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Résumé : On introduit le modèle des Réseaux markoviens, une extension probabiliste
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4 S. Abbes & A. Benveniste

1 Introduction

This paper studies the model of Markov nets, a probabilistic model of safe Petri nets under
true concurrency semantics. This means that traces, not firing sequences, are given a prob-
ability. This study belongs to the recently developed area of true concurrency probabilistic
models, addressing both event structures and nets. Confusion-free probabilistic event struc-
tures were studied in [15, 14]. Distributed probabilistic event structures and Markov nets
were investigated in [1], following an approach initiated in [6]; the latter approaches address
event structures with confusion. This paper studies the model of Markov nets, a probabilis-
tic extension of safe Petri nets under the true-concurrent semantics. The main contribution
of the paper, w.r.t. to the conference version [5], is the complete study of the Law of Large
Numbers for Markov nets.

We rely on previous work [3] on probabilistic event structures—probabilistic event struc-
tures are prime event structures whose space of maximal configurations is equipped with a
probability.

In the above reference we introduced the class of so-called locally finite event structures,
which encompasses in particular confusion-free event structures. Locally finite event struc-
tures are event structures with kind of finite confusion. For locally finite event structures,
so-called branching cells generalize the cells of confusion-free event structures. Branching
cells are sub-event structures that recursively localize the sources of conflict in an event
structure.

Equipping branching cells with local probabilities and composing them together accord-
ing to a generalized Bayes chain rule, defines a unique probability measure on the space
of maximal configurations of the considered event structure. Probabilities obtained by this
way are called distributed, for the following reason [3]: the so constructed probabilistic event
structures are such that “concurrent processes are independent in the probabilistic sense”.

The goal of the present paper is to apply these constructions to the case of an event
structure obtained by unfolding a safe Petri net. For this case, branching cells that are
isomorphic when seen as event structures labeled by transitions from the net, are consid-
ered equivalent. The resulting equivalence classes are finitely many and are called dynamic
clusters. Let us mention that dynamic clusters, as their name indicates, differ from usual
clusters [8], which are statically defined on nets. Equipping the dynamic clusters of a safe
Petri net with local probabilities yields Markov nets. Unfolding Markov nets gives raise
to probabilistic event structures where equivalent branching cells are given the same local
probability.

A central tool in probabilistic models is the Law of Large Numbers (LLN). It is the basis
for the use of probabilistic models in statistics. It provides a quantitative counterpart to
the central notion of fairness, for infinite executions of systems. Recall that the classical
LLN for a sequence (Xk)k>0 of independent random variables with identical distribution µ
states as follows: for every nonnegative, real-valued, function f defined on the state space
of Xk, the empirical means 1

n

∑n
k=1 f(Xk) converge with probability 1 to the mean value

Irisa



Markov nets 5

∫
f(x)µ(dx). This LLN extends to (recurrent) Markov chains, with µ being the invariant

measure of the chain.
For Markov nets, the statement of a LLN is by itself doubly challenging, since:

1. there is no global time index k in the true-concurrency framework, and

2. it is unclear what the state space should be.

Regarding the second point, the normal guess that the local states would simply be the
places of the net, does not work in general—places are not the right notion of local state in
the probabilistic context. We will indeed show that

1. the “time elapsed while scanning a configuration” is adequately measured by the num-
ber of branching cells traversed, and

2. dynamic clusters (i.e., equivalence classes of branching cells) provide the right notion
of state.

A third challenge is that, since configurations exhibit concurrency, the “progress of time”
while scanning a configuration is not clearly defined: the different processes composing the
configuration may progress freely as long as they do not need to synchronize. Our LLN
requires that empirical means converge whatever way these different processes progress, and
that the resulting limit should be unique.

Not every Markov net can obey such a LLN: in a net composed of two non interacting
subnets, the two subnets can progress freely and no single “life time” can bound this progress.
For such nets lacking synchronization, our LLN cannot hold. We thus finely characterize
how much lack of synchronization can be tolerated, while still having the LLN valid: this
is expressed as an integrability condition on a certain random variable that measures the
lack of synchronization of the system. This condition is trivially satisfied for Markov chains,
since Markov chains do not present any concurrency and thus “maximally synchronize”.

To keep the present paper self-contained, the main results of [3] concerning branching
cells of event structures and distributed probabilities are recalled. The paper is organized
as follows: In §2, we introduce on a few toy examples the kind of randomization for Petri
nets we consider in this paper. The Law of Large Number for true-concurrency systems is
also discussed in an informal manner. This first section provides an intuitive introduction to
probabilistic true-concurrency models. It only requires basic knowledge of Petri net theory.
It is intended to both 1) researchers used to the interleaving semantics for probabilistic
systems and who wish to have a short introduction to its true-concurrency counterpart, and
2) researchers comfortable with the true-concurrency semantics but not with its probabilistic
counterpart.

The remaining of the paper assumes knowledge of fundamentals of unfolding theory of
safe Petri nets [11]. We collect in §3 some basic notions concerning event structures, and
fix the notations. The non-standard notions of stopping prefixes and branching cells are
recalled from [3]. In §4, we recall the basic notion concerning probabilistic event structures

PI n˚1753



6 S. Abbes & A. Benveniste

as well as the construction of distributed probabilities. Markov nets are introduced in §5,
and we state the LLN in § 6. The proof of the LLN is the topic of §7. In Appendix A, we
recall the classical statements of the LLN that we use.

2 Illustrative Examples

This section presents some toy examples to illustrate the issues encountered when random-
izing Mazurkiewicz traces for a Petri net, and the solutions we propose. We first recall
basic concepts of Mazurkiewicz trace theory. We explain on simple examples why dynamic
clusters of nets must be considered, and their role in the randomization of nets. We also
informally describe the Law of Large Numbers in this context.

True Concurrency and Mazurkiewicz Traces. According to the true-concurrency
approach to safe Petri nets, we do not distinguish a firing sequence (. . . , t, t′, . . . ) from the
firing sequence obtained by exchanging places t and t′, whenever t and t′ are transitions of
the net that share no common resource. The equivalence classes—after taking the reflexive
transitive closure of the above relation—are called the Mazurkiewicz traces of the net, or
simply its traces for short [10, 11]. Figure 1 depicts the example of a safe Petri net. In this
example, the firing sequence (bce) is equivalent to the sequence (cbe) since transitions b and
c do not share common resources.
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Figure 1: Illustrating the true-concurrency semantics.

Firing sequences of a safe Petri net are ordered by the prefix relation on words. This
relation induces in turn an ordering on traces, so that trace σ precedes σ′ if and only if there
are firing sequences s and s′, with s a prefix of s′, representing σ and σ′, respectively. The
partial order on traces for the net of Figure 1 is depicted in Figure 2. On the other hand,
each trace is seen itself as a partially ordered multi-set (pomset) of transitions, where two
transitions are not comparable when they can be exchanged according to the above rule. In
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the language of event structures, the elements that compose the pomset are called events.
This is illustrated in Figure 2, (2), for the trace (bce) = (cbe).
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Figure 2: (1) Ordering of the traces of the net depicted in Figure 1. (2) The trace (bce) =
(cbe) as a partial order of labeled events.

Randomizing Maximal Traces. Traces are partially ordered sets of events. Therefore,
classical approaches from the area of stochastic processes do not apply, since the latter
assume a totally ordered time. We thus first discuss how Mazurkiewicz traces should be
randomized.

We randomize a safe Petri net by defining a probability on its set of maximal traces.
That is, we implicitly agree that no blocking other than intrinsic deadlocks of the net shall
appear due to randomization. Allowing the probability to weight non-maximal traces could
be relevant for modeling reasons, for example, to express the possibility of failure due to a
program crash. In the classical study of finite Markov chains, we indeed find this feature
under the name of “killed processes” [13, p.25]. It is also known that killed trajectories can
be made maximal by adding an additional dummy state in the state space, called the “ceme-
tery”. The same can be performed for nets, so we only focus on maximal traces throughout
this paper. For the example depicted in Figure 1, maximal traces are the extremal bottom
points of Figure 2 (1), i.e., (bd), (ad), (ac) and (bce). Making the net probabilistic amounts
thus to defining a probability P such that:

P(bd) + P(ad) + P(ac) + P(bce) = 1.

Observe that, if we sum these probabilities, not on traces but on firings sequences, the result
will exceed 1. This means that considering true-concurrency semantics has a significant
impact on the construction of probabilities.

PI n˚1753



8 S. Abbes & A. Benveniste

Concurrency and Probability. Our constant philosophy in the construction of proba-
bilistic nets is the following: as much as possible, parallel processes shall be made indepen-
dent in the probabilistic sense. When considering a Petri net as a distributed system with
a distributed state, this requirement is quite natural. In turn, synchronization is a major
source of difficulty. Indeed, when components do not not interact at all, we can simply ran-
domize each component separately, and make them probabilistically independent by decree.
In general, however, processes are “parallel” for a limited amount of “time”, then synchro-
nize, which results in breaking the parallelism. We shall give a precise formulation of the
latter claim, by defining a decomposition of processes through locally parallel components.
With this decomposition of processes at hand, we shall proceed with their randomization,
by enforcing probabilistic independence of locally parallel components. This is not a trivial
task, but is successfully achieved by using classical tools from Measure theory. The resulting
theory is presented in detail in [3], for the model of event structures.

Dynamic Clusters. Consider first the two nets depicted in Figure 3, (a) and (b). Net
in (a) offers three possibilities: either firing transition a, or firing transition b, or firing no
transition at all. Since we only consider maximal traces, as explained above, we deny to
this net the right of doing nothing, so that it must eventually fire transition a or b. This is
a simple coin tossing, that occurs with a certain probability, say µ1(a) versus µ1(b).

Consider next the net of Figure 3, (b). Again, since we consider only maximal traces
for randomization, the net has exactly two possibilities: either firing transition d, or firing
concurrently transitions c and e. We have again a coin tossing. This time, however, the
tossing does not involve single transitions, but rather certain groups of transitions. We
shall thus weight the occurrence of (ce) with some probability µ2(ce), while µ2(d) is the
probability that (d) occurs instead of (ce). Remark that, although transitions c and e are
concurrent, they are not independent, since c occurs if and only if e occurs.

Let us now investigate the effect of synchronization. The net of Figure 3 (c) collects the
two previous nets and adds some new elements whose execution depends on the previous
execution of the first two nets. In this discussion, we shall refer to the first two nets,
considered separately, as local nets, and to their executions as local executions. In contrast,
the net of Figure 3 (c) is referred to as the global net. Because the two local nets do not
interact at all, the local execution of one of them does not disturb the execution of the other
one. Hence the local executions are concurrent and do not interact.

Suppose that each local net is driven by some random local agent, and that these local
agents do not communicate with each other. It is then natural, from the probabilistic point
of view, to assume that the actions of local agents are independent in the probabilistic sense.
Observe that a maximal trace of the global net induces, by restriction, a maximal trace of
each local net. This is important, since we have only specified how to randomize the maximal
traces of the two local nets.

Consequently, we know at this point how to randomize the “beginning” of the executions
of the global net. If µ1 and µ2 denote respectively the probabilities attached to each local
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Figure 3: Illustrating local parallelism and synchronization of safe Petri nets.
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10 S. Abbes & A. Benveniste

net, so that

µ1(a) + µ1(b) = 1, µ2(ce) + µ2(d) = 1,

and if P denotes the global probability constructed so far, we have for example:

P(a ce) = µ1(a) × µ2(ce), P(b ce) = µ1(b) × µ2(ce).

In the above equation, the left members actually concern maximal executions of the global
net: they must be understood as, for example: “P(a ce) is the probability that a maximal
execution contains (ace)”.

What happens next? Consider for example the case of (ace) having fired. The resulting
net is depicted in Figure 4 (a). The transitions that are not enabled are depicted with
dashes, and we omit the transitions that have already fired. The only enabled transitions
are transitions h and i. We shall thus consider some probability µ3, that describes the weight
of h against i, in the context of h and i competing alone. By the chain rule, the complete
probabilities of (aceh) and of (acei) can now be computed by:

P(a ce h) = µ1(a) × µ2(ce) × µ3(h), P(a ce i) = µ1(a) × µ2(ce) × µ3(i).
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Figure 4: Nets resulting from different partial executions of the net depicted in Figure 3 (c).

Instead of (a) and (ce) being the executions of the two first local nets, assume that, for
example, (b) and (ce) have fired. The resulting net is depicted in Figure 4 (b). Now all
transitions f , g, h and i are enabled. Hence h and i still compete for firing, but they do
not compete in the same context as previously observed, since f and g also take part to the
competition. We shall thus consider yet another local probability µ4, that randomizes the
maximal traces of the net depicted in Figure 4 (b), i.e., such that:

µ4(fh) + µ4(fi) + µ4(gi) = 1.

We again use the chain rule to compute the probability of, say, (bcefh):

P(b ce fh) = µ1(b) × µ2(ce) × µ4(fh).
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Finally, in case of (ad) or (bd) firing in the first two local nets, we would consider also the
additional local nets consisting of transition i only, and of transition f only. Both nets are
necessarily equipped with trivial probabilities, i.e., with probabilities giving weight 1 to the
unique possible transition.

With the recursive decomposition of traces described so far, we have reached all maximal
configurations of the global net and we know how to compute the probability of each maximal
configuration. We leave to the reader as an exercise to check on this example that the
probability defined by this way sums indeed to 1 on the set of all maximal configurations of
the global net, by using the fact that µ1 and µ2 both sum to 1.

The different local nets encountered in the course of all possible executions of the net
are called dynamic clusters. The global net we have studied has 6 dynamic clusters: the
two nets of Figure 3 (a) and (b), the subnet obtained from Figure 4 (a) by keeping only
transitions h and i, the one obtained from Figure 4 (b) by keeping only transitions f , g, h
and i, and finally the two trivial nets with single transitions f and i.

The decomposition through these subnets is indeed dynamic, since a same transition
may occur in different dynamic clusters, according to the context. This was the case, for
example, for the transitions h and i. This fact conforms with the intuition that concurrent
systems shall not be statically decomposed, but may split and join in different manners,
according to the actual execution. We summarize what we have obtained so far:

1. We randomize maximal Mazurkiewicz traces of safe Petri nets.

2. Maximal traces are decomposed as the juxtaposition of maximal traces of dynamic
clusters.

3. To each dynamic cluster, we attach an agent that randomizes the maximal traces of
this cluster.

4. Concurrent dynamic clusters do not interfere with each other. They can thus be made
independent in the probabilistic sense.

The probabilistic systems constructed in this way are called Markov nets.

Regarding the Law of Large Numbers. Recall the classical LLN for a sequence
(Xk)k>0 of independent random variables with identical distribution µ: for every non-
negative, real-valued, function f defined on the state space of Xk, the empirical means
1
n

∑n
k=1 f(Xk) converge with probability 1 to the mean value

∫
f(x)µ(dx). This LLN ex-

tends to (recurrent) Markov chains, with µ being the invariant measure of the chain. We
shall now discuss the LLN for Markov nets. Of course, such a LLN is relevant only for nets
having infinite configurations.

An example of such a net is shown in Figure 5 and its dynamic clusters are depicted in
Figure 6. Note that these clusters overlap, revealing their dynamic nature. For example,
transition d belongs to both clusters s4 and s5; in fact, when a configuration v traverses d,
then it traverses either cluster s4 or cluster s5 but it cannot traverse both.

PI n˚1753



12 S. Abbes & A. Benveniste

As observed in the introduction, the first difficulty consists in finding the adequate notion
of state, for Markov nets. Since dynamic clusters capture the choices made when construct-
ing a maximal trace, they are a natural candidate for the notion of (local) state. Therefore,
our “state functions” will be real-valued functions defined on the set Σ of dynamical clus-
ters. The next issue is that of finding the counterpart of the time index k in empirical
means 1

n

∑n
k=1 f(Xk). We regard k as indexing the successive outcomes of the random

choices made while drawing the considered trajectory. Therefore, a natural counterpart of k
is the number of dynamic clusters traversed while constructing the considered configuration.
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Figure 5: A safe net with infinite executions. Places having the same name are to be
superimposed.

The above analysis suggests the following form for the empirical means in our case:

M(f, v) =
∑

s ∈ Σ : v traverses s f(s)
number of dynamic clusters s traversed by v

, (1)

where f is a state function and v is some finite trace. It must be noted that a same cluster
is traversed several times by the finite trace v, such traversals are therefore counted with
their multiplicities in the above summation

∑
s.

Consider in particular (1) with f(s) = 1s∗(s), where 1s∗(s) = 1 if s = s∗, and = 0
otherwise. Then,

M(1s∗ , v) =
number of occurrences of s∗ seen by v

number of dynamic clusters s traversed by v
.

Assume for a while that, for each maximal trace ω and each dynamic cluster s∗,

α(s∗) =def lim
v↗ω

M(1s∗ , v) (2)

exists and does not depend on ω. Since, for every v,
∑

s M(1s, v) = 1, the αs sum up to 1
and therefore define a probability on the finite set Σ, we call it the stationary measure of
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Figure 6: Dynamic clusters s1, . . . , s5, of the net depicted in Figure 5. The figure depicts the
unfolded form of the clusters. Here letters indicate the labels, not the names of the node,
and places with same labels are not to be superimposed.

the Markov net. Then, by linearity, for every nonnegative state function f ,

lim
v↗ω

M(f, v) =
∑
s∈Σ

f(s)α(s)

exists and does not depend on ω. This provides us with the desired LLN. Thus it is enough
proving the LLN for the special case (2).

A direct application of this LLN yields in particular the asymptotic ratio:

lim
v↗ω

number of occurrences of s in v

number of occurrences of s′ in v
=

α(s)
α(s′)

,

for s, s′ two dynamic clusters (see Figure 6 for an illustration of the clusters). Now, a more
natural question would be to evaluate the asymptotic ratio:

lim
v↗ω

number of occurrences of t in v

number of occurrences of t′ in v
, (3)

for t, t′ two transitions of the net. Unfortunately, transitions are not in bijection with
dynamic clusters (as shown by Figure 6), and therefore the above asymptotic ratio is not
within the scope of our above LLN.
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14 S. Abbes & A. Benveniste

Suppose now we were able to prove a LLN for “extended” state functions of the form
f(s, ωs), where s is a dynamic cluster as before, and ωs is a maximal trace of s, seen as an
event structure. Corresponding empirical means would be:

M(f, v) =
∑

s ∈ Σ : v traverses s f(s, ωs)
number of dynamic clusters s traversed by v

,

where ωs is the maximal trace of s seen by v when traversing s, and the traversals of s by
v are counted with their multiplicities, as in (1). Then,

1t(s, ωs) =def

{
1, if ωs visits t

0, otherwise

would yield an extended state function such that

M(1t, v)
M(1t′ , v)

=
number of occurrences of t in v

number of occurrences of t′ in v
,

so that our extended LLN would encompass asymptotic ratios of the form (3). We shall
indeed prove such an extended LLN and therefore solve the problem of evaluating asymptotic
ratios of the form (3).

So far we have used the expression

lim
v↗ω

M(f, v) (4)

without care. Indeed, trace v can grow to ω in many different ways. If, for example, we
erase, in the net of Figure 5, the places B and E, and the arcs D → e and e → A, then
the two remaining noninteracting subnets can progress freely. And it is unclear whether the
limit (4) is well defined, since it could very well depend on the way the two components
of v grow. Not surprisingly, the LLN we shall establish assumes that the different local
processes of the net do synchronize “frequently enough”. In turn, we will show that, with
this assumption, the limit (4) is well defined and does not depend on the way v can grow
to ω.

3 Locally Finite Event Structures

In this section we recall basic definitions concerning event structures and we fix the notations.
We introduce the three main notions of locally finite event structure, stopping prefix, and
future of a configuration. The latter notion has already been considered under different
names by several authors. However, we use it in a novel, systematic way for the analysis of
event structures.
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Markov nets 15

3.1 Event Structures and Net Unfoldings.

Throughout this paper, the term “event structure” means prime event structure.
An event structure [11] is a triple (E,�, #) satisfying the following properties. (E,�) is a

partial order, at most countable, whose elements are called events. # is the conflict relation
on E; it is a binary, symmetric and irreflexive relation, that satisfies the following axiom:
∀x, y, z ∈ E, x#y and y � z together imply x#z. We also assume that, for every e ∈ E,
the downward closure of e, defined by dee = {f ∈ E : f � e} is a finite subset of E.
We identify, with a slight abuse of notations, the set E and the event structure (E,�, #).
Finally, the concurrency relation is the binary relation on E, denoted by co, and defined by
co = (E ×E) \ (#∪ � ∪ �). We say that E is a tree of events, or shortly, a tree, if co = ∅.

A subset A of E is said to be a prefix if it is downward closed, i.e., if dee ⊆ A for all
e ∈ A. A prefix v is called a configuration of E if it is conflict-free, i.e., if # ∩ (v × v) = ∅.
Configurations are partially ordered by inclusion, and we denote by VE the poset of finite
configurations of E. Two configurations are said to be compatible if their set-theoretic
union is conflict-free. We denote by ΩE the set of maximal configurations of E—this set is
nonempty, since chain of configurations has an upper bound.

A subset F ⊆ E defines a sub-event structure (F,�F , #F ) of E with causality and
conflict relations inherited by:

�F =� ∩(F × F ), #F = # ∩ (F × F ),

and we shall freely write F , VF , and ΩF to denote this event structure and its set of finite
and maximal configurations, respectively.

All the material introduced in this paper regarding event structures is intended to apply
to the case of an event structure obtained by unfolding a safe Petri net. See [11] for a basic
reference on this topic. That is, a safe Petri net N = (P, T, F, m0) is given, with set of
places P , set of transitions T , flow relation F and initial marking m0. The unfolding of N
is an event structure E equipped with a labeling mapping λ : E → T . The configurations
of E determine a family of pomsets (partially ordered multi-sets), via the labelling λ. The
unfolding (E, λ) is characterized by the fact that traces of N correspond exactly to pomsets
induced by the configurations of E. We will not use the labeling mapping until §5, and
consider instead E as an abstract event structure. However, since E arises from the unfolding
of a safe net, it is legitimate to assume that E is such that any finite configuration enables
only finitely many events. Formally:

Assumption 1 For every v ∈ VE, Min
(
Ev

)
contains finitely many events.

3.2 Future of a Configuration

For v a finite or infinite configuration of E, we consider the following subset of E:

Ev =def {e ∈ E \ v : ∀e′ ∈ v, ¬(e#e′)}
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16 S. Abbes & A. Benveniste

We call the associated sub-event structure the future of v. It is clear that the map:

w ∈ VEv 7→ v ∪ w (5)

is one-to-one and onto, from the set of configurations of Ev to the set of configurations
of E that contains v. The map (5) describes the concatenation of v with configurations
of Ev. This map is also order-preserving, so that it maps maximal elements to maximal
elements; that is, the set of maximal configurations of Ev is mapped onto the set of maximal
configurations of E that contain v.

In order to distinguish v ∪ w, for v ∈ VE and w ∈ VEv from the usual set-theoretic
union of compatible configurations of E, we introduce the following special notations for the
concatenation and for its inverse:

v ⊕ w =def v ∪ w, defined for v ∈ VE and w ∈ VEv ,
u 	 v =def u \ v, defined for v ∈ VE and u ∈ VE such that v ⊆ u, (6)

so that we have, whenever these are well-defined:

v ⊕ w ∈ VE , u 	 v ∈ VEv .

In the context of net unfoldings, the operation ⊕ defined above corresponds to the concate-
nation of traces of the net.

3.3 Stopping Prefixes

A central concept in defining probabilities is the notion of choice. Choice is therefore a key
concept in this paper. It is captured by the notion of minimal conflict we recall next. The
minimal conflict relation #µ on E is defined by:

∀e, e′ ∈ E, e #µ e′ ⇐⇒ (dee × de′e) ∩ # = {(e, e′)}.
Definition 3.1 (stopping prefix) A subset B ⊆ E is called a stopping prefix of E

if:

1. B is a prefix of E;

2. B is closed under minimal conflict.

Stopping prefixes form a complete lattice, with ∅ and E as minimal and maximal ele-
ments. Probabilistic constructions consist in randomizing choices and should be therefore
based on stopping prefixes. Hence the following notion is natural in this context:

Definition 3.2 (locally finite event structure) E is called locally finite if for each
event e of E, there exists a finite stopping prefix containing e.

Locally finite event structures have not been considered by authors so far. The following
condition is implicitly assumed throughout this paper:
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Markov nets 17

Assumption 2 E is locally finite.

It is easily checked that, if v is any configuration of E, e an event of Ev, and B a finite
stopping prefix containing e, then B ∩ Ev is a finite stopping prefix of Ev containing e.
As a consequence, every future Ev is locally finite. Stopping prefixes satisfy the following
property (see [1, Ch.3, I-3.1]):

Lemma 3.1 If B is a stopping prefix of E, then:

ΩB = {ω ∩ B | ω ∈ ΩE} . (7)

This property, which is not satisfied by arbitrary prefixes (draw an example!), motivates
introducing the following definition:

Definition 3.3 (stopped configurations) A configuration v is called a stopped con-
figuration of E if there is a stopping prefix B such that v ∈ ΩB.

Remark. Use Lemma 3.1 and the fact that E is locally finite to show that a stopped
configuration v if finite if and only if there is a finite stopping prefix B such that v ∈ ΩB.

3.4 Branching Cells and R-stopped Configurations

We seek for the following two-steps procedure for constructing probabilistic event structures:
1/ consider stopped configurations as “elementary process” for randomization, and 2/ use the
concatenation of stopped configurations in order to randomize processes in an incremental
way.

Unfortunately, the class of stopped configurations is not closed under concatenation.
That is, if v is a stopped configuration of E, and w a stopped configuration of the future Ev,
then v⊕w is not stopped in E in general1 (see an example in §3.5). This is why we consider
the closure of stopped configurations under concatenation. The configurations reached by
this way are called recursively stopped (R-stopped for short).

Definition 3.4 (R-stopped configurations) A configuration v is said to be R-stop-
ped in E if there exists a (finite or infinite) nondecreasing sequence (vn)0≤n<N of configu-
rations, N ≤ +∞, satisfying the following conditions:

1. v0 = ∅, v =
⋃

0≤n<N vn, and

2. vn 	 vn−1 is a finite stopped configuration of the future Evn−1 , for every 0 < n < N .

The set of all finite R-stopped configurations is denoted by WE , or simply W if no confusion
can occur.

1This is particular to systems with concurrency, and more precisely to systems with confusion: for
confusion-free event structures, stopped configurations are closed under concatenation.
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18 S. Abbes & A. Benveniste

R-stopped configurations are thus characterized by the existence of a recursive decom-
position through stopped configurations. Such decomposition is by no way unique. We shall
however focus on minimal decompositions. Branching cells are introduced to this end.

Definition 3.5 (initial stopping prefix, branching cell) A stopping prefix B is
called initial in E if ∅ is the only stopping prefix of E strictly contained in B. Call branch-
ing cell of E any initial stopping prefix of some Ev, for v ranging over WE. The set of
all branching cells of E is denoted by XE (or simply X) and branching cells are generically
denoted by the symbol x. For v ∈ WE , the set of branching cells that are initial stopping
prefixes of Ev is denoted by

δE(v),

or simply by δ(v) when no confusion can occur.

δE(v) must be understood as the set of branching cells “enabled” by v. The following
theorem collects the different key properties of branching cells (proofs are found in [1, Ch.3],
or in [3]).

Theorem 3.1

1. Existence and finiteness of branching cells. Every branching cell of E is a finite
sub-event structure of E. For every v ∈ WE, δE(v) is empty if and only if v is maximal
in E.

2. Concurrent branching cells. Let v be any finite R-stopped configuration. Different
branching cells in δE(v) are disjoint and concurrent, the latter meaning that:

∀x, y ∈ δE(v), x 6= y =⇒ ∀(e, f) ∈ x × y, e co f.

This has the two following consequences:

(a) For v ∈ WE, let B be a stopping prefix of Ev of the form B =
⋃

x∈ξ x, where
ξ is any subset of δE(v). Then configurations and maximal configurations of B
respectively decompose as the following products:

VB =
∏
x∈ξ

Vx, ΩB =
∏
x∈ξ

Ωx . (8)

(b) For any v ∈ WE, δE(v) is finite (i.e., there are finitely many concurrent branching
cells), and even bounded by some constant K.

3. Covering map. For v any R-stopped configuration, there exists a non-decreasing
sequence of configurations (vn)0≤n<N , with N ≤ +∞, and a sequence of branching
cells (xn)0<n<N with xn ∈ δE(vn) for all n, such that:

(a) v0 = ∅, v =
⋃

0≤n<N vn, and
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(b) vn 	 vn−1 is a maximal configuration of xn for all 0 < n < N .

Branching cells {xn, 0 < n < N} are pairwise disjoint. If (v′n)0≤n<N ′ is another such
decomposition, with associated branching cells (x′

n)0<n<N ′ , then we have the equality
of sets:

{xn, 0 < n < N} = {x′
n, 0 < n < N ′}.

In particular, N = N ′. We call covering map of E the map ∆E defined by:

∆E(v) = {xn, 0 < n < N}, (9)

which only depends on v and on E.

4. Covering maps in stopping prefixes. For any stopping prefix B of E, and for any
configuration u of B, u is R-stopped in B if and only if u is R-stopped in E. In this
case the covering maps ∆E and ∆B satisfy:

∆B(v) = ∆E(v).

In particular, XB ⊆ XE, with X denoting the sets of branching cells.

5. Concatenation and subtraction of R-stopped configurations; covering the
future. The class of R-stopped configurations is stable under concatenation and under
subtraction:

∀u ∈ WE , ∀v ∈ WEu , u ⊕ v ∈ WE ,
∀u ∈ WE , ∀w ∈ WE , u ⊆ w ⇒ w 	 u ∈ WEu .

For u ∈ WE and v ∈ WEu , the covering maps ∆E and ∆Eu in the future Eu satisfy:

∆E(u ⊕ v) = ∆E(u) ∪ ∆Eu(v), ∆E(u) ∩ ∆Eu(v) = ∅. (10)

In particular, XEu ⊆ XE for any u ∈ WE. Finally, compatible R-stopped configura-
tions form a lattice.

It must be noted that, except for the property that branching cells are finite, all results
stated above remain valid without the local finiteness assumption. Further results requiring
local finiteness will be stated in §3.6. First, we detail some examples.

3.5 Examples of Decompositions

For all examples of this paper, we write (abc) to denote the configuration {a, b, c}. To depict
event structures, we use arrows for representing the causality and zigzag arcs for the minimal
conflicts, as in Figure 7.

Figure 7 depicts with dashed frames the nonempty stopping prefixes of an event struc-
ture E. x and y are the two initial stopping prefixes of E. In this example, configuration
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Figure 7: Illustrating stopping prefixes and initial stopping prefixes. Causality is
depicted by arrows, minimal conflicts are depicted with zigzag arcs. All nonempty stopping
prefixes are shown with dashed frames. x and y are the two initial stopping prefixes of the
event structure. Observe that e is a minimal event although it does not belong to any initial
stopping prefix.

(a) is not R-stopped. Indeed, otherwise (a) would be maximal in x, which is not ((ac) is
maximal in x). Hence, there exists in general finite configurations that are not R-stopped.
A fortiori, such configurations are not stopped.

Still in the event structure of Figure 7, let v be the configuration v = (aca′). v is maximal
in B0 = x∪y, hence v is stopped and in particular v is R-stopped. We show that the covering
∆E(v) is given by ∆E(v) = {x, y}. Since v is stopped in B0, it follows from Lemma 3.1 that
vx = v ∩ x is stopped in x. Hence, by point 5, we have:

∆E(v) = ∆E(vx) ∪ ∆Evx (v 	 vx).

By point 4 of Theorem 3.1 ∆E(vx) = ∆x(vx). Since x, as an event structure, is the only
nonempty stopping prefix of itself, it is clear that ∆x(vx) = {x}. Hence we have ∆E(v) ⊇
{x}. Symmetrically, we also obtain that ∆E(v) ⊇ {y}. But v = (v ∩ x) ∪ (v ∩ y), so we are
done: ∆E(v) = {x, y}.

More generally, we retain that if v has the form v =
⋃

x∈ξ vx, where ξ is a set of initial
stopping prefixes, and vx is maximal in x for every x ∈ ξ, then the covering ∆E(v) is given
by ∆E(v) = ξ. Although quite intuitive, this result is not obvious from the only definition
of the covering map.

As another example, consider the event structure E depicted in Figure 8. We shall
determine the coverings of the two maximal configurations ω1 = (ad) and ω2 = (bce) of E.

Let x = {a, b} be the unique initial stopping prefix of E. Then ∆E(ω1) and ∆E(ω2) both
contain x. Figure 8 (2) and (3) respectively depict the futures E(b) and E(a) of configurations
(b) and (a), with the associated initial stopping prefixes:

δE(b) = {z, z′}, δE(a) = {y},

with z = {c}, z′ = {e}, y = {c, d, e}. Hence we obtain ∆(ω1) = {x, y} and ∆(ω2) = {x, z, z′}.
This example shows that branching cells of an event structure may overlap, although branch-
ing cells in a same covering ∆E(v) shall not overlap as stated by point 3 of Theorem 3.1.
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Figure 8: Illustrating the decomposition of R-stopped configurations. (1), an event
structure with two maximal configuration ω1 = (ad) and ω2 = (bce). (2), the future of (b),
and (3), the future of (a). Initial stopping prefixes are depicted with dashed frames.

3.6 Normal Decomposition of Maximal Configurations

We shall now give a systematic way to decompose maximal configurations, we call it the
normal decomposition. This result deeply depends on the local finiteness assumption. This
normal decomposition is of interest per se. It will be instrumental in proving the Law of
Large Numbers.

For E a (locally finite) event structure, we define the max-initial stopping prefix of E
as the upper bound of initial stopping prefixes. That is, denoting the max-initial stopping
prefix of E by B0(E):

B0(E) =def

⋃
x∈δE(∅)

x ,

where x ranges over the set of initial stopping prefixes of E. Observe that, since initial
stopping prefixes are finitely many according to Theorem 3.1, point 2b, and since each
branching cell is finite by according to Theorem 3.1, point 1, the max-initial stopping prefix
B0(E) is itself a finite stopping prefix.

We define, for ω a maximal configuration of E, the normal decomposition of ω as the
following pair of sequences,

(
Vn(ω)

)
n≥0

and
(
Zn(ω)

)
n≥1

:

V0 = ∅, n > 0,

{
Zn(ω) = ω ∩ B0

(
EVn−1(ω)

)
Vn(ω) = Vn−1(ω) ⊕ Zn(ω)

(11)

Theorem 3.2 ([3]) For every ω ∈ Ω, the sequence
(
Vn(ω)

)
n≥0

is a nondecreasing
sequence of finite R-stopped configurations satisfying: supn Vn(ω) = ω.

See an interpretation of Theorem 3.2 by means of σ-algebras and probability in §7.1,
Lemma 7.1.
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4 Application of Branching Cells to Probabilistic Event

Structures

4.1 Background on Probability Spaces

We first recall some basic notions from Probability theory, see for example [7].

Measurable Spaces and Measurable Mappings. Let U be a nonempty set. A σ-alge-
bra on U is a collection F of subsets of U such that ∅ ∈ F, and F is closed under complement
and under countable union. The pair (U, F) is said to be a measurable space. The sets A ∈ F
are called F-measurable, or simply the measurable subsets of U . If (U, F) and (V, G) are two
measurable spaces, a mapping ϕ : U → V is said to be a measurable mapping if ϕ−1(A) ∈ F
for any A ∈ G. We usually adopt the folklore of probability, where measurable mappings
are called random variables. A bijective mapping ϕ : U → V is said to be bi-measurable if
both ϕ and ϕ−1 are measurable.

Let U be a nonempty set. For any collection F of subsets of U , there is a smallest
σ-algebra F that contains F . F is called the σ-algebra generated by F . Except if otherwise
specified, any finite set U is equipped with its discrete σ-algebra, that is F is simply the
powerset of U .

If (U, F) is a measurable space, any measurable subset A is equipped with the σ-algebra
FA induced by F, defined by:

FA = {B ∈ F : B ⊆ A} = {B ∩ A, B ∈ F}.

Probability Measures. If (U, F) is a measurable space, the triple (U, F, P) is said to
be a probability space if P is a nonnegative set function P : F → R such that P(∅) = 0,
P(Ω) = 1, and for any sequence (An)n≥0 of pairwise disjoint measurable subsets, we have
P
(⋃

n≥0 An

)
=

∑
n≥0 P(An). P is called a probability measure, or simply a probability.

If U is a finite set, equipped with the discrete σ-algebra F, a probability P is entirely
determined by the values of P on the singletons P({x}), x ∈ U . We simply note P(x) =
P({x}), and we have

∑
x∈U P(x) = 1. Conversely, for any nonnegative function f : U → R

such that
∑

x∈U f(x) = 1, there is a unique probability P on (U, F) such that P(x) = f(x),
defined by P(A) =

∑
x∈A f(x) for A ⊆ U .

If ϕ : U → V is a measurable mapping from (U, F) to (V, G), and if P is a probability
measure on (U, F), the following formula defines Q as a probability measure on (V, G):
Q(A) = P

(
ϕ−1(A)

)
for A ∈ G. Q is called the image of P under ϕ, and we denote it

Q = ϕP.
Let (U, F, P) be a probability space, and let A be a measurable subset of U such that

P(A) > 0. Define the conditional probability given A by:

∀B ∈ FA, P(B|A) =
P(B)
P(A)

.
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If (U, F, P) is a probability space, still following the usual terminology, we define the
(mathematical) expectation of a real-valued nonnegative random variable f as its integral,
denoted by E(f), so that E(f) =

∫
Ω f(ω) dP(ω). If G is a sub-σ-algebra of F, for every non-

negative F-measurable real-valued function f , there exists a G-measurable function g such
that E(fh) = E(gh) for every nonnegative G-measurable real-valued function h. Function g
is unique up to a set of probability zero, it is called the conditional expectation of f given G,
denoted by E(f |G).

Isomorphisms of Probability Spaces. Let (U, F, P) and (V, G, Q) be two probability
spaces. We say that they are isomorphic if there are two measurable subsets U ′ ⊆ U
and V ′ ⊆ V such that P(U ′) = 1 and Q(V ′) = 1, and a bi-measurable bijective mapping
ϕ : U ′ → V ′ such that:

ϕP = Q, ϕ−1Q = P.

In the above equations, P and Q must be understood as their restriction to the induced
σ-algebras FU ′

and GV ′
respectively.

4.2 Probabilistic Event Structures

An event structure E naturally defines a measurable space as follows. Consider first, for any
configuration v of E, the following nonempty subset of ΩE :

S(v) =def {ω ∈ ΩE : ω ⊇ v} .

S(v) is called the shadow of v. We define the Borel σ-algebra of ΩE as the σ-algebra
generated by the collection of shadows S(v), where v ranges over the finite configurations
of E. This is indeed the Borel σ-algebra generated by the Scott topology on Ω (see [1,
Ch.2, III-1.1] for details). Unless otherwise specified, ΩE is always equipped with the Borel
σ-algebra, and thus we simply omit it.

The following definition has already been considered in [15, 6, 1], see also the probabilistic
runs of [14].

Definition 4.1 (probabilistic event structure, likelihood) A probabilistic event
structure is a pair (E, P) where E is an event structure and P is a probability measure on
the space Ω of maximal configurations of E.

If (E, P) is a probabilistic event structure, we define the likelihood of P as the real-valued
function p : V → R defined by:

∀v ∈ V , p(v) = P
(S(v)

)
.

We say that a probabilistic event structure (E, P) is positive if we have:

∀v ∈ V , p(v) > 0.
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Next, consider a probabilistic event structure (E, P) and define the following two notions:

1. Restriction to stopping prefixes. Let B be a stopping prefix of E, and let πB :
Ω → ΩB be the mapping defined by πB(ω) = ω ∩ B, which is well defined according
to Lemma 3.1. πB is a measurable mapping. We define the probability PB on ΩB by:

PB = πBP,

image of P under πB. In particular, if B is a finite stopping prefix, (ΩB, PB) is a finite
probability space, and we have:

∀v ∈ ΩB, PB(v) = P
(S(v)

)
.

2. Probabilistic future. Let v be a finite configuration of E such that p(v) > 0. S(v) is
then a measurable subset of Ω with positive probability. It is thus equipped with the
conditional probability, denoted by Pv, and defined as follows, for A a measurable
subset of S(v):

Pv(A) =
1

p(v)
P(A) .

Consider the bijective and bi-measurable mapping:

Φv : S(v) → ΩEv , ω 7→ ω 	 v.

We still denote by Pv the probability on ΩEv , image of Pv under Φv. For every finite
configuration v with p(v) > 0, we define the probabilistic event structure (Ev, Pv) thus
obtained as the probabilistic future of v. The likelihood pv of (Ev, Pv) is given by:

∀w ∈ VEv , pv(w) =
1

p(v)
p(v ⊕ w). (12)

4.3 Locally Randomized Event Structures

We have shown in [3] that a probabilistic event structure can be naturally defined from the
new notion of locally randomized event structure. We recall this construction.

Definition 4.2 (locally randomized event structure) A locally randomized event
structure is a pair (E, (px)x∈X), where X is the set of branching cells of E, and for each
x ∈ X, px is a probability on Ωx. Say that

(
E, (px)x∈X

)
is positive if

∀x ∈ XE , ∀z ∈ Ωx, px(z) > 0.

Observe that, in this definition, the probabilities px are finite probabilities since branch-
ing cells are finite by Theorem 3.1, point 1, and thus every Ωx is a fortiori finite. Let
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(
E, (px)x∈X

)
be a locally randomized event structure. For B a finite stopping prefix of E,

we set:

∀ωB ∈ ΩB , QB(ωB) =
∏

x∈∆(ωB)

px(ωB ∩ x), (13)

which is well defined since, according to Theorem 3.1, point 3, ωB ∩ x ∈ Ωx. Remark that,
if B = B0(E) is the max-initial stopping prefix of E, then QB coincides with the product
probability on ΩB:

QB =
⊗

x∈δE(∅)
px .

This is the probabilistic counterpart of decomposition ΩB =
∏

x∈δ(∅) Ωx , stated in Equa-
tion (8), point 2 of Theorem 3.1. The product form of probability QB manifests that “local
actions” associated to initial stopping prefixes x ∈ δ(∅) are independent in the probabilis-
tic sense. The family (QB)B makes E a probabilistic event structure, as expressed by the
following theorem:

Theorem 4.1 (distributed product) Let
(
E, (px)x∈X

)
be a locally randomized

event structure.

1. Distributed Product and Distributed Probabilities. There exists a unique prob-
abilistic event structure (E, P) such that PB = QB for every finite stopping prefix
B ⊆ E, where PB denotes the restriction πBP of P to ΩB. The probability P is called
the distributed product of the family (px)x∈X , written:

P =
⊗dist

x∈X

px.

For every finite R-stopped configuration v, we have:

p(v) =
∏

x∈∆(v)

px(v ∩ x). (14)

In particular, the locally randomized event structure
(
E, (px)x∈X

)
is positive if and

only if the probabilistic event structure (E, P) is positive. Probabilities P arising from
a distributed product are called distributed probabilities.

2. Restriction to stopping prefixes. For every stopping prefix B ⊆ E, the restriction
PB = πBP coincides with the distributed product of the family (px)x∈XB , which is the
restriction of (px)x∈X to the branching cells of B:

PB =
⊗dist

x∈XB

px .
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3. Probabilistic future. Assume that
(
E, (px)x∈X

)
is positive, so that (E, P) is a posi-

tive probabilistic event structure. Then for every finite R-stopped configuration v, the
probabilistic future (Ev, Pv) coincides with the distributed product of the locally ran-
domized event structure

(
Ev, (px)x∈Xv

)
, obtained by restricting family (px)x∈X to set

Xv of all branching cells of Ev:

∀v ∈ WE , Pv =
⊗dist

x∈Xv

px .

Remark. Point 2 is almost immediate. We mention it explicitly to underline the sym-
metry with point 3. Formula (14) extends (13) from stopped configurations to R-stopped
configurations. Formula (14) also shows that, for confusion-free event structures, the valua-
tions with independence defined in [14] are equivalently defined as functions of the form (14)
associated with distributed products.

Corollary 4.1 Let
(
E, (px)x∈X

)
be a locally randomized event structure, and let (E, P)

be the associated distributed product. For any finite and compatible R-stopped configurations
v and w, if we set u = v ∩ w, we have:

p(v ∪ w) =
1

p(u)
p(v) p(w).

In words, two compatible configurations v and w are probabilistically independent con-
ditionally on their common past. This property expresses that “concurrency matches prob-
abilistic independence”, at the grain of branching cells [3]. The fact that branching cells are
minimal with this property is discussed in [3].

On the other hand, if a distributed probability P on ΩE is positive, it is shown in [3]
that there is a unique locally randomized event structure

(
E, (px)x∈X

)
such that P is the

distributed product of (px)x∈X .

5 Markov Nets

In this section, we apply the previous probabilistic constructions to event structures arising
from the unfolding of safe Petri nets. Recall that such an event structure E is labeled by the
transitions of the considered net. It is therefore natural to consider the subclass of associated
locally randomized event structures such that the labeling x 7→ px, of the branching cells
x of E by local probability px, conforms the labeling of events. That is, we require that
the locally randomized event structures

(
E, (px)x∈X

)
satisfies px = px′ whenever x, x′ are

branching cells isomorphic when seen as labeled event structures. This leads to the notion
of Markov net, a proper generalization of discrete Markov chains to true-concurrent systems
(see §5.2 for a detailed discussion of the latter claim).

For the unfolding of a safe Petri net, equivalence classes of branching cells up to isomor-
phism of labeled event structures are finitely many. We call them dynamic clusters. We shall
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argue that dynamic clusters are an appropriate concept of local state, for Petri nets. The
main theorem of this section, the Law of Large Numbers (LLN) for Markov nets, supports
this claim. Indeed, we show that the LLN holds and generalizes the LLN for Markov chains,
provided that the set of dynamic clusters is taken as the state space.

Local finiteness of the unfolding is assumed. This is a non-trivial restriction on the net,
although this class of Petri nets is strictly larger than the classes of free-choice or confusion-
free nets. As was said in the Introduction, key elements of our approach remain valid in a
more general setting—see Lemma 7.1 and the comment that follows.

5.1 Definition and First Properties of Markov Nets

N generically denotes a safe Petri net. Denote by E the canonical event structure that
unfolds N (as recalled in §3.1). For v a finite configuration of E, we denote by γ(v) the
marking reached in N after the action of configuration v. If m is a reachable marking, we
denote by Nm the safe Petri net identical to N , except that N has m as initial marking.
We also denote by Em the unfolding of Nm.

It is well known that, if v is a finite configuration of E, there is a unique isomorphism of
labeled event structures Em → Ev (see a proof in [1, Ch.5, I-2.5]). This makes the notation
Em coherent with our previous notation Ev for the future of configurations, so that we can
write Ev = Eγ(v). We can also rewrite it as follows:

∀v, v′ ∈ VE , γ(v) = γ(v′) ⇒ Ev = Ev′
. (15)

Finally, for m a reachable marking, we denote by γm the map that is defined on the poset
of finite configurations of Em and such that γm(w) is the marking reached by w from
marking m, for w ∈ VEm .

Recall that two T -labeled event structures (E, λ) and (E′, λ′), i.e., two event structures
equipped with mappings λ : E → T and λ′ : E′ → T ′ are said to be isomorphic if there is a
mapping Φ : E → E′ such that:

1. ∀e, e′ ∈ E, e � e′ ⇐⇒ Φ(e) � Φ(e′) and e#e′ ⇐⇒ Φ(e)#Φ(e′);

2. λ′ = Φ ◦ λ.

Since the reachable markings are finitely many, the futures Ev = Eγ(v) are finitely many
up to isomorphism of labeled event structures. Since each set of branching cells δE(v) is
finite, it follows then from Definition 3.5 that branching cells of E are finitely many, up to
an isomorphism of labeled event structures.

Definition 5.1 (dynamic cluster) An isomorphism class of branching cells is called
a dynamic cluster of N . We denote by Σ the (finite) set of dynamic clusters of N . Dynamic
clusters are generically denoted by the boldface symbol s. The equivalence class of branching
cell x is denoted by 〈x〉.
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Remark. It is shown in [4] that, if the event structure is confusion-free, branching cells
can be interpreted as the events of a new event structure, called choice structure. The set of
dynamic clusters Σ is then a finite alphabet that labels the choice structure. Under certain
conditions, the labeled event structure obtained is actually itself the unfolding of a safe Petri
net, called the choice net. The interested reader is referred to [4] for further details.

Lemma 5.1 If x and x′ are two isomorphic branching cells of the unfolding E, then
the isomorphism x → x′ is unique.

Proof. Let v be a finite R-stopped configuration of E such that x ∈ δE(v). Let m be the set
of places b of N such that there is an event e ∈ x, minimal in x, and with b F λ(e); i.e., b is
in the preset of λ(e). Consider the subnet N ′ of N with same sets of places and transitions,
but with initial marking m′. Then the unfolding F of N ′ has a unique initial stopping
prefix y, isomorphic to x. By the uniqueness property of unfoldings, the isomorphism x → y
is unique.

Symmetrically, there is a unique isomorphism x′ → y. Hence the isomorphism x → x′ is
unique, which completes the proof of the lemma.

As a consequence, for every dynamic cluster s and every pair of branching cells x, x′ ∈ s,
there exists a canonical bijection φx,x′ : Ωx → Ωx′ , namely, the bijection induced by the
unique isomorphism x → x′. Hence, we can consistently consider the space Ωs. In particular,
we may define a real-valued function g : Ωs → R, by means of a family of functions (gx)x∈s,
gx : Ωx → R, such that gx = gx′ ◦ φx,x′ for all x, x′ ∈ s. This is what is meant in the
following definition, for the probability ps on Ωs seen as a function on Ωs.

Definition 5.2 (Markov net, local transition probabilities) A Markov net is a
pair

(N , (ps)s∈Σ

)
, where N is a finite safe Petri net with locally finite unfolding, and ps is

a probability on the finite set Ωs for every s ∈ Σ. Probability ps is called the local transition
probability attached to s ∈ Σ. We assume moreover the following:

∀s ∈ Σ, ∀z ∈ Ωs, ps(z) > 0.

A Markov net
(N , (ps)s∈Σ

)
induces a locally randomized event structure (E, (px)x∈X) by

setting px = p〈x〉 for every branching cell x ∈ XE ; in turn, the distributed product P of the
family (px)x∈X defines a probabilistic event structure (E, P). Furthermore, this probabilistic
event structure is positive, according to point 3 in Theorem 4.1.

Note that, if net N is composed of two disjoint, and thus non interacting nets N =
N1 ∪N2, then the two components Ni, i ∈ {1, 2} are independent in the probabilistic sense,
i.e., P = P1 ⊗ P2: once again, “probabilistic independence matches concurrency”.

Theorem 5.1 (Homogeneity) Let (N , (ps)s∈Σ) be a Markov net, and let P be the
associated distributed probability on Ω. For v a finite R-stopped configuration of E, we use
the notations γ(v) and N γ(v) introduced above, and we let Σγ(v) denote the set of dynamic
clusters of N γ(v).
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For any v ∈ W, the probabilistic future (Ev, Pv) is associated with Markov net
(N γ(v), (ps)s∈Σγ(v)). Moreover we have:

∀v, v′ ∈ W , γ(v) = γ(v′) ⇒ Pv = Pv′
. (16)

Proof. According to Theorem 4.1, point 3, we have, for v ∈ WE :

P =
⊗dist

x∈X

px, Pv =
⊗dist

x∈Xv

px ,

where Xv is the set of branching cells of Ev. Therefore, Pv is indeed the distributed product
associated with the Markov net (N γ(v), (ps)s∈Σγ(v)).

For v, v′ ∈ W with γ(v) = γ(v′), let ϕ : Ev → Ev′
denote the unique isomorphism of

labeled event structures. We denote by Φ : Xv → Xv′
the induced bijection between the

two sets of branching cells. We have:

Pv =
⊗dist

x∈Xv

px =
⊗dist

y∈Xv′
pΦ−1(y), (17)

by the change of variable x = Φ−1(y), which is allowed since Φ is bijective. For every
branching cell x ∈ Xv, the restriction ϕ

∣∣
x

: x → Φ(x), with x ∈ Xv, does not change the
class of branching cell. Hence, up to isomorphism of branching cells, ϕ

∣∣
x

is the identity map.
Therefore pΦ−1(y) = py for every y ∈ Xv′

. Hence, from (17), we get:

Pv =
⊗dist

y∈Xv′
py = Pv′

.

This completes the proof of the theorem.

Equation (16) expresses that the memory of Markov nets is entirely summarized by the
current marking: the probabilistic future of a v ∈ W only depends on the final marking γ(v),
and not on the entire history v. It is the probabilistic counterpart of Equation (15). In the
setting of Markov chains, this is equivalent to the time-invariance property of the transition
matrix, characteristic of homogeneous Markov chains (see e.g., [7, 13]). An important con-
sequence of homogeneity, for Markov chains, is the so-called strong Markov property; see a
generalization for Markov nets in [2].

It will be convenient to use the following terminology and notation:

Definition 5.3 (recursively stopped marking) We say that a marking m is recur-
sively stopped if there is a finite recursively stopped configuration v such that γ(v) = m. The
set of recursively stopped markings is denoted by Mrs.

Thanks to property (16), we may define for each m ∈ Mrs, the probabilistic event
structure (Em, Pm), by defining Pm as the probability Pv on ΩEm , whenever v is a finite
R-stopped configuration such that γ(v) = m. Moreover, Theorem 5.1 says that Pm is the
probability associated with the Markov net

(Nm, (ps)s∈Σm

)
.
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5.2 Markov Nets as a Generalization of Markov Chains

For further referencing it will be useful to see how Markov nets are a generalization of
Markov chains. To this end, we construct for each Markov chain a canonical Markov net
that simulates the chain.

Let (Xn)n≥0 be a Markov chain defined on a finite state space P , with transition
matrix (ρi,j)(i,j)∈P×P and initial state s0. Consider the following safe Petri net N =
(P, T, F, m0). The set of places P coincides with the set of states of the chain, and m0 = {s0}.
The set T of transitions is defined by this rule: T ⊆ P × P , with:

∀(i, j) ∈ P × P, (i, j) ∈ T ⇐⇒ ρi,j > 0.

Then the flow relation F ⊆ (P × T ) ∪ (T × P ) is naturally defined by:

∀(i, j) ∈ P × P, (i, j) ∈ T ⇒ i F (i, j) and (i, j)F j.

Each reachable marking of N is a singleton, and there is a one-to-one and onto correspon-
dence between paths of the chain and firing sequences of the net. The unfolding of N is a
tree. It is thus clear that the set Σ of dynamic clusters of N is given by Σ = {si, i ∈ P},
with:

∀i ∈ P, si = {(i, j), j ∈ P such that (i, j) ∈ T}.
Hence, for Markov chains, dynamic clusters identify with states of the chain.

To define a Markov net
(N , (ps)s∈Σ

)
, it remains only to define the family of local transi-

tion probabilities (ps)s∈Σ. This is done as follows, using the fact that maximal configurations
of a cluster si identify with the transitions (i, j) of si:

∀i ∈ P, ∀j ∈ P, (i, j) ∈ si ⇒ psi(i, j) = ρi,j .

That is, local transition probabilities are given by the rows of the transition matrix. Remark
that we have by construction ps(z) > 0, for all s ∈ Σ and z ∈ Ωs.

Finally, we must prove that, if (Ω, F, P) is the probability space associated with the runs
of Markov net

(N , (ps)s∈Σ

)
, and if (Ξ, G, Q) is the probability space associated with the

runs of the Markov chain (Xn)n≥0, there is an isomorphism of probability spaces:

(Ω, F, P) → (Ξ, G, Q).

This can be done by hand, by checking that formula (14) that defines the likelihood function
for the Markov net coincides with the equivalent for the Markov chain. But this is also a
consequence of the more general result stated in Lemma 7.1 below, §7.1.

5.3 Recurrent Nets

Recurrent Markov chains are chains in which almost every trajectory returns infinitely often
to the initial state. As a generalization, recurrent Markov nets will be nets in which almost
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every firing sequence returns infinitely often to the initial marking. The above statement
calls for distinguishing between two types of returns: “global” returns, where all tokens must
leave the initial marking before returning to it, and “local” returns, where some “minimal”
amount of tokens move. Global return is investigated next; the study of local return is
postponed to §7.3.

Definition 5.4 (return operator) Let m0 be the initial marking of N . We define
the return operator R on Ω as follows: for every ω ∈ Ω,

R(ω) = min{v ∈ WE : v ⊆ ω, γ(v) = m0, Min(E) ∩ Min(Ev) = ∅} , (18)

with the convention that R(ω) = ω if the set of such v is empty.

The condition min(E)∩Min(Ev) = ∅ says that configuration v has moved all the tokens
in the net. In other words, we do not allow the return to leave some part of the marking
untouched, while acting on the other tokens.

It is well known that, if v, v′ are two compatible configurations such that γ(v) = γ(v′) =
m0, then γ(v ∩ v′) = m0. Furthermore, the intersection of compatible R-stopped configu-
rations is still R-stopped thanks to Theorem 3.1, point 5. Finally, it is also readily checked
that the intersection of configurations satisfying the condition Min(E) ∩ Min(Ev) = ∅ also
satisfies this condition. Therefore, if the set of configurations in the right member of (18) is
nonempty, the minimum is well defined and is finite.

The study of properties of R is postponed to §7.2. For the moment, we define the
successive returns by:

R0 = ∅, ∀n > 0, Rn(ω) = Rn−1(ω) ⊕ R
(
ω \ Rn−1(ω)

)
,

with the convention that Rn(ω) = ω if Rn−1(ω) = ω. We mention without proof that the
successive returns (Rn)n≥0 are all finite with probability either 0 or 1 [2], which extends to
nets a classical result for Markov chains.

Definition 5.5 (recurrent nets) We say that a Markov net
(N , (ps)s∈Σ

)
is recurrent

if the successive returns satisfy Rn(ω) 6= ω for all n ≥ 0, with probability 1.

If the considered net is a simulated Markov chain, as described in §5.2, then this definition
of recurrence reduces to the classical notion of recurrence for Markov chains [7, 13], and the
Rn are the nth returns to the initial state of the chain. Also, the following lemma extends
a classical result for Markov chains [2]:

Lemma 5.2 If
(N , (ps)s∈Σ

)
is a recurrent Markov net, then (Nm, (ps)s∈Σm) is recur-

rent for every m ∈ Mrs, and Σm = Σ.

6 The Law of Large Numbers (LLN)

For our study of the Law of Large Numbers, we focus on recurrent nets.
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6.1 What is the proper notion of LLN, for Markov nets?

For finite recurrent Markov chains, the LLN states as follows. Let Σ be the finite state
space of a Markov chain (Xk)k≥1, and let f : Σ → R be a test function. The sums Sn(f) =∑n

k=1 f(Xk) are called ergodic sums, and the LLN studies the limit, for n → ∞, of the
ergodic means: Mn(f) = 1

nSn(f). In extending the LLN to Markov net N , we are faced
with two difficulties:

1. What is the proper concept of state? What are the associated ergodic sums?

2. What replaces counter n, since time is not totally ordered?

Corresponding answers are:

1. The set Σ of dynamic clusters of N is taken as the state space—see the discussion
of §5.2.

2. For v a R-stopped configuration, the number of branching cells contained in ∆(v) is
taken as the “duration” of v.

Since we consider dynamic clusters as our state space, test functions are simply functions
defined on Σ:

Definition 6.1 (state functions) If Σ denotes the set of dynamic clusters of a
net N , we call state function any real-valued function f : Σ → R.

State function form a vector space of finite dimension (=Card(Σ)). The concurrent
ergodic sums associated with a state function f : Σ → R are defined as the function 〈f, ·〉:

〈f, ·〉 : W → R, ∀v ∈ W , 〈f, v〉 =
∑

x∈∆(v)

f(x) ,

where we recall that 〈x〉 denotes the dynamic cluster defined by the class of branching cell x.
The scalar product notation is justified since 〈f, v〉 is linear w.r.t. its left argument for the
usual addition of functions, and additive w.r.t. its right argument for the concatenation ⊕
of configurations.

Example. Let 1 be the unit state function, defined by:

∀s ∈ Σ, 1(s) = 1. (19)

Then 〈1, v〉 counts the number of branching cells contained in ∆(v). This example will be
of repeated use in the sequel.

The concurrent ergodic means M(f, · ) : W → R associated with a state function f are
defined as the following ratios:

∀v ∈ W , M(f, v) =
1

〈1, v〉 〈f, v〉.
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The LLN is concerned by the limit:

lim
v⊆ω,v→ω

M(f, v) ,

where this limit is meant in a sense we shall make precise. The following notion of stopping
operator will be central in this respect. Stopping operators generalize for concurrent systems
the classical notion of stopping times [13, 7] for sequential stochastic processes in discrete
time; see [2] for a detailed discussion.

Definition 6.2 (stopping operator, regular sequences) A measurable mapping
V : Ω → W, satisfying V (ω) ⊆ ω for all ω ∈ Ω, is called a stopping operator if for all
ω, ω′ ∈ Ω, we have:

∀ω, ω′ ∈ Ω, ω′ ⊇ V (ω) ⇒ V (ω′) = V (ω). (20)

Say that a sequence (Vn)n≥1 of stopping operators is regular if the following properties are
satisfied:

1. Vn ⊆ Vn+1 for all n, and
⋃

n Vn(ω) = ω, with probability 1;

2. There exists a constant k > 0 such that:

∀n ≥ 1, 〈1, Vn(ω)〉 ≥ k × n, with probability 1,

where 1 is the unit state function defined in (19).

Example. Stopping prefixes as stopping operators. As an example, let B be a stopping
prefix of E. Then the map VB : Ω → ΩB, ω 7→ ω ∩ B, is a stopping operator. Indeed,
VB(ω) is R-stopped, and VB(ω) ⊆ ω. Finally, let ω, ω′ ∈ Ω such that ω′ ⊇ VB(ω). Then
ω′ ∩B ⊇ ω ∩B. But, since ω ∩B is maximal in B, it implies that ω′ ∩B = ω ∩B, which is
exactly VB(ω′) = VB(ω). Hence VB is indeed a stopping operator, as announced.

Not all stopping operators may be represented by this way. However, if the net arises
from a Markov chain as in §5.2, then every stopping operator can be represented by a
stopping prefix.

We use stopping operators to express the notion of convergence as follows:

Definition 6.3 (convergence of ergodic means) For f a state function, we say
that the ergodic means M(f, · ) converge to a function µ : Ω → R if for every regular se-
quence (Vn)n≥1 of stopping operators,

lim
n→∞M(f, Vn(ω)) = µ(ω), with probability 1. (21)

The important point of this definition is that the limit µ does not depend on the regular
sequence of stopping operators. It is thus intrinsic to f and P.
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Remark. The need for synchronization. Concurrency prevents (21) from holding for
general recurrent Markov nets, as the following example shows. Assume that N decomposes
as a disjoint union N = N 1 ∪ N 2, i.e., the two components N 1 and N 2 do not interact at
all. The unfolding E of net N is the union of the unfoldings E1 and E2 of nets N 1 and N 2

respectively, and the set of dynamic clusters Σ of N is the union of the sets Σ1 and Σ2 of
dynamic clusters of N 1 and N 2. We assume that both nets N 1 and N 2 are recurrent. Let
f be the state function defined by:

∀s ∈ Σ, f(s) =

{
1, if s ∈ Σ1,
0, if s ∈ Σ2.

The associated ergodic sums 〈f, v〉 count the number of occurrences of dynamic clusters from
Σ1 in v. As shown by Lemma 6.1 below, there are two regular sequences V i = (V i

n)n≥0, of
stopping operators of N i respectively, for i = 1, 2, such that for some constants k, K > 0:

i = 1, 2, ∀n > 1, k × n ≤ 〈1, V i
n〉 ≤ K × n.

Define, for n > 1, Vn = V 1
n ∪ V 2

[log n], where [log n] denotes the greatest integer less than
log n. Define symmetrically Wn = V 1

[log n] ∪ V 2
n . Then (Vn)n>1 and (Wn)n>1 are two regular

sequences of stopping operators of E. We compute the ergodic means of f along each of the
sequences (Vn)n>1 and (Wn)n>1. We have:

M(f, Vn) = M(f, V 1
n ∪ V 2

[log(n)]) =
〈1, V 1

n 〉
〈1, V 1

n 〉 + 〈1, V 2
[log(n)]〉

≥ kn

Kn + K[log(n)]
−→n→∞

k

K
> 0.

On the other hand:

M(f, Wn) = M(f, V 1
[log(n)] ∪ V 2

n ) =
〈1, V 1

[log(n)]〉
〈1, V 1

n 〉 + 〈1, V 2
[log(n)]〉

≤ K[log(n)]
kn + k[log(n)]

−→n→∞ 0.

Hence, the limit of the ergodic means depends on the particular regular sequence of stopping
operators chosen. Thus, the convergence of ergodic means does not hold in the sense of
Definition 6.3.

Clearly, the concurrency properties of N is the very cause of this difficulty in the example;
more precisely, the total absence of synchronization brings this behavior. We show below
“how much synchronization” is needed for the LLN to be valid.

The existence of regular sequences of stopping operators results from the following lemma.
Recall that we have defined in §3.6 the normal decomposition (Vn(ω), Zn+1(ω))n≥0 of a
maximal configuration ω. Since Vn and Zn are (measurable) mappings defined on Ω, we
now see this sequence as a sequence of operators, as in Definition 6.2.
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Lemma 6.1 For every n ≥ 0, the mapping ω 7→ Vn(ω) resulting from the normal
decomposition of maximal configuration ω is a stopping operator. There is a constant K > 0
such that:

∀n ≥ 0, 〈1, Vn〉 ≤ K × n. (22)

If the net is recurrent, then (Vn)n≥0 is a regular sequence of stopping operators.

Proof. By construction,Vn(ω) ⊆ ω for all ω ∈ Ω. We prove the other point of the definition
of stopping operators, stated by Equation (20) in Definition 6.2, by induction on n ≥ 0.
This is trivial for n = 0; assume that Equation (20) holds for Vn until n ≥ 0. Let ω, ω′ ∈ Ω
such that ω′ ⊇ Vn+1(ω). Then in particular ω′ ⊇ Vn(ω), so that Vn(ω′) = Vn(ω) by the
induction hypothesis. Put v = Vn(ω), ξ = ω 	 v and ξ′ = ω′ 	 v, so that ξ, ξ′ ∈ ΩEv . We
have:

Zn+1(ω′) = ξ′ ∩ B0(Ev) ⊇ ξ ∩ B0(Ev).

Since · ∩ B0(Ev) is a stopping operator of ΩEv , since it is defined by means of the stopping
prefix B0(Ev), it follows that Zn+1(ω′) = ξ′ ∩ B0(Ev) = ξ ∩ B0(Ev) = Zn+1(ω). Finally,
Vn+1(ω′) = Vn(ω′) ⊕ Zn+1(ω′) = Vn+1(ω), which completes the proof of (20). This shows
that every Vn is a stopping operator.

We now show Equation (22). According to Equation (10) in Theorem 5, we have:

∀n > 0, ∆(Vn) = ∆(Vn−1) ∪ ∆(Zn), ∆(Vn−1) ∩ ∆(Zn) = ∅,
with ∆ the covering map. Therefore:

∀n ≥ 0, 〈1, Vn〉 = Card
(
∆(Vn)

)
=

n∑
i=1

Card
(
∆(Zi)

)
. (23)

As observed in § 3.5, since Zi has the form Zi =
⋃

x∈δE(Vi−1) Zi ∩ x with Zi ∩ x ∈ Ωx for
x ∈ δE(Vi−1), the covering ∆(Zi) is given by ∆(Zi) = δE(Vi−1). Therefore, according to
point 2b of Theorem 3.1, there is a constant K such that Card(∆(Zi)) ≤ K. Hence it follows
from (23) that:

∀n ≥ 0, 〈1, Vn〉 ≤ K × n,

which is (22).
Now we show that, if N is recurrent, (Vn)n≥0 is a regular sequence of stopping operators.

It is clear that Vn ⊆ Vn+1 for all n ≥ 0. Moreover, according to Theorem 3.2,
⋃

n≥0 Vn(ω) =
ω. Hence point 1 in Definition 6.2 is satisfied.

Since N is recurrent (Definition 5.5), with probability 1, ω is infinite since it contains
infinitely many returns to the initial marking. Therefore, for each i ≥ 0, Vi is not maximal,
and thus B0(EVi) 6= ∅. In particular, Card

(
∆(Zi+1)

) ≥ 1. Hence, using Equation (23), we
obtain 〈1, Vn〉 ≥ n, for all n ≥ 0. Hence (Vn)n≥0 satisfies the definition of a regular sequence
of stopping operators with k = 1. This completes the proof of the lemma.
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6.2 A Probabilistic Measure of Synchronization and the LLN

If, in an execution ω ∈ Ω, we block a token in some place b, we measure the “loss of syn-
chronization” of the system by counting the number of branching cells that can be traversed
without moving the blocked token. This length defines an integer random variable. A rea-
sonable assumption is that this random variable has finite mean. We detail this definition
below.

Let m be a reachable marking of a Markov net
(N , (ps)s∈Σ

)
, with m ∈ Mrs, and let b

be a place of m. Denote by λ(e) the transition of N that labels an event e ∈ E. Consider
an element ω ∈ ΩEm , and define:

Km(b, ω) = sup{v ∈ WEm : v ⊆ ω, ∀e ∈ v, λ(e) /∈ b•},
where b• denotes the postset of b (i.e., the set of transitions t in N directly after b). Km(b, ω)
describes the maximal R-stopped sub-configuration that ω allows without using the token
in b. Next, define the integer Lm(b, ω) by:

∀ω ∈ ΩEm , Lm(b, ω) =

{
∞ , if Km(b, ω) is infinite,
〈1, Km(b, ω)〉, otherwise.

Hence Lm(b, ω) counts the number of branching cells of Km(b, ω). It is thus a measure of
non-synchronization at ω: the larger Lm(b, ω), the more sub-processes of ω can progress
without synchronizing with b. For each recursively stopped marking m, and each b ∈ m,
Lm(b, ·) is now an integer random variable ΩEm → N∪{∞}. Its integral is thus well-defined,
although it may be infinite. We shall thus consider the following definition:

Definition 6.4 (integrable concurrency height) Say that Markov net(N , (ps)s∈Σ

)
has integrable concurrency height if for each m ∈ Mrs, and for each

place b ∈ m:

Em
(
Lm(b, ·)) < ∞,

where Em denotes the mathematical expectation under probability Pm.

Examples. Clearly, the example given above of a net consisting of the union N 1∪N 2 of
two non-interacting and recurrent nets has not integrable concurrency height. In contrast,
if a Markov net arises from of Markov chain through the construction of §5.2, then the
integrable concurrency height condition is automatically fulfilled, since the variables Lm(b, · )
identically vanish. On the other hand, the two nets depicted in Figure 9 have integrable
concurrency height.

Theorem 6.1 (Law of Large Numbers) Let (N , (ps)s∈Σ) be a Markov net, that we
assume recurrent and with integrable concurrency height. Then:

1. For any state function f , the ergodic means M(f, · ) converge in the sense of Defini-
tion 6.3 to a function µ(f, · ) : Ω → R.
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Figure 9: Two recurrent Markov nets with integrable concurrency height. Places with same
labels (A and B) are identified. In (a), the random variables Lm(b, · ) are bounded. This
condition is too restrictive in general, as shown by the example (b), where the random
variables Lm(b, · ) are integrable without being bounded.
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2. Except possibly on a set of zero probability, µ(f, · ) = µ(f) is constant. There exists
a family of numbers (α(s))s∈Σ such that, for every state function f : Σ → R, the
constant µ(f) is given by:

µ(f) =
∑
s∈Σ

α(s)f(s). (24)

3. The coefficients α(s) satisfy:

∀s ∈ Σ, 0 < α(s) ≤ 1, and
∑
s∈Σ

α(s) = 1.

Hence (α(s))s∈Σ defines a probability on Σ, we call it the stationary measure of the
Markov net.

The proof of the theorem is the topic of §7. A closed look at the proof shows that it is
enough, for Theorem 6.1 to hold, that the probability P satisfies the homogeneity condition;
the stronger property that P is distributed is not required.

6.3 Interpretation of the Stationary Measure

We give an interpretation of the coefficients α(s) mentioned in Theorem 6.1. For every
s ∈ Σ, the coefficient α(s) shall be considered as the asymptotic rate of occurrence of s in a
typical execution ω ∈ Ω. Indeed, consider, for s0 ∈ Σ, the state function 1s0 defined by:

∀s ∈ Σ, 1s0(s) =

{
1, if s = s0,
0, otherwise.

(25)

The ergodic sums 〈1s0 , v〉 count, for v ∈ W , the number of occurrences of s0 in v. Applying
the LLN to 1s0 , we get that, for every regular sequence of stopping operators (Vn)n≥0, and
with probability 1:

lim
n→∞

number of occurrences of s0 in Vn

number of branching cells in Vn
= lim

n→∞
〈1s0 , Vn〉
〈1, Vn〉

= lim
n→∞M(1s0 , Vn) = µ(1s0) = α(s0).

(26)

The expression (26) shows that α(s0) is the asymptotic occurrence rate of s0 in a typical ω,
whatever the regular sequence of stopping operators Vn is. This justifies the name of density
coefficient.

If the net arises from a recurrent Markov chain through the construction of §5.2, then
the integrable concurrency height is satisfied, as already seen, and thus the theorem applies.
The stationary measure of the net coincides with the stationary measure of the chain, in
the usual sense. This again reveals that dynamic clusters play the role of local states for
concurrent systems.

Irisa



Markov nets 39

We now examine an example that reveals that the LLN stated in Theorem 6.1 is not fine
enough to describe the asymptotic behavior of Markov nets. We will thus need to refine it.

Let
(N , (ps)s∈Σ

)
be a Markov net, recurrent and with integrable concurrency height as

in Theorem 6.1, with unfolding (E, λ). Pick t and t′ two transitions of N . For v a finite
R-stopped configuration of E, let rt,t′(v) be the ratio of occurrences of t and t′ in v. That
is:

rt,t′(v) =
Card{e ∈ v : λ(e) = t}
Card{e ∈ v : λ(e) = t′} . (27)

We would like to know if this ratio has a limit when v grows to some ω ∈ ΩE . This would
tell us how much, asymptotically, transition t fires as compared to t′. However, the ratio
rt,t′(v) cannot be expressed as a ratio of the form 〈f, v〉/〈f ′, v〉, where f and f ′ would be
state functions. Indeed, the occurrence of transition t and t′ in an element z ∈ Ωs, with s a
dynamic cluster, depends on z, and not on s only. Hence state functions are not fine enough
to evaluate quantities of the type rt,t′(v). This is the reason why we introduce extended
state functions.

6.4 Extended state functions and the Extended LLN

We begin with the definition.

Definition 6.5 (extended state function) We call extended state function a finite
family f =

(
f(s, · ))

s∈Σ
of real-valued functions f(s, · ) : Ωs → R, where s ∈ Σ.

Extended state functions extend state functions: indeed, a state function f : Σ → R is
simply an extended state function that is constant on every Ωs. That is, f(s, z) = f(s) for
all s ∈ Σ and z ∈ Ωs. In particular, we keep the notation 1 to denote the unit extended
state function, defined by 1(s, z) = 1 for all s ∈ Σ and z ∈ Ωs.

Ergodic sums and means of extended state functions are defined in a way that extends
the definition of ergodic sums and means for state functions. The ergodic sum of an extended
state function f along a finite R-stopped configuration v is defined by:

〈f, v〉 =
∑

x∈∆(v)

f(〈x〉, v ∩ x),

and the ergodic means are defined by:

∀v ∈ WE , M(f, v) =
〈f, v〉
〈1, v〉 .

If f is an extended state function, we define the convergence of the ergodic means M(f, · )
to a function µ : Ω → R as in Definition 6.3 for state functions.
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Example. The ratios of the form rt,t′(v) defined in (27) can be expressed by ergodic
means of extended state functions. Indeed, consider the extended state functions Nt and
Nt′ defined by:

∀s ∈ Σ, ∀z ∈ Ωs, Nt(s, z) = Card{e ∈ z : λ(e) = t}, (28)

and similarly for Nt′ . Then, for v finite and R-stopped, the ratio rt,t′(v) is given by:

rt,t′(v) =
〈Nt, v〉
〈Nt′ , v〉 =

〈Nt, v〉
〈1, v〉 × 〈1, v〉

〈Nt′ , v〉 =
M(Nt, v)
M(Nt′ , v)

. (29)

Hence, if we know that ergodic means of extended state functions have a limit, we shall
conclude that the ratios rt,t′(v) also have a limit. This is the topic of the following result,
which proof is postponed in §7.

Theorem 6.2 (extended LLN) Let
(N , (ps)s∈Σ

)
be a Markov net, that we assume

recurrent and with integrable concurrency height. Let (α(s))s∈Σ denote the stationary mea-
sure of the Markov net.

Then for every extended state function f , the ergodic means M(f, · ) converge to a func-
tion µ(f, · ) : Ω → R. Moreover, µ(f, · ) = µ(f) is constant with probability 1, given by:

µ(f) =
∑
s∈Σ

α(s)ps(f), with: ps(f) =
∑
z∈Ωs

ps(z)f(s, z), s ∈ Σ. (30)

Remark that, in case of an extended state function defined by a state function, the
expression (30) giving µ(f) extends the expression (24) of the first LLN. Indeed, since
f(s, · ) = f(s) is constant for every s, and since ps sums up to 1, ps(f) = f(s) and thus
µ(f) =

∑
s∈Σ α(s)f(s).

We shall now complete the example of ratios rt,t′ defined in (27). Using Equations (29)
and (30), we have for every regular sequence (Vn)n≥0 of stopping operators, and with prob-
ability 1:

lim
n→∞ rt,t′(Vn) = lim

n→∞
M(Nt, Vn)
M(Nt′ , Vn

=
µ(Nt)
µ(Nt′)

,

where Nt is defined in (28), and Nt′ is defined similarly. Hence, the ratios Rt,t′ have a limit
with probability 1, and this limit is the same, with probability 1, for all ω ∈ Ω.

Remark. It is not clear how to extend the LLN, for example, to functions defined on
“pairs of successive clusters”. This is done for a Markov chain (Xn)n≥0 by considering
(Xn, Xn−1)n≥1, which is again a Markov chain. Our attempts to get a similar construction
for nets were not fruitful.

7 Proof of the Law of Large Numbers

The aim of this section is to prove the LLN, as stated in Theorems 6.1 and 6.2. The outline
of the proof of Theorem 6.1 is as follows:
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1. We first fix a particular sequence of stopping operators and examine the convergence of
ergodic means along this particular sequence. We show that these ergodic means can
be expressed by ergodic means associated with some homogeneous (usual) Markov
chain, defined over some special, huge, state space. This shows the convergence of
ergodic means to a function µ : Ω → R for this particular sequence (Lemma 7.5).

2. We show that the limit obtained remains unchanged if we modify the regular sequence
of stopping operators, and that the function µ is constant with probability 1 on Ω.
This yields the density coefficients (α(s))s∈Σ (Lemma 7.5).

3. We show that the coefficients are positive, which completes the proof of Theorem 6.1
(Lemma 7.6).

4. Theorem 6.2 is then obtained as a corollary of Theorem 6.1.

We stress the following facts: Theorem 6.1 does not use the properties of distributed
probabilities : only the homogeneity stated in Theorem 5.1 is actually used. In contrast, the
properties of distributed probabilities are used in the proof of Theorem 6.2.

Prior to proceeding with the above steps of the proof, we need to introduce some new
notions, that are the topic of §§7.1–7.4. Then we focus in §§ 7.5 on the proofs of the theorems.

7.1 The Embedded Markov Chain

We first associate to each Markov net a finite Markov chain that “codes”, in a sense to be
made precise, the probabilistic behavior of the net. The chain is defined on a very large
state space. It is thus of little interest in practice; but it has a theoretical merit, namely, in
relating Markov nets to finite Markov chain theory.

Denote by Q the finite set consisting of all pairs (m, z), where m ∈ Mrs and z ∈ ΩB0(Em).
That is, z is maximal in the max-initial prefix of Em. Recall form §4.1 the definition of
isomorphism of probability spaces.

Lemma 7.1 Let
(N , (ps)s∈Σ

)
be a Markov net, with Q the finite set defined as above,

and let (Vn)n≥0 and (Zn)n>0 form the normal decomposition of maximal configurations.
Then the sequence (γ(Vn), Zn+1)n≥0, seen as a sequence of random variables with values
in Q, defines a finite Markov chain.

If (Ξ, G, Q) denotes the canonical probability space associated with the Markov chain,
there is a natural isomorphism of probability spaces (Ω, F, P) → (Ξ, G, Q), where F denotes
the Borel σ-algebra of Ω.

Proof. Recall the notations γm, Pm, etc . . . , used in reference with the net Nm, for any
reachable marking m. For any m ∈ Mrs, let also Zm be the random variable Zm : ΩEm →
ΩB0(Em), ξ ∈ ΩEm 7→ Zm(ξ) = ξ ∩ B0(Em). We define a transition matrix P on Q as
follows:

∀(m, z), (m′, z′) ∈ Q, P(m,z),(m′,z′) = I
(
γm(z) = m′)Pm′

(Zm′
= z′), (31)
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where I(pred) takes the value 1 if the predicate pred is true, 0 otherwise. It is clear that
P is indeed a stochastic matrix on Q, i.e.:

∀(m, z) ∈ Q,
∑

(m′,z′)∈Q

P(m,z),(m′,z′) = 1.

For any n ≥ 1, let hn(m0, z1, . . . , mn−1, zn), with (mi, zi+1) ∈ Q for all i = 1, . . . , n − 1,
denote the following quantity:

hn(m0, z1, . . . , mn−1, zn) =

P
(
γ(V0) = m0, Z1 = z1, . . . , γ(Vn−1) = mn−1, Zn = zn

)
.

We have, by the chain rule:

hn(m0, z1, . . . , mn−1, zn) = hn−1(m0, z1, . . . , mn−2, zn−1)

× Pγmn−2(zn−1)
(
m(V1) = mn−1, Z

mn−1 = zn

)
= hn−1(m0, z1, . . . , mn−2, zn−1)

× I
(
γmn−2(zn−1) = mn−1

) × Pmn−1(Zmn−1 = zn)
= hn−1(m1, z1, . . . , mn−1, zn−1) × P(mn−2,zn−1),(mn−1,zn).

This shows that the sequence (γ(Vn), Zn)n>0 is a Markov chain with transition matrix P .
The initial distribution µ of the chain is given by:

∀(m, z) ∈ Q, µ(m, z) = I
(
m = m0)P(Z1 = z), (32)

where m0 is the initial marking of the net.
Let (Ξ, G, Q) be the canonical sample space associated with the Markov chain. We have

by construction a measurable map Φ : Ω → Ξ, given by Φ(ω) =
(
γ(Vn(ω)), Zn+1(ω))n≥0,

such that ΦP = Q, where ΦP is the image probability of P by Φ (see § 4.1 for the definition
of image probability). Let us show that Φ is injective. Indeed, if Φ(ω) =

(
mn, Zn+1)n≥0,

then the normal decomposition (Vn, Zn)n>0 of ω is entirely determined by (Zn)n>0, since
V0 = ∅, and Vn = Z1 ⊕ · · · ⊕ Zn for n > 0. Since ω = supn Vn by Theorem 3.2, ω is entirely
determined by Φ(ω), which shows that Φ is injective. We finally show that Φ is onto. To
this end, let (mn, zn+1)n≥0 be an element of Ξ. Consider the following sequence:

v0 = ∅, n > 0, vn = vn−1 ⊕ zn .

We show by induction on n that vn is a configuration of E, with γ(vn) = mn. This is trivial
for n = 0. To see it for n = 1, we may assume without loss of generality that µ(m0, z1) > 0,
since:

Q
(
µ(m0, z1) = 0

)
= 0.
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According to (32), this implies in particular that I(m = m0) = 1, so that z1 ∈ ΩB0(E).
Hence v1 = z1 is a configuration of E. For the same reason, we may assume that
P(m0,z1),(m1,z2) > 0. According to (31), this implies that I

(
γm0(z1) = m1

)
= 1, and thus

γ(v1) = m1, which shows the induction hypothesis for n = 1. The general case follows
along the same line. Hence (vn)n≥0 is a nondecreasing sequence of configurations of E.
Therefore v = supn≥0 vn is also a configuration of E. Let ω be any maximal configuration
of E containing v. Then it is clear, by induction on n ≥ 0, that the normal decomposi-
tion of ω satisfies Vn(ω) = vn for n ≥ 0, Zn(ω) = zn for n > 0. Hence, by Theorem 3.2,
ω = supn vn = v. Therefore, ω satisfies Φ(ω) = (mn, zn+1)n≥0. This shows hat Φ is onto a
set of Q-probability 1, and completes the proof (since Φ is clearly bi-measurable).

Comment. Lemma 7.1 is surprising: finally, a Markov net is nothing but a special
Markov chain, defined on a—huge—finite set. However, the concurrency properties of the
net are hidden in the Markov chain representation, whereas they are clearly revealed by the
net representation. Our work indeed aims at revealing the concurrency properties of the
model from the probabilistic viewpoint.

Note that this special Markov chain is still different from the usual one associated with the
Marking graph of the net. Our former Markov chain makes the true-concurrent probabilistic
semantics “rigid”, whereas the latter relates to the interleaving semantics.

Remark also that the lemma only uses the homogeneity property (16); the fact that P is a
distributed product is not essential here, it is only a sufficient condition for the homogeneity.
Hence the same result holds even without the local finiteness assumption, provided that the
probability has the homogeneity property. In turn, the associated Markov chain would be,
in general, defined on an infinite state space. This enlightens the role of the local finiteness
assumption.

7.2 Preliminaries on Global Recurrence

Recall that we have defined in §5.3 the return operator R associated to a Markov net. Also,
the successive returns are defined by:

R0 = ∅, ∀n > 0, Rn(ω) = Rn−1(ω) ⊕ R
(
ω 	 Rn−1(ω)

)
. (33)

In case of a Markov net that reduces to a Markov chain, Rn coincides with the nth return
to the initial state. These are known to be stopping times. For general Markov nets, we
have:

Lemma 7.2 If N is recurrent, the successive return operators Rn form a regular se-
quence of stopping operators.

Proof. The fact that every Rn is a stopping operator follows by induction from the fact that
R is a stopping operator. But this follows easily from the definitions (see a detailed proof
in [1, Ch.6, I-1.6] or in [2]).
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Let ω be an element of Ω such that all Rn(ω) are well-defined, n ≥ 0. We have⋃
n≥0 Rn(ω) ⊆ ω by construction; for the converse inclusion, let v =

⋃
n≥0 Rn(ω), and

assume that v is not maximal. Then there is an event e minimal in Ev. But then there is an
integer n such that e is minimal in ERp(ω) for all p ≥ n. In particular, e is a minimal event
of both ERn(ω) and ERn+1(ω), which contradicts the definition of R. Hence v is maximal
and thus v = ω. Finally it is clear that 〈1, R〉 ≥ 1, and thus by induction, using (33),
〈1, Rn〉 ≥ n. This shows that (Rn)n≥0 is a regular sequence of stopping operators, and
completes the proof of the lemma.

Recall that if ϕ : P → Q is a measurable map, where P and Q are two sets respectively
equipped with the σ-algebras F and G, the σ-algebra 〈ϕ〉 generated by ϕ is defined by
〈ϕ〉 = {ϕ−1(A), A ∈ G}, and then 〈ϕ〉 ⊆ F.

Let N be a recurrent net. We may assume without loss of generality that Rn(ω) is finite
for every n ≥ 0 (e.g., by redefining R(ω) = ∅ whenever R(ω) = ω, note that the set of all
these ω has probability 0). Hence Rn takes its values in a set at most countable. Therefore
the associated σ-algebra 〈Rn〉 can be described as follows:

〈Rn〉 = 〈R−1
n (u), u ∈ WE〉 ;

that is, 〈Rn〉 is the smallest σ-algebra that contains the family of subsets {R−1
n (u), u ∈ WE}.

Furthermore, we note the following property of Rn’s, which is a general property of
stopping operators: If u is a finite R-stopped configuration such that u = Rn(ωo) for some
n ≥ 0 and ωo ∈ Ω, then we have:

R−1
n (u) = {ω ∈ Ω : ω ⊇ u}. (34)

Indeed, since Rn is a stopping operator by Lemma 7.2, it is enough to verify (34) for stopping
operators; but this is an immediate consequence of point 2 in Definition 6.2.

Corollary 7.1 Assume that N is recurrent, and denote by F the Borel σ-algebra on Ω,
and for all n ≥ 0, by Fn the σ-algebra generated by Rn. Then F =

〈
Fn, n ≥ 0

〉
, i.e.,

F coincides with the smallest σ-algebra that contains all Fn, n ≥ 0.

Proof. Let G =
〈
Fn, n ≥ 0

〉
. We obviously have G ⊆ F. For the converse inclusion, recall

the notation S(u) = {ω ∈ Ω : ω ⊇ u}. Since F is generated by the collection {S(u)}, where
u ranges over the set VE of finite configurations of E, it is enough to show that S(u) ∈ G
for every u ∈ VE .

Let K = {Rn(ω), n ≥ 0, ω ∈ Ω}. K is at most countable, since it consists of finite
configurations. Let u ∈ VE . From the equality ω = supn≥0 Rn(ω) stated in Lemma 7.2, we
get:

S(u) =
⋃

v∈K
v⊇u

S(v) .
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Using (34), each S(v) with v ∈ K can be written S(v) = R−1
nv

(v), where nv ≥ 0. Thus:

S(u) =
⋃

v∈K
v⊇u

R−1
nv

(v) ,

a union at most countable of G-measurable subsets. Hence S(u) ∈ G, which completes the
proof of the corollary.

7.3 Preliminaries on Local Recurrence

Fix s0 a dynamic cluster of N , and consider ω ∈ Ω. Assume that x and x′ are two branching
cells in ∆(ω) such that 〈x〉 = 〈x′〉 = s0. Then there are events in x and x′ that are both
compatible, and labeled by the same transition. Since the net is safe, this implies that these
two events are causally related. This induces in turn an ordering of such branching cells,
for s0 and ω fixed, which is thus a total ordering. Furthermore, for each branching cell
x ∈ ∆(ω), the configuration:

vx = inf{v ∈ W , v ⊆ ω, x ∈ δE(v)}, (35)

is a finite R-stopped configuration, since this set of configurations is nonempty, and by the
lattice property of compatible R-stopped sub-configurations of ω (Theorem 3.1, point 5).
The above ordering on branching cells x such that x ∈ ∆(ω) and 〈x〉 = s0 corresponds to
the set-inclusion of associated configurations vx.

In particular, again with ω fixed, if the following set is nonempty:

{x ∈ ∆(ω) : 〈x〉 = s0, x /∈ δE(∅)},
it has a unique minimal element x, with an associated configuration vx defined as in (35).
Let Ss0(ω) denote this configuration, so that Ss0(ω) is defined by:

Ss0(ω) = inf{v ∈ W : v ⊆ ω, v 6= ∅, ∃x ∈ δE(v), 〈x〉 = s0}. (36)

Remark that the branching cell x in (36) is then unique, again for safeness reasons. Moreover,
since the net is assumed recurrent, a simple Borel-Cantelli argument shows that Ss0 is defined
on Ω with probability 1.

Definition 7.1 (local return operator) If the Markov net
(N , (ps)s∈Σ

)
is recur-

rent, for every dynamic cluster s0, the local return to s0 is the mapping Ss0 : Ω → W
defined by (36), with probability 1.

Intuitively, local returns are returns with “minimal moves of the tokens”. For every
reachable marking m, and in particular if m is recursively stopped, the same definition of
local return operator applies to ΩEm . Since Nm is itself also recurrent, the local return to
s0 is also defined on ΩEm with Pm-probability 1. We denote this local return operator by:

Ss0,m : ΩEm → WEm , with Pm-probability 1. (37)
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This allows to construct the successive local return operators to s0 as follows. The local
returns (Ss0

n )n≥1 to s0 are defined on Ω with probability 1 by:

Ss0
1 = Ss0 , ∀n > 1, Ss0

n (ω) = Ss0
n−1(ω) ⊕ Ss0,mn−1

(
ω 	 Ss0

n−1(ω)
)
,

with mn−1 = γ
(
Ss0

n−1(ω)
)
.

(38)

We summarize the properties of local return operators as follows:

Proposition 7.1 Let
(N , (ps)s∈Σ

)
be a recurrent Markov net, and let s0 be a dynamic

cluster of N . Then for each n ≥ 1, the nth local return operator Ss0
n to s0 is a stopping

operator of Ω. If
(N , (ps)s∈Σ

)
has integrable concurrency height, then (Ss0

n )n≥1 is a regular
sequence of stopping operators.

Proof. As for global return operators, it is enough to show that the single Ss0 defined
by (36) is a stopping operator. To this end, we clearly have Ss0(ω) ⊆ ω. Let ω, ω′ ∈ Ω, set
v = Ss0(ω), v′ = Ss0(ω′), and assume that ω′ ⊇ v. Let x be the unique element of δE(v)
such that 〈x〉 = s0. Then, since v is finite nonempty R-stopped, since x ∈ δE(v) and since
v ⊆ ω′, we have v′ ⊆ v by the very definition of v′ = Ss0(ω′). This implies v′ ⊆ ω, and in
turn, by minimality of Ss0(ω), we get v ⊆ v′. Finally, v = v′, which proves that Ss0 is a
stopping operator.

Assume moreover that the net has integrable concurrency height; we show that the
sequence (Ss0

n )n≥1 of local returns to s0 is regular. (Ss0
n )n≥1 is clearly nondecreasing. Since

Ss0 6= ∅, 〈N, S(ω)〉 ≥ 1 with probability 1; it follows thus from (38) that 〈N, Ss0
n 〉 ≥ n for

all n ≥ 1. Hence it remains only to show that supn≥1 Ss0
n (ω) = ω with probability 1. Fix

ω ∈ Ω, let vn = Ss0
n (ω), v = supn≥1 vn, and assume that v 6= ω. Consider any minimal

event e ∈ Ev. Then there is an integer p such that e is also a minimal event of Evn

for all n ≥ p. Pick any place b in the preset of λ(e), where λ(e) is the transition that
labels e. For m = γ(vp), the token in the place b is a frozen token, from vp to ω, i.e., the
length 〈N, ω 	 vp〉 is infinite. But, since the length is integrable, all such ω have together
probability 0. This shows that supn≥1 Ss0

n (ω) = ω with probability 1, and completes the
proof of the proposition.

Still consider a fixed dynamic cluster s0, and let ω ∈ Ω be such that the local returns
Ss0

n (ω) to s0 are defined for all n ≥ 1, which holds with probability 1 if the net is recurrent.
For each n ≥ 1, there is by construction a unique branching cell xn(ω) ∈ δE

(
Ss0

n (ω)
)

such
that 〈xn(ω)〉 = s0. As a consequence of Lemma 3.1, we have ω ∩ xn(ω) ∈ Ωx = Ωs0 .
Therefore, if we set:

∀n ≥ 1, Y s0
n (ω) = ω ∩ xn(ω), (39)

we get a sequence (Y s0
n )n≥1 of random variables such that:

∀n ≥ 1, Y s0
n (ω) ∈ Ωs0 , with probability 1.

Using 1) the Strong Markov property for Markov nets, and 2) the properties of the
distributed product, yields the following result regarding the sequence (Y s0

n )n≥1 (see [1,
Ch.6, III-3.2] for the proof):
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Lemma 7.3 Let
(N , (ps)s∈Σ

)
be a recurrent Markov net, let s0 be a dynamic cluster,

and let (Y s0
n )n≥1 be the sequence of random variables, with values in Ωs0 , defined by (39).

Then (Y s0
n )n≥1 is a sequence of independent and identically distributed variables, with law

ps0 in Ωs0 .

We finally show the following result, which generalizes to Markov nets the positive re-
currence of recurrent states, for Markov chains:

Lemma 7.4 (positive recurrence) Let
(N , (ps)s∈Σ

)
be a recurrent Markov net.

Then the global return R, and all the local returns Ss,m, s ∈ Σ, m ∈ Mrs, satisfy:

E
(〈1, R〉) < ∞, Em

(〈1, Ss,m〉) < ∞,

where E and Em denote respectively the mathematical expectation w.r.t. probabilities P

and Pm.

Proof. We first show that E(〈1, R〉) < ∞. Let T be the integer random variable T = 〈1, R〉.
Recall the usual identity E(T ) =

∑
n≥0 P(T ≥ n). Assume that there is an integer r > 0

such that: ∑
n≥0

P(T ≥ nr) < ∞. (40)

Then we have:

E(T ) =
∑
n≥0

P(T ≥ n) =
∞∑

i=0

r−1∑
j=0

P(T ≥ ir + j)

≤
∞∑

i=0

r−1∑
j=0

P(T ≥ ir)

= r

∞∑
n=0

P(T ≥ nr) < ∞, by (40).

Hence, to prove E(T ) < ∞, it is enough to show (40). Let (Vn)n≥0 be the sequence of
stopping operators coming from the normal decomposition of maximal configurations, as
defined in §3.6 and in §7.1, Lemma 7.1. There is an integer k1 > 0 such that 〈1, Vn〉 ≤
k1 × n for all n > 0; take for example k1 as the maximal number of simultaneously enabled
transitions of the net. Define the random variable T ′ by:

T ′ = inf{n ≥ 0 : R ⊆ Vn}.
Since R is finite with probability 1, and since

⋃
n Vn(ω) = ω for all ω ∈ Ω, T ′ is finite with

probability 1. Therefore, with probability 1, T ≤ 〈1, VT ′〉 ≤ k1 × T ′. Hence, to show (40),
it is enough to show that there is an integer q > 0 such that:∑

n≥0

P(T ′ ≥ qn) < ∞. (41)
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We choose the integer q as follows. Recall that Mrs denotes the set of recursively stopped
markings of the net. Since the net is recurrent, we choose for any marking m ∈ Mrs a finite
R-stopped configuration vm leading back from m to the initial marking, after having moved
all tokens in the net. Each vm has Pm-positive likelihood. We put q = maxm∈Mrs〈1, vm〉,
which is finite since Mrs is a finite set, and positive otherwise we would have vm = ∅
for all m ∈ Mrs. Let n be any integer n ≥ 1, and let Q be the conditional probability
Q = P

( · |T ′ ≥ q(n − 1)
)
. Then we have, by the Bayes rule:

Q(T ′ ≥ qn) =
∑

m∈Mrs

Q
(
T ′ ≥ qn | γ(Vq(n−1)) = m

) × Q
(
γ(Vq(n−1) = m

)
, (42)

where γ(v) denotes the marking reached a configuration v. Denote, for any m ∈ Mrs, by
(V m

j )j≥0 the sequence of stopping operators coming from the normal decomposition of max-
imal configurations, defined on ΩEm . Then, using the homogeneity property (Theorem 5.1),
Q

(
T ′ ≥ qn | γ(Vq(n−1)) = m

)
is the Pm probability that V m

q does not contain any return to
the initial marking. By definition of q, this probability is less than a constant a < 1. Hence
we get from (42) that Q(T ′ ≥ qn) ≤ a, and thus, coming back to the definition of Q:

P(T ′ ≥ qn) ≤ aP
(
T ′ ≥ q(n − 1)

) ≤ a2P
(
T ′ ≥ q(n − 2)

) ≤ · · · ≤ an.

Since a < 1, Equation (41) follows, hence E(T ) < ∞.
We now show that E(〈1, Ss,m〉) < ∞ for every s ∈ Σ and m ∈ Mrs. Since the net

Nm is recurrent by Lemma 5.2, we may assume without loss of generality that m = m0 is
the initial marking. If there is a branching cell x such that: x is an initial stopping prefix
of E, and such that 〈x〉 = s, then Ss,m0 ⊆ R. Therefore 〈1, Ss,m0〉 ≤ 〈1, R〉 and thus
E(〈1, Ss,m0〉) ≤ E(〈1, R〉) < ∞.

Finally we show that the general case reduces to this particular case. For any M ∈ Mrs,
define the M -reachability operator AM by:

∀ξ ∈ ΩEm , AM (ω) = min{v ∈ WE : v ⊆ ξ, γ(v) = M, Min(E) ∩ Min(Ev) = ∅}.

Then AM is finite with probability 1, and using the very same technique than above, we
conclude that E(〈1, AM 〉) < ∞. Now for any s ∈ Σ, let M ∈ Mrs such that there is a
branching cell x and a v ∈ WE with γ(v) = M , 〈x〉 = s and x ∈ δE(v). Then we have:

∀ω ∈ Ω, Ss,m0(ω) ⊆ AM (ω) ⊕ SM,s
(
ω 	 AM (ω)

)
.

Therefore:

E(〈1, Ss,m0〉) ≤ E(〈1, AM 〉) + EM
(〈1, Ss,M 〉).

We have E(〈1, AM 〉) < ∞ as we remarked above, and EM
(〈1, Ss,M〉) < ∞ by the first case.

Therefore E(〈1, Ss,m0〉) < ∞, which completes the proof of the lemma.
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7.4 Preliminaries on Ergodicity

Definition 7.2 (homogeneous function) Let Mrs denote the set of recursively
stopped markings of N—i.e., those markings reached by some finite R-stopped configura-
tions. A family H = (Hm)m∈Mrs of real-valued functions Hm : ΩEm → R ∪ {∞} is called a
homogeneous function.

The homogeneous function H is said to be nonnegative, respectively integrable, if every
Hm is nonnegative, respectively integrable w.r.t. probability Pm.

If H = (Hm)m∈Mrs is a homogeneous function, we consider the family (Hv)v∈WE of
real-valued functions Hv : ΩEv → R ∪ {∞} defined by:

∀v ∈ WE , Hv = Hγ(v),

and that satisfies:

∀v, v′ ∈ W , γ(v) = γ(v′) ⇒ Hv = Hv′
.

The two representations (Hm)m∈Mrs and (Hv)v∈W are obviously equivalent.

We now prove the following result, to be interpreted as an ergodicity result.

Theorem 7.1 Let N be a recurrent Markov net. Let H = (Hv)v∈W be a nonnegative
and integrable homogeneous function. Assume that we have, with probability 1:

∀ω ∈ Ω, ∀v ∈ WE , v ⊆ ω ⇒ Hv(ω 	 v) = H∅(ω). (43)

Then for every v ∈ WE, Hv is constant on a set of probability 1, and all the so obtained
constants are identical.

Proof. We begin with the following observation: If V is a stopping operator, with V (ω) finite
with probability 1, and if E( · |V ) denotes the conditional expectation w.r.t. the σ-algebra
〈V 〉 generated by V (see §4.1), we have for every integrable function f : Ω → R:

E(f |V ) =
∫

Ωγ(V )
f(V ⊕ ξ) dPγ(V )(ξ), (44)

where V ⊕ ξ denotes the concatenation of V and ξ (proof left to the reader; hint: use (34)
with stopping operator V ).

We show first that H∅ is constant on Ω with probability 1. By Corollary 7.1, we have
F = 〈Fn, n ≥ 0〉, where Fn = 〈Rn〉. The Martingale convergence theorem [7, Th. 35.5]
implies thus:

H∅ = lim
n→∞ E(H∅ |Fn), with probability 1. (45)

We apply (44) with f = H∅ to get:

E(H∅ |Fn) =
∫

Ωγ(Rn)
H∅(Rn ⊕ ξ) dPγ(Rn)(ξ)

=
∫

Ω

H∅(Rn ⊕ ξ) dP(ξ), (46)
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the latter by applying the homogeneity of P (Theorem 5.1), and since γ(Rn) = m0 by
construction of the successive return operators Rn. Applying the assumption (43) with
v = Rn, we get:

∀ξ ∈ Ω, H∅(Rn ⊕ ξ) = HRn(ξ) = H∅(ξ), (47)

the latter since H is a homogeneous function. Using together (45), (46) and (47), we obtain:

H∅(ω) = lim
n→∞

∫
Ω

H∅(Rn ⊕ ξ) dP(ξ) =
∫

Ω

H∅(ξ) dP(ξ) = E(H∅),

with probability 1. This shows that H∅ is constant on Ω with probability 1. For the
same reasons, every Hv, with v ∈ W , is constant on Ωv with Pv probability 1. It follows
from (43), and from the fact that the likelihood of every v ∈ W is positive, that all the
constants coincide.

Finally, the following result on homogeneous functions will be useful. It is the adaptation
of a classical lemma from dynamical systems theory; our proof is borrowed from [12].

Proposition 7.2 Let N be a Markov net with unfolding E, and let (Vn)n≥0 be a regular
sequence of stopping operators on Ω. For each n ≥ 0, we define θn by:

∀ω ∈ Ω, θn(ω) = ω 	 Vn(ω), so that : θn ∈ ΩEγ(Vn) .

Let also H = (Hv)v∈W be a homogeneous, nonnegative and integrable function. Then we
have:

lim
n→∞

HVn(θn)
〈N, Vn〉 = 0, with probability 1.

Proof. We also use the notation (Hm)m∈Mrs for H , where Mrs is the set of recursively
stopped markings. Since (Vn)n≥0 is a regular sequence of operators, there is a constant
k > 0 such that 〈N, Vn〉 ≥ k × n for every n ≥ 1. Therefore it is enough to show:

lim
n→∞

HVn(θn)
n

= 0, with probability 1.

To this end, we denote by Xn the random variable Xn = 1
nHV n

(θn), and we use the following
classical criterion that implies the convergence of (Xn)n≥1 to 0 with probability 1:

∀ε > 0,
∑
n≥1

P(Xn ≥ ε) < ∞. (48)

For each n ≥ 1, let Kn denote the set of values of Vn. Since Vn is finite with probability 1,
we assume without loss of generality that Kn is at most countable. Since Vn is a stopping
operator, we have the property already observed:

∀u ∈ Kn, {ω ∈ Ω : Vn(ω) = u} = S(u),
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where S(u) denotes as usual S(u) = {ω ∈ Ω : ω ⊇ u}. From this we get:

P(Xn ≥ ε) =
∑

u∈Kn

P(Vn = u)P
(
HVn(θn) ≥ nε

∣∣Vn = u
)

=
∑

u∈Kn

P(Vn = u)Pu
(
Hu ≥ nε

)
=

∑
m∈Mrs

( ∑
u∈Kn

γ(u)=m

P(Vn = u)
)

Pm
(
Hm ≥ nε

)

≤
∑

m∈Mrs

Pm
(
Hm ≥ nε

)
. (49)

In order to show (48), and from (49), it is enough to show that for each m ∈ Mrs, the
following sum is finite:

∑
n≥1 Pm(Hm ≥ nε) < ∞. Recall the usual equality E(f) =∑∞

k=1 P(f ≥ k) for every nonnegative integrable function f : Ω → N ∪ {∞}. With this
transformation, we get for every m ∈ Mrs:∑

n≥1

Pm(Hm ≥ nε) =
∑
n≥1

Pm
(1
ε
Hm ≥ n

)
=

1
ε
Em(Hm) < ∞,

since Hm is integrable for every m ∈ Mrs. This completes the proof.

7.5 Proof of Theorems 6.1 and 6.2.

We begin with the proof of Theorem 6.1. We decompose the proof in two steps: first, the
existence of the density coefficients (points 1 and 2 of the theorem, shown in Lemma 7.5
below), then their properties (point 3 of the theorem, shown in Lemma 7.6 below).

7.5.1 Existence of the Density Coefficients

The ergodic means M(f, v) are linear in f . State functions form a vector space of finite
dimension, with basis the collection of state function 1s0 , s0 ∈ Σ, defined by:

∀s ∈ Σ, 1s0(s) =

{
1, if s = s0,

0, otherwise.
(50)

Therefore, to obtain the convergence of ergodic means of any state function f stated in (24)
in Theorem 6.1, it is enough to show the following lemma:

Lemma 7.5 For every dynamic cluster s0, the ergodic means M(1s0, · ) converge in
the sense of Definition 6.3 to a function α(s0, · ) : Ω → R. The function α(s0, · ) is constant
with probability 1 on Ω.

PI n˚1753



52 S. Abbes & A. Benveniste

Proof. We fix a dynamic cluster s0 of N , and we consider the state function f0 = 1s0 defined
by (50).

Let (Mn, Zn+1)n≥0 denote the embedded Markov chain of the net (see §7.1), where
Mn = γ(Vn) is the marking associated with the configuration Vn, arising from the normal
decomposition of maximal configurations. The ergodic means relative to f0 and Vn satisfy:

M(f0, Vn) =
〈f0, Vn〉

n

n

〈1, Vn〉

=
∑n−1

k=0 I
(
s0 ∈ δEMk (∅))

n︸ ︷︷ ︸
ergodic means for (Mn, Zn)

·
( ∑n−1

k=0 Card
(
δEMk (∅)

n︸ ︷︷ ︸
ergodic means for (Mn, Zn)

)−1

,

where we recall that I(pred) takes the value 1 if the predicate pred is true, 0 other-
wise. Hence, each factor is given by ergodic means relative to the embedded Markov chain
(Mn, Zn+1)n≥0. The ergodic theory of Markov chains implies that each of these factors
has a limit with probability 1 (see Theorem A.1 in Appendix A). Therefore, the following
real-valued random variable G : Ω → R is well defined with probability 1:

G(ω) = lim
n→∞M(f0, Vn(ω)).

For each v ∈ W , the same construction applies to the probabilistic future (Ev, Pv). This
defines a collection of measurable maps

Hv : Ωv → R, (51)

with H∅ = G. By construction, the family H = (Hv)v∈W is a homogeneous function
(Definition 7.2). According to point 2 of Lemma 7.7 below, H satisfies:

∀v ∈ W , v ⊂ ω ⇒ Hv(ω 	 v) = H∅(ω), with probability 1.

Combined with Theorem 7.1, this implies that H∅ is constant on Ω. Let α(s0) denote this
constant. Then, according to point 1 of Lemma 7.7 below, for every sequence (Wn)n≥0 of
stopping operators, we have:

limn→∞M(f0, Wn) = H∅ = α(s0), with probability 1.

This shows that the ergodic mens M(f, · ) converge to the constant α(s0).

With Lemma 7.5, we have shown points 1 and 2 of Theorem 6.1. It remains to show
point 3, which is the topic of next lemma.

Lemma 7.6 The density coefficients α(s) satisfy:

∀s ∈ Σ, 0 < α(s) ≤ 1, and
∑
s∈Σ

α(s) = 1. (52)
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Proof. We first show that the α(s)’s sum to 1. Consider any regular sequence of stopping
operators (Vn)n≥0—we have seen the existence of such a sequence in Lemma 6.1. We have
obviously:

∀n ≥ 0,
∑
s∈Σ

〈1s, Vn〉 = 〈1, Vn〉,

where 1 is the extended state function that counts all branching cells. Therefore, taking the
ratio and then the limit, we get:

1 = lim
n→∞

1
〈1, Vn〉

∑
s∈Σ

〈1s, Vn〉 = lim
n→∞

∑
s∈Σ

M(1s, Vn) =
∑
s∈Σ

α(s).

This shows that the α(s)’s sum to 1, as claimed. This also implies that 0 ≤ α(s) ≤ 1 for
every s ∈ Σ.

It remains only to show that α(s) > 0 for every s ∈ Σ. Let s ∈ Σ, and consider the
sequence (Ss

n)n≥1 of local returns to s. This sequence is a regular sequence of stopping op-
erators according to Proposition 7.1, §7.3. We have thus, applying the LLN to the extended
state function 1s:

α(s) = lim
n→∞

1
〈1, Ss

n〉
〈1s, S

s
n〉 = lim

n→∞
n

〈1, Ss
n〉

. (53)

The latter ratio can be written as follows:
n

〈1, Ss
n(ω)〉 =

n

〈1, Ss
1(ω)〉 +

∑n−1
k=1

(〈1, Ss
k+1(ω)〉 − 〈1, Ss

k(ω)〉) .

We have for every k ≥ 1:

〈1, Ss
k+1〉 − 〈1, Ss

k〉 = 〈1, Ss
k+1 	 Ss

k〉 = 〈1, Ss,mk〉, (54)

where mk denotes the marking γ(Ss
k), and Ss,m denotes as in (37) the local return to s

defined on ΩEm . It follows from the Markov property for Markov nets [2] that the sequence
(Ss,mk)k≥1 is a sequence of independent random variables. They are not identically dis-
tributed since the law of Ss,mk depends on mk = γ(Ss

k). But these laws range over a finite
set, since markings are finitely many. Furthermore, each expectation E

(〈1, Ss,m〉) is finite
according to Lemma 7.4. Therefore, we shall apply Proposition A.1 of Appendix A to get,
using (53) and (54):

1
α(s)

≤ max
m

Em〈1, Ss,m〉 < ∞.

This shows that α(s) > 0.

With Lemmas 7.5 and 7.6, we have completed the proof of Theorem 6.1. In the proof of
Lemma 7.5, we have used the following lemma:
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Lemma 7.7 Assume that N is a recurrent Markov net with integrable concurrency
height, and let H be the homogeneous function defined in (51). Consider the state function
f0 = 1s0 defined by (50). Then H satisfies:

1. For every regular sequence (Wn)n≥0 of stopping operators, we have:

lim
n→∞ M(f0, Wn) = H∅, with probability 1.

2. For each v ∈ W, and with probability 1:

v ⊆ ω ⇒ Hv(ω 	 v) = H∅(ω).

Proof. Let (Wn)n≥0 be a regular sequence of stopping operators. (Vj , Zj+1)j≥0 denotes as
above the normal decomposition of maximal configurations. For each n ≥ 1, let Jn : Ω → N

be the integer-valued random variable defined by:

Jn(ω) = inf{p ≥ 0 : Vp(ω) ⊇ Wn(ω)}. < ∞, with probability 1.

Then, with probability 1, δE(VJn(ω)) ∩ δE(Wn(ω)) 6= ∅. Therefore EWn(ω) and EVJn (ω)

possess a minimal event in common. Thus VJn(ω) is a sub-configuration of ω that keeps
a token frozen, starting from the sub-configuration Wn(ω). Therefore, by definition of the
integer random variables Lm(b, · ), we have:

〈N, VJn 	 Wn〉 ≤ Γγ(Wn), (55)

where Γm(ξ) = supb∈m Lm(b, ξ) for all recursively stopped markings m and ξ ∈ ΩEm .
Remark that, since all Lm(b, · ) are integrable, and since there are only finitely many of
them, Γ = (Γm)m∈Mrs is a homogeneous integrable function.

We now show that the quantity:

εn = M(f0, Wn) − 〈f0, VJn〉
〈N, VJn〉

goes to 0 when n goes to ∞, with probability 1.

εn =
〈f0, Wn〉
〈N, Wn〉 − 〈f0, VJn〉

〈N, VJn〉
=

〈f0, Wn〉 − 〈f0, VJn〉
〈N, Wn〉 + 〈f0, VJn〉

( 1
〈N, Wn〉 −

1
〈N, VJn〉

)
=

−〈f0, VJn 	 Wn〉
〈N, Wn〉 +

〈f0, VJn〉
〈N, VJn〉

〈N, VJn 	 Wn〉
〈N, Wn〉 .

We use that 〈f0, Wn〉 ≤ 〈N, Wn〉 for every n ≥ 1 to get:

|εn| ≤ 2
〈N, VJn 	 Wn〉

〈N, Wn〉 ≤ 2
Γγ(Wn)(ω 	 Wn)

〈N, Wn〉 , (56)
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where the latter inequality follows from (55). According to Proposition 7.2, and since
(Γm)m∈Mrs is an integrable homogeneous function, the right member in (56) goes to 0
with probability 1, and thus limn→∞ εn = 0 with probability 1. This completes the proof of
point 1 of Lemma 7.7.

The proof of point 2 follows from a similar calculation.

7.5.2 Proof of Theorem 6.2

We shall now prove Theorem 6.2 as a corollary of Theorem 6.1. We also use the result stated
in Lemma 7.3, that uses the fact that we consider distributed probabilities.

Let f = (f(s, · ))s∈Σ be any extended state function; we have to study the convergence
and the limit of the ergodic means M(f, Vn), for (Vn)n≥1 any regular sequence of stopping
operators. Because of the linearity of f → M(f, · ), we assume without loss of generality
that f satisfies f(s, · ) = 0 on Ωs whenever s 6= s0, where s0 is some particular dynamic
cluster. Let (Vn)n≥0 be a regular sequence of stopping operators, and let ω ∈ Ω such that
limn→∞ M(1s0 , Vn(ω)) = α(s0) holds. Let also wn = Ss0

n (ω) denote the sequence of local
return operators to s0 applied to ω. According to Proposition 7.1, we assume without loss
of generality that supn≥1 wn = ω, since such ω have probability 1.

Recall that the branching cells x ∈ ∆(ω) such that 〈x〉 = s0 are totally ordered. There-
fore, for every n ≥ 1, the set of branching cells:

In = {x ∈ ∆
(
Vn(ω)

)
: 〈x〉 = s0}

is an interval. But since supn≥1 wn = ω, there is thus an integer J(n) such that:

In = {x ∈ ∆(wJ(n)) : 〈x〉 = s0}.

Since we assume that f(s, · ) vanishes if s 6= s0, we have:

M(f, Vn) =
1

〈1, Vn〉 〈f, Vn〉

=
1

〈1, Vn〉 〈f, wJ(n)〉

=
〈1s0 , Vn〉
〈1, Vn〉

1
〈1s0 , Vn〉

J(n)∑
k=1

f(s0, Y
s0
k ), (57)

where Y s0
k is defined by (39). ∆(ω) contains infinitely many instances of s0 since the net

is recurrent. Since supn Vn(ω) = ω, it follows that limn→∞ J(n) = +∞. The sequence
(Y s0

n )n≥1 is a sequence of independent identically distributed (i.i.d.) random variables of
law ps0 according to Lemma 7.3. It follows thus from the Strong law of large numbers for
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i.i.d. sequences (see Theorem A.2 in Appendix A) that we have:

1
〈1s0 , Vn〉

J(n)∑
k=1

f(s0, Y
s0
k ) =

1
〈1s0 , wJ(n)〉

J(n)∑
k=1

f(s0, Y
s0
k )

=
1

J(n)

J(n)∑
k=1

f(s0, Y
s0
k ) −→n→∞ ps0(f), (58)

where ps0(f) is defined by:

ps0(f) =
∑

z∈Ωs0

ps0(z)f(s0, z).

On the other hand, we have

lim
n→∞

〈1s0 , Vn〉
〈1, Vn〉 = α(s0). (59)

Combining (57), (58) and (59), we get:

lim
n→∞ M(f, Vn) = α(s0)ps0(f),

which is Theorem 6.2 for our particular f . As it was enough to consider this particular f ,
the proof of the theorem is complete.

8 Summary and Perspectives

We have proposed branching cells and dynamic clusters as a notion of local, concurrent,
state for event structures and Petri nets. We have applied the construction of distributed
probabilities for event structures to the randomization of traces of safe Petri nets. This
results in the model of Markov nets, a proper generalization of Markov chains to true-
concurrency systems. The Law of Large Numbers extends to Markov nets, with dynamic
clusters taken as states.

Although our work relies on the local finiteness assumption for event structures, the
notion of branching cells that we have developed can be applied to general event struc-
tures arising from Petri net unfoldings. Some new issues arise for non-locally finite event
structures, however. First, branching cells may be infinite; second, maximal configurations
may not be R-stopped, hence the randomization is not immediate as for locally finite event
structures. We are currently working on this extended setting for Markov nets.

A Appendix: Classical Laws of Large Numbers

In this section we state the classical Laws of Large Numbers that we use, for Markov chains
and for sequences of independent and sequences of independent identically distributed (i.i.d.)
random variables.
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Theorem A.1 [9, Ch.V, Th. 6.1 p.219] Let (Xn)n≥0 be a Markov chain on a
finite state space Q, and let f : Q → R be a real-valued function. Then the ergodic means:

1
n

n−1∑
k=0

f(Xk)

have a limit, for n → ∞, with probability 1.

Theorem A.2 [9, Ch.III, Th. 5.1 p.142] Let (Xn)n≥0 be a sequence of i.i.d. ran-
dom variables, with probability law p on a countable set Q. For any real-valued nonnegative
function f : Q → R, the following limit holds with probability 1:

lim
n→∞

1
n

n−1∑
k=0

f(Xk) =
∑
s∈Q

p(s)f(s).

Finally, the following result is an exercise:

Proposition A.1 Let P = {pi, i = 1, . . . , r} be a finite family of probability laws on
some countable set Q. Let (Xn)n≥0 be a sequence of independent random variables, such
that, for each n ≥ 0, the law of Xn belongs to P . Let f : Q → R be a nonnegative real-valued
function, such that, for each pi ∈ P , the following expectation is finite:

qi(f) =
∑
q∈Q

pi(q)f(q) < ∞.

Then we have:

lim sup
n→∞

1
n

n−1∑
k=0

f(Xk) ≤ max
i=1,...,r

qi(f) < ∞.

PI n˚1753



58 S. Abbes & A. Benveniste

References

[1] S. Abbes. Probabilistic Model for Concurrent and Distributed Sys-
tems. Limit Theorems and Application to Statistical Parametric Estima-
tion. PhD thesis, IRISA/Université de Rennes 1, 2004. Available from
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