
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
80

30
--

FR
+E

N
G

RESEARCH
REPORT
N° 8030
July 2012

Project-Team S4

Application of Interface
Theories to the Separate
Compilation of
Synchronous Programs
Albert Benveniste, Benoît Caillaud, Jean-Baptiste Raclet

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Application of Interface Theories to the
Separate Compilation of Synchronous

Programs

Albert Benveniste∗, Benôıt Caillaud∗, Jean-Baptiste Raclet†

Project-Team S4

Research Report n° 8030 — July 2012 — 16 pages

Abstract: We study the problem of separate compilation, i.e., the generation of modular code,
for the discrete time part of block-diagrams formalisms such as Simulink, Modelica, or Scade. Code
is modular in that it is generated for a given composite block independently from context (i.e.,
without knowing in which diagrams the block is to be used) and using minimal information about
the internals of the block. Just using off-the-shelf C code generation (e.g., as available in Simulink)
does not provide modular code. Separate compilation was solved by Lublinerman et al. for the
special case of single-clocked diagrams, in which all signals are updated at a same unique clock.
For the same case, Pouzet and Raymond proposed algorithms that scale-up properly to real-size
applications. The technique of Lublinerman et al. was extended to some classes of multi-clocked
and timed diagrams. We study this problem in its full generality and we show that it can be cast
to a special class of controller synthesis problems by relying on recently proposed modal interface
theories.

Key-words: compilation; synchronous program; component-based design; compositional reason-
ing; interface theories; modal specifications

∗ INRIA Rennes - Bretagne, Atlantique, Campus de Beaulieu, F-35042 Rennes cedex, France. Sur-
name.Name@inria.fr
† IRIT/CNRS, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France. Jean-Baptiste.Raclet@irit.fr

mailto:Surname.Name@inria.fr
mailto:Surname.Name@inria.fr
mailto:Jean-Baptiste.Raclet@irit.fr

Utilisation d’une Théorie d’Interfaces pour la Compilation
Séparée de Programmes Synchrones

Résumé : On s’intéresse à la compilation séparée c.-à-d., à la génération de code modulaire,
pour le sous-ensemble discret des formalismes de diagrammes de bloc tels que Simulink, Modelica
ou Scade. Un code est modulaire lorsqu’il est généré pour un certain bloc sans la connaissance
de son contexte (c.-à-d., sans connâıtre le diagramme dans lequel le bloc est sensé être utilisé)
et en utilisant un minimum d’information concernant le fonctionnement interne du bloc. La
compilation séparée a été étudiée par Lublinerman et al. pour le cas particulier des diagrammes
mono-horloge, pour lesquels tous les signaux sont mis à jour à partir d’une seule et unique horloge.
Dans le même contexte, Pouzet et Raymond ont proposé des algorithmes permettant le passage
à l’échelle. L’approche de Lublinerman et al. a été étendue à certaines classes de diagrammes
temporels multi-horloges. Dans ce papier, nous étudions le problème en toute généralité et nous
montrons qu’il peut être vu comme un problème de synthèse de contrôleur et résolu en utilisant
une théorie d’interfaces dite “modale”.

Mots-clés : compilation; programme synchrone; raisonnement compositionnel; théories d’in-
terfaces; spécifications modales

Interface theories for the Separate Compilation 3

1 Introduction

Modeling languages for embedded control systems, such as Simulink/Stateflow, Modelica, Scade,
RT-Builder, and Ptolemy II, have become instrumental in embedded control systems design.
Most of the above formalisms use the paradigm of synchronous programming. Synchronous
programs [1] (Esterel, Lustre, Signal, Lucid Synchrone) progress by a non-terminating loop of
successive reactions consisting of a number of (possibly concurrent) atomic actions. Synchronous
languages support high quality code generation 1. However, complex control applications run
on distributed computing architectures, not obeying the synchronous programming paradigm.
Preparing for code distribution requires modular code generation, in which each module is com-
piled to a grey box equipped with the minimal interface needed for subsequent reuse of the
module [2, 3].

To allow for subsequent reuse, the basic approach in Synchronous Programming is to store
modules in source format. It has been indeed observed that storing modules as sequentially com-
piled object code (e.g., C code) may cause problems, as the following simple example shows [4]:

P : ∀n ∈ N
{
xn = f(un)
yn = g(vn)

(1)

(From now on, logical time index n is always universally quantified and we do not mention this
any further.) In (1) successive reactions are indexed by n. A typical sequential code to execute
one generic step of (1) is

void step (/* input */ Cell *cu, Cell *cv,

/* output */ Cell *cx, Cell *cy)

{ int u,v,x,y;

u = cu->get();

v = cv->get();

x = f(u);

y = g(v);

cx->set(x);

cy->set(y);};

Now, suppose the programmer subsequently reuses P in combination with Q : vn = h(xn). The
parallel composition of P and Q causes no problem, as each of its reactions can be executed as
the following three micro-steps in sequence

xn = f(un); vn = h(xn); yn = g(vn)

However, if P is stored, not as the source specification (1) but as its object code P.step and
similarly for Q (stored as Q.step), then a problem arises: any interleaving of P.step and Q.step

will deadlock, since P.step will get blocked waiting for v.get() to complete and Q.step will get
blocked waiting for x.get() to complete.

Of course, this deadlock would not have happen if a different scheduling had been generated
for P while generating code. Generating the proper scheduling for P indeed requires knowing
the context in which P will have to execute. Separate compilation, however, aims at generating
object code reusable in any context.

For example (1), only the source specification could be stored for reuse in any context. On
the other hand,

P ′ :

{
xn = f(un)
yn = g(xn)

(2)

1For example, Scade comes with a certified code generator http://www.esterel-technologies.com/products/
scade-suite/do-178b-code-generation

RR n° 8030

http://www.esterel-technologies.com/products/scade-suite/do-178b-code-generation
http://www.esterel-technologies.com/products/scade-suite/do-178b-code-generation

4 Benveniste & Caillaud & Raclet

can only be scheduled as the sequence of two micro-steps

xn = f(un); yn = g(xn)

due to the causality constraint between the two equations constituting (2). This scheduling
to the source specification is intrinsic and was not arbitrarily generated by the compiler. By
involving a combination of hierarchy and parallel composition, real-size applications exhibit, for
their compiled form, a complex intricacy of intrinsic and arbitrary scheduling.

Modular code generation for real-size single-clocked programs2 is indeed a difficult graphical
problem that was addressed by several authors [5, 6, 2, 7], through heuristics and then formally.

However, real-size applications generally involve a number of different clocks. Time-triggered
periodic clocks occur in sampled time feedback control. Event triggered clocks arise in the
handling of alarms and in mode management. Real-size applications typically involve thousands
of different such clocks. This was the motivation for developing rich theoretical support for
the compilation of general, multi-clocked, synchronous programs [1, 4]. Regarding separate
compilation, only heuristics are implemented in existing tools, however [5, 6].3 [8] proposes
an extension of the approach of [2] for two classes of synchronous programs: programs in which
blocks have boolean triggers, and timed block-diagrams in which blocks possess statically defined
triggers depending on physical time. The causality analysis used in [8] can be, however, refined.

Altogether, the problem of separate compilation and modular code generation for general
programs has not received a comprehensive mathematical answer. We propose such one in this
paper. Our approach is by combining the following two theories:

Constructive Semantics The Constructive Semantics (CS) [9, 4] of a synchronous program
is a representation of its set of reactions as a data structure exhibiting program states, the
different atomic actions involved in the execution of a reaction of the program, and the causality
constraints relating these atomic actions in each different program state. CS is the basis to
generate proper schedulings for these atomic actions while generating code.

Interface Theories Component based design of software was developed since the 80’s and
resulted in the widespread of Object Oriented programming (OOP) [10]. Modularizing crosscut-
ting concerns in a large system was solved in the 90’s by the introduction of Aspect Oriented
programming (AOP) [11]. Aspects are now available in Java and other languages [12]. So far
OOP and AOP focus on the syntax, leaving aside the underlying mathematical models of pro-
grams (their semantics). It is not until 2000 that de Alfaro and Henzinger [13, 14] proposed a
mathematically rich theory of Interface Automata supporting “separate mathematical analysis”
of Nancy Lynch’ input-output automata [15]. Based on knowing an Interface Automaton for
a given component, it is possible to simulate it, analyze it, and implement it regardless of its
future context of use. More recently, Raclet et al. [16, 17] have proposed Modal Interfaces and
Acceptance Interfaces, offering semantic support for both component based and aspect based
modular development of input-output automata. These are interface models supporting the
composition of interfaces, the conjunction of crosscutting aspects, and a residuation for interface
composition—residuation, also called quotient, turns out to be a powerful tool for supervisory
controller synthesis [16].

By applying interface techniques to CS in the form of micro-step automata, we are able to
solve the issue of separate compilation in its fully general form. The combination CS + interfaces

2By this we mean programs implementing an arbitrary system of recurrent difference equations involving a
single discrete time index n, as in our previous simple examples.

3See, e.g., http://www.irisa.fr/espresso/Polychrony/index.php

Inria

http://www.irisa.fr/espresso/Polychrony/index.php

Interface theories for the Separate Compilation 5

provides an elegant framework to formulate the problem and derive effective algorithms for
solving it.

2 Background on Constructive Semantics

In this section we recall the Constructive Semantics of synchronous programs. Rather than
developing it for a concrete programming language, we present it for the abstract model of
Synchronous Transition Systems, introduced next.

2.1 Synchronous Transition Systems

We assume a finite alphabet V of typed variables. To capture the multiplicity of clocks, all
domains of values are implicitly extended with a special value ⊥ to be interpreted as “absent.”
Some of the domains we consider are the domain of pure signals with domain {t}, and Booleans
with domain {t, f} (both domains are extended with the distinguished element ⊥). A state q
is a map, assigning to each variable x a value x(q) over its domain. For a subset of variables
V ⊂ V, we define a V -state to be the restriction of a state to V . We denote by QV (or simply
Q when no confusion can occur) the set of all V -states.

Definition 1 We define a synchronous transition system (sts) to be a triple Σ = (V, I0,→),
where: V ⊆ V is a finite set of typed variables, I0 ⊆ QV is the initial condition, and →
⊆ QV × QV is the transition relation relating past and current states denoted by •q and q,
respectively.

Write •q → q to mean (•q, q) ∈→. For convenience, we associate to each variable x ∈ V , the
following auxiliary variables:

� The clock of x, defined by

hx = if x 6= ⊥ then t else ⊥

is a pure signal that is present exactly when x is present.

� A past variable •x defined by •x(q) = x(•q);4 an initial value for •x must be specified. For
example, the assertion x = •x+ 1 states that the value of variable x in current state equals
its value in previous state plus 1.

� A memory variable ξx defined by the transition relation

ξx = if x 6= ⊥ then x else •ξx

Thus, ξx is present in any reaction and holds the current or last present occurrence of
variable x.

A run of Σ is a sequence σ = q0, q1, q2, . . . of states such that q0∈I0 and, for every n > 0,
qn−1→qn. Like systems of equations, sts compose by conjunction:

Σ1 ‖ Σ2 = (V1∪V2 , I1,0∧I2,0 , →1 ∧ →2)

RR n° 8030

6 Benveniste & Caillaud & Raclet

u

u

z

discrete time

Figure 1: Albert’s venerable watch and a run of it

2.2 Constructive Semantics, an informal introduction

The following example models the behaviour of the first author’s venerable watch shown on
Figure 1 (initial conditions are omitted for simplicity):

z = if b then u else v
∧ v = if hz then

•ξz − 1 else ⊥
∧ b = if hv then (v≤0) else ⊥
∧ hu = h[b=t]

∧ hv = hz = hb = h

(3)

A capacity u is input to the spring, from which the watch runs for a certain number of seconds,
figured by the decreasing counter z. The second equation says that v takes the previous value
of z decremented by 1. In the third equation, a boolean test b checks when the capacity for
delivering seconds reaches zero. As long as b remains false, then z = v holds, where v is the
current value of the decreasing counter—this is the ”else” branch of the first equation. When b
switches to true, no more capacity is left and thus input capacity must be delivered at the next
reaction. The 4th equation expresses that u and the true occurrences of b must have identical
clocks, i.e., b = t triggers the reading of u. The value for z is then provided by the “if” branch of
the first equation. The last equation states that signals v, z, and b must have the same clock; we
call h this clock, which is the activation clock of the program. A run of Example (3) is depicted
on Figure 1. This run only shows the reactions in which this sts is active.

Generating code for Example (3) is by no means trivial. The value carried by u when it is
delivered is certainly an input to this sts. On the other hand, “when” u should be delivered is
not an input. It is instead decided by the watch itself, upon reaching of capacity zero. Thus u
possesses a schizophrenic status, making the causality analysis of this example—and of sts in
general—subtle.

In Example (1) below, we show the causality analysis of Example (3). The following simple
principle is applied in deriving it. Example (3) was specified as a system of equations. We like
to see an equation z = exp(b, u, v) defining a variable z as a mean to replace, everywhere in the
program, the variable z by the expression exp(b, u, v) defining it. This possibility of rewriting
z as exp(b, u, v) is simply encoded using directed graphs: z←(b, u, v). This may be sometimes
too crude an abstraction, however. For example, referring to the first equation of Example (3),
dependency z←(b, u, v) is valid but too coarse. In particular, knowing that b = t we can infer
that v can be discarded from the tuple. Thus, a more accurate abstraction of this first equation
is

(z ← b) ∧ (z ← if b then u else v)

Using systematically the above principles, the causality analysis of Example (3) is derived,
structurally, for the five successive equations shown in Table 1. Expression “c-dep” stands for

4•x roughly corresponds to the “z−1x” in control notations.

Inria

Interface theories for the Separate Compilation 7

c−dep︷ ︸︸ ︷
z ← b ∧

data dependencies︷ ︸︸ ︷
z ← if b then u else v

∧ v ← h
∧ b← h ∧ b← if hv then v
∧ hu = h[b=t]

∧ hv = hz = hb = h︸ ︷︷ ︸
clock synchro

Table 1: Causality analysis of Example (3)

“clock dependency” or “control dependency”. The clock synchronizations (4th and 5th equa-
tions of Table 1) are copied from the original program. The data flow equations (1st to 3rd
equations) are abstracted as state dependent graphs. Statement z ← if b then u else v means
that causality z←u holds when b = t and causality z←v holds when b = f. Observe that no
data dependency is associated to the expression v = if hz then

•ξz − 1; the reason is that •ξz is
a memory whose store is known before starting the reaction.

{
hu = h[b=t]

∧ hv = hz = hb = h
h

b

hu

u z
b

v
¬b

Figure 2: This graphical display of Table 1 yields the due abstraction of Example (3) to generate
executable code

Figure 2 is an attempt to display Table 1 as a graph whose branches are labeled by a predicate
on program states—the dependency is active if its associated predicate holds true. The absence
of label means a h, the activation clock of the program. The diagram of Figure 2 is a direct
specification of an interpreter to execute a reaction of the considered program. Observe that the
graph of Figure 2 is acyclic, hence nodes of the graph can be evaluated starting from the source
node. Observe that labels sitting on branches are evaluated before entering this branch, so it is
known before entering a branch whether it is active or not.

2.3 Constructive Semantics of an sts

In this section we formalize this notion and briefly recall how to derive the Constructive Semantics
of an sts. Due to lack of space we do not provide a complete development but only a sketch of
it. The interested reader is referred to [4].

Causality constraints of the form z←b are turned to another kind of equation by augmenting
each domain of values with a special value ? meaning not evaluated yet. Thus, any sts variable
possesses the following status while a reaction is being executed: ? (not evaluated yet), ⊥
(absent), or present and evaluated to some value of the domain. To simplify we assume a
universal domain D of values for all variables, such that D 3 ⊥. Using the extended domain
D ∪ {?}, z←b simply writes as the logical equation [b = ?]⇒ [z = ?]. More generally:

(z ← b) ∧ (z ← if b then u else v)

RR n° 8030

8 Benveniste & Caillaud & Raclet

rewrites as the following equations in the extended domain:

(b = ?⇒ z = ?) ∧ (b = t⇒ (u = ?⇒ z = ?))
(b = ?⇒ z = ?) ∧ (b = f⇒ (v = ?⇒ z = ?))

Focus now on the following causality equation:

(b = ?⇒ z = ?) ∧ (b = t⇒ (u = ?⇒ z = ?)) (4)

b = f ∨ ⊥ b = t

u, z

u, b, z

u, z b, z

bzu

Figure 3: Micro-step automaton encoding causality equation (4).

In Figure 3, a loop-free automaton is displayed, which models all possible ways of executing
a reaction complying with causality constraint (4), in the form of a path starting at the source
node and terminating at the sink node. Each state of this automaton lists the variables that are
not evaluated yet while traversing it. Call this a Micro-Step Automaton.

A transition evaluates one among the variables listed in its source state. The value assigned
is shown as a label of the transition and this variable is thus removed from the sink state
of the transition. Attaching the corresponding evaluation action to that transition yields the
intermediate format that is the basis for separate compilation.

Micro-step automata (MS-automata) are formalized next:

Definition 2 (MS-automaton and its schedulings) Call MS-automaton a tuple A = (V,G, ε),
where

� V ⊂ V is a finite set of variables;

� G = (N,E) is a finite circuit-free directed graph having a unique minimal vertex n0, where
minimal refers to the order induced by the directed graph; vertices are called states and
edges are called transitions;

� ε : N∪E 7→ 2V ∪ 2D is a labeling function such that ε(N)⊆2V , ε(E)⊆2D, and

ε(n0) = V (5)

∀(n, n′)∈E,∃x ∈ V : ε(n) = ε(n′) ∪ {x} (6)

Formula (6) defines an auxiliary transition labeling λ : E 7→ V by setting λ(n, n′) = x.

MS-automaton A is called safe if any maximal state is labeled by ∅. For A a safe MS-automaton,
call scheduling any maximal path of G.

Inria

Interface theories for the Separate Compilation 9

The state label indicates the set of variables that remain to be evaluated. Condition (6) states
that every transition e = (n, n′) of the graph specifies the evaluation of exactly one variable. The
label ε(e) of that transition is a predicate over the set of possible values for that variable. With
no loss of generality, we can assume that no two different transitions can share both their initial
and final states.

Figure 3 shows an MS-automaton. The auxiliary edge labeling λ is redundant and not shown.
Two labels “t” (“true”) and “f ∨ ⊥” (“false or absent”) are assigned to the two alternative
evaluations of boolean variable b. The absence of a label for an transition indicates a trivial
predicate ε(e) = D.

Observe that, for a safe MS-automaton, we can always assume the existence of a unique
maximal state—just superimpose all maximal states since they possess identical labels.

For A1 and A2 two MS-automata, their pre-composition A = A1×MS A2 has V = V1∪V2 as
its set of variables, and its set of states and transitions is such that e ∈ E if and only if the two
MS-automata agree on which variable to evaluate:

λ(e)∈V1∩V2 ⇒ ∃ei ∈ Ei :

{
λ(e) = λ1(e1) = λ2(e2)
ε(e) = ε1(e1) ∩ ε2(e2)

λ(e)∈Vi\Vj ⇒ ∃ei ∈ Ei :

{
λ(e) = λi(ei)
ε(e) = εi(ei)

where i, j ∈ {1, 2} and j 6=i. The parallel composition

A = A1 ‖MS
A2 (7)

is obtained by keeping, in A1×MS
A2, the part that is reachable from the minimal state. The

composition of MS-automata is associative and commutative.
Using MS-automata we can now formalize what a compilation of an sts Σ is. By following

the same technique we used for causality equation (4), we can represent any primitive sts Σ by
the MS-automaton [[Σ]] collecting all valid schedulings for the evaluation of its variables in any
transition of Σ.5 This and the formula

[[Σ1 ‖ Σ2]] = [[Σ1]] ‖
MS

[[Σ2]], (8)

allows defining [[Σ]] for any sts. Attaching the corresponding evaluation action to each transition
of [[Σ]] yields {{Σ}}, the Constructive Semantics (CS) of Σ. Intuitively, {{Σ}} is a program that
implements Σ as its “most permissive” interpreter. Provided that the evaluation of each variable
is owned by at most one sts, (8) extends to the CS:

{{Σ1 ‖ Σ2}} = {{Σ1}} ‖MS {{Σ2}}, (9)

Formula (9) expresses that the CS offers separate compilation: to compile Σ1 ‖Σ2, one can safely
compile each Σi regardless of any context of use and then compose the two compiled forms for
each component using the composition ‖

MS
. In the following, we consider and solve:

Problem 1 Find a map Σ 7→ {Σ}, mapping any sts Σ to an MS-automaton {Σ} such that

1. For any transition of Σ, {Σ} contains a non-empty subset of all the schedulings of the CS
{{Σ}};

5Deriving the CS for primitive equations requires having a modeling language for sts, see the introduction for
examples of such languages. How CS is derived from the syntax of the language is developed in [4].

RR n° 8030

10 Benveniste & Caillaud & Raclet

2. Separate compilation holds:

{Σ1 ‖ Σ2} = {Σ1} ‖MS
{Σ2}

3. Σ 7→ {Σ} is minimal (for the inclusion of sets of schedulings) satisfying 1 and 2.

3 Proposed method

So far our model of sts is not rich enough to distinguish what is under the control of a component
from what is under the control of its environment. To encompass this, we partition the set of
variables of sts Σ = (V, I0,→) into V = V in ∪ V out, where V out and V in collect the variables
under control by the component and by the environment, respectively. This partitioning is
reflected by the auxiliary labeling function λ of MS-automaton [[Σ]] = (V,G, ε):

� λ(e) ∈ V out indicates an evaluation that is under the control of the component;

� λ(e) ∈ V in indicates an evaluation that is under the control of the environment;

� to account for the abstraction inherent to the Constructive Semantics, we take the conven-
tion that the predicate label ε(e) for e ∈ E is not under the control of the component (the
actual evaluation is not within the scope of A; only the result of the evaluation is visible).

We illustrate in Figure 4 the use of MS-automata for solving the problem of separate compilation.

x, y

y x

u, xv, y

v, x, y u, x, y

u, v, x, y

v, x, y u, x, y

x

u, v, x, y

x, y

y

Figure 4: Micro-step automata encoding causality equations x←u∧ y←v (top) and (x, y)←(u, v)
(bottom). For both sts, u, v are declared inputs and x, y are declared outputs. With the
partitioning of transitions as solid/dashed and of states as marked/unmarked, we get Convex
Acceptance Interfaces introduced below.

This figure displays the MS-automata encoding the following sts and associated causality
equations:

sts Σ causality equations
top: x = f(u)∧ y = g(v) x←u∧ y←v

bottom: (x, y) = h(u, v) (x, y)←(u, v)

Inria

Interface theories for the Separate Compilation 11

In Figure 4, some transitions are dashed and some states are marked (depicted as double rounded
boxes). In performing this, the following first set of rules was applied:

Rules 1

� every transition of the MS-automaton that is under the control of the environment is solid;

� every transition of the MS-automaton that is under the control of the component is dashed;

� every state that is the source of at least one solid transition is marked;

� the final state is marked. 2

Applying Rules 1 yields, on Figure 4-top, the MS-automaton associated to x←u∧y←v, and on
Figure 4-bottom, the MS-automaton associated to (x, y)← (u, v).

Finally, we must take into account the coupling between transitions originating from the same
state and evaluating the same variable, see Figure 3 for such a situation. We mark this relation
as shown on Figure 5. Corresponding rule is:

b = f ∨ ⊥ b = t

u b

u, b, z

u, z b, zu, z

z

Figure 5: The MS-automaton of Figure 3 with all the rules applied, thus yielding a Convex
Acceptance Interface. For this example, we assume that u is an input and b, z are outputs.

Rules 2 For any three states n1, n2 and n′2 such that λ(n1, n2) = λ(n1, n
′
2), add a zigzag

nondirected arc between n2 and n′2. 2

The entity denoted S that is obtained after applying Rules 1 and 2 is called a Convex Acceptance
Interface. By construction, we have:

Theorem 1 Pruning away S from dashed transitions preserves separate compilation as long as
the following conditions are met: 1) marked states must remain reachable, and 2) zig-zag related
transitions must be either removed or kept as a whole.

4 Convex Acceptance Interfaces (Cai)

We now introduce formally Convex Acceptance Interfaces (Cai) and their pruning. First, we
show how all possible separate compilations can be cheaply deduced from a Cai. Second, we
equip Cai with a parallel composition reflecting the parallel composition of separate compila-
tions for each module. One can then, either compose several Cai and then extract a separate
compilation, or, equivalently, extract a separate compilation from each Cai, and then compose
the corresponding separate compilations.

RR n° 8030

12 Benveniste & Caillaud & Raclet

4.1 Definition and properties

Definition 3 Call Convex Acceptance Interface a tuple S = (V,G, ε, E99K, E→) where

� (V,G, ε) is an MS-automaton as in Def. 2 over the finite circuit-free directed graph G =
(N,E);

� E99K and E→ form a partition of E.

We denote by E(n), E99K(n) and E→(n) the sets of transitions of E, E99K, and E→ stemming

from a state n. Next, define Must(n) ∈ 22
V

and May(n) ∈ 2V as follows:

Must(n)=

{
{{x1. . . xk} |xi ∈ λ(E→(n))} if E→(n) 6= ∅

{{x1}. . .{xk} |xi ∈ λ(E99K(n)) } otherwise

May(n)= λ (E99K(n) ∪ E→(n))

Now, we claim that pruning S according to Theorem 1 amounts to choosing, for every state
n, a set X ⊆ May(n) of variables such that Y ⊆ X for some Y ∈ Must(n). Let us denote
by ρ : N → 2V such a total mapping. The pruning induced by S and ρ is the following MS-
automaton:

Definition 4 Given S = (V,G, ε, E99K, E→) and ρ, a ρ-pruning of S consists of an MS-automaton
A? = (V ?,G?, ε?) and a simulation relation π ⊆ V ? × V such that:

� the initial states are related: (n?0, n0) ∈ π;

� for any pair (n?, n) ∈ π and any x ∈ ρ(n), there exist a transition e? = (n?, n?′) of A? and
a transition e = (n, n′) ∈ E99K(n) ∪ E→(n), such that:

1. λ?(e?) = λ(e) = x and ε?(e?) = ε(e),

2. and (n?′, n′) ∈ π.

Write A? |= S for any so obtained MS-automaton and say that A? is an implementation of S.

The next step in our construction consists in associating, to every MS-automaton A = (V,G, ε)
with a decomposition of V into V = V in ∪ V out, a family of Cai as follows:

1. Let SA = (V,G, ε, E99K, E→) where (V,G, ε) = A, E99K collects the transitions whose λ-label
belongs to V out and E→ collects the transitions whose λ-label belongs to V in.

2. A state m ∈ N is marked if it is the source of a transition belonging to E→. Denote by M
the set of marked states. Call Gm = (Nm, Em) be the sub-graph of G that is co-reachable
from m.

3. to each marked state m, we associate a Cai

SA,m = (V,G, ε, E99K, E→m)

where E→m is obtained from E→ as follows:

E→m (n) =
⋃X ∪ {e}

∣∣∣∣∣∣
X ∈ E→(n)
X ∩ Em = ∅
e ∈ E99K(n) ∩ Em

⋃{

X

∣∣∣∣ X ∈ E→(n)
X ∩ Em 6= ∅

}

Inria

Interface theories for the Separate Compilation 13

Define the conjunction of the family {SA,m | m ∈M} as follows:∧
m∈M

SA,m = (V,G, ε, E99K, E→∧), where (10)

E→∧ (n) = min

{ ⋃
m∈M

Xm

∣∣∣∣∣Xm ∈ E→m (n)

}

This definition is justified by the following result:

Theorem 2 Every A? |=
∧

m∈M SA,m according to Definition 4 meets the conditions of Theo-
rem 1.

Proof: Choosing a ρ amounts to pruning away some dashed transitions of S. The pruning map
ρ proceeds by selecting, for each state, a subset of candidate variables for the next evaluation.
Therefore, by construction, zig-zag related transitions are either removed or kept as a whole
(condition 2) of Theorem 1).Consider next condition 1). Observe that for every marked state m
and every n ∈ Nm, SA,m guarantees the reachability of m from n. This property is preserved by
conjunction. Hence all marked states of G are reachable in A?. 2

Theorem 2 is important as it expresses that implementations of Cai are the desired interme-
diate formats for separate compilation. Figure 6 illustrates the pruning.

b = tb = f ∨ ⊥
v, x, y u, x, y

u, v, x, y

x, y

y

(a)

u

u, b, z

u, z b, zu, z

z

(b)

Figure 6: (a) Showing an MS-automaton implementing the Cai of Figure 4-bottom-right; four
implementations exist for this Cai; (b): Showing the unique MS-automaton implementing the
Cai of Figure 5.

4.2 Parallel Composition

Two Cai Si = (V out
i ∪ V in

i ,Gi, εi, E99K
i , E→i), i = 1, 2, are called composable if V out

1 ∩ V out
2 = ∅.

Definition 5 The composition S1 ⊗ S2 of two composable Cai S1 and S2 has as sets of input
and output variables

V out = V out
1 ∪ V out

2

V in = (V in
1 ∪ V in

2) \ V out

It is first defined as the composition of the underlying MS-automata as defined in Equation (7).
Then,

� a transition e is in E→ if λ(e)∈V1∩V2 and it stems from e1 ∈ E→1 and e2 ∈ E→2 or if
λ(e)∈Vi\Vj and it stems from e ∈ E→i for i ∈ {1, 2};

RR n° 8030

14 Benveniste & Caillaud & Raclet

� e is in E99K otherwise.

The composition is commutative and associative, reflecting that components can be assembled
in any order without affecting the result. Cai support separate compilation of components as
stated in the following theorem:

Theorem 3 The following holds:

A1 |= S1
A2 |= S2

}
⇒ A1 ‖MS

A2 |= S1 ⊗ S2

The converse implication is, however, not true. This should not come as a surprise since 1) com-
posing two synchronous programs, and then 2) compiling the code for separate compilation yields
in general a code with less concurrency than 1) compiling each module for separate compilation,
and then 2) composing the so obtained intermediate codes.

Theorem 3 is in particular useful if we want to restrict the composition of Cai so that
the composition of any two safe MS-automata obtained by pruning is also safe. This requires
introducing consistent pairs of states:

Definition 6 Given n1 and n2 two states from S1 and S2 respectively, the pair (n1,m2) is
consistent if for any X1 ∈ Must(n1) and X2 ∈ Must(n2), we have:(

X1 ∪ (V2 \ V1)
)
∩
(
X2 ∪ (V1 \ V2)

)
6= ∅

Any pair of two maximal states is, by convention, consistent.

Theorem 4 If every pair of states of S1 ⊗ S2 is consistent then the product A1 ‖MS
A2 of any

safe A1 with any safe A2 such that A1 |= S1 and A2 |= S2 is also safe.

Proof: If pair (n1,m2) is consistent, then, in that state of the composition and whatever the
pruning map ρ is, there exists at least one variable that A1 and A2 agree to synchronize for its
evaluation. Invoking this argument inductively completes the proof. 2

4.3 Procedure for Separate Compilation and Complexity

Our algorithms to generate modular code suited to separate compilation consists of the following
steps, to be performed for each module:

1. Deriving, from a synchronous program, a Constructive Semantics (CS) in the format of
Table 1 or Figure 2;

2. Translating each equation of the CS into a basic MS-automaton, e.g., moving from (4) to
Figure 3; this yields a set of MS-automata;

3. Computing the corresponding composition yields the CS of the given module in the form
of a single MS-automaton;

4. Identifying the responsibilities, for the evaluation of each variable, e.g., moving from Fig-
ure 3 to Figure 5;

Inria

Interface theories for the Separate Compilation 15

5. Applying the pruning.

For each step we provide the corresponding complexity:

1. This is syntax-dependent, so we do not include it in our evaluation;

2. Linear;

3. This step yields an MS-automaton whose number of states and transitions is exponential
in the number of equations and variables of the given module;

4. Linear;

5. Due to the conjunction operation, this step is exponential in the number of states of the
MS-automaton.

In practice, steps 1)–3) are not performed this way. Efficient compilers use highly optimized
procedures as this is the key in obtaining rapidly good and compact sequential code. Still, the
overall complexity should not differ.

5 Conclusion

Separate compilation for multi-clocked synchronous programs was solved in its full generality.
Our solution relies on two tools: Micro-Step Automata representing the Constructive Semantics
of synchronous programs, and Convex Acceptance Interfaces, a framework belonging to the
family of interface theories.

It makes sense that separate compilation relies on interface theories, since the latter aim at
providing formal bases to component based design of systems. More generally, interface theories
provide a novel and efficient tool to solve supervisory control problems in a compositional way.
Indeed, a Cai can be seen as a plant enriched with controllability information: solid transitions
are labeled with uncontrollable actions while dashed transitions are labeled with controllable
actions, a basic distinction introduced in Ramadge and Wonham’s control theory [18]. Moreover,
zig-zag related transitions are similar to the notion of indistinguishability from [19] where the
occurrence of an action among a set of actions is detected. Last, the reachability constraints from
marked states in Cai corresponds to a control objective and the pruning operation is similar to
controlling a plant.

Convex Acceptance Interfaces possess more operators than presented here. They were not
developed as they do not appear to be relevant to separate compilation. We envision further use
of Cai in the debugging of synchronous programs, particularly for languages such as Esterel or
Signal in which causality circuits can occur.

References

[1] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Simone,
“The synchronous languages 12 years later,” Proceedings of the IEEE, vol. 91, no. 1, pp.
64–83, 2003.

[2] R. Lublinerman, C. Szegedy, and S. Tripakis, “Modular code generation from synchronous
block diagrams: modularity vs. code size,” in POPL, Z. Shao and B. C. Pierce, Eds. ACM,
2009, pp. 78–89.

RR n° 8030

16 Benveniste & Caillaud & Raclet

[3] D. Biernacki, J.-L. Colaço, G. Hamon, and M. Pouzet, “Clock-directed modular code gen-
eration for synchronous data-flow languages,” in LCTES, K. Flautner and J. Regehr, Eds.
ACM, 2008, pp. 121–130.

[4] A. Benveniste, B. Caillaud, and P. L. Guernic, “Compositionality in Dataflow Synchronous
Languages: Specification and Distributed Code Generation,” Inf. Comput., vol. 163, no. 1,
pp. 125–171, 2000.

[5] O. Maffëıs and P. L. Guernic, “Distributed Implementation of SIGNAL: Scheduling & Graph
Clustering,” in FTRTFT, ser. Lecture Notes in Computer Science, H. Langmaack, W. P.
de Roever, and J. Vytopil, Eds., vol. 863. Springer, 1994, pp. 547–566.

[6] P. Aubry, P. L. Guernic, and S. Machard, “Synchronous Distribution of Signal Programs,”
in HICSS (1), 1996, pp. 656–665.

[7] M. Pouzet and P. Raymond, “Modular static scheduling of synchronous data-flow networks:
an efficient symbolic representation,” in EMSOFT, S. Chakraborty and N. Halbwachs, Eds.
ACM, 2009, pp. 215–224.

[8] R. Lublinerman and S. Tripakis, “Modular code generation from triggered and timed block
diagrams,” in IEEE Real-Time and Embedded Technology and Applications Symposium.
IEEE Computer Society, 2008, pp. 147–158.

[9] G. Berry, “The foundations of Esterel,” in Proof, Language, and Interaction, G. D. Plotkin,
C. Stirling, and M. Tofte, Eds. The MIT Press, 2000, pp. 425–454.

[10] M. Abadi and L. Cardelli, A Theory of Objects. New York: Springer Verlag, 1996.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. marc Loingtier, and J. Irwin,
“Aspect-oriented programming,” in ECOOP. SpringerVerlag, 1997.

[12] I. Kiselev, Aspect-Oriented Programming with AspectJ. Indianapolis, IN, USA: Sams, 2002.

[13] L. de Alfaro and T. A. Henzinger, “Interface automata,” in ESEC / SIGSOFT FSE, 2001,
pp. 109–120.

[14] ——, “Interface theories for component-based design,” in EMSOFT, ser. Lecture Notes in
Computer Science, T. A. Henzinger and C. M. Kirsch, Eds., vol. 2211. Springer, 2001, pp.
148–165.

[15] N. A. Lynch and E. W. Stark, “A proof of the kahn principle for input/output automata,”
Inf. Comput., vol. 82, no. 1, pp. 81–92, 1989.

[16] J.-B. Raclet, “Residual for component specifications,” Electr. Notes Theor. Comput. Sci.,
vol. 215, pp. 93–110, 2008.

[17] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and R. Passerone, “A modal
interface theory for component-based design,” Fundam. Inform., vol. 108, no. 1-2, pp. 119–
149, 2011.

[18] P. Ramadge and W. Wonham, “The control of discrete event systems,” Proceedings of the
IEEE; Special issue on Dynamics of Discrete Event Systems, vol. 27, no. 1, pp. 81–98, 1989.

[19] A. Arnold, X. Briand, and I. Walukiewicz, “Synthesis of decentralized controllers : decidable
and undecidable cases,” in ATPN - Workshop on DES control, 2003, 24th Int. conf. on
Application Theory of Petri Nets (ATPN 2003), Eindhoven.

Inria

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Background on Constructive Semantics
	Synchronous Transition Systems
	Constructive Semantics, an informal introduction
	Constructive Semantics of an sts

	Proposed method
	Convex Acceptance Interfaces (Cai)
	Definition and properties
	Parallel Composition
	Procedure for Separate Compilation and Complexity

	Conclusion

