
Compositional Models of

Distributed and Asynchronous Dynamical Systems 1

Eric Fabre
2

Abstract

This paper proposes a framework to describe and han-
dle distributed systems as an interaction graph of ele-
mentary components. Components are discrete event
systems operating on several state variables, and defin-
ing local dynamics on these variables. Components
are interconnected by sharing variables, which defines
the interaction graph of the compound system. They
evolve asynchronously, with their own clock, so there is
no notion of global time. This behavior is captured by
the so-called true concurrency semantics on trajectories
of the system. Just like the global system factorizes as
a product of components, we prove that its trajectories
also “factorize.” As a consequence, the global system
can be handled by parts, for example for state estima-
tion ; the global state of the system is never computed.
This is a key to deal with large systems. This frame-
work has been applied to design distributed diagnosis
algorithms for telecommunication networks.

1 Introduction

The composition principle is a natural tool to build
large complex systems out of elementary functions or
local specifications. However, although its use is widely
spread as a design procedure for dynamic systems,
there has been little work trying to make use of the
modular nature of a system to design dedicated moni-
toring algorithms [3, 9, 13, 5]. Telecommunication net-
works are a good example of this situation. A net-
work can be viewed as a large system composed of in-
terconnected elements (add/drop multiplexers, routers,
etc.). A model of this large dynamic system can be ob-
tained by composing models of network elements, the
latter being themselves compound systems combining
elementary functions. The global system is generally
intractable because of the state explosion phenomenon.
Hence problems like (maximum likelihood) state esti-
mation, failure diagnosis, etc. which would be easy for
small (stochastic) systems, are handled in practice with
heuristics, human experience or expert systems.

1Research supported in part by French RNRT under project
MAGDA (Modelling and Learning for a Distributed Management
of Alarms, http://magda.elibel.tm.fr/), and by the European
Commission under project HYBRIDGE, IST-2001-32460.

2Irisa/Inria, Campus de Beaulieu, 35042 Rennes cedex,
France ; Eric.Fabre@irisa.fr

We propose to circumvent the difficulty of size by aban-
doning any idea of global processing. Specifically, we
propose to handle large systems by parts, or component
by component, through modular algorithms (fig. 1).
Turning back to the state estimation problem for ex-
ample, and assuming observations are available on var-
ious components, this would mean running a state es-
timation algorithm for each component (fed with local
observations), and coodinating them in order to pro-
vide coherent solutions. Doing so, the state explosion
phenomenon can remain under control, since only local
states of a component are handled. But the difficulty
concentrates in the coordination procedure. Observe
also that this paradigm slightly changes the nature of
the problem : one is not any more interested in the state
of the global system, but rather in its “projection” on
a particular component. We thus obtain viewpoints on
the solution.

local
supervisor

local
supervisor

observations
local local

observations

Component 1 Component 2
interaction

cooperation

Figure 1: A distributed system (bottom) and a modular
monitoring architecture (for example for state
estimation).

We believe modular processings, and further dis-
tributed processings, are a key to handle large com-
pound systems. In this paper, we focus on a modeling
framework in view of this objective. We base our con-
struction on ideas developed for Markov random fields,
or Bayesian networks, which can be viewed as static
compound systems. A Markov field is obtained by
1/ taking a large number of variables, and 2/ specifying
local interactions on subsets of these variables. Interac-
tions may be defined by constraints on possible values,
and/or by potential functions, which allows to build a
probability distribution on all variables. This construc-
tion through local specifications yields a factorization
property on constraints, or on the probability distri-
bution. In many applications, one has to recover the
(most likely) state/configuration of the field matching
some observations. Due to the size of the field, a global
handling is unaffordable, and a large variety of modu-
lar algorithms have been designed, precisely based on
the local specification of the field. Modular algorithms

rely on the so-called separation property, which roughly
says that two areas of the field are independent given
values at their interface. As a consequence, they can
be processed separately except at this interface, where
information must be exchanged. These results are re-
called in section 2.

We propose to extend this approach to distributed dy-
namic systems. These systems are obtained by con-
necting local asynchronous components. Components
have their own dynamics, a private notion of time (so
there is no global time in the system), but synchro-
nize with neighboring components on some particular
events, like the exchange of messages for example. Our
main contribution concerns the statement of a separa-
tion property on trajectories of these distributed dy-
namic systems (section 3). This property allows to ex-
tend most algorithms designed for static systems (or
Markov fields) to distributed dynamic systems. This
paper focusses on the modeling framework ; algorithms
are presented in a companion paper [1].

2 Compound static systems

2.1 Systems and composition

Notations. The systems we consider operate on sets
of variables. Variables are denoted by capital let-
ters : A, B, V . . . They take values in finite domains
DA,DB ,DV . . . and values are expressed by lower-case
letters a, b, v . . . Let V = {V1, . . . , Vn} be a set of vari-
ables ; a state v is a function that assigns to each vari-
able of V a value of its domain. By abuse of notations,
we represent states as tuples v = (v1, . . . , vn), assum-
ing there exists some natural ordering on variables of
V , and we denote by DV = DV1

×· · ·×DVn
the domain

of states. For V ′ ⊂ V , we denote by ΠV′ the canonical
projection on states of V ′, which erases variables of V
not present in V ′.

A system is defined as a pair S = (V ,O), where V =
{V1, V2, . . . , Vn} is a set of variables, and O ⊆ DV is the
set of legal states (v1, . . . , vn) of S. Hence a system is
defined by constraints on the value of its variables. For
a matter of space, the general case of stochastic systems
is not described here (see [2] for details).

Let S1 = (V1,O1) and S2 = (V2,O2) be two such sys-
tems, we define the composition of systems by

S = (V ,O) = S1|S2 ⇔

{

V = V1 ∪ V2

O = O1 ∧ O2

(1)

Hence the two subsystems S1 and S2 interact through
the variables V1 ∩ V2 they have in common, and states
of S are obtained by the conjunction of the constraints
defining S1 and S2. Specifically, O = O1 ∧ O2 is a
shorthand for O = (ΠV1

)−1(O1) ∩ (ΠV2
)−1(O2). Ob-

serve that composition is commutative and associative.

S is said to be a distributed system as soon as it can
be expressed as

S = S1|S2| . . . |SN (2)

where N ≥ 2, Si = (Vi,Oi) and Vi ⊆ Vj never holds
for 1 ≤ i 6= j ≤ N . In particular, none of the Vi’s is as
large as V , hence S is defined by the conjunction of local
constraints on subsets of variables. Factorization (2)
imposes some structure to S which is often displayed
by means of a hypergraph G : variables are represented
as nodes of the graph, and subsystems Si appear as
hyperedges, i.e. sets of variables (fig. 2, left).

Given a hypergraph G defined by edges V1, . . . ,VN , one
can check that a system S “factorizes on G” by first
building subsystems Si = ΠVi

(S) and then compar-
ing S to S1| . . . |SN . Factorization limits the size of
constraints in a system, in terms of number of vari-
ables involved in these constraints. Hence the prod-
uct S1| . . . |SN is generally larger than S, i.e. allows
more states or is more permissive. For example, let
S = ({A, B, C}, {(a, b, c′), (a, b′, c), (a′, b, c)}). Its pro-
jections on V1 = {A, B}, V2 = {B, C} and V3 = {C, A}
are defined by

S1 = Π{A,B}(S) = ({A, B} , {(a, b), (a, b′), (a′, b)})

S2 = Π{B,C}(S) = ({B, C} , {(b, c), (b, c′), (b′, c)})

S3 = Π{A,C}(S) = ({A, C} , {(a, c), (a, c′), (a′, c)})

The product yields S ′ = S1|S2|S3 = ({A, B, C},
{(a, b, c), (a, b, c′), (a, b′, c), (a′, b, c)}) which contains
the extra state (a, b, c). To remove this state, one needs
a constraint acting simultaneously on A, B and C.

This property generalizes in the following way : let V =
∪N

i=1Vi and V = ∪M
j=1V

′
j define two hypergraphs G and

G′ on V , such that ∀i, ∃j : Vi ⊂ V ′
j . We say that G ⊂ G′,

or G is finer that G′. Then any system factorizing on G
also factorizes on G ′.

2.2 Separation property

The interaction graph not only displays the structure
of interactions beween components, but also indicates
which information about the whole system is useful to
a given component. This is based on the separation
criterion. Let S factorize into S1| . . . |SN , which defines
the hypergraph G. For L ⊂ {1, . . . , N} an index set,
we denote by SL = (VL,OL) the product |l∈LSl, and
by vL a state in OL.

Definition 1 Let the hypergraph G be defined by edges
V1, . . . ,VN . Let X ,Y ,Z ⊆ V be sets of nodes, Z is said
to separate X from Y on G iff there exists a partition
I ∪ J ∪ K = {1, . . . , N} such that X ⊆ VI∪K , Y ⊆
VJ∪K , VK ⊆ Z and VI ∩ VJ ⊆ VK . G is said to be a
tree iff one single Vk is enough to separate any two Vi

and Vj (fig. 2).

S4
S3

S1

S2S5

S6

S6

S4

S3

S1

S2
S5

Figure 2: A hypertree with 6 edges (left). Its tree struc-
ture is evidenced on the righthand side by as-
sociating neighbors to each edge. Some nodes
are duplicated, and the correspondence between
them indicate the neighboring structure.

The separation criterion defines some notion of inde-
pendence in the global system. Assume for example S
factorizes into S1|S2|S3, where S1 separates S2 from S3

(fig. 3) (this situation may be appear after the grouping
of terms in the general form S = S1| . . . |SN). Let v1

be a state of S1, and chose any pair of states (v2,v3)
in O2 × O3 such that ΠV1∩V2

(v2) = ΠV1∩V2
(v1) and

ΠV1∩V3
(v3) = ΠV1∩V3

(v1). Then v1,v2,v3 can be
glued to form a state of the compound system S. In
other words, given v1, the choices of v2 and v3 are
independent (provided they match v1). This is remi-
niscent of Markov chains, where trajectories in the past
and in the future are independent given the present.

S2 3S

S1

Figure 3: A chain of systems : S1 separates S2 from S3.

2.3 Towards modular processings

Some components Si may determine exactly the value
of part of their variables. Hence the framework above
captures the case where observations are available in
the system. So one may be interested in computing the
canonical factorization of S, i.e. S = S ′

1| . . . |S
′
N where

S ′
i = (Vi,O′

i) , ΠVi
(S). This means reducing local

state sets Oi to O′
i, which contain states vi participat-

ing to at least one global state v of S, i.e. matching
observations1.

Conditional independence is central to design fast esti-
mation algorithms for Markov processes. By analogy,
the separation criterion is central in defining what a
component should know about the rest of the system,
in view of the reduction task mentioned above. In the
simple case S = S1|S2, one has

O′
i = ΠVi

(Oi ∧Oj)

= Oi ∧ ΠVi
(Oj)

= Oi ∧ ΠV1·2
(Oj) (3)

for 1 ≤ i, j ≤ 2, i 6= j, and with V1·2 = V1 ∩ V2. In
the second equality, we slightly abuse notations with

1In a stochastic setting, this reduction yields, for example,
local values in Vi of the most likely state of S, given observations.

ΠVi
(Oj) since Vi 6⊆ Vj . By convention, this means that

Oj is first extended to Vi∪Vj by Π−1

Vj
and then reduced

to Vi. The term ΠV1·2
(Oj) represents the necessary

and sufficient information Si needs to know about Sj

to determine O′
i.

When S factorizes as on fig. 3, for S2 (3) becomes

O′
2 = ΠV2

(O1 ∧ O2 ∧O3)

= O2 ∧ ΠV2
(O1 ∧O3)

= O2 ∧ ΠV2
[O1 ∧ ΠV1

(O3)]

= O2 ∧ ΠV1·2
[O1 ∧ ΠV1·3

(O3)] (4)

where the second equality uses (3). The third one de-
rives from the fact that variables in V3 \ V1 will be
erased by ΠV2

since V2·3 ⊆ V1. (4) expresses first that
the information about S which is necessary to S2 can
be summarized at the level of the intermediary com-
ponent S1 : O1 ∧ ΠV1·3

(O3) only involves variables of
S1. Secondly, the nested shape of (4) is reminiscent
of a recursive estimation procedure for Markov chains,
where information of the past (S3) is combined with
information of the present (S1) and forwarded toward
the future (S2). In the same way, O′

1 is given by

O′
1 = ΠV1

(O1 ∧ O2 ∧ O3)

= O1 ∧ ΠV1
(O2 ∧ O3)

= O1 ∧ ΠV1
(O2) ∧ ΠV1

(O3)

= O1 ∧ ΠV1·2
(O2) ∧ ΠV1·3

(O3) (5)

where the second equality uses (3), and the third one
comes from the fact that S2 and S3 have all their com-
mon variables inside V1. Hence S1 needs messages
ΠV1·i

(Oi) from its two neighbors Si, i = 2, 3. Again,
by analogy with state estimation for Markov chains, (5)
can be read as a merge equation of information coming
from past and future.

If S = S1| . . . |SN is a tree, it can be shown that ade-
quate combinations of the local operations (4) and (5)
are enough to compute all sets O′

i in finite time [1, 2].

3 Distributed dynamic systems

We now extend the previous framework to dynamic sys-
tems. These systems are finite state machines (FSM)
with two special features : first they involve several
(state) variables instead of a single one, and secondly
transitions operate on part of these variables. This
framework (close to models in [7, 6]) can be seen as
an extension of Petri nets. Special trajectory seman-
tics are defined to capture the asynchronous behavior
of components. A separation property is then stated
on trajectories of compound systems, which opens the
way to modular processings.

3.1 Systems and composition

Definition 2 A dynamic system S is a triple (V , I, T)
where V = {V1, . . . , Vn} is a set of variables, I ⊆ DV

is a set of initial states v = (v1, . . . , vn), and T is a
finite set of transitions or tiles defined on variables of
V and on a label set Σ. A tile t ∈ T is a 4-tuple
(Vt,v

−
t

, σt,v
+
t

) where Vt ⊆ V is a set of variables,
v−
t

,v+
t

∈ DVt
are respectively the pre-state and the

post-state of t (i.e. tuples of values, one for each ele-
ment of Vt), and σt ∈ Σ is a label.

The composition of systems extends (1). Let Si =
(Vi, Ii, Ti), i = 1, 2, then S = S1|S2 is defined by

S = (V , I, T) = S1|S2 ⇔

V = V1 ∪ V2

I = I1 ∧ I2

T = T1 ∪ T2

(6)

A system S is said to be a distributed dynamic system
as soon as it factorizes as S = S1|S2| . . . |SN where
N ≥ 2, Si = (Vi, Ii, Ti) and Vi ⊆ Vj never holds for
i 6= j. Notice that the factorization of S limits the size
of its tiles, in terms of variables involved.

3.2 Trajectories

We now proceed to defining runs of a dynamic system.
Let t ∈ T be a tile and v a state of S. t is said to be
enabled by v iff vVt

, ΠVt
(v) = v−

t
. By connecting t

to v (or by firing t), one gets state v′ defined by

v′
Vt

= v+
t

v′
V\Vt

= vV\Vt

By analogy with Petri nets, connectibility is denoted
by v[t〉, and the result of the connection by v[t〉v′.

At runtime, a system may fire several times the same
transition, so we define trajectories in terms of events.
An event e represents the firing of transition t = φ(e) ∈
T . The most straightforward definition of a run (or
trajectory) ρ for system S would be as usually a se-
quence (v, e1, . . . , en) of events anchored at some initial
state v, and satisfying

v[φ(e1)〉v1[φ(e2)〉v2 · · · vn−1[φ(en)〉vn (7)

However, this definition implements the total order se-
mantics on runs, which is not adequate here since it as-
sumes a global clock governing the behavior of the sys-
tem. We rather wish to capture the asynchry which is
inherently present in a distributed system : two compo-
nents naturally evolve independently in time between
instants at which they synchronize (exchange of a mes-
sage for example).

3.3 Partial order semantics on trajectories

Let us consider a system S with two variables A and
B. Fig. 4 (top) represents a run ρ1 = ((a, b), e1, . . . , e8)
where events appear as rectangles, the grey part of

which identifies impacted variables. Intermediary val-
ues of variables are not represented. Due to the def-
inition of connectibility, the run ρ2 depicted on fig. 4
(bottom) is also valid and finishes with the same val-
ues of A and B. It is obtained by applying a series
of permutations in ρ1, where two successive events e

and e′ can be permuted iff Ve ∩ Ve′ = ∅. In this case,
firing φ(e) and φ(e′) in any order, or even simultane-
ously, yields the same result : e and e′ are said to be
concurrent in the run.

1e 2e

e3 e4

5e e6

e7 e8

a

bB :

A :

1e

e4

5e

e8

a

bB :

A :

e3

2e

e7

e6

Figure 4: These two sequences of events are considered as
equivalent in the true concurrency semantics.

Concurrency is a central notion in (distributed) sys-
tems based on tiles : it identifies areas of independent
behaviors in a run. For example, variables A and B

evolve independently between e1 and e5 ; the ordering
of firings in this section is irrelevant. Therefore, it be-
comes natural to define a trajectory not any more as a
sequence of events, but as an equivalence class of se-
quences, where equivalence derives from concurrency.
This amounts to considering a run as a partial order of
events (or puzzle), as depicted on fig. 5.

1e
a

bB :

A :

e3

2e

e4

5e

e7

e6

e8

Figure 5: A run as a partial order of events.

Formally, for two sequences ρ1 = (v, . . . , e, e′, . . .) and
ρ2 = (v, . . . , e′, e, . . .) differing only by the order of e

and e′, let us say ρ1 ∼ ρ2 iff Ve ∩Ve′ = ∅ : e and e′ are
concurrent. The equivalence relation ≈ we consider is
defined as ∼∗, i.e. ρ ≈ ρ′ iff there exists a sequence ρ =
ρ0, ρ1, . . . , ρn = ρ′ such that ρi ∼ ρi+1. In words, one
can go from ρ to ρ′ by permuting successive concurrent
events. In the true concurrency semantics, runs ω are
equivalence classes [ρ]≈, that we denote as ω = (ρ,≺),
where ≺ is the partial order relation on events of ρ.

3.4 Practical handling of partial orders

Working with partial orders of events may require
heavy notations. In a sequence, a simple index is
enough to distinguish two events. In a partial order,
one would like to avoid a total indexing and rather
identify an event by its “position” in the partial or-
der. To do so, we propose here a notation based on
the notion of trace. We illustrate it on an example (a

more formal derivation is given in [2]). Let us come
back to fig. 5, and replace events by the tile they rep-
resent, which gives fig. 6. It can be shown that this

’’t ’’’t ’ t’

t t’ t t’ t
a

bB :

A :

Figure 6: Partial order of events with several occurences
of the same tile.

run ω is equivalently described by the pair (ωA, ωB),
where ωV is the initial value v of variable V followed
by the sequence of tiles that have impacted V . On the
example :

ωA = (a, t, t′, t, t′, t)

ωB = (b, t, t′′, t′′′, t, t′′, t)

This notation naturally captures the total ordering of
events impacting a given variable, but also keeps track
of the synchronization information between sequences
ωV : if a tile t is such that {V1, V2} ⊆ Vt, then the k-th
occurence of t in ωV1

and its k-th occurence in ωV2
cor-

respond to the same event. This allows to completely
recover the partial order ω = (ρ,≺).

3.5 Separation property

We now proceed to establishing a factorization prop-
erty on trajectories of a system S. To a dynamic
system S = (V , I, T) we associate a static system
S̄ = (V̄ , Ō) describing its possible trajectories in the
true concurrency semantics. Variables of S̄ are defined
by V̄ = {ΩV : V ∈ V} where ΩV takes values ωV in
domain DΩV

DΩV
= DV × (TV)∗ with TV = {t ∈ T , V ∈ Vt}

Hence variable ΩV in S̄ describes all possible histories
(in S) of variable V alone2. The state set Ō of S̄ is
composed of all (finite size) trajectories of S, handled
as tuples ωV = (ωV , V ∈ V), following the notation of
the previous section.

Assuming S = (V , I, T) = S1| . . . |SN , we define com-
ponents S̄i = (V̄i, Ōi) in a similar manner, except that
we first extend the transition sets of each Si. Specifi-
cally, V̄i = {ΩV : V ∈ Vi}, but Ōi is composed of tra-
jectories ΩVi

of the extended system Se
i = (Vi, Ii, T e

i).
The new transition set is given by

T e
i = Ti ∪ (

⋃

V ∈Vi

TV) (8)

2Notice that we could have limited DΩV
to values

(v, t1, . . . , tn) which guarantee coherent modifications of the
value of V , i.e. such that v

−

t1
(V) = v and v

+
ti

(V) = v
−

ti+1
(V),

i = 1...n−1. This property is ensured by the definition of Ō and
further of sets Ōi.

i.e. it incorporates all transitions of other components
Sj which have an action on variables of Vi. Trajectories
of Se

i are built by connecting tiles as in (7), but checking
only the connectibility on variables of Vi. Hence Se

i

behaves as if it had all transitions of S “truncated” to
variables of Vi (see fig. 7).

A : a

B : b

? ?? ?

Figure 7: Trajectory of an extended system Se
i , with Vi =

{A, B}. Gray tiles belong to other components.
Their action on variables outside Vi is ignored.

Finally, let us refine the definition (1) of composition |
for static systems S̄i. The conjunction operation ∧ on
local state sets becomes

Ōi ∧ Ōj = P
[

(ΠV̄i
)−1(Ōi) ∩ (ΠV̄j

)−1(Ōj)
]

(9)

where operator P keeps only tuples (ωV , V ∈ Vi ∪ Vj)
corresponding to valid partial orders. In other words,
states of S̄i|S̄j are obtained by gluing local trajectories
of Se

i and Se
j which coincide on shared variables Vi∩Vj ,

provided the agregated tuple do represent a partial or-
der. Despite the presence of P , the refined composition
operator | remains commutative and associative.

Theorem 1 Let S factorize into S1| . . . |SN , and let
static systems S̄ and S̄i, 1 ≤ i ≤ N, be defined as above.
The following factorization holds : S̄ = S̄1| . . . |S̄N .

The proof is given in the extended paper [2]. Theorem 1
almost brings us back to the framework of section 2.
This factorized representation of trajectories not only
reduces the combinatorial explosion of possible trajec-
tories of a compound system, but also opens the way
to modular processings. For example, one can imag-
ine solving problems like determining all trajectories of
S which match some observed events on components
(this is the purpose of the companion paper [1]), by
means of local processings like (3), (4) and (5). As in
section 2, this will provide “viewpoints” on these tra-
jectories, i.e one will get restrictions of these possible
trajectories to components Si. The missing ingredient
toward this objective is precisely the notion of restric-
tion of a trajectory, that we introduce now.

3.6 Modular processings on traces

Local processings (3) to (5) were designed for the sim-
ple composition rule (1) on static systems. The pres-
ence of the P operator in the new definition of compo-
sition (9) requires to modify the notion of projection
to make them hold. We briefly give hints on how this
can be done.

Runs ω we have defined are actually traces of a dis-
tributed system. In trace theory, the projection of
a trace to a subset E of events is defined as restric-
tion to E of the partial order represented by that
trace. With notation ωV = (ωV , V ∈ V) for traces,
ωV′ = (ωV , V ∈ V ′) does capture all events concerning
variables of V ′ ⊆ V , but ωV′ may not encode all par-
tial order relations on these events that were present in
ωV . Consider the example of fig. 8 : e1 and e4 appear
as concurrent in (ωA, ωB), whereas they are causaly
related in (ωA, ωB , ωC).

e2e1

e3

e4

A : a

C : c

B : b

Figure 8: Without ωC, a causal link from e1 to e4 is lost.

In order to keep track of this information, let us de-
fine Π̄V′(ωV) as the restriction of the partial order ωV

to events impacting variables in V ′ ⊆ V . This re-
sults in ωV′ augmented with extra causality relations,
whence notation Π̄V′(ωV) = (ωV′ ,≺). On the example
above, Π̄ΩA,ΩB

(ω) results in (ωA, ωB) augmented with
the causality relation e2 ≺ e3. To comply with this
new structure, we refine ∧ on traces as

(ωVi
,≺i) ∧ (ωVj

,≺j) = P [(ωVi
∧ ωVj

,≺i ∧ ≺j)]

where ωVi
∧ωVj

is the usual composition for static sys-
tems (may yield ∅), ≺i ∧ ≺j is the union of extra par-
tial order relations, and P checks that the right hand
side term is a valid partial order of events. With this
definition of composition, equations (3) to (5) become
valid for systems S̄i provided Π is replaced by Π̄, the re-
striction of a trace (ωV ,≺). This opens the way to the
reconstruction of trajectories of a distributed dynamic
system by means of modular algorithms.

4 Conclusion

We have proposed a framework to handle large dis-
tributed systems as a graph of interacting components.
This framework makes a tight connection between dy-
namic systems on the one hand, and classical models
like Markov fields or Bayesian networks on the other
hand. The common feature is the modular definition
of the system, by composition of local specifications on
subsets of variables, from which a separation property
is derived. The separation property on Markov fields
induces a conditional independence relation and allows
to define a notion of sufficient statistics, which forms
the basis of modular algorithms. By extension, we
have derived a similar notion of “sufficient statistics”
for distributed dynamic systems, which captures infor-
mation both in time and in space (presented in a non

stochastic case here). This notion forms the basis of
modular estimation algorithms in Markov fields, which
can thus be directly transposed for distributed dynamic
systems, to solve problems like state/trajectory estima-
tion given (distributed) observations. This is described
in the companion paper [1]. This framework has been
successfully applied to design distributed diagnosis al-
gorithms for SDH telecommunication networks. We
believe modular processings could also make large sys-
tems amenable to problems like verification or control.

References

[1] E. Fabre, V. Pigourier, “Monitoring distributed
systems with distributed algorithms,” CDC’02.

[2] E. Fabre, “Distributed Diagnosis for Large Dis-
crete Event Dynamic Systems,” in preparation.

[3] R. Debouk, S. Lafortune, D. Teneketzis, “Coor-
dinated decentralized protocols for failure diagnosis of
discrete event systems,” J. Disc. Event Dyn. Sys. : Th.
and Appli., vol. 10, no. 1-2, pp. 33-86, Jan. 2000.

[4] P. Baroni, G. Lamperti, P. Pogliano, M. Zanella,
“Diagnosis of large active systems,” Artif. Intel. 110,
pp. 135-183, 1999.

[5] Y. Pencolé, M-O. Cordier, L. Rozé, “A decentral-
ized model-based diagnostic tool for complex systems,”
13th IEEE Int. Conf. on Tools with Artif. Intel. (IC-
TAI’01), pp. 95-102, Dallas, 2001.

[6] J. Esparza, S. Römer, “An unfolding algorithm
for synchronous products of transition systems,” in
proc. of CONCUR’99, LNCS 1664.

[7] A. Arnold, “Finite Transition Systems,” Prentice
Hall, 1992.

[8] W. Vogler, “Modular Construction and Partial
Order Semantics of Petri Nets,” LNCS no. 625, 1992.

[9] C. G. Cassandras, S. Lafortune, “Introduction to
discrete event systems,” Kluwer Acad. Pub., 1999.

[10] J. Pearl, “Fusion, Propagation, and Structuring
in Belief Networks,” Artif. Intel., vol. 29, pp. 241-288,
1986.

[11] S.L. Lauritzen, D.J. Spiegelhalter, “Local compu-
tations with probabilities on graphical structures and
their application to expert systems,” J. Royal Statisti-
cal Society, Series B, vol. 50, n. 2, pp. 157-224, 1988.

[12] E. Fabre, A. Benveniste, C. Jard, L. Ricker,
M. Smith, “Distributed state reconstruction for dis-
crete event systems,” proc. 39th Conf. on Detection
and Control, Sydney, dec. 2000.

[13] A. Aghasaryan, E. Fabre, A. Benveniste,
R. Boubour, C. Jard, “Fault Detection and Diagno-
sis in Distributed Systems : an Approach by Partially
Stochastic Petri nets,” J. Disc. Event Dyn. Sys., special
issue on Hybrid Systems, vol. 8, pp. 203-231, June 98.

