
Trellis nets

A compact representation
for runs of concurrent systems

Eric Fabre

DistribCom group

Irisa/Inria - Rennes - France

Outline

1. Recall : factorization of unfoldings

2. How to derive this result ?

3. Its use for distributed monitoring... and its limitations

4. Trellis nets, and their properties

5. Relations between nets, unfoldings, trellis nets

1 - Recall : factorization of unfoldings

Safe nets - Configurations :

• Net : N = (P, T,→, P 0, λ,Λ),

• Configuration κ : run of a safe net.

g e

db c

a g

b c
d

a

d

f

b

a g

b c

a

d

fe

b

a

c

g

t4

t1 t6

t1

t3 t5

t2

t1

t3

t3 t2

t5 t6t4

t1

1 - Recall : factorization of unfoldings

Safe nets - Configurations :

• Net : N = (P, T,→, P 0, λ,Λ),

• Occurrence net : a set of configurations.

g e

dc

a g

b c
d

a f

b

a g

b c

a

b

dd

fe

b

a

c

g

t4

t1 t6

t1

t3 t5

t2

t1

t3

conflict

conflict

t3 t2

t5 t6t4

t1

Occurrence net : O = (C,E,→, C0, λ,Λ) is an ON iff

1. →∗ is a well founded partial order,

2. C0 = minimal nodes of →∗,

3. forall c ∈ C, |•c| ≤ 1 : a single cause to every condition,

4. no node is in self-conflict.

Branching process : O is a BP of N iff

1. there exists a morphism (folding) f : O → N , preserving labels,

2. parsimony : ∀e, e′ ∈ E, [•e = •e′, f(e) = f(e′)] ⇒ e = e′

Unfolding of N : UN is the maximal branching process of N .

Product of nets : N = N1 ×nets N2 is based on labels

1. places remain private : P = P1] P2, disjoint union,

2. transitions labeled by Λ1 ∩ Λ2 must synchronize

Ts = {(t1, t2) : λ1(t1) = λ2(t2) ∈ Λ1 ∩ Λ2}

3. the other transitions remain private

Tp = {(t1, ∗) : λ1(t1) ∈ Λ1 \ Λ2}

∪ {(∗, t2) : λ2(t2) ∈ Λ2 \ Λ1}

4. T = Tp ∪ Ts, and the flow follows naturally.

Product of nets : ×nets

• Example :

b

a

c

g

d

e f

t3 t2 t1

t4 t5 t6

• In general, the number of transitions is larger in the product.

Product of nets : ×nets

• Example :

c

g

b

a

d

e f

t1

t4

t3 t2 t1

t4 t5 t6

• In general, the number of transitions is larger in the product.

Product of (labeled) occurrence nets : O = O1 ×occ O2

• There exists such a product (we don’t detail the definition).

• Again, an ON resulting of a product is generally more complex

than its factors (the number of events and conditions increases).

Theorem : If N = N1 ×nets N2 ×nets . . .×nets Nn, then

UN = UN1
×occ UN2

×occ . . .×occ UNn

• Interest : provides a more compact description for runs of a

compound system.

2 - How to derive this result ?
[Winskel, 1984]

Adjunction : U

Occ

U

Nets

• between categories Occ and Nets

• two functors, working in opposite directions

⊆ : Occ→ Nets

U : Nets→ Occ

Construction : based on three ingredients

• (H1) The unfolding operation is a functor U : Nets→ Occ

• (H2) Universal property of unfoldings :

∀φ : O → N , ∃!ψ : O → U(N), φ = fN ◦ ψ

E

!ψ

A

φ

UN
fN

O

Occ Nets

N

• (H3) U is invariant on occurrence nets : ∀O ∈ Occ, U(O) ∼= O

then...

• Right adjoints preserve limits, in particular products :

U(N1 ×nets N2) = U(N1) ×occ U(N2)

• By (H3), the product ×occ can be defined by

O1 ×occ O2
∼= U(O1) ×occ U(O2) = U(O1 ×nets O2)

3 - Unfolding factorization and distributed diagnosis

Centralized diagnosis :

• Single system ; a partial order of labels produced by the system

• Recover runs explaining observations

b

a

c

d

g

e f

α α ρ

ββρ

β α

ρ ρ

αβ

3 - Unfolding factorization and distributed diagnosis

Centralized diagnosis :

• Single system ; a partial order of labels produced by the system

• Recover runs explaining observations

b

a

c

d

g

e f

α α ρ

ββρ β

ρ

β

α

ρ

α

3 - Unfolding factorization and distributed diagnosis

Centralized diagnosis :

• Single system ; a partial order of labels produced by the system

• Recover runs explaining observations

β

ρ

β

α

ρ

αρ

ρ

β

αα

ααρ

a

b

ρ

a

β

b d

a

b c

β

b c

a g

ββ

b

eg f

d

eg f

c

. . .

. . .

β

b

3 - Unfolding factorization and distributed diagnosis

Centralized diagnosis :

• Single system ; a partial order of labels produced by the system

• Recover runs explaining observations

ρ

αβ

β

ρ

α

ρ αα

β ρ

αα

ρ

ρ

b

β

a

a g

ββ

b
d

eg f

c

. . .

. . .

b c d

β

b c

eg f

a

b

a

b

β

3 - Unfolding factorization and distributed diagnosis

Centralized diagnosis :

• Single system ; a partial order of labels produced by the system

• Recover runs explaining observations

ρ ααρ

a

a g

ββ

b
d

eg f

c

a

b

Distributed diagnosis :

• Distributed system : N = N1 ×nets N2 ×nets . . .×nets Nn

• Distributed observations : A = A1 ×occ A2 ×occ . . .×occ Nn

UN
Xocc

A

Distributed diagnosis :

• Distributed system : N = N1 ×nets N2 ×nets . . .×nets Nn

• Distributed observations : A = A1 ×occ A2 ×occ . . .×occ Nn

N1
UUN N2

U Nn
U

A1 A2 An

XoccXocc

Xocc Xocc

Xocc

Xocc

Xocc

=

=

...

...A

Distributed diagnosis :

• Distributed system : N = N1 ×nets N2 ×nets . . .×nets Nn

• Distributed observations : A = A1 ×occ A2 ×occ . . .×occ Nn

local diagnosis

N1
UUN N2

U Nn
U

A1 A2 An

XoccXocc

Xocc Xocc

Xocc

Xocc

Xocc Xocc Xocc Xocc

=

=

...

...A

Distributed diagnosis :

• Distributed system : N = N1 ×nets N2 ×nets . . .×nets Nn

• Distributed observations : A = A1 ×occ A2 ×occ . . .×occ Nn

PROJECTION
on

= a local view of the global diagnosis

N1
UUN N2

U Nn
U

A1 A2 An

XoccXocc

Xocc Xocc

Xocc

Xocc

Xocc

O2 XoccN2
U A2

N2

=

=

...

...A

Distributed diagnosis :

• Distributed system : N = N1 ×nets N2 ×nets . . .×nets Nn

• Distributed observations : A = A1 ×occ A2 ×occ . . .×occ Nn

N1
UUN N2

U Nn
U

A1 A2 An

XoccXocc

Xocc Xocc

Xocc

Xocc

Xocc

O2UN O1 OnXoccXoccXoccXocc

=

=

...

...A

A = ...

Limitation of unfoldings/branching processes :

• In the simple case of a sequential machine : the size of the

unfolding explodes with the length of trajectories.

• (Max likelihood) diagnosis algorithms rather use a trellis,

for example dynamic programming.

α

α

β
β

α, β

α

α

β

β

machine
Sequential Observed

sequence
Unfolding

a

b c

. . .

a b c

a b

a

c

c a

c

c a

a

a b

a

a b

b

c

Limitation of unfoldings/branching processes :

• In the simple case of a sequential machine : the size of the

unfolding explodes with the length of trajectories.

• (Max likelihood) diagnosis algorithms rather use a trellis,

for example dynamic programming.

α

α

β
β

α, β

α

α

β

β

machine
Sequential Observed

sequence
Unfolding

a

b c

. . .

a b c

a b

a

a

a b

a

a b

b

c

c c

c a c a

Limitation of unfoldings/branching processes :

• In the simple case of a sequential machine : the size of the

unfolding explodes with the length of trajectories.

• (Max likelihood) diagnosis algorithms rather use a trellis,

for example dynamic programming.

α

α

β
β

α, β

α

α

β

β

machine
Sequential Observed

sequence
Unfolding Trellis

a

b c

. . .

a

a b

a b c

a c

a c

b

b

. . .

a b c

a b

a

c c a

a b

a

a b

b

c c a ac

Limitation of unfoldings/branching processes :

• In the simple case of a sequential machine : the size of the

unfolding explodes with the length of trajectories.

• (Max likelihood) diagnosis algorithms rather use a trellis,

for example dynamic programming.

α

α

β
β

α, β

α

α

β

β

machine
Sequential Observed

sequence
Unfolding Trellis

a

b c

. . .

a b c

a b

a

a

a b

a

a b

b

c
. . .

a

a

a c

b

b

c c

acac

a

a b

b c

c

Questions :

• Can we adapt the notion of trellis to concurrent systems ?

• Is there a factorization property ?

(this is necessary for distributed monitoring algorithms)

• What are the relations between nets, trellisses, unfoldings ?

Surprisingly, there exist simple answers to these questions !

4 - Trellis nets, and their properties

Occurrence net : O = (C,E,→, C0, λ,Λ)

1. →∗ is a well founded partial order,

2. C0 = minimal nodes of →∗,

3. forall c ∈ C, |•c| ≤ 1 : a single cause to every condition,

4. no node is in self-conflict.

4 - Trellis nets, and their properties

Pre-trellis net : T = (C,E,→, C0, λ,Λ)

1. →∗ is a well founded partial order,

2. C0 = minimal nodes of →∗,

4 - Trellis nets, and their properties

Pre-trellis net : T = (C,E,→, C0, λ,Λ)

1. →∗ is a well founded partial order,

2. C0 = minimal nodes of →∗,

3. ∀c ∈ C, ∀e, e′ ∈ •c, H(e) = H(e′) where H is a height
function, for example :

H(e) = max{N : ∃e1, e2, . . . , eN ∈ E, e1 →∗ e2 →∗ . . . →∗ eN = e}

11

22

1 1

2

not OK OK

t3

t1 t2

a

b

c

t3

t1 t2

t4

a

b

d

c

4 - Trellis nets, and their properties

Pre-trellis net : T = (C,E,→, C0, λ,Λ)

1. →∗ is a well founded partial order,

2. C0 = minimal nodes of →∗,

3. ∀c ∈ C, ∀e, e′ ∈ •c, H(e) = H(e′) where H is a height
function, for example :

H(e) = max{N : ∃e1, e2, . . . , eN ∈ E, e1 →∗ e2 →∗ . . . →∗ eN = e}

unreachable

t1

t3

t2

a

d

b c

Configuration : it’s a sub-net κ of T = (C,E,→, C0, λ,Λ) satisfying

1. C0 ⊆ κ : it contains all initial conditions of T ,

2. ∀e ∈ E ∩ κ, •e ⊆ κ and e• ⊆ κ : each event comes with all its

causes and consequences,

3. ∀c ∈ C ∩ κ, |•c|κ = 1 or c ∈ C0 : each condition is either minimal

or has one of its possible causes,

4. ∀c ∈ C ∩ κ, |c•|κ ≤ 1 : each condition triggers at most one event.

• To read out configurations, one must solve conflicts in both

directions of time.

Trellis net : a pre-trellis net T is a trellis net iff each event is

reachable, i.e. belongs at least to one configuration.

A simple example

in conflict !

t1

t3

t2

a

e

c d

b

t1 t2

t3

a

c

b

d

e

t3

t2t1

a

e

c d

b

Concurrency and conflict :

• Not easy to define graphically ! So we use indirect definitions.

• Two nodes are in conflict iff they never appear in the same

configuration.

• Two nodes are concurrent iff there exists a configuration κ where

they are concurrent.

• The conflict is not binary...

t1 t2 t3

a

b c d

Prefix of a TN : T ′ v T iff

1. T ′ is a sub-net of T ,

2. min T ′ = min T : same initial conditions,

3. ∀e ∈ E, e ∈ E ′ ⇒ [•e ⊆ T ′ and e• ⊆ T ′] : events come with

all their neighbourhood,

4. T ′ is a trellis net.

a prefix not a prefix !

t1

t4

t2 t3

d

b c

a

t4

t2t1 t3

d

b c

a

t1

t4

t3t2

d

b c

a

Trellis process : T is a TP of a net N iff

1. there exists a morphism (folding) f t : T → N , preserving labels,

2. parsimony 1 : ∀e, e′ ∈ E, [•e = •e′, f(e) = f(e′)] ⇒ e = e′,

3. parsimony 2 : ∀c, c′ ∈ C, [H(c) = H(c′), f(c) = f(c′)] ⇒ c = c′

Time-unfolding (or trellis) of N : U t
N is the maximal trellis

process of N .

d

fe

b

a

c

g a g

d

g ea

b c

b c

f

d

t3 t2

t5 t6t4

t1

t4t3 t5

t6t1t2

t2 t1

t1

Trellis process : T is a TP of a net N iff

1. there exists a morphism (folding) f t : T → N , preserving labels,

2. parsimony 1 : ∀e, e′ ∈ E, [•e = •e′, f(e) = f(e′)] ⇒ e = e′,

3. parsimony 2 : ∀c, c′ ∈ C, [H(c) = H(c′), f(c) = f(c′)] ⇒ c = c′

Time-unfolding (or trellis) of N : U t
N is the maximal trellis

process of N .

d

fe

b

a

c

g

f

d

a g

d
cb

a

b c

g e

t3 t2

t5 t6t4

t1 t2

t2

t5

t6

t1

t4t3

t1 t1

Trellis process : T is a TP of a net N iff

1. there exists a morphism (folding) f t : T → N , preserving labels,

2. parsimony 1 : ∀e, e′ ∈ E, [•e = •e′, f(e) = f(e′)] ⇒ e = e′,

3. parsimony 2 : ∀c, c′ ∈ C, [H(c) = H(c′), f(c) = f(c′)] ⇒ c = c′

Time-unfolding (or trellis) of N : U t
N is the maximal trellis

process of N .

d

fe

b

a

c

g

g

c

fe

d

a g

b
d

b c

a

t3 t2

t5 t6t4

t1 t1

t5

t6

t4

t2 t1

t3

t2

t1

Adjunction : between Trel and Nets

• (H1) The time-unfolding operation is a functor U t : Nets→ Trel

• (H2) Universal property of trellisses/time-unfoldings :

∀φ : T → N , ∃!ψ : T → U t(N), φ = f t
N ◦ ψ

E

!ψ

A

φ

t
t

UN
fN

Trel Nets

T

N

• (H3) U t is invariant on trellis nets : ∀T ∈ Trel, U t(T) ∼= T

t

U

U

Trel Nets

then...

• Right adjoints preserve limits, in particular products :

U t(N1 ×nets N2) = U t(N1) ×trel U
t(N2)

• By (H3), the product ×trel can be defined by

T1 ×trel T2
∼= U t(T1) ×trel U

t(T2) = U t(T1 ×nets T2)

Remark :

• A safe net N can be expressed as a product of sequential

machines N1 ×nets . . .×nets Nn

c

g

b

a

d

e f

t1

t4

t3 t2 t1

t4 t5 t6

• For each component Ni, the time-unfolding coincides with the

usual notion of trellis for an automaton, thanks to the height

constraint.

5 - Relations between nets, unfoldings, trellis nets

• (⊆,U) defines an adjunction between Occ and Nets ⊇ Trel.
Its restriction to Trel induces another adjunction

c

U

U
U

Occ Trel Nets

• On trellis nets, functor U unfolds only conflicts (time is already
unfolded) : we denote it by U c.

• We have :

U c(T1 ×trel T2) = U c(T1) ×occ U
c(T2)

• and we can redefine ×occ by

O1 ×occ O2
∼= U c(O1) ×occ U

c(O2) = U c(O1 ×trel O2)

Gathering results

• Three nested categories Occ ⊂ Trel ⊂ Nets, three adjunctions

U

F = 1

G = U1
c G = U2

t

U

F = 2

U

F =

G = U

Trel NetsOcc

• Adjunctions can be composed : functors U and U c ◦ U t are

naturally equivalent

U(N) ∼= U c ◦ U t(N)

• The trellis of N is obtained by a conflict-folding on UN .

• The trellis and the unfolding of N describe the same sets of

configurations.

Comparison :

d

a

b c b c

a g

b
d

eg f

c

a

b

a g

d

g ea

b c

b c

f

d

.
b b

t4t3 t5

t6t1t2

t2 t1

t1

t2

t6

t4 t5t3t3

t1

t1t1t2 t2

Conclusion

The + and the - of trellis nets :
+ trellis processes remain (more) compact in time,

- configurations are less easy to read,

+ factorization property : small components may be tractable.

Future work :
- for distributed processings we need a projection operator,

- notion of (factorized) finite complete prefix,

- can we imagine intermediate structures where conflicts are

partially unfolded (to make configurations more easily readable) ?

Question for specialists : are trellis nets known ? Trivial ? Useful ?

Secret Slides

Morphism : φ : N1 → N2

1. φ = partial function on places and transitions,

2. φ preserves the flow relation (and labels),

3. the restriction φ : M 0
1
→M0

2
is bijective (on its def. domain),

4. φ defined on p1 ⇒ φ defined on •p1 and p•
1
,

5. φ defined on t1 ⇒ the restrictions φ : •t1 → •φ(t1) and

φ : t•
1
→ φ(t1)

• are bijective (on their definition domain).

i i’

t1 t2 t3

t4 t’4

a b c d

e f g h

t2 t3

i

t4

c d

g h

• we also add the possibility to duplicate places (otherwise the

category of Nets is uncomplete and doesn’t have a product)

