ : φe(P)

φe([µ; k]◦) = [φe(µ); k] φe(0) = 0 φe(X) = X

φe(roll k) = e〈0〉 φe(roll γ) = e〈0〉 φe(a〈P 〉) = a〈φe(P)〉
φe(a(X) .γ P) = a(X) . φe(P)

Note that roll instructions are transformed not into 0 but into a thread e〈0〉: this
is to ensure a consistent roll-π configuration is transformed into a consistent ρπ
configuration (recall that 0 is not a thread, thus it may be collected by structural
congruence and there would be no thread corresponding to the roll k process).

We now state that roll-π is maximally permissive: any subset of roll primitives
in evaluation context may successfully be executed, unlike in the naive example
of Section 2. Let M = νũ. [µ; k] | (k : P) | N be a ρπ configuration and S =
{k1, . . . , kn} a set of keys. We note M S M

′ if M ρπ M
′, M ′ = νũ. µ | N ,

and ki :> k for some ki ∈ S (here k is the key of the memory [µ; k] consumed by
the reduction). If M ′ 6 S , we say that M ′ is final with respect to S. We note ∗S
the reflexive and transitive closure of S . We assume here that reductions are
name-preserving, i.e., existing keys are not α-converted (cf. [9] for a discussion
on the topic).

Theorem 2 (Completeness of backward reduction). Let M be a (con-
sistent) roll-π configuration such that M ≡ νũ.

∏n
i=1 κi : roll ki | M1, let

S = {k1, . . . , kn}, and let e ∈ N \ fn(M). Then for all T ⊆ S, if φe(M) ∗T N
and N is final with respect to T , there exists M ′ such that N = φe(M

′), and
M ∗roll-π M

′.

4 A distributed semantics for roll-π

The semantics defined in the previous section captures the behavior of rollback,
but its H.Roll rule specifies an atomic action involving a configuration with an
unbounded number of processes and relies on global checks on this configuration,
for verifying that it is complete and κ-dependent. This makes it arduous to
implement, especially in a distributed setting.

11

(L.Com)
µ = (κ1 : a〈P 〉) | (κ2 : a(X) .γ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) .γ Q)�LL νk. (k : Q{P,k/X,γ}) | [µ; k]

(L.Start) (κ1 : roll k) | [µ; k] LL (κ1 : roll k) | [µ; k]• | rl k

(L.Span) rl κ1 | [κ1 : P |M ; k]◦ LL [bκ1 : Pc |M ; k]◦ | rl k

(L.Branch)
〈hi, h̃〉 · k occurs in M

rl k |M LL

∏
hi∈h̃

rl 〈hi, h̃〉 · k |M

(L.Up) rl κ1 | (κ1 : P) LL bκ1 : Pc (L.Stop) [µ; k]◦ | bk : Pc LL µ

Fig. 5. Reduction rules for LL

(E.Gb1) νk. rl k ≡LL 0 (E.Gb2) νk.
∏
hi∈h̃

rl 〈hi, h̃〉 · k ≡LL 0

(E.TagPFr) bk :

n∏
i=1

τic ≡LL νh̃.
n∏
i=1

b(〈hi, h̃〉 · k : τi)c h̃ = {h1, . . . , hn} n ≥ 2

Fig. 6. Additional structural laws for LL

We thus present in this section a low-level (written LL) semantics, where
the conditions above are verified incrementally by relying on the exchange of rl
notifications. We show that the LL semantics captures the same intuition as the
one introduced in Section 3 by proving that given a (consistent) configuration,
its behaviors under the two semantics are weak barbed congruent according to
Definition 5.

To avoid confusion between the two semantics, we use a subscript LL to
identify all the elements (reductions, structural congruence, . . .) referred to the
low-level semantics presented here, and HL (for high-level) for the semantics
described in Section 3.

The LL semantics→LL of roll-π is defined as for the HL one (cf. Section 3.2),
as →LL = �LL ∪ LL, where relations �LL and LL are defined to be the
smallest evaluation-closed binary relations on closed LL configurations satisfying
the rules in Figure 5. The notion of structural congruence used in the definition
of evaluation-closed is here the smallest congruence on LL processes and config-
urations that satisfies the rules in Figure 3 and in Figure 6.

LL configurations differ from HL configurations in two aspects. First, tagged
processes (inside or outside memories) can be frozen, denoted bκ : Pc, to indicate
that they are participating to a rollback (rollback is no longer atomic). Second,

12

LL configurations include notifications of the form rl κ, used to notify a tagged
process with key κ to enter a rollback.

Let us describe the LL rules. Communication rule L.Com is as before. The
main idea for rollback is that when a memory pointed by a roll is marked (rule
L.Start), a notification rl k is generated. This notification is propagated by
rules L.Span and L.Branch. Rule L.Span also freezes threads inside memories,
specifying that they will be eventually removed by the rollback. Rule L.Branch
(where the predicate “κ occurs in M” means that either M = κ : P or M =
[µ; k′]◦ with κ : P ∈ M) is used when the target configuration has been split
into multiple threads: a notification has to be sent to each of them. Rule L.Up
is similar to L.Span, but it applies to tagged processes outside memories. It also
stops the propagation of the rl notification. The main idea is that by using rules
L.Span, L.Branch, and L.Up one is able to tag all the causal descendants of
a marked memory. Finally, rule L.Stop rolls back a single computation step
by removing a frozen process and freeing the content of the memory created
with it. In the LL semantics a rollback request is thus executed incrementally,
while it was atomic in the HL semantics (rule H.Roll). The LL semantics also
exploits an extended structural congruence, adding axioms E.Gb1 and E.Gb2
to garbage collect rl notifications when they are no more needed, and extending
axiom E.TagP to deal with frozen threads (axiom E.TagPFr).

We now show an example to clarify the semantics (each reduction is labeled
by the name of the axiom used to derive it). Let M0 = M1 | (κ2 : c(Y) .δ Y),
where M1 = (κ0 : a〈P 〉) | (κ1 : a(X) .γ c〈roll γ〉). We have:

M0 � νk. [M1; k] | (k : c〈roll k〉) | (κ2 : c(Y) .δ Y)

(L.Com) � νk, l. [M1; k] | [M2; l] | (l : roll k)

(L.Start) νk, l. [M1; k]• | [M2; l] | (l : roll k) | rl k
(L.Span) νk, l. [M1; k]• | [M ′2; l] | (l : roll k) | rl l
(L.Up) νk, l. [M1; k]• | [M ′2; l] | b(l : roll k)c

(L.Stop) νk. [M1; k]• |M ′2
(L.Stop) M1 | (κ2 : c(Y) .δ Y)

where:

M2 = (k : c〈roll k〉) | (κ2 : c(Y) .δ Y) M ′2 = b(k : c〈roll k〉)c | (κ2 : c(Y) .δ Y)

One can see that the rollback operation starts with the application of the rule
L.Start, whose effects are (i) to mark the memory aimed by a roll process, and
(ii) to generate a notification rl k to freeze its continuation. Since the continuation
of the memory [M1; k] is contained in the memory [M2; l] then the rule L.Span
is applied. So, the part of the memory containing the tag k gets frozen and
a freeze notification rl l is generated. The notification eventually reaches the
process l : roll k and freezes it (rule L.Up). Now, since there exists a memory
whose continuation is a frozen process, we can apply the rule L.Stop, and free
the configuration part of the memory (M ′2). Again, we have that the continuation

13

of [M1; k] is a frozen process and by applying the rule L.Stop we can free the
configuration M1, obtaining the initial configuration. In general, a rollback of a
step whose memory is tagged by k is performed by executing a top-down visit
of its causal descendants, freezing them, followed by a bottom-up visit undoing
the steps one at the time.

We can now state the correspondence result between the two semantics.

Theorem 3 (Correspondence between HL and LL). For each roll-π HL
consistent configuration M , M HL≈cLL M .

Proof. The proof is quite long and technical, and relies on a several additional
semantics used as intermediate steps from HL to LL. It can be found in [8]. ut

This result can be easily formulated as full abstraction. In fact, the encoding
j from HL configurations to LL configurations defined by the injection (HL
configurations are a subset of LL configurations) is fully abstract.

Corollary 1 (Full abstraction). Let j be the injection from HL (consistent)
configurations to LL configurations and let M , N be two HL configurations. Then
we have j(M) LL≈cLL j(N) iff M HL≈cHL N .

Proof. From Theorem 3 we have M HL≈cLL j(M) and N HL≈cLL j(N). The
thesis follows by transitivity. ut

The results above ensure that the loss of atomicity in rollback preserves
the reachability of configurations yet does not make undesired configurations
reachable.

5 Related work and conclusion

We have introduced in this paper a fine-grained undo capability for the asyn-
chronous higher-order π-calculus, in the form of a rollback primitive. We present
a simple but non-trivial high-level semantics for rollback, and we prove it both
sound (rolling back brings a concurrent program back to a state that is a proper
antecedent of the current one) and complete (rolling back can reach all an-
tecedent states of the current one). We also present a lower-level distributed
semantics for rollback, which we prove to be fully abstract with respect to the
high-level one. The reversibility apparatus we exploit to support our rollback
primitive is directly taken from our reversible HOπ calculus [9].

Undo or rollback capabilities in programming languages have been the sub-
ject of numerous previous works and we do not have the space to review them
here; see [10] for an early survey in the sequential setting. Among the recent
works that have considered undo or rollback capabilities for concurrent program
execution, we can single out [3] where logging primitives are coupled with a no-
tion of process group to serve as a basis for defining transaction abstractions,
[12] which introduces a checkpoint abstraction for functional programs, and [7]
which extends the actor model with constructs to create globally-consistent

14

checkpoints. Compared to these works, our rollback primitive brings immedi-
ate benefits: it provides a general semantics for undo operations which is not
provided in [3]; thanks to the fine-grained causality tracking implied by our re-
versible substrate, our roll-π calculus does not suffer from uncontrolled cascading
rollbacks (domino effect) which may arise with [12], and, in contrast to [7], pro-
vides a built-in guarantee that, in failure-free computations, rollback is always
possible and reaches a consistent state (soundness of backward reduction).

Our low-level semantics for rollback, being a first refinement towards an im-
plementation, is certainly related to distributed checkpoint and rollback schemes,
in particular to the causal logging schemes discussed in the survey [6]. A thor-
ough analysis of this relationship must be left for further study, however, as it
requires a proper modeling of site and communication failures, as well as an
explicit model for persistent data.

References

1. A. Avizienis, J.C. Laprie, B. Randell, and C.E. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. Dependable Sec.
Comput., 1(1), 2004.

2. C.H. Bennett. Notes on the history of reversible computation. IBM Journal of
Research and Development, 32(1), 1988.

3. T. Chothia and D. Duggan. Abstractions for fault-tolerant global computing.
Theor. Comput. Sci., 322(3), 2004.

4. V. Danos and J. Krivine. Reversible communicating systems. In Proc. of CON-
CUR’04, volume 3170 of LNCS. Springer, 2004.

5. V. Danos and J. Krivine. Transactions in RCCS. In Proc. of CONCUR’05, volume
3653 of LNCS. Springer, 2005.

6. E.N. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3), 2002.

7. J. Field and C.A. Varela. Transactors: a programming model for maintaining glob-
ally consistent distributed state in unreliable environments. In Proc. of POPL’05.
ACM, 2005.

8. I. Lanese, C.A. Mezzina, A. Schmitt, and J.B. Stefani. Controlling reversibil-
ity in higher-order pi (TR). http://www.cs.unibo.it/~lanese/publications/

fulltext/TR-rollpi.pdf.gz.
9. I. Lanese, C.A. Mezzina, and J.B. Stefani. Reversing higher-order pi. In Proc. of

CONCUR 2010, volume 6269 of LNCS. Springer, 2010.
10. G.B. Leeman. A formal approach to undo operations in programming languages.

ACM Trans. Program. Lang. Syst., 8(1), 1986.
11. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-

Order Paradigms. PhD thesis CST–99–93, University of Edinburgh, 1992.
12. L. Ziarek and S. Jagannathan. Lightweight checkpointing for concurrent ML. J.

Funct. Program., 20(2), 2010.

15

