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Features

• distributed algorithm

– synchronization services should not be used

– some reliability can be assumed (error correcting

codes)

• nontrivial even if not distributed

– recover hidden state history from observation se-

quence

– ambiguities ⇒ nondeterminism, probabilistic
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1. A toy example:

Petri nets and unfoldings

asynchronous diagnosis

distributed diagnosis

2. Formalizing: Petri nets, unfoldings and

event structures

3. An abstract setting

4. Distributed orchestration:

tree-shaped networks

general networks

6



A toy example
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Unfoldings: P, UP
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1. A toy example:

Petri nets and unfoldings

asynchronous diagnosis

distributed diagnosis

2. Formalizing: Petri nets, unfoldings and

event structures

3. An abstract setting

4. Distributed orchestration:

tree-shaped networks

general networks
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Diagnets: P,A, πP
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2 interacting components, 2 independent sensors
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2 components, 2 sensors, 1 supervisor: πP
(UP×A
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2 components, 2 sensors, 2 supervisors
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2 components, 2 sensors, distributed diagnosis
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2 components, 2 sensors, distributed diagnosis
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2 components, 2 sensors, distributed diagnosis
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2 components, 2 sensors, distributed diagnosis
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2 components, 2 sensors, distributed diagnosis
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Discussion

local diagnosis is never blocked
each supervisor emits and forgets: write is non-blocking
asynchronous distributed algorithm: no synchronization service

more than 2 supervisors
more complex interaction

}
⇒ very complex algorithm!

needed :




formalizing synchronizations & projections
of unfoldings

formalizing the high-level “orchestration”
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1. A toy example:

Petri nets and unfoldings

asynchronous diagnosis

distributed diagnosis

2. Formalizing: Petri nets, unfoldings and

event structures

3. An abstract setting

4. Distributed orchestration:

tree-shaped networks
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abstractions/projections perform compression
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synchronization U1 ∧ U2 ; projection πQ (U)
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1. A toy example:

Petri nets and unfoldings

asynchronous diagnosis

distributed diagnosis

2. Formalizing: Petri nets, unfoldings and
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3. An abstract setting

4. Distributed orchestration:
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synchronization U1 ∧ U2 ; projection πQ (UP)

P, Q : label sets

π is a projection : πP ◦ πQ = πP∩Q

Q ⊇ P1 ∩ P2 : πQ (U1 ∧ U2) = πQ (U1) ∧ πQ (U2)

(similar to constraints)

πP1

(
UP1‖P2

)
︸ ︷︷ ︸

local view

∧
πP2

(
UP1‖P2

)
︸ ︷︷ ︸

local view

= UP1‖P2

please note : UP1
∧ UP2

6= UP1‖P2

distributed diagnosis :
[
πPi

(UP×A
)]

i=1,2
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1. A toy example:

Petri nets and unfoldings

asynchronous diagnosis

distributed diagnosis

2. Formalizing: Petri nets, unfoldings and

event structures

3. An abstract setting

4. Distributed orchestration:

tree-shaped networks

general networks
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A simple constraint problem

compute πP1 (U1 ∧ U2) without computing U1 ∧ U2

πP ◦ πQ = πP∩Q

Q ⊇ P1 ∩ P2 : πQ (U1 ∧ U2) = πQ (U1) ∧ πQ (U2)

πP1 (U1 ∧ U2) = πP1 (U1) ∧ πP1 (U2) = U1 ∧ πP1 (U2)

= U1 ∧ πP1
◦ πP2 (U2) = U1 ∧ πP1∩P2 (U2)︸ ︷︷ ︸

projection︸ ︷︷ ︸
fusion

projectionfusion
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A tree-shaped network of components

? : πPi


∧

j
Uj



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A tree-shaped network of components

projection fusion
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A tree-shaped network of components
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A tree-shaped network of components

projection
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A tree-shaped network of components

fusion
& local termination
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A tree-shaped network of components
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j
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A tree-shaped network of components

back−propagate
yields global termination

? : πPi


∧

j
Uj



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A chaotic algorithm

get projected
constraints

each node performs this atomic sequence

of micro-steps concurrently, in a chaotic

way; messages travel along the branches
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A chaotic algorithm

fuse

each node performs this atomic sequence

of micro-steps concurrently, in a chaotic

way; messages travel along the branches
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A chaotic algorithm

project

each node performs this atomic sequence

of micro-steps concurrently, in a chaotic

way; messages travel along the branches
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A chaotic algorithm

emit

each node performs this atomic sequence

of micro-steps concurrently, in a chaotic

way; messages travel along the branches
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A chaotic algorithm

1

2 3

1

4

each node performs this atomic sequence

of micro-steps concurrently, in a chaotic

way; messages travel along the branches
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A theorem for tree-shaped networks

The initial conditions are the Ui. The iter-

ations apply in a chaotic way. Termination

occurs when all messages become station-

ary. Yields the desired solution πPi

(∧
j Uj

)
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Extension to time-varying systems

? : πPi


∧

j
Uj(n)


 , Uj(n) ↘

works, thanks to monotonicity of the algorithm!

works even on-line, if messages are fast enough.

Solves on-line diagnosis.
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Extension to optimization & belief nets

hidden variables
maximize overc

c

c c

c

+

+

++

Solutions can be given an additive cost for mini-

mization (axioms still valid). Can be interpreted

as a likelihood for belief nets: belief propagation.

Extends also the two-point boundary smoothing al-

gorithms from control.
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Networks with cycles

problem: interaction between distant nodes through

different paths ⇒ causality & conflict travel through

different paths ⇒ chaotic algorithm invalid in gen-

eral

still, this algorithm finds all solutions having tree-

shaped support
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CONCLUSION

• Computing a local view of global diagnosis with-
out computing global diagnosis

• Expressed using unfoldings UP×A, their compo-
sition

∧
, and their projections πP

• Abstract setting: distributed constraint solving

• Orchestration as a chaotic, distributed iteration

• A prototype developed using Java threads was
subsequently deployed as such on a distributed
management platform at Alcatel

• Generalizes: optimization, negociation

• Further issues: (graph grammars & unfoldings)
dynamic reconfiguration
self-management, Web services

65



CONCLUSION

• Computing a local view of global diagnosis with-
out computing global diagnosis

• Expressed using unfoldings UP×A, their compo-
sition

∧
, and their projections πP

• Abstract setting: distributed constraint solving

• Orchestration as a chaotic, distributed iteration

• A prototype developed using Java threads was
subsequently deployed as such on a distributed
management platform at Alcatel

• Generalizes: optimization, negociation

• Further issues: (graph grammars & unfoldings)
dynamic reconfiguration
self-management, Web services

66



RELATED TOPICS

• network & service management

• distributed algorithms

• fault tolerance

• Discrete Event Systems control and diagnosis

• Hidden Markov Models (HMM), Belief nets, Markov
random fields in probability and AI

• Turbo coding in information theory
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