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Abstract. Building complex component-based software systems, for in-
stance communication systems based on the Click, Coyote, Appia, or
Dream frameworks, can lead to subtle assemblage errors. We present a
novel type system and type inference algorithm that prevent intercon-
nection and message-handling errors when assembling component-based
communication systems. These errors are typically not captured by clas-
sical type systems of host programming languages such as Java or ML.
We have implemented our approach by extending the architecture de-
scription language (ADL) toolset used by the Dream framework, and
used it to check Dream-based communication systems.

1 Introduction

Building software systems from components has many benefits [33], including
easier maintenance and evolution. However, component-based systems are not
exempt from subtle assemblage errors that are not captured by the type systems
provided with the implementation languages. These errors are hard to catch
because they may be purely an artifact of a faulty assemblage, and thus may arise
even if individual components and their interconnections are correct. As noted
in [24], this is for instance the case with data manipulation errors. These errors
may occur when handling protocol data units in a communication stack built
from components or micro-protocols with frameworks like Appia [27], Click [18],
Coyote [5], Dream [20], or Ensemble [34].

Dealing with assemblage errors in system software and communication sys-
tems has already been approached in five main ways. The first one uses theorem
proving to check the expected properties of an assemblage on a formal speci-
fication of the behavior of individual components and of the assemblage, as in
Ensemble [24]. The second approach uses an architecture description language
(ADL) to specify component behaviors and assemblage constraints, typically
component dependencies, and to automatically verify the assemblage consis-
tency, as in Aster [15], Knit [30], or Plastik [16]. The third approach relies on
type systems for interaction contracts, as in the Singularity system [11] or in
web service workflows [14]. The fourth approach uses model checking to verify
the expected properties of a formally specified assemblage, as in the Vercors sys-
tem [3]. A fifth approach relies on property-preserving composition, as described
in [4], where it is applied to deadlock-free assemblages.



The theorem-proving approach is comprehensive and can address arbitrary
properties, but it requires theorem-proving expertise, which is not readily avail-
able for systems programmers. The ADL approach is more automatic, but it
typically supports a limited set of architectural constraints, and a limited set
of behavioral checks that fail to address subtler run-time errors such as data
manipulation errors. The type-system approach can be made entirely automatic
if type inference is decidable, but the type systems devised so far fail to deal
with the data handling errors we consider in this paper. The model-checking
approach is automatic, but may require considerable expertise in the property
language used, again not necessarily available for systems programmers. The
property-preserving composition approach also can be made entirely automatic,
for instance using model checking techniques, but to this date does not readily
apply to the data handling errors we consider.

We thus propose an extension of the ADL approach with a type analysis
devised to deal with a class of data manipulation errors that occur in ill-formed
communication systems assemblages. More specifically, our approach involves:
(i) the definition of a simple process calculus that allows to specify an opera-
tional model of a component assemblage (where program execution is abstracted
by a reduction relation); (ii) the definition of a type system, that operates on
programs abstracted as terms of the process calculus, and that ensures that ty-
pable assemblages do not exhibit the targeted class of errors; (iii) an extension
of the target ADL to allow architecture descriptions with process annotations
characterizing the abstract behavior of selected components; (iv) the addition of
a type analyzer in the ADL assembly toolchain to statically verify component as-
semblages. Technically, the paper makes two main contributions: (i) we define a
novel type system, which combines rows [31] with process types [36, 25], to track
message flows in component assemblages; (ii) we define a total type inference
algorithm for automatically checking annotated component assemblages.

Outline. The paper is organized as follows. Section 2 details the assemblage
verification we target. Section 3 presents the calculus and Section 4 the type
system that we use to abstract the behavior of communication components and
to characterize them. Section 5 discusses type inference and its implementation
in actual assemblage tool chains. Section 6 discusses related work and Section 7
concludes the paper.

2 Assemblages in Dream

To explain the assemblage verifications we target in this paper, we use the
example of the Dream framework, which we now briefly present. Dream is a
component-based framework, written in Java, designed for the construction of
communication systems (protocol stacks, communication subsystems of middle-
ware for distributed execution). It is built on top of the Java implementation of
the Fractal component model [6].

The primary data structure in Dream is called a message. Messages are used
to implement protocol data units (i.e. the data that communication protocols



exchange during their execution). Messages are exchanged between Dream com-
ponents through input and output channels. A message is a list of labeled chunks,
which can be any Java objects including messages. Within a component, mes-
sages can be freely manipulated. Basic operations, like removing, adding, or
accessing chunks are provided. The Dream framework comprises a library of
components that encapsulate functions and behaviors commonly found in com-
munication subsystems. These include: message queues that are used to store
messages, transformers that transform a message received on their single input
channel and deliver the result to their single output channel, routers that for-
ward messages received on their single input channel to one or several output
channels, multiplexers that forward messages received on their input channels
to their single output channel, aggregators that aggregate messages received on
one or several input channels and deliver the aggregated message on their single
output channel, deaggregators that are dual to aggregators, and conduits that
allow messages to be exchanged between different address spaces.
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Fig. 1. A Dream Assemblage

Figure 1 shows a simple assemblage of Dream components that corresponds
to two communicating sites, Site A sending different kinds of messages to Site
B. The assemblage comprises two generator components, Gen1 and Gen2, that
emit different messages. These messages are then sent to a multiplexer, then han-
dled by the Conduit component and transferred to Site B. On Site B, router
R forwards messages to the Handler 1 or Handler 2 component, based on the
structure of the incoming messages. Verifying the correctness of the assemblage
implies verifying structural constraints to guarantee that input and output chan-
nels are properly matched, and ensuring that a component does not receive a
message it is not able to handle (typically, a message with missing or unexpected
chunks). In our simple example above, this could be the case if the component
Conduit could not handle messages generated by the two components Gen1 and
Gen2 (e.g. because of a missing chunk), or if one handler could not process the
messages forwarded to it. In the presence of complex assemblages, such an anal-
ysis can quickly become difficult.



3 Calculus

Our process calculus aims to capture the abstract behavior of components ap-
pearing in communication frameworks. It is at the same level of abstraction
than an architecture description language (ADL). Alternatively, it can be un-
derstood as a simple ADL. This allows us to apply our approach to different
communication frameworks, written in different programming languages.

Syntax The syntax of the calculus is given below. It is parameterized by the set
of primitive components (noted p) which can be used in assemblages.

D ::= Assemblage δ ::= Tag list
p Primitive ∅ Empty tag
| c[I /O][D] Composite | ↓r; δ down tag
| e〈M〉 Message | ↑r; δ up tag
| D1 | D2 Parallel

v ::= Value

M ::= vδ Routed value c Base value
{a1 = v1; . . . ; an = vn} Record

An assemblage is a parallel composition of components and messages. Compo-
nents can be primitive or composite. A composite takes the form c[I /O][D],
where c is a name, I is the set of input channels of the composite, O is the set
of output channels of the composite, and D is its inner assemblage. The specifi-
cation of input and output channels I and O in a composite may hide input or
output channels of its inner assemblage, by not mentioning them. Messages take
the form e〈M〉, where e is a channel name, and M is a routed value. In the follow-
ing we write J for a parallel composition of messages. A routed value is a record
or a base value decorated with a list of routing tags. We always assume that each
tag occur at most once in a list. Intuitively, a list of routing tags δ encodes a
particular message flow in a component assemblage. Primitive components can
act on these flows, as illustrated by the router and multiplexer primitive com-
ponents described below. Although each tag is unique in a tag list, component
assemblages can contain loops (e.g., through a combination of routers and mul-
tiplexers), and record fields can contain records. These two features allow the
modeling of complex communication stacks, including ones featuring protocol
tunneling, such as IP over IP.

The set of primitive components is a parameter of the calculus, and can be
extended as required. It is assumed to contain at least the following primitive
components: components Add, Sub, and Select provide classical basic opera-
tions on extensible records; components Router and Mult provide elementary
routing and multiplexing capabilities; component Conn corresponds to a simple
unidirectional connector.

Operational semantics The operational semantics of the calculus is defined clas-
sically by a reduction relation between terms that operates modulo a structural
equivalence. The structural equivalence is not given here for lack of space (see



[22] for details), but it essentially states that the parallel operator is associative,
commutative, and that the order of fields in a record does not matter. The re-
duction relation is defined as a binary relation on assemblages that satisfies the
rules given below. In the rules, a statement of the form “D1 B D2” can be read
“D1 reduces to D2”.

R:Ctx
D B D′

E[D] B E[D′]

R:In
e ∈ I

e〈M〉 | c[I /O][D] B c[I /O][e〈M〉 | D]

R:Out
s ∈ O

c[I /O][s〈M〉 | D] B c[I /O][D] | s〈M〉

R:Prim
match(p, J)

J | p B p | γ(p, J)

Rule R:Ctx stipulates that reduction is possible inside an evaluation context
E (composite environment or other assemblages in parallel, see [22] for details).
Rules R:In and R:Out stipulate how messages flow in and out of composite com-
ponents. Rule R:Prim is actually a rule schema describing the evolution of prim-
itive components. Informally, it states that if a set of messages J matches the in-
put schema of primitive component p (premise match(p, J)), then p can consume
input messages J and produce output messages described by γ(p, J). The relation
match and the function γ must be defined for all primitive components of inter-
est. For instance, they are defined as follows for Add, Select, Mult, and Router.
Let M = {a1 = v1; . . . ; an = vn}δ1 , R = {a = v; a1 = v1; . . . ; an = vn}δ1 , and
a, ai all distinct. We set:

match(Add[e1 e2/s](a), e1〈M〉 | e2〈vδ2〉) γ(Add[e1 e2/s](a), e1〈M〉 | e2〈vδ2〉) = s〈R〉

match(Select[e/s](a), e〈R〉) γ(Select[e/s](a), e〈R〉) = s〈vδ1〉

match(Mult[e1 e2/s](r), e1〈vδ〉) match(Mult[e1 e2/s](r), e2〈vδ〉) if r 6∈ δ

γ(Mult[e1 e2/s](r), e1〈vδ〉) = s〈v↑r;δ〉 γ(Mult[e1 e2/s](r), e2〈vδ〉) = s〈v↓r;δ〉

match(Router[e/s1 s2](r), e〈vδ〉) if r ∈ δ
γ(Router[e/s1 s2](r), e〈vδ1;↑r;δ2〉) = s1〈vδ1;δ2〉
γ(Router[e/s1 s2](r), e〈vδ1;↓r;δ2〉) = s2〈vδ1;δ2〉

Add and Select provide usual record manipulation. Mult adds a tag to a
routed value to signal the input channel on which it received it. Router checks
the tags of the received routed values to send them on the appropriate channel.

Errors We say that an assemblage D cannot process a message e〈M〉 if a primi-
tive component p in D may accept a message on e but cannot process the message



e〈M〉: there are some N and J such that match(p, e〈N〉 | J) but for every J ′

we don’t have match(p, e〈M〉 | J ′). We then define an assemblage D to be in
error if D = E[e〈M〉 | D′] and e〈M〉 cannot be processed by D′. Intuitively,
an assemblage is correct if no message manipulation error may occur, i.e., every
primitive component that may accept a message can process it.

4 Types

4.1 Type System

Syntax Our type system is based on two main ideas: (i) the type of values ex-
changed on channels are routed types: rows (extensible record) or base types,
decorated with routing information; (ii) the type of an assemblage is an assem-
blage type, presented as a function from its input channel types to its output
channels types. The syntax of types is defined below.

E ::= Value type T ::= Routed type
η Variable ξ[E] Value flow
| {W} Row | r(T1, T2) Tagged pair
| τ Base type

S ::= Channel type
W ::= Row definition ∅ Empty declaration

ρ Row variable | e : (T ) Channel declaration
| a : Pre(E);W Used Field | S ∪ S Union
| a : Abs;W Unused Field
| Abs Empty Row

The type of an assemblage, written F in the following, takes the form of a type
scheme ∀α1 . . . αn.SI → SO where αi are type variables (standing for arbitrary
types), SI collects the types of input channels in the assemblage, and SO collects
the types of output channels in the assemblage. We write dc(S) for the channel
names that appear in S. A channel type takes the form e : (T ), where e is a
channel name, and T is a routed type. A routed type is either a value flow ξ[E],
where the value type E is carried by the data flow ξ, or a tagged pair of the
form r(T1, T2), where r is a tag, and T1, T2 are routed types. Rows are defined
classically [31] with presence and absence information: a : Pre(E) stands for a
field named a that is present in a record, with type E; a : Abs indicates that
field a is not present. Base types, i.e., types associated with base values, are a
parameter of the type system (base types typically include integers, strings, or
concrete data types).

Informally, a routed type is a binary tree where each leaf corresponds to
a value type carried by a data flow, and the branch leading to it defines the
routing annotation carried by the value (a given routing tag appears at most once
on each branch). For instance, the type r1(ξ1[int], r2(ξ2[string], ξ2[η])) consists
of three branches corresponding to three different values. The second branch
r1( , r2(ξ2[string], )) corresponds to a flow accepting only strings tagged with at



least the tags ↓ r1 and ↑ r2. This tree structure uses explicit references to data
flows as they enable type duplication, which is a requirement to properly deal
with routing and multiplexing. Type duplication allows two multiplexers in a
row to type check correctly and is the main innovation of this type system (see
the discussion in Section 4.2).

Typing Types for primitive components are given by a function Υ that maps
primitive components to assemblage types. Just as the set of primitive com-
ponents is a parameter of our calculus, function Υ is a parameter of our type
system and needs to be defined for every primitive component to be typed. To
ensure that these assemblage types correspond to the operational semantics of
the primitive components, the function Υ must obey two constraints: (i) for each
primitive component p, the input channel type of Υ (p) should only allow valid
patterns; (ii) the output type of the parallel composition of a primitive compo-
nent p with one of its valid input pattern J must contain the type of γ(p, J).
Formally, for all primitive component p and all J with match(p, J), there exists
an assemblage type S1 → S2 such that p | J : S1 → S2 holds, and there exists
S′2 with S′2 ⊂ S2 such that p | γ(p, J) : S1 → S′2 holds. These constraints ensure
that the type of a primitive component is consistent with its behavior (defined
by relation match and function γ). For instance, the types associated with the
primitive components introduced before, and of a simple connector Conn[e/s]
(that forward any value received on its input channel e to its output channel s),
can be defined as follows:

Υ (Add[e1e2/s](a)) = ∀α, ρ, ξ. e1 : (ξ1[{a : Abs; ρ}]) ∪ e2 : (ξ2[α])→ s : (ξ1[{a : Pre(α); ρ}])
Υ (Select[e/s](a)) = ∀α, ρ, ξ. e : (ξ[{a : Pre(α); ρ}])→ s : (ξ[α])
Υ (Router[e/s1 s2](r)) = ∀α, β, ξ, ξ′. e : (r(ξ[α], ξ′[β]))→ s1 : (ξ[α]) ∪ s2 : (ξ′[β])
Υ (Mult[e1 e2/s](r)) = ∀α, β, ξ, ξ′. e1 : (ξ[α]) ∪ e2 : (ξ′[β])→ s : (r(ξ[α], ξ′[β]))
Υ (Conn[e/s]) = ∀α, ξ. e : (ξ[α])→ s : (ξ[α])

The type system is equipped with a (classical) subtyping relation ≤, which
we do not detail fully here, for lack of space. For instance, the subtyping rules
for assemblage types T:Func and T:Gen, and tagged pairs T:TagPair, are
given below (note the contravariance in T:Func, which is as expected):

T:Func
S1 ≤ S′1 S2 ≤ S′2
S′1 → S2 ≤ S1 → S′2

T:Gen
F ≤ F ′

∀α.F ≤ ∀α.F ′

T:TagPair
T1 ≤ T ′1 T2 ≤ T ′2
r(T1, T2) ≤ r(T ′1, T ′2)

The typing rules in our type system comprise rules for assemblages and rules
for routed values. Typing judgements take the form D : F for assemblages, v : E
for simple values, andR ` R : T for routed values. The environmentR is a set of
routing tags. The typing rules make use of the - binary relation between channel
types, which is defined as follows: given two channel types S ,

⋃
i∈I ei : (Ti)

and S′ ,
⋃
j∈J e

′
j : (T ′j), we note S - S′ iff for all i ∈ I, j ∈ J , ei = e′j implies

Ti ≤ T ′j .



Typing rules for assemblages are given below:

T:Prim
Υ (p) = F

p : F

T:Subst
D : F

D : σ(F )

T:Inst
D : ∀α.F
D : F

T:Gen
D : F

D : ∀α.F

T:Channel
∅ `M : T

e〈M〉 : ∅ → e : (T )

T:Sub
D : F F ≤ F ′

D : F ′

T:Par
D : S1 → S2 D′ : S′1 → S′2

S2 - S′1 S′2 - S1 dc(S1) ∩ dc(S′1) = ∅
D | D′ : (S1 ∪ S′1)→ (S2 ∪ S′2)

T:Box
D : S1 → S2 S′1 - S1 S2 - S′2 S′2 - S′1 dc(S′1) = I ∧ dc(S′2) = O

c[I /O][D] : S′1 → S′2

Rule T:Prim states that the type of a primitive component is given by func-
tion Υ . Rules T:Subst, T:Inst, and T:Gen are classical rules for substitution,
instantiation, and generalization, respectively. Since type duplication is inte-
grated into substitutions, because of the different forms of type variables and
their associated constraints (e.g., unique occurrence of tags in routing annota-
tions), our notion of substitution σ in rule T:Subst is slightly more complex
than usual. It mostly behaves as expected, replacing variables with terms (see
discussion in Section 4.2; formal details can be found in [22]).

The parallel composition D1 of two assemblages D and D′ yields a function
having the capacity of both assemblages, i.e. , that accepts as input any message
either D or D′ accepts, and that can generate any message either D or D′ can
generate. Rule T:Par has three side conditions: the first two (S2 - S′1 and
S′2 - S1) ensure that all values (S2 and S′2) sent on input channels for D | D′

are indeed valid inputs for this program; the third one (dc(S1) ∩ dc(S′1) = ∅)
states that D and D′ must have distinct input channels to avoid the possibility
of implicit routing, i.e. , of distinct components listening on the same channel,
thus doing a routing operation without an explicit router to support it. Rule
T:Box specifies the constraints that apply to obtain the type S′1 → S′2 of a
composite. The sets S′1 and S′2 must give a type to every channel mentioned in I
and O. If a channel is mentioned in both, then the output type must be a subtype
of the input type (S′2 - S′1) as this corresponds to a loop We also impose that
the valid inputs of the component must be valid ones for the component’s inner
process (stated by the constraint S′1 - S1), and that all outputs of this process
must be valid output of the component (stated by the constraint S2 - S′2).



Typing rules for routed values are given below (we have left out rules and
conditions that apply to base values and base types):

T:Record
∀1 ≤ i ≤ n, vi : Ei ∀1 ≤ i 6= j ≤ n, ai 6= aj

{a1 = v1; . . . ; an = vn} : {a1 : Pre(E1); . . . ; an : Pre(En); Abs}

T:Empty
v : E

R ` v∅ : ξ[E]

T:Up
R] {r} ` vδ : T R] {r} ` Tk

R ` v↑r;δ : r(T, Tk)

T:Down
R] {r} ` vδ : T R] {r} ` Tk

R ` v↓r;δ : r(Tk, T )

Rule T:Record is the standard typing rule for extensible record, using rows.
The three typing rules T:Empty, T:Up and T:Down, construct a routed type
by induction on the cardinality of the routing annotation. Rule T:Empty is
used when the routing annotation is empty: the routing type is in such case
just a leaf representing the value’s type. Rules T:Up and T:Down define how
we construct the routing type tree when one or more elements are present in
the routing annotation. We write R] {r} for the disjoint union of the tow sets.
Generic flows that are built in a routing type derivation will then be instantiated
during the exploration of the rest of the program with the typing rule T:Inst.
The use of routing tags environments R in these three rules ensures the validity
of the constructed routed type.

Example assemblage Assume that the generators, handlers, multiplexer, router
and conduit components in Figure 1 are primitive components, and their types
are as given in the following table. We can type the assemblages SiteA and
SiteB as indicated in the last two lines of the same table.

Component Types
Gen1 ∀ξ.∅ → s1 : (ξ[E1])
Gen2 ∀ξ.∅ → s2 : (ξ[E2])
Handler1 ∀ξ.e1 : (ξ[E3])→ ∅
Handler2 ∀ξ.e2 : (ξ[E4])→ ∅
M same type as Mult[s1 s2/tA](r)
R same type as Router[tB/e1 e2](r)
Conduit same type as Conn[tA/tB ]
SiteA ∀ξ.∅ → tA : (r(ξ[E1], ξ′[E2]))
SiteB ∀ξ.tB : (r(ξ[E3], ξ′[E4]))→ ∅

If we assume further that E3 can be transformed using sub-typing and sub-
stitution into E1, and similarly for E4 into E2, then we can type the (closed)
assemblage

c[∅ / ∅][SiteA | Conduit | SiteB]

with the type: ∅ → ∅.



Properties of the type system The type system is sound with respect to reduc-
tion and guarantees correct execution, as shown by the subject reduction and
correction theorems, and type inference is decidable (see proofs in [22]):

Theorem 1 (Subject Reduction). Let D and D′ be two assemblages such
that D B D′, and F an assemblage type such that D : F holds. Then there
exists F ′ such that D′ : F ′.

Theorem 2 (Correction). Let D be an assemblage and F a process type such
that D : F holds. Then D has no error.

Theorem 3 (Inference). Type inference is decidable.

4.2 Discussion

Type duplication. In our presentation of the type system, we have, for lack of
space, glossed over several details (which can be found in [22]). In particular,
our notion of substitution is more complex than the usual one because of type
duplication. Let us explain this by way of an example. One of the objectives of
this type system was to allow flexible data flows in programs, using a routing tree
structure to type our channels. Let us consider a program where a component Rem
that remove a a field follows a multiplexer. The output type of the multiplexer
is of the form r(ξ1[η1], ξ2[η2]), whereas the input type of Rem is of the form
ξ3[{a : Pre(η3); ρ}]. The difficulty here is that we need to be able to unify these
two types to get a valid type system. With our definition of substitution, this
unification is made in two steps. We first duplicate the type ξ3[{a : Pre(η3); ρ}]
into

T , r(ξ4[{a : Pre(η3); ρ}], ξ5[{a : Pre(η3); ρ}])

One can remark that the two branches of the resulting routing tree have the
same row and type variables. But because they are declared in different flows
(ξ4 and ξ5), they can be instantiated with different terms. We then have two
tree structures with the same form that we can simply unify into T .

Duplication allows to instantiate a leaf in a routing tree into a whole sub-
tree, while keeping the constraint of the leaf (here, the constraint being that
the message must have the field ‘a’ defined) and allowing the variables on the
fresh leaves to be instantiated independently. One can see duplication as a way
to enable polymorphism without using type schemes.

Routing on tags. One may notice that routing in our calculus is based on routing
tags, and not, as could be envisaged, on message values or on (the presence of)
fields in record values. Likewise, the type system could depend only on rows
for message types. In fact, an earlier version of our calculus and type system
did exactly that, and is described in [23]. Both calculus and type system in this
earlier version are more expressive than the ones presented here. For instance,
the type system in [23] allows types associated with a single channel to be union
types, in contrast to the type system in this paper. Unfortunately, for reasons



explained in [23], type inference in our earlier type system is undecidable. Our
calculus and type system in the present paper thus trade expressivity in favor
of the decidability of inference, which is ultimately due to the fact that routing
types are finite trees.

Limitations. Our type system has a few limitations. We already pointed out
that there can only be a single type for channel and a set of tags (union types
are not supported). Also, since a routing type is a binary tree, one has to encode
router and multiplexer types with more than two output or input channels by
a combination of binary routers and multiplexers. Another consequence is the
complexity of encoding routers that route on fields into our calculus, as is the
case in the Dream framework. Typically, we encode the presence of a field a in
a message with a pair of tags ↑a (when the field a is present) and ↓a (when a is
absent from the message). This simple encoding is difficult to apply in complex
assemblages involving loops with multiple routers and multiplexers. An encoding
can be found in most cases, but can be tricky to define and manipulate. However,
based on our experience with the Dream and Click frameworks (see below), these
limitations are not show-stoppers, and we have not in practice encountered the
difficult cases mentioned above.

5 Type Inference and its Implementation

A key property of our type system (in contrast to our previous work [23]) is that
type inference is decidable. We have devised and proved correct a constraint-
based algorithm, along the lines of [28, 9]. We do not have the space to present
the type inference algorithm: its definition and proof can be found in [22]. The
algorithm comprises a constraint generator that computes from a given program
a set of constraints a type must satisfy to type the input program, and a con-
straint solver that decides whether the generated constraint set has a solution
(the program is typable) or not (the program is not typable). Technically, our
type inference is based on the one defined in [9], extended to deal with routing
types, channel types, and type duplication.

We have implemented the type inference algorithm in OCaml, and used
it to extend the assemblage tool chains used by the Dream and Click frame-
works. In the case of Dream, we have extended the Fractal ADL toolchain de-
scribed in [19]. Figure 2 provides an overview of this toolchain. It is organized
as a component-based framework, that comprises essentially a front-end, real-
ized by the Loader component in Figure 2, and a back-end, that comprises
the ASTProcessingOrganizer and the Scheduler components in Figure 2. The
back-end is responsible for the generation and execution of tasks such as code
generation, code installation, code deployment, etc. The Loader component
reads a set of input files and produces an Abstract Syntax Tree (AST). This
tree provides a unified representation of the system architecture that can be
described through a combination of description languages, such as ADL, IDL,
or DSL. The Loader is organized essentially as a pipeline comprising parsers



for the various possible input languages, and semantic analyzers. We have in-
tegrated our type analyzer as a specific semantic analyzer component in this
pipeline. We have also devised an extension to the XML-based Fractal ADL to
take into account our type annotations for primitive components, and added its
associated parser component in the Loader pipeline.
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Fig. 2. Fractal ADL toolchain

In the case of Click, a C++ software framework dedicated to the component-
based construction of configurable routers [18], assemblages are specified by con-
figuration files written in a simple scripting language [17]. We found it simpler
to just document type annotations for Click in a separate, additional configura-
tion file. This way, our type analyzer remains an entirely separate and external
analysis tool for Click, and its use does not require any change to the Click
toolset.

We also conducted several experiments to check the correctness of non-trivial
assemblages built using both frameworks. We have no space to report fully on
these experiments but they demonstrate that our approach is practical, requir-
ing minimal extensions to existing assemblage toolsets, and that it can indeed
be applied to different component-based frameworks, implemented in different
programming languages. The following table provides an indication of the time
taken to check (correct) Dream and Click assemblages. The Dream assemblage
originates from the Cosmos project, which develops protocols for roaming mo-
bile devices. The Click assemblages are examples taken from the Click website.
The performance of our type analyzer appears quite reasonable, bearing in mind
that the complexity of type inference in our system is non-polynomial.

Assemblage Components Primitive Channels Time (sec)

COSMOS (Dream) 439 340 662 180.428
dnsproxy (Click) 9 8 7 0.025

fromhost-tunnet (Click) 24 22 24 0.166
mazu-nat (Click) 60 56 54 4.489



6 Related Work

Type systems checking architectural constraints or component assemblages have
been the subject of several works in the past decade. For instance, the work done
on the Wright language [2] supports the verification of behavioral compatibility
constraints in a software architecture. Work on Plastik [16] deals mostly with
structural constraints, although in a dynamical setting. Work on ArchJava [1]
uses ownership types to enforce communication integrity between components.
Another work develops behavioral types for component assembly [8], which is
close to the notion of session types as developed in [38]. None of these type sys-
tems capture the errors we deal with in this paper, namely incorrect message
manipulation operations. The type system we propose in this paper is more re-
lated to the ones defined for Pict [29], the π-calculus [25] or the λπv-calculus [37],
although with provision for extensible record types that these systems do not
have. We know of no type system that is capable of dealing with our notion of
message errors along with the complex data flows that are allowed in our calcu-
lus. Indeed, type systems such as [7, 13, 29, 32] are too restrictive concerning data
flow manipulation, and cannot adequately deal with routers and multiplexers.
On the other hand, type systems which provide some means to handle data flows
by way of session types and process types [8, 25, 36, 38] do not take in account
structured mutable messages.

Type inference for distributed calculi has been studied in the setting of the
Join-calculus [10], Mobile Ambients-like calculi [26], Dπ [21], which have an
inference algorithm, and Pict, which has not. In our earlier work [23], type
inference was undecidable. Undecidability was caused by channels being mapped
to a finite set whose cardinality is not constrained, thus allowing a form of
polymorphic recursion in loops [12]. In the present work, because of the use
of tags, we only allow a kind of finite polymorphism in loops, thus obtaining
decidable type inference. Finally, one can consider the routing process present in
the calculus as a weak form of type analysis [35] on rows.

7 Conclusion

We have presented in this paper an approach and a novel type system to deal
with data handling errors that may occur in communication systems built with
component-based communication frameworks. Our approach, which can be char-
acterized as a domain-specific type analysis, extends previous approaches based
on architecture descriptions analysis, to deal with both structural and behavioral
errors. It complements structural verifications that are the traditional remit of
ADL-based approaches, and can as well be an interesting complement to be-
havior verification tools based on model-checking. We have implemented a type
analyzer tool that comprises a total type inference algorithm for component as-
semblages, and applied it to the checking of several configurations built with
two different communication frameworks. These experiments demonstrate, in
our view, that our approach is indeed promising and practical.



We plan to extend this work in several directions. We are currently trying to
generalize the notion of tagged types in order to apply to concurrent functional
languages, and to extend our approach to deal with reconfiguration errors in
dynamically evolving assemblages.
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