
Distributed diagnosis

of concurrent

and asynchronous

Discrete Event Systems

Albert Benveniste

Eric Fabre, Stefan Haar, Claude Jard

IRISA, Rennes

2004

1

The problem: distributed + asynchronous
lo

ca
l t

im
e

lo
ca

l t
im

e

lo
ca

l t
im

e

alarms
collecting

computing a local view
of global diagnosis

exchanging messages

2

The problem: distributed + asynchronous
lo

ca
l t

im
e

lo
ca

l t
im

e

lo
ca

l t
im

e

alarms
collecting

computing a local view
of global diagnosis

exchanging messages

3

The SDH/SONET ring in the Paris area

St Ouen Aubervilliers

Montrouge Gentilly

TF
LOS

TF
LOS

MS-AIS

MS-AIS

disabled AU-AIS

AU-AIS

AU-AISAU-AIS

disabled
disabled

AU-AIS AU-AIS disabled

4

Features

• distributed algorithm

– synchronization services should not be used

– some reliability can be assumed (error correcting

codes)

• nontrivial even if not distributed

– recover hidden state history from observation se-

quence

– ambiguities ⇒ nondeterminism, probabilistic

5

1. A toy example:

Petri nets and unfoldings

asynchronous diagnosis

distributed diagnosis

2. Formalizing: Petri nets, unfoldings and

event structures

3. An abstract setting

4. Distributed orchestration:

tree-shaped networks

general networks

6

A toy example

α ρ

1 7

4

α ρ

1 7

4

β

α

ρ

α

β

β

ρ

α

α

ρ

55

3322

6

ρ β β

α

6

ρ β β

α

2 independent
sensors

global, or
2 components

1 sensor
alarms: alarms:Petri net:

1,4: safe states
2,6: faulty states

5: faulty by interaction

a structure to represent sets of traces with concurrency

7

A toy example

α ρ

7

α ρ

7 β

α

ρ

α

β

β

ρ

α

α

ρ3 44

55

3

6

ρ β β

α

6

ρ β β

α

11

22

2 independent
sensors

global, or
2 components

1 sensor
alarms: alarms:Petri net:

1,4: safe states
2,6: faulty states

5: faulty by interaction

a structure to represent sets of traces with concurrency

8

A toy example

α ρ

1 7

4

α ρ

1 7

4

β

α

ρ

α

β

β

ρ

α

α

ρ

55

3322

6

ρ β β

α

6

ρ β β

α

2 independent
sensors

global, or
2 components

1 sensor
alarms: alarms:Petri net:

1,4: safe states
2,6: faulty states

5: faulty by interaction

a structure to represent sets of traces with concurrency

9

A toy example

α ρ

4

α ρ

4

β

α

ρ

α

β

β

ρ

α

α

ρ

55 6

ρ β β

α

6

ρ β β

α

11

22 33

77

2 independent
sensors

global, or
2 components

1 sensor
alarms: alarms:Petri net:

1,4: safe states
2,6: faulty states

5: faulty by interaction

a structure to represent sets of traces with concurrency

10

A toy example

α ρα ρ

β

α

ρ

α

β

β

ρ

α

α

ρ

6

ρ β β

α

6

ρ β β

α

11

22 33

77

55

44

2 independent
sensors

global, or
2 components

1 sensor
alarms: alarms:Petri net:

1,4: safe states
2,6: faulty states

5: faulty by interaction

a structure to represent sets of traces with concurrency

11

Unfoldings: P, UP

1 7

2 3 4

5

iii ii i

iv v vi

1 7

2 3 4

11

2 3 2 3 44

65711

2

11 7 5

i ii

ii

i

7 5

3 4

1 7

2 3 4

611

iii iv v

vi

iii iv v

iii

iv

iii

6

a structure to represent sets of traces with concurrency

12

Unfoldings: P, UP

1 7

2 3 4

5

1 7

2 3 4

11

iii ii i

iv v vi

i

7 5

3 4

iv

2 3 2 3 44

65711

2

11 7 5

ii

ii

i

1 7

2 3 4

611

iii iv v

vi

iii iv v

iii

6

iii

a structure to represent sets of traces with concurrency

13

Unfoldings: P, UP

1 7

2 3 4

5

1 7

2 3 4

11

iii ii i

iv v vi

i

7 5

3 4

2 3 2 3 44

65711

2

11 7 5

ii

ii

i

1 7

2 3 4

611

iii iv v

vi

iii iv v

iii

6
iv

iii

a structure to represent sets of traces with concurrency

14

Unfoldings: P, UP

1 7

2 3 4

5

1 7

2 3 4

11 7 5

iii ii i

iv v vi

i

7 5

3 4

65711

iii iv v

2 3 44

i vi

6

iii

i

32

11

4

1 7

2

11

2 3

6

iii iviii

iv

iii v

a structure to represent sets of traces with concurrency

15

Unfoldings: P, UP

1 7

2 3 4

5

2 3 2 3 44

65711

2

11

iii ii i

iv v vi

ii

ii

i

1 7

2 3 4

11

i

7 5

1 7

2 3 4

43
11

7 5

6

6

iii iv v

vi

iii iv v

iii

iv

iii

a structure to represent sets of traces with concurrency

16

1. A toy example:

Petri nets and unfoldings

asynchronous diagnosis

distributed diagnosis

2. Formalizing: Petri nets, unfoldings and

event structures

3. An abstract setting

4. Distributed orchestration:

tree-shaped networks

general networks

17

Diagnets: P,A, πP
(UP×A

)

#

#

71

4322

44

6657

ρ ρ ρ

ααα

i

iii

ii

7
β

ρ

α

1
β β

α

ββρ

6

4

5

32

α

iii iii

i

ii ii

iii

11

ρ

iv

iviviv

net
net alarm diagnet

18

Diagnets: P,A, πP
(UP×A

)

#

#
2

44

6657

ρ

αα

2

α

ββρ

ρ

4

ρ

β

α

ii ii

iii iii iii

7

65

11

32

71

ρ

4 α

β

ρ

i

β

α

3

1
i

ii

iii

iv iv iv

iv

net
alarm diagnetnet

19

Diagnets: P,A, πP
(UP×A

)

#

5

ρρ

7

4

2

6

2

4

3

6

4

α

7

α

1

ρ

α

iii
α

ii

i

β

ρ

α42

1

α

ββρ

6

1

5

3

β
71

ρ

β

iv

diagnet
net

net alarm

20

2 interacting components, 2 independent sensors

component 1

component 2

αβ

αβ

ρ1 ρ2

5

432

1 7

β β

α α

6

ρ1

ρ2

21

2 components, 2 sensors, 1 supervisor: πP
(UP×A

)

component 1

component 2

αβ

αβ

ρ1 ρ2

κ1

κ2

κ2

2

11

2

1 7

43

7 5

4432

7 5 6

β

ρ1 α

ββ ρ2

α α

5

432

1 7

β β

α α

6

ρ1

ρ2

2

β

11

ρ1

β

2

α

6

22

1. A toy example:

Petri nets and unfoldings

asynchronous diagnosis

distributed diagnosis

2. Formalizing: Petri nets, unfoldings and

event structures

3. An abstract setting

4. Distributed orchestration:

tree-shaped networks

general networks

23

2 components, 2 sensors, 2 supervisors

κ1

κ2

κ2

11

1

5

442

5

6

4

2

6

β

ρ1 α α

ρ2β β

α α

7

7

3

7

3

ρ1

β

β

2

11

2

2

interaction

α ρ

1 7

4

α ρ

1 7

4

55

3322

6

ρ β β

α

6

ρ β β

α

24

2 components, 2 sensors, 2 supervisors

supervisor 1 supervisor 2

β

42

1 7

3

α

6

κ1κ1

β

α

ρ2

α

7 5

443

7 57

32

7

κ2

κ1

κ2

κ2

11

1

5

442

5

6

4

2

6 κ2

2

11

2

11

2

6

β

ρ1 α α

ρ2β β

α α

ρ1

β

ρ1

ββ

α

7

7

3

7

3

7

3

2 2

ββ
local

ρ1

β

β

2

11

2

synchronizing

2

interaction

25

2 components, 2 sensors, distributed diagnosis

supervisor 1 supervisor 2

κ2

β

4

11

2

1

κ1κ1

β

α

7

3

7 57

32

7

α

ρ2

5

44

κ2

α

6κ1

κ2

κ2

11

1

4

5

442

5

β

α

β

α

11

2

2 2

6

6

2 2

11

2

6

β

ρ1ρ1

ββ ρ2

α

α

ββ

ρ1ρ1

β

α

2 2

ββ
local

7

3

7

3

7

7

3

7

3

synchronizing

2

interaction

26

2 components, 2 sensors, distributed diagnosis

supervisor 1 supervisor 2

κ2

β

α

4

511

2

1

κ1

β

7

32

7

κ2κ1

ρ2

α α

443

7 5 6κ1

κ2

κ2

1

4

5

442

5

β

α

β

α

7

3

7

3

7

7

3 3

7

7

2 2

ββ
local

11

β β

ρ1ρ1

β

ρ1ρ1

β β

α
11

2

2 2

6

6

2 2

2

11 6ρ2

α

α

β
synchronizing

2

interaction

27

2 components, 2 sensors, distributed diagnosis

supervisor 1 supervisor 2

κ2

β

α

4

511

2

1

κ1

β

7

32

κ1

α

3

7 5

44

κ2

κ1
κ2

1

4

5

44

5

β

α

β

α

α

ρ2

α

ββ

ρ1ρ1

β

α

ρ2

α6

6

11

2

22

6

6

7

3

7

3

7

7

3

7

7

3

7

2 2

ββ
local

κ2

11

2

β β

ρ1ρ1

β

2

11

22

synchronizing

2

interaction

28

2 components, 2 sensors, distributed diagnosis

supervisor 1 supervisor 2

κ2

β

α

4

511

2

1

κ1

7

2

β

κ1

α

7 5

κ2

44
κ2

κ2

11

1

4

5

442

5

β

α

β

α

κ1

2 2

ββ
local

7

3

7

3

7 7

3

7

3 3

7

3

7

2

11

22

6

6

2

11

22

6

6

β

ρ1ρ1

ββ

α

ρ2

α

ρ1ρ1

β

ββ

α

ρ2

α

synchronizing

2

interaction

29

2 components, 2 sensors, distributed diagnosis

supervisor 1 supervisor 2

κ2κ1κ1

κ2

β

β

α

α

4

5

44

5

2

11

2

1

κ1

κ2

κ2

11

1

4

5

442

5

β

α

β

α

ρ1 ρ1

ββ

β

α

ρ2

α

β β

ρ1ρ1

β

α

ρ2

α

2

11

22

6

6

2 2

11

2

6

6

7

7

3

7 7

3

7

3

7 7

3

7

3

7

2 2

ββ
local

3

synchronizing

2

interaction

30

Discussion

local diagnosis is never blocked
each supervisor emits and forgets: write is non-blocking
asynchronous distributed algorithm: no synchronization service

more than 2 supervisors
more complex interaction

}
⇒ very complex algorithm!

needed :




formalizing synchronizations & projections
of unfoldings

formalizing the high-level “orchestration”

31

Discussion

local diagnosis is never blocked
each supervisor emits and forgets: write is non-blocking
asynchronous distributed algorithm: no synchronization service

more than 2 supervisors
more complex interaction

}
⇒ very complex algorithm!

needed :




formalizing synchronizations & projections
of unfoldings

formalizing the high-level “orchestration”

32

1. A toy example:

Petri nets and unfoldings

asynchronous diagnosis

distributed diagnosis

2. Formalizing: Petri nets, unfoldings and

event structures

3. An abstract setting

4. Distributed orchestration:

tree-shaped networks

general networks

33

abstractions/projections perform compression

2

1

2

β β

7

3

7

3

7

3

1

22

ββ

7

3

β

2

γ

8

3

UP 7−→ πP2 (UP) = {E,�,#, ϕ}
unfolding event structure

34

abstractions/projections perform compression

71

2γ γ

β

2

β

3

3

ββ
7

2
3

β

71

8

32

1

2

β

2

7

3 3

7

ββ

8

71

32

#

6

4

4322

1

5

ρρ

1 7

2 2 3 4

α α

4

7

4

57 71 11 11 11 1

ρ

6

4

ββ

diagnet
diagnet as an

event structure

UP 7−→ πP2 (UP) = {E,�,#, ϕ}
unfolding event structure

35

synchronization U1 ∧ U2 ; projection πQ (U)

β

ββ

ρ1

22

11

2

1

7

3

7

3

7

α

ρ2

α α

4

5

44

5 6

7

3

7

3

7

β

ρ1

β

α

2

11

2

6

7

3

1

22

ββ

7

3

β

2

γ

8

3

regard U’s as event structures

36

1. A toy example:

Petri nets and unfoldings

asynchronous diagnosis

distributed diagnosis

2. Formalizing: Petri nets, unfoldings and

event structures

3. An abstract setting

4. Distributed orchestration:

tree-shaped networks

general networks

37

synchronization U1 ∧ U2 ; projection πQ (UP)

P, Q : label sets

π is a projection : πP ◦ πQ = πP∩Q

Q ⊇ P1 ∩ P2 : πQ (U1 ∧ U2) = πQ (U1) ∧ πQ (U2)

(similar to constraints)

πP1

(
UP1‖P2

)
︸ ︷︷ ︸

local view

∧
πP2

(
UP1‖P2

)
︸ ︷︷ ︸

local view

= UP1‖P2

please note : UP1
∧ UP2

6= UP1‖P2

distributed diagnosis :
[
πPi

(UP×A
)]

i=1,2
38

synchronization U1 ∧ U2 ; projection πQ (UP)

P, Q : label sets

π is a projection : πP ◦ πQ = πP∩Q

Q ⊇ P1 ∩ P2 : πQ (U1 ∧ U2) = πQ (U1) ∧ πQ (U2)

(similar to constraints)

πP1

(
UP1‖P2

)
︸ ︷︷ ︸

local view

∧
πP2

(
UP1‖P2

)
︸ ︷︷ ︸

local view

= UP1‖P2

please note : UP1
∧ UP2

6= UP1‖P2

distributed diagnosis :
[
πPi

(UP×A
)]

i=1,2
39

synchronization U1 ∧ U2 ; projection πQ (UP)

P, Q : label sets

π is a projection : πP ◦ πQ = πP∩Q

Q ⊇ P1 ∩ P2 : πQ (U1 ∧ U2) = πQ (U1) ∧ πQ (U2)

(similar to constraints)

πP1

(
UP1‖P2

)
︸ ︷︷ ︸

local view

∧
πP2

(
UP1‖P2

)
︸ ︷︷ ︸

local view

= UP1‖P2

please note : UP1
∧ UP2

6= UP1‖P2

distributed diagnosis :
[
πPi

(UP×A
)]

i=1,2
40

1. A toy example:

Petri nets and unfoldings

asynchronous diagnosis

distributed diagnosis

2. Formalizing: Petri nets, unfoldings and

event structures

3. An abstract setting

4. Distributed orchestration:

tree-shaped networks

general networks

41

A simple constraint problem

compute πP1 (U1 ∧ U2) without computing U1 ∧ U2

πP ◦ πQ = πP∩Q

Q ⊇ P1 ∩ P2 : πQ (U1 ∧ U2) = πQ (U1) ∧ πQ (U2)

πP1 (U1 ∧ U2) = πP1 (U1) ∧ πP1 (U2) = U1 ∧ πP1 (U2)

= U1 ∧ πP1
◦ πP2 (U2) = U1 ∧ πP1∩P2 (U2)︸ ︷︷ ︸

projection︸ ︷︷ ︸
fusion

projectionfusion

42

A tree-shaped network of components

? : πPi


∧

j
Uj




43

A tree-shaped network of components

projection

? : πPi


∧

j
Uj




44

A tree-shaped network of components

projection fusion

? : πPi


∧

j
Uj




45

A tree-shaped network of components

fusion

? : πPi


∧

j
Uj




46

A tree-shaped network of components

projection

? : πPi


∧

j
Uj




47

A tree-shaped network of components

fusion
& local termination

? : πPi


∧

j
Uj




48

A tree-shaped network of components

? : πPi


∧

j
Uj




49

A tree-shaped network of components

? : πPi


∧

j
Uj




50

A tree-shaped network of components

back−propagate
yields global termination

? : πPi


∧

j
Uj




51

A chaotic algorithm

get projected
constraints

each node performs this atomic sequence

of micro-steps concurrently, in a chaotic

way; messages travel along the branches

52

A chaotic algorithm

fuse

each node performs this atomic sequence

of micro-steps concurrently, in a chaotic

way; messages travel along the branches

53

A chaotic algorithm

project

each node performs this atomic sequence

of micro-steps concurrently, in a chaotic

way; messages travel along the branches

54

A chaotic algorithm

emit

each node performs this atomic sequence

of micro-steps concurrently, in a chaotic

way; messages travel along the branches

55

A chaotic algorithm

1

2 3

1

4

each node performs this atomic sequence

of micro-steps concurrently, in a chaotic

way; messages travel along the branches

56

A theorem for tree-shaped networks

The initial conditions are the Ui. The iter-

ations apply in a chaotic way. Termination

occurs when all messages become station-

ary. Yields the desired solution πPi

(∧
j Uj

)

57

A theorem for tree-shaped networks

The initial conditions are the Ui. The iter-

ations apply in a chaotic way. Termination

occurs when all messages become station-

ary. Yields the desired solution πPi

(∧
j Uj

)

58

A theorem for tree-shaped networks

The initial conditions are the Ui. The iter-

ations apply in a chaotic way. Termination

occurs when all messages become station-

ary. Yields the desired solution πPi

(∧
j Uj

)

59

Extension to time-varying systems

? : πPi


∧

j
Uj(n)


 , Uj(n) ↘

works, thanks to monotonicity of the algorithm!

works even on-line, if messages are fast enough.

Solves on-line diagnosis.

60

Extension to optimization & belief nets

hidden variables
maximize overc

c

c c

c

+

+

++

Solutions can be given an additive cost for mini-

mization (axioms still valid). Can be interpreted

as a likelihood for belief nets: belief propagation.

Extends also the two-point boundary smoothing al-

gorithms from control.

61

1. A toy example:

Petri nets and unfoldings

asynchronous diagnosis

distributed diagnosis

2. Formalizing: Petri nets, unfoldings and

event structures

3. An abstract setting

4. Distributed orchestration:

tree-shaped networks

general networks

62

Networks with cycles

problem: interaction between distant nodes through

different paths ⇒ causality & conflict travel through

different paths ⇒ chaotic algorithm invalid in gen-

eral

still, this algorithm finds all solutions having tree-

shaped support

63

Networks with cycles

problem: interaction between distant nodes through

different paths ⇒ causality & conflict travel through

different paths ⇒ chaotic algorithm invalid in gen-

eral

still, this algorithm finds all solutions having tree-

shaped support

64

CONCLUSION

• Computing a local view of global diagnosis with-
out computing global diagnosis

• Expressed using unfoldings UP×A, their compo-
sition

∧
, and their projections πP

• Abstract setting: distributed constraint solving

• Orchestration as a chaotic, distributed iteration

• A prototype developed using Java threads was
subsequently deployed as such on a distributed
management platform at Alcatel

• Generalizes: optimization, negociation

• Further issues: (graph grammars & unfoldings)
dynamic reconfiguration
self-management, Web services

65

CONCLUSION

• Computing a local view of global diagnosis with-
out computing global diagnosis

• Expressed using unfoldings UP×A, their compo-
sition

∧
, and their projections πP

• Abstract setting: distributed constraint solving

• Orchestration as a chaotic, distributed iteration

• A prototype developed using Java threads was
subsequently deployed as such on a distributed
management platform at Alcatel

• Generalizes: optimization, negociation

• Further issues: (graph grammars & unfoldings)
dynamic reconfiguration
self-management, Web services

66

RELATED TOPICS

• network & service management

• distributed algorithms

• fault tolerance

• Discrete Event Systems control and diagnosis

• Hidden Markov Models (HMM), Belief nets, Markov
random fields in probability and AI

• Turbo coding in information theory

67

