Trellis nets

A compact representation for runs of concurrent systems

Eric Fabre
DistribCom group
Irisa/Inria - Rennes - France

Outline

1. Recall : factorization of unfoldings
2. How to derive this result?
3. Its use for distributed monitoring... and its limitations
4. Trellis nets, and their properties
5. Relations between nets, unfoldings, trellis nets

1 - Recall : factorization of unfoldings

Safe nets - Configurations :
Net : $\mathcal{N}=\left(P, T, \rightarrow, P^{0}, \lambda, \Lambda\right)$,

- Configuration κ : run of a safe net.

1 - Recall : factorization of unfoldings

Safe nets - Configurations :
Net : $\mathcal{N}=\left(P, T, \rightarrow, P^{0}, \lambda, \Lambda\right)$,

- Occurrence net : a set of configurations.

Occurrence net : $\mathcal{O}=\left(C, E, \rightarrow, C^{0}, \lambda, \Lambda\right)$ is an ON iff

1. \rightarrow^{*} is a well founded partial order,
2. $C^{0}=$ minimal nodes of \rightarrow^{*},
3. forall $c \in C,\left|{ }^{\bullet} c\right| \leq 1$: a single cause to every condition,
4. no node is in self-conflict.

Branching process : \mathcal{O} is a BP of \mathcal{N} iff

1. there exists a morphism (folding) $f: \mathcal{O} \rightarrow \mathcal{N}$, preserving labels,
2. parsimony : $\forall e, e^{\prime} \in E,\left[{ }^{\bullet} e={ }^{\bullet} e^{\prime}, f(e)=f\left(e^{\prime}\right)\right] \Rightarrow e=e^{\prime}$

Unfolding of $\mathcal{N}: \mathcal{U}_{\mathcal{N}}$ is the maximal branching process of \mathcal{N}.

Product of nets: $\mathcal{N}=\mathcal{N}_{1} \times{ }_{\text {nets }} \mathcal{N}_{2}$ is based on labels

1. places remain private : $P=P_{1} \uplus \mathcal{P}_{2}$, disjoint union,
2. transitions labeled by $\Lambda_{1} \cap \Lambda_{2}$ must synchronize

$$
T_{s}=\left\{\left(t_{1}, t_{2}\right): \lambda_{1}\left(t_{1}\right)=\lambda_{2}\left(t_{2}\right) \in \Lambda_{1} \cap \Lambda_{2}\right\}
$$

3. the other transitions remain private

$$
\begin{aligned}
T_{p}= & \left\{\left(t_{1}, *\right): \lambda_{1}\left(t_{1}\right) \in \Lambda_{1} \backslash \Lambda_{2}\right\} \\
& \cup\left\{\left(*, t_{2}\right): \lambda_{2}\left(t_{2}\right) \in \Lambda_{2} \backslash \Lambda_{1}\right\}
\end{aligned}
$$

4. $T=T_{p} \cup T_{s}$, and the flow follows naturally.

Product of nets : $\times_{\text {nets }}$
Example :

In general, the number of transitions is larger in the product.

Product of nets : $\times_{\text {nets }}$
Example :

In general, the number of transitions is larger in the product.

Product of (labeled) occurrence nets: $\mathcal{O}=\mathcal{O}_{1} \times{ }_{\text {occ }} \mathcal{O}_{2}$
There exists such a product (we don't detail the definition).

- Again, an ON resulting of a product is generally more complex than its factors (the number of events and conditions increases).

Theorem: If $\mathcal{N}=\mathcal{N}_{1} \times{ }_{\text {nets }} \mathcal{N}_{2} \times$ nets $\ldots \times_{\text {nets }} \mathcal{N}_{n}$, then

$$
\mathcal{U}_{\mathcal{N}}=\mathcal{U}_{\mathcal{N}_{1}} \times{ }_{o c c} \mathcal{U}_{\mathcal{N}_{2}} \times{ }_{o c c} \ldots \times_{o c c} \mathcal{U}_{\mathcal{N}_{n}}
$$

- Interest : provides a more compact description for runs of a compound system.

2 - How to derive this result? [Winskel, 1984]

Adjunction :

between categories Occ and Nets

- two functors, working in opposite directions

$$
\begin{gathered}
\subseteq: O c c \rightarrow \text { Nets } \\
\mathcal{U}: N e t s \rightarrow O c c
\end{gathered}
$$

Construction : based on three ingredients

- (H1) The unfolding operation is a functor $\mathcal{U}:$ Nets $\rightarrow O c c$
(H2) Universal property of unfoldings:

$$
\begin{aligned}
& \forall \phi: \mathcal{O} \rightarrow \mathcal{N}, \quad \exists!\psi: \mathcal{O} \rightarrow \mathcal{U}(\mathcal{N}), \quad \phi=f_{\mathcal{N}} \circ \psi
\end{aligned}
$$

(H3) \mathcal{U} is invariant on occurrence nets : $\forall \mathcal{O} \in O c c, \mathcal{U}(\mathcal{O}) \cong \mathcal{O}$
then...
Right adjoints preserve limits, in particular products :

$$
\mathcal{U}\left(\mathcal{N}_{1} \times_{\text {nets }} \mathcal{N}_{2}\right)=\mathcal{U}\left(\mathcal{N}_{1}\right) \times_{o c c} \mathcal{U}\left(\mathcal{N}_{2}\right)
$$

- By (H3), the product $\times_{o c c}$ can be defined by

$$
\mathcal{O}_{1} \times_{o c c} \mathcal{O}_{2} \cong \mathcal{U}\left(\mathcal{O}_{1}\right) \times_{o c c} \mathcal{U}\left(\mathcal{O}_{2}\right)=\mathcal{U}\left(\mathcal{O}_{1} \times_{n e t s} \mathcal{O}_{2}\right)
$$

3 - Unfolding factorization and distributed diagnosis

Centralized diagnosis :

- Single system ; a partial order of labels produced by the system
- Recover runs explaining observations

3 - Unfolding factorization and distributed diagnosis

Centralized diagnosis :

- Single system ; a partial order of labels produced by the system
- Recover runs explaining observations

3 - Unfolding factorization and distributed diagnosis

Centralized diagnosis :

- Single system ; a partial order of labels produced by the system
- Recover runs explaining observations

3 - Unfolding factorization and distributed diagnosis

Centralized diagnosis :

- Single system ; a partial order of labels produced by the system
- Recover runs explaining observations

3 - Unfolding factorization and distributed diagnosis

Centralized diagnosis :

- Single system ; a partial order of labels produced by the system
- Recover runs explaining observations

Distributed diagnosis :

Distributed system: $\mathcal{N}=\mathcal{N}_{1} \times{ }_{\text {nets }} \mathcal{N}_{2} \times{ }_{\text {nets }} \ldots \times{ }_{\text {nets }} \mathcal{N}_{n}$
Distributed observations: $\mathcal{A}=\mathcal{A}_{1} \times{ }_{o c c} \mathcal{A}_{2} \times{ }_{o c c} \ldots \times{ }_{o c c} \mathcal{N}_{n}$

$$
\begin{gathered}
U_{N} \\
x_{o c c} \\
A
\end{gathered}
$$

Distributed diagnosis :

Distributed system : $\mathcal{N}=\mathcal{N}_{1} \times{ }_{\text {nets }} \mathcal{N}_{2} \times{ }_{\text {nets }} \ldots \times{ }_{\text {nets }} \mathcal{N}_{n}$
Distributed observations: $\mathcal{A}=\mathcal{A}_{1} \times{ }_{o c c} \mathcal{A}_{2} \times{ }_{o c c} \ldots \times{ }_{o c c} \mathcal{N}_{n}$

$$
\begin{aligned}
U_{N} & =U_{N_{1}}
\end{aligned} x_{o c c} U_{N_{2}} x_{o c c} \quad \ldots x_{o c c} U_{N_{n}} .
$$

Distributed diagnosis :

Distributed system: $\mathcal{N}=\mathcal{N}_{1} \times{ }_{\text {nets }} \mathcal{N}_{2} \times$ nets $\ldots \times{ }_{\text {nets }} \mathcal{N}_{n}$
Distributed observations: $\mathcal{A}=\mathcal{A}_{1} \times{ }_{o c c} \mathcal{A}_{2} \times{ }_{o c c} \ldots \times{ }_{o c c} \mathcal{N}_{n}$

Distributed diagnosis :
Distributed system: $\mathcal{N}=\mathcal{N}_{1} \times{ }_{\text {nets }} \mathcal{N}_{2} \times$ nets $\ldots \times{ }_{\text {nets }} \mathcal{N}_{n}$

- Distributed observations: $\mathcal{A}=\mathcal{A}_{1} \times{ }_{o c c} \mathcal{A}_{2} \times{ }_{o c c} \ldots \times{ }_{o c c} \mathcal{N}_{n}$

$$
\begin{aligned}
U_{N} & =U_{N_{1}} x_{o c c} \\
x_{o c c} & U_{N_{2}}
\end{aligned} x_{o c c}
$$

Distributed diagnosis :

Distributed system: $\mathcal{N}=\mathcal{N}_{1} \times{ }_{\text {nets }} \mathcal{N}_{2} \times$ nets $\ldots \times{ }_{\text {nets }} \mathcal{N}_{n}$
Distributed observations: $\mathcal{A}=\mathcal{A}_{1} \times{ }_{o c c} \mathcal{A}_{2} \times{ }_{o c c} \ldots \times{ }_{o c c} \mathcal{N}_{n}$

Limitation of unfoldings/branching processes :

- In the simple case of a sequential machine : the size of the unfolding explodes with the length of trajectories.
(Max likelihood) diagnosis algorithms rather use a trellis, for example dynamic programming.

Limitation of unfoldings/branching processes :

- In the simple case of a sequential machine : the size of the unfolding explodes with the length of trajectories.
(Max likelihood) diagnosis algorithms rather use a trellis, for example dynamic programming.

Limitation of unfoldings/branching processes :

- In the simple case of a sequential machine : the size of the unfolding explodes with the length of trajectories.
(Max likelihood) diagnosis algorithms rather use a trellis, for example dynamic programming.

Sequential machine

Observed sequence

Trellis

Limitation of unfoldings/branching processes :

- In the simple case of a sequential machine : the size of the unfolding explodes with the length of trajectories.
(Max likelihood) diagnosis algorithms rather use a trellis, for example dynamic programming.

Sequential machine

Observed sequence

Trellis

Questions:

- Can we adapt the notion of trellis to concurrent systems ?
- Is there a factorization property?
(this is necessary for distributed monitoring algorithms)
- What are the relations between nets, trellisses, unfoldings ?

Surprisingly, there exist simple answers to these questions !

4 - Trellis nets, and their properties

Occurrence net : $\mathcal{O}=\left(C, E, \rightarrow, C^{0}, \lambda, \Lambda\right)$

1. \rightarrow^{*} is a well founded partial order,
2. $C^{0}=$ minimal nodes of \rightarrow^{*},
3. forall $c \in C,\left|{ }^{\bullet} c\right| \leq 1$: a single cause to every condition,
4. no node is in self-conflict.

4 - Trellis nets, and their properties

Pre-trellis net : $\mathcal{T}=\left(C, E, \rightarrow, C^{0}, \lambda, \Lambda\right)$

1. \rightarrow^{*} is a well founded partial order,
2. $C^{0}=$ minimal nodes of \rightarrow^{*},

4 - Trellis nets, and their properties

Pre-trellis net : $\mathcal{T}=\left(C, E, \rightarrow, C^{0}, \lambda, \Lambda\right)$

1. \rightarrow^{*} is a well founded partial order,
2. $C^{0}=$ minimal nodes of \rightarrow^{*},
3. $\forall c \in C, \forall e, e^{\prime} \in{ }^{\bullet} c, H(e)=H\left(e^{\prime}\right)$ where H is a height function, for example :

$$
H(e)=\max \left\{N: \exists e_{1}, e_{2}, \ldots, e_{N} \in E, e_{1} \rightarrow^{*} e_{2} \rightarrow^{*} \ldots \rightarrow^{*} e_{N}=e\right\}
$$

not OK

OK

4 - Trellis nets, and their properties

Pre-trellis net : $\mathcal{T}=\left(C, E, \rightarrow, C^{0}, \lambda, \Lambda\right)$

1. \rightarrow^{*} is a well founded partial order,
2. $C^{0}=$ minimal nodes of \rightarrow^{*},
3. $\forall c \in C, \forall e, e^{\prime} \in{ }^{\bullet} c, H(e)=H\left(e^{\prime}\right)$ where H is a height function, for example :

$$
H(e)=\max \left\{N: \exists e_{1}, e_{2}, \ldots, e_{N} \in E, e_{1} \rightarrow^{*} e_{2} \rightarrow^{*} \ldots \rightarrow^{*} e_{N}=e\right\}
$$

Configuration : it's a sub-net κ of $\mathcal{T}=\left(C, E, \rightarrow, C^{0}, \lambda, \Lambda\right)$ satisfying

1. $C^{0} \subseteq \kappa$: it contains all initial conditions of \mathcal{T},
2. $\forall e \in E \cap \kappa,{ }^{\bullet} e \subseteq \kappa$ and $e^{\bullet} \subseteq \kappa$: each event comes with all its causes and consequences,
3. $\forall c \in C \cap \kappa,\left|{ }^{\bullet} c\right|_{\kappa}=1$ or $c \in C^{0}$: each condition is either minimal or has one of its possible causes,
4. $\forall c \in C \cap \kappa,\left|c^{\bullet}\right|_{\kappa} \leq 1$: each condition triggers at most one event.

To read out configurations, one must solve conflicts in both directions of time.

Trellis net : a pre-trellis net \mathcal{T} is a trellis net iff each event is reachable, i.e. belongs at least to one configuration.

A simple example

Concurrency and conflict :

- Not easy to define graphically ! So we use indirect definitions.

Two nodes are in conflict iff they never appear in the same configuration.

- Two nodes are concurrent iff there exists a configuration κ where they are concurrent.
- The conflict is not binary...

Prefix of a TN: $\mathcal{T}^{\prime} \sqsubseteq \mathcal{T}$ iff

1. \mathcal{T}^{\prime} is a sub-net of \mathcal{T},
2. $\min \mathcal{T}^{\prime}=\min \mathcal{T}:$ same initial conditions,
3. $\forall e \in E, e \in E^{\prime} \Rightarrow\left[{ }^{\bullet} e \subseteq \mathcal{T}^{\prime}\right.$ and $\left.e^{\bullet} \subseteq \mathcal{T}^{\prime}\right]$: events come with all their neighbourhood,
4. \mathcal{T}^{\prime} is a trellis net.

Trellis process : \mathcal{T} is a TP of a net \mathcal{N} iff

1. there exists a morphism (folding) $f^{t}: \mathcal{T} \rightarrow \mathcal{N}$, preserving labels,
2. parsimony 1: $\forall e, e^{\prime} \in E,\left[{ }^{\bullet} e={ }^{\bullet} e^{\prime}, f(e)=f\left(e^{\prime}\right)\right] \Rightarrow e=e^{\prime}$,
3. parsimony 2 : $\forall c, c^{\prime} \in C,\left[H(c)=H\left(c^{\prime}\right), f(c)=f\left(c^{\prime}\right)\right] \Rightarrow c=c^{\prime}$

Time-unfolding (or trellis) of $\mathcal{N}: \mathcal{U}_{\mathcal{N}}^{t}$ is the maximal trellis process of \mathcal{N}.

Trellis process : \mathcal{T} is a TP of a net \mathcal{N} iff

1. there exists a morphism (folding) $f^{t}: \mathcal{T} \rightarrow \mathcal{N}$, preserving labels,
2. parsimony 1: $\forall e, e^{\prime} \in E,\left[{ }^{\bullet} e={ }^{\bullet} e^{\prime}, f(e)=f\left(e^{\prime}\right)\right] \Rightarrow e=e^{\prime}$,
3. parsimony 2 : $\forall c, c^{\prime} \in C,\left[H(c)=H\left(c^{\prime}\right), f(c)=f\left(c^{\prime}\right)\right] \Rightarrow c=c^{\prime}$

Time-unfolding (or trellis) of $\mathcal{N}: \mathcal{U}_{\mathcal{N}}^{t}$ is the maximal trellis process of \mathcal{N}.

Trellis process : \mathcal{T} is a TP of a net \mathcal{N} iff

1. there exists a morphism (folding) $f^{t}: \mathcal{T} \rightarrow \mathcal{N}$, preserving labels,
2. parsimony 1: $\forall e, e^{\prime} \in E,\left[{ }^{\bullet} e={ }^{\bullet} e^{\prime}, f(e)=f\left(e^{\prime}\right)\right] \Rightarrow e=e^{\prime}$,
3. parsimony 2 : $\forall c, c^{\prime} \in C,\left[H(c)=H\left(c^{\prime}\right), f(c)=f\left(c^{\prime}\right)\right] \Rightarrow c=c^{\prime}$

Time-unfolding (or trellis) of $\mathcal{N}: \mathcal{U}_{\mathcal{N}}^{t}$ is the maximal trellis process of \mathcal{N}.

Adjunction: between Trel and Nets

- (H1) The time-unfolding operation is a functor $\mathcal{U}^{t}:$ Nets \rightarrow Trel
(H2) Universal property of trellisses/time-unfoldings:

$$
\forall \phi: \mathcal{T} \rightarrow \mathcal{N}, \quad \exists!\psi: \mathcal{T} \rightarrow \mathcal{U}^{t}(\mathcal{N}), \quad \phi=f_{\mathcal{N}}^{t} \circ \psi
$$

- (H3) \mathcal{U}^{t} is invariant on trellis nets : $\forall \mathcal{T} \in \operatorname{Trel}, \mathcal{U}^{t}(\mathcal{T}) \cong \mathcal{T}$

then...
Right adjoints preserve limits, in particular products :

$$
\mathcal{U}^{t}\left(\mathcal{N}_{1} \times{ }_{\text {nets }} \mathcal{N}_{2}\right)=\mathcal{U}^{t}\left(\mathcal{N}_{1}\right) \times_{\text {trel }} \mathcal{U}^{t}\left(\mathcal{N}_{2}\right)
$$

- By (H3), the product $\times_{\text {trel }}$ can be defined by

$$
\mathcal{T}_{1} \times_{\text {trel }} \mathcal{T}_{2} \cong \mathcal{U}^{t}\left(\mathcal{T}_{1}\right) \times_{\text {trel }} \mathcal{U}^{t}\left(\mathcal{T}_{2}\right)=\mathcal{U}^{t}\left(\mathcal{T}_{1} \times_{\text {nets }} \mathcal{T}_{2}\right)
$$

Remark :

- A safe net \mathcal{N} can be expressed as a product of sequential machines $\mathcal{N}_{1} \times_{\text {nets }} \ldots \times_{\text {nets }} \mathcal{N}_{n}$

- For each component \mathcal{N}_{i}, the time-unfolding coincides with the usual notion of trellis for an automaton, thanks to the height constraint.

5 - Relations between nets, unfoldings, trellis nets

- (\subseteq, \mathcal{U}) defines an adjunction between $O c c$ and Nets \supseteq Trel. Its restriction to Trel induces another adjunction

On trellis nets, functor \mathcal{U} unfolds only conflicts (time is already unfolded) : we denote it by \mathcal{U}^{c}.

- We have :

$$
\mathcal{U}^{c}\left(\mathcal{T}_{1} \times_{\text {trel }} \mathcal{T}_{2}\right)=\mathcal{U}^{c}\left(\mathcal{T}_{1}\right) \times_{o c c} \mathcal{U}^{c}\left(\mathcal{T}_{2}\right)
$$

- and we can redefine $\times{ }_{o c c}$ by

$$
\mathcal{O}_{1} \times_{o c c} \mathcal{O}_{2} \cong \mathcal{U}^{c}\left(\mathcal{O}_{1}\right) \times_{o c c} \mathcal{U}^{c}\left(\mathcal{O}_{2}\right)=\mathcal{U}^{c}\left(\mathcal{O}_{1} \times_{\text {trel }} \mathcal{O}_{2}\right)
$$

Gathering results

Three nested categories $O c c \subset T r e l \subset N e t s$, three adjunctions

- Adjunctions can be composed : functors \mathcal{U} and $\mathcal{U}^{c} \circ \mathcal{U}^{t}$ are naturally equivalent

$$
\mathcal{U}(\mathcal{N}) \cong \mathcal{U}^{c} \circ \mathcal{U}^{t}(\mathcal{N})
$$

The trellis of \mathcal{N} is obtained by a conflict-folding on $\mathcal{U}_{\mathcal{N}}$.
The trellis and the unfolding of \mathcal{N} describe the same sets of configurations.

Comparison :

Conclusion

The + and the - of trellis nets :

+ trellis processes remain (more) compact in time,
- configurations are less easy to read,
+ factorization property : small components may be tractable.

Future work:

- for distributed processings we need a projection operator,
- notion of (factorized) finite complete prefix,
- can we imagine intermediate structures where conflicts are partially unfolded (to make configurations more easily readable)?

Question for specialists : are trellis nets known? Trivial ? Useful?

Secret Slides

Morphism : $\phi: \mathcal{N}_{1} \rightarrow \mathcal{N}_{2}$

1. $\phi=$ partial function on places and transitions,
2. ϕ preserves the flow relation (and labels),
3. the restriction $\phi: M_{1}^{0} \rightarrow M_{2}^{0}$ is bijective (on its def. domain),
4. ϕ defined on $p_{1} \Rightarrow \phi$ defined on ${ }^{\bullet} p_{1}$ and p_{1}^{\bullet},
5. ϕ defined on $t_{1} \Rightarrow$ the restrictions $\phi:{ }^{\bullet} t_{1} \rightarrow \bullet \phi\left(t_{1}\right)$ and $\phi: t_{1}^{\bullet} \rightarrow \phi\left(t_{1}\right)^{\bullet}$ are bijective (on their definition domain).

- we also add the possibility to duplicate places (otherwise the category of Nets is uncomplete and doesn't have a product)

