
Monitoring Distributed Systems

with Distributed Algorithms 1

Eric Fabre, Vincent Pigourier2

Abstract

This paper proposes a framework to process large dis-
tributed systems by parts, through distributed algo-
rithms. We consider distributed (discrete event) sys-
tems as the combination of elementary components.
Each component defines dynamics on several state vari-
ables, and the composition is simply defined by shar-
ing variables. The compound system is asynchronous :
each component evolves with its own clock, and ex-
changes information with its neighbors by means of
the shared variables. An interaction graph can be as-
sociated to such a compound system : two components
are neighbors of each other as soon as they share one
(or more) variables. This structure is reminiscent of
Bayesian networks, or Markov random fields, which use
a graph to display dependencies between random vari-
ables. The parallel can actually be pushed quite far.
In this paper we show that a large family of modular
algorithms developped for Markov fields, in order to
solve problems like maximum likelihood state estima-
tion, can be translated into distributed algorithms to
monitor large distributed dynamic systems.

1 Introduction

This paper relies on other results published in the pro-
ceedings of CDC’02 as [1]. Notations are not redefined.

The composition principle is a natural tool to build
large complex systems out of elementary functions or
local specifications. However, although its use is widely
spread as a design procedure for dynamic systems,
there has been little work trying to make use of the
modular nature of a system to design dedicated mon-
itoring algorithms [11, 9, 13]. This is the scope of the
present paper, motivated by the distributed monitoring
of telecommunication networks. A compound system
can be represented as an interaction graph of compo-
nents (fig. 1 bottom) ; our aim is to design a parallel
monitoring architecture (fig. 1 top), composed of lo-

1This work is partially supported by RNRT (National Re-
search Network in Telecommunication) through the Magda
project (Modelling and Learning for a Distributed Management
of Alarms), see http://magda.elibel.tm.fr/

2Irisa/Inria, Campus de Beaulieu, 35042 Rennes cedex,
France ; Name.Surname@irisa.fr

cal supervisors, one per component, which coordinate
their actions. This strategy offers many advantages,
among which a convenient way to update the moni-
toring algorithms as the supervised system evoles, but,
more importantly, a solution to the state explosion phe-
nomenon occuring in large systems.

local
supervisor

local
supervisor

observations
local local

observations

Component 1 Component 2
interaction

cooperation

Figure 1: A distributed system (bottom) and a modular
monitoring architecture (for example for state
estimation).

The paper is organized as follows. Section 2 briefly
presents existing algorithms on static systems, with an
appropriate reformulation. It explains how the factor-
ization of a large system into a product of components
opens the way to modular algorithms. A simple re-
duction problem is stated and solved in that way. Its
solution is a paradigm of most modular processings. All
results of this section extend to a stochastic framework,
not presented for lack of space (see [2]). Section 3 ex-
tends this framework to distributed dynamic systems,
and recalls a factorization property on trajectories of
theses systems [1]. This property forms the basis of dis-
tributed diagnosis algorithms presented in section 4.

2 Modular processings for static systems

2.1 Definition of compound systems

A (static) system is defined as a pair S = (V ,O), where
V = {V1, V2, . . . , Vn} is a set of variables, and O ⊆
DV1

× . . .DVn
is the set of possible states of S. Hence

O is a set of legal tuples (v1, . . . , vn) for S ; in other
words, S is defined by constraints on the value of its
variables.

Let S1 = (V1,O1) and S2 = (V2,O2) be two such sys-
tems, we define their composition (or product) by

S = (V ,O) = S1|S2 ⇔

{

V = V1 ∪ V2

O = O1 ∧ O2
(1)

Hence the two subsystems S1 and S2 “communicate”
through the variables V1 ∩ V2 they have in common,

and states of S are obtained by the conjunction of the
constraints defining S1 and S2. Specifically, O = O1 ∧
O2 is a shorthand for O = (ΠV1

)−1(O1)∩(ΠV2
)−1(O2),

where ΠVi
is the canonical projection erasing variables

outside Vi.

A system S is said to be a distributed (or compound)
system as soon as it can be expressed as

S = S1|S2| . . . |SN (2)

where N ≥ 2, Si = (Vi,Oi) and Vi ⊆ Vj never holds
for 1 ≤ i 6= j ≤ N . In particular, none of the Vi’s is as
large as V , hence S is defined by the conjunction of lo-
cal constraints on subsets of variables. Factorization 2
imposes some structure to S which is often displayed
by means of a hypergraph G : variables are represented
as nodes of the graph, and subsystems Si appear as
hyperedges, i.e. sets of variables (see fig. 2, or fig. 3
left).

2.2 Relations between ∧ and Π
To define compound systems, and handle them with
modular algorithms as we do in the sequel, one doesn’t
need to specify the exact nature of composition ∧ and
of projection operators ΠV . The important properties
are summarized in the following axioms, which form
the basis of all subsequent developments.

Let us consider an abstract notion of system, generi-
cally denoted by O. Systems are provided with two
basic operations : a composition law, and a set of re-
duction operators. The composition of systems, de-
noted by O = O1∧O2, is commutative and associative.
The family of reduction operators {ΠV ,V ⊆ Vmax} is
indexed by sets of variables ; reductions operate on a
single system : O′ = ΠV(O). We assume composition
and reduction satisfy the following axioms.

∀V1,V2 ⊆ Vmax, ΠV1
◦ ΠV2

= ΠV1∩V2
(3)

which expresses that reduction operators are actually
projections.

∀O, ∃V ⊆ Vmax, ΠV(O) = O (4)

O is said to operate on variables of V , whence nota-
tion S = (V ,O) for a system. Axiom (3) induces the
existence of a smaller set of variables on which O op-
erates. Finally, the central axiom concerns the relation
between composition and reduction. Let S1 = (V1,O1),
S2 = (V2,O2) be two systems, then

∀V3 ⊇ V1 ∩ V2, ΠV3
(O1 ∧ O2) = ΠV3

(O1) ∧ ΠV3
(O2) (5)

This is a kind of conditional distributivity property of
Π with respect to ∧. It expresses that the interaction
between systems O1 and O2 is completely captured
by their shared variables V1 ∩ V2. With (3,4,5), one
can readily show that O1 ∧ O2 operates on variables

V1 ∪ V2, whence the definition of | in (1). But the in-
teresting points are in the following equations, which
derive from the above axioms and are instrumental in
building modular algorithms.

S2 3S

S1

Figure 2: A chain of systems : S1 separates S2 from S3.

Consider O = O1 ∧O2, where Oi operates on Vi, then

ΠV1
(O) = O1 ∧ ΠV1∩V2

(O2) (6)

This equation expresses how O1 is modified when com-
posed with O2. Specifically, the influence of O2 on O1

reduces to ΠV1∩V2
(O2). Next, assume O = O1 ∧ O2 ∧

O3, where O1 separates O2 from O3, i.e. variables of
V2 ∩V3 are all contained inV1. In other words, systems
organize in a chain, as on fig. 2. Then

ΠV1
(O) = O1 ∧ ΠV1∩V2

(O2) ∧ ΠV1∩V3
(O3) (7)

i.e. O2 and O3 have independent influences on O1.
Moreover, one has

ΠV2
(O) = O2 ∧ ΠV2∩V1

[O1 ∧ ΠV1∩V3
(O3)] (8)

which displays a propagation phenomenon of O3 to
O2 through O1, reminiscent, for example, of recursive
equations in Kalman filtering1. These equations sug-
gest that ΠVi

(O) can be computed by exchanging mes-
sages between neighbor systems (i.e. systems sharing
variables). We formalize this point in the next section.

Before, let us introduce a last property, which will not
be necessary to design modular algorithms. Composi-
tion is said to be involutive iff

∀O, ∀V , O ∧ ΠV(O) = O (9)

i.e. composing a system with “part of itself” doesn’t
change that system. Involutivity induces the interest-
ing following consequence :

O = O1 ∧ O2 ⇒ O = ΠV1
(O) ∧ ΠV2

(O) (10)

which generalizes to an arbitrary number of factors. In
other words, if S factorizes as S = S1| . . . |SN , then re-
duced systems S ′

i , ΠVi
(S) give another factorization

of S, which is canonical.

2.3 Computation of reduced components

The major advantage of factorized representations re-
sides in the compact description of a large set of long
vectors (O) by small sets of short vectors (sets Oi).

1By the way, Kalman filtering can be expressed in the present
framework, with ∧ and Π operations adapted to stochastic sys-
tems.

Hence all computations concerning such systems should
be performed on their factorized form. This is precisely
the principle we adopt in the present paper, under the
name “modular algorithms.” We illustrate the princi-
ple on a typical example, representative of many other
processings : given S = S1| . . . |SN , we want to com-
pute the canonical factorization of S, i.e. elements
S ′

i , ΠVi
(S), without computing S, which would be

a too large object.

S4
S3

S1

S2S5

S6

S6

S4

S3

S1

S2
S5

Figure 3: A hypertree with 6 edges (left). Its tree structure
is evidenced on the righthand side by associat-
ing neighbors to each edge/system. Some nodes
are duplicated, and the correspondence between
them indicate the neighboring structure.

The most efficicent algorithms to do so rely on the
graphical representation of interactions between com-
ponents Si, i.e. on the hypergraph G defined by sets
Vi. In terms of Markov random fields, the interaction
graph evidences conditional independence relations be-
tween systems, which can be exploited in estimation
procedures. We exactly rely on this principle. In this
paper, we focus on systems having a tree structured in-
teraction graph : an example is given on fig. 3 (left) ;
the tree structure is evidenced by associating “direct
neighbors” to each system Si (fig. 3 right). See [1] for
details.

Let us denote by N(i) the indexes of subsystems which
are direct neighbors of Si on the tree, and let us say
there is an oriented link from Si to Sj (and symmet-
rically) as soon as they are direct neighbors. The al-
gorithm computing sets O′

i on the tree G is based on
messages “circulating” on these links. A message Mi,j

brings to Sj a summary of constraints about Vj found
in the subtree “behind Si” from the standpoint of Sj .

Algorithm A1

1. initialization : for each link i → j, define message
Mi,j := DVi∩Vj

2. until no more message can be changed, choose
one link i → j, and update its message by

Õi := Oi ∧ (
∧

k ∈N(i)\j

Mk,i) (11)

Mi,j := ΠVi∩Vj
(Õi) (12)

3. termination : for each Si, define O′
i by

O′
i := Oi ∧ (

∧

k ∈N(i)

Mk,i) (13)

Theorem 1 A1 converges in bounded time towards a
unique stable point for messages, which yield the de-
sired reduced systems S ′

i. Convergence is guaranteed
whatever the ordering of updates. A1 is insensitive to
the initialization values of messages.

The proof is given in [2]. Basically, (11) merges in-
formation coming from various branches at Si, as in
(7), and (12) propagates it towards Sj as in (6). Since
messages accumulate constraints coming from neighbor
systems, Õi finally converges to ΠVi

(
∧

l∈Li→j
Ol) where

Li→j are indexes of systems located in the branch be-
hind Si from the standpoint of Sj .

The simple structure of A1 is at the core of many pro-
cessings for distributed systems. In a stochastic frame-
work, for example, with appropriate definitions of ∧
and Π, it allows the computations of the most likely
state v∗ of S given observed values on some variables
of V . This most likely state is obtained through its
projections v∗

i in each component Si, since A1 only
provides local views of S.

2.4 Extension to changing systems

One can slightly enlarge the validity domain of A1

to capture some dynamic features. Assume that con-
straints carried by components Si evolve in time :
Si(ti) = (Vi,Oi(ti)), where the clock ti ∈ N is local
to Si, and is bounded : 0 ≤ ti ≤ Ti. We thus rep-
resent “time” in the global system S by a clock vec-
tor (t1, . . . , tN). Let us build algorithm A2 from A1 by
the following changes

i. initialize (t1, . . . , tN) to (0, 0, . . . , 0)

ii. make equations (11) and (13) depend on local
time, by changing Oi into Oi(ti),

iii. add a choice in the while loop at step 2 between
updating a message or making time ti evolve
(ti := ti +1) in some system Si, provided ti < Ti,

iv. replace the stop condition at step 2 by “all clocks
ti have reached their final value Ti, and no mes-
sage can be changed.”

Change iii expresses that a system Si may change while
A2 is running. Like A1, A2 converges and yields the
S ′

i , ΠVi
[
∧

j Sj(Tj)], i.e. the same result as A1 applied
to final systems Si(Ti). This framework is particularly
interesting when systems Si(ti) refine their local state
sets as they collect observations.

3 Distributed dynamic systems

3.1 Distributed dynamic systems

This section extends the previous framework by replac-
ing static components Si by dynamic systems : local
variables become state variables, and a component Si

is a finite state machine on these variables [8, 7]. More
precisely, recalling definitions of [1]

Definition 1 A dynamic system S is a triple (V , I, T)
where V is a variable set, I ⊆ DV a set of initial states,
and T a finite set of transitions or tiles defined on
variables of V and on a label set Σ. A tile t ∈ T is
a 4-tuple (Vt,v

−
t

, σt,v
+
t

) where Vt ⊆ V is a variable
set, v−

t
,v+

t
∈ DVt

are respectively the pre-state and
the post-state of t (i.e. tuples of values, one for each
element of Vt), and σt ∈ Σ is a label.

The composition of dynamic systems extends the defi-
nition of section 2. Let Si = (Vi, Ii, Ti), i = 1, 2, then
S = S1|S2 is defined by

S = (V , I, T) = S1|S2 ⇔







V = V1 ∪ V2

I = I1 ∧ I2

T = T1 ∪ T2

(14)

’’t ’’’t ’ t’

t t’ t t’ t
a

bB :

A :

Figure 4: Partial order of events with several occurences
of the same tile.

Runs of such systems are obtained by successively con-
necting tiles to a state v of S. Tile t is firable at state
v iff ΠVt

(v) = v−
t

. By firing t, only variables Vt are
changed in v : they take the new value v+

t
, which de-

fines the next state v′ of S. It is not convenient to
represent runs as sequences of events, as is the case
usually : the consecutive firings of tiles t and t′ may
impact different variable sets (Vt∩Vt′ = ∅). These two
firings (or events) are said to be concurrent : the order
in which they occur is meaningless to S. To capture
this phenomenon, we adopt the so-called true concur-
rency semantics (TCS) to describe trajectories of S,
which represent runs as partial orders of events. Fig. 4
depicts an example of a run in these semantics : the first
firings of t′ and t′′ are concurrent (these two events can
be inverted). By contrast, the first firing of t′′ is not
concurrent with the second firing of t′ since the former
is followed by a firing of t which preceeds the latter.

As detailed in [1], the representation of a run ω in the
TCS is given by a tuple ω = (ωV , V ∈ V) of traces
ωV , where ωV is the initial value of V followed by the
sequence of transitions that have operated on V . For

the example of fig. 4, this yields

(ωA, ωB) where

{

ωA = (a, t, t′, t, t′, t)
ωB = (b, t, t′′, t′′′, t, t′′, t)

(15)

Observe that no information is lost ; the kth firing of
t in ωA necessarily coincides with the kth firing of t

in ωB because Vt = {A, B}, which identifies shared
events. The modular processings we present later ac-
tually operate on extended runs (ω,≺), where ≺ is a
partial order relation on events of ω extending the par-
tial order of ω alone.

3.2 Factorization property on runs

To a dynamic system S = (V , I, T) we associate a
static system S̄ = (V̄ , Ō) describing its possible trajec-
tories in the true concurrency semantics. Variables of S̄
are defined by V̄ = {ΩV : V ∈ V}, where ΩV takes val-
ues in DΩV

= DV × (TV)∗, with TV = {t ∈ T , V ∈ Vt}.
So a value ωV of ΩV is a possible history of variable V

alone (as ωA and ωB above). The state set Ō of S̄ is
composed of all (finite size) runs of S, handled as pairs
(ω,≺) where ω is a tuple (ωV , V ∈ V) and ≺ is exactly
the partial order described by ω alone.

Assuming S = (V , I, T) = S1| . . . |SN , we define com-
ponents S̄i = (V̄i, Ōi) in a similar manner, except
that we first extend the transition sets of each Si.
Specifically, V̄i = {ΩV : V ∈ Vi}, but Ōi is com-
posed of trajectories (ΩVi

,≺i) of the extended system
Se

i = (Vi, Ii, T e
i). The extended transition set is given

by T e
i = {t ∈ T : Vt ∩ Vi 6= ∅}, i.e. it incorporates all

transitions of other components Sj which have an ac-
tion on variables of Si. Trajectories of Se

i are built by
connecting tiles as if they were “truncated” to variables
of Vi (see fig. 7 in [1]).

The composition of systems S̄i is best defined through
the composition of local runs. Let (ω1,≺1), (ω2,≺2) be
two local runs, their composition2 is given by

(ω1,≺1)∧̄(ω2,≺2) = P [(ω1 ∧ ω2,≺1 ∧ ≺2)] (16)

where ω1∧ω2 glues the tuples provided they coincide on
shared variables (as in section 2), partial order ≺1 ∧ ≺2

is the smaller extension of both ≺1 and ≺2 on events
of ω1 ∧ ω2, and operator P discards pairs (ω,≺) not
corresponding to a valid partial order of events.

In [1], the following important result is stated :

S = S1| . . . |SN ⇒ S̄ = S̄1| . . . |S̄N (17)

It expresses that the trajectory set of S factorizes as
a product of local trajectory sets. As a consequence,
one can hope handling S̄ or its subproducts by means
of local computations, as in section 2.

2This equation is slightly abusive since the right hand side
term may be empty. One must read it in the sense of singleton
composition.

To do so, one needs a notion of projection on runs
(ω,≺). Π̄V′(ω,≺) is defined as the pair (ω′,≺′), where
ω′ = (ωV : V ∈ V ′) is the restriction of ω to variables
of V ′, and ≺′ the restriction of ≺ to events appearing
in ω′. It can be shown that ∧̄ and operators Π̄V satisfy
axioms (3,4,5,9).

4 Distributed diagnosis algorithms

We formulate the diagnosis problem in a very simple
way : system S runs, and an observer collects transition
labels of events occuring in S. Labels are collected as
a sequence L = (o1,o2, . . . ,on) which is a linear exten-
sion of the partial order of labels produced by S. The
goal is to recover all hidden trajectories of S that could
have produced L. We focus on the special case where
observations are collected at different locations on S.
Specifically, for S = S1| . . . |SN , we assume a local ob-
server collects labels produced by component Si. Ob-
servations thus take the form of a tuple (L1, . . . ,LN)
of label sequences, Li = (oi,1, . . . ,oi,Ti

), 1 ≤ i ≤ N .
Due to the distributed collection of observations, the
interleaving of these sequences is lost.

4.1 Asynchronous centralized diagnosis

Let us first ignore the factorization of S and assume tile
labels are collected as a single sequence L. Trajectories
explaining L can be obtained by a guided simulation
principle. Let A denote an “active set” of runs of S
matching part of observations. A is initialized to inital
states of S : A = {(v) : v ∈ I}. Let us then recursively
update A by

A := (A \ {ω}) ∪ Ext(ω) (18)

where ω is any run of A. The extension Ext(ω) of a
run amounts to connecting all possible tiles matching
the next observation in L :

Ext(ω) , {ω · t : t ∈ T , ω � t, σt = o|ω|+1}(19)

ω � t and ω · t respectively denote the connectibility
and the connection of tile t to run ω, and |ω| is the
number of tiles in ω. Obviously, the recursion (18)
has a unique stable point, which is the solution to the
diagnosis problem.

4.2 Distributed diagnosis

For a distributed system and distributed observations,
the centralized approach above is inappropriate : it
handles global runs of S, and thus is faced to state
explosion. Fortunately, if runs of S are restricted to
those matching observations (L1, . . . ,LN), the factor-
ization result (17) still holds. Therefore one can aim at
building the solution set to the diagnosis problem in a
factorized form.

To do so, we propose a distributed supervision architec-
ture, with a local supervisor on top of each component

Si, knowing obervations Li, and in charge of building
the projection on variables Vi of the solution set, i.e.
runs of S explaining all observations. Local supervisors
must of course coordinate their work to do so.

The structure of this procedure can be outlined simply.
Assume the local supervisor of Si can directly select in
Ōi local runs that match its local observations Li. Let
us denote this set by Ai. Then algorithm A1 provides
the appropriate strategy to gather all these local con-
straints and yield local projections of the solution set :
A′

i = Π̄Vi
(A1∧̄ . . . ∧̄AN). Unfortunately, sets Ai are

not directly accessible : these sets of (local) runs must
be built recursively, by successive extensions as in (18).
Each time a run ωi of Ai is extended, to match one
more local observation, a new constraint is incorpo-
rated to Ai. Hence we are exactly in the setting of
algorithm A2 where local state sets change in time.

Let us denote by |ω̄i|i the number of tiles of Ti in run
ω̄i, and define local extensions as

Exti(ω̄i) = { ω̄i · ti : ti ∈ Ti, ω̄i � ti,

σti
= oi,k+1, k = |ω̄i|i} (20)

Exte
i (ω̄i) = { ω̄i · t : t ∈ T e

i \ Ti, ω̄i � ti} (21)

where � and · in (21) check connectibility over variables
of Vi only.

Algorithm A3 (Supervisor of Si)

1. initialization :

Ai := {((vi), ∅) : vi ∈ Ii} (22)

Ai := (Exte
i)

∗(Ai) (23)

Mi,j := DV̄i∩V̄j
(24)

2. repeat until no message can be changed and no
more run in Ai can be extended

(a) on decision to extend a local run, choose
ω̄i ∈ Ai∧̄(∧̄k∈N(i)Mk,i) such that |ω̄i|i <

Ti, if any, then

Ai := (Ai \ {ω̄i}) ∪ (Exte
i)

∗[Exti(ω̄i)] (25)

(b) on decision to update message Mi,j ,

Ãi := Ai∧̄(∧̄k∈N(i)\jMk,i) (26)

Mi,j := Π̄Vi∩Vj
(Ãi) (27)

3. at termination :

A′
i = Ai∧̄(∧̄k∈N(i)Mk,i) (28)

Although the termination criterion is not local in A3,
termination can be detected with a distributed proto-
col [14], which makes A3 a completely distributed and

asynchronous procedure. A more bothering point con-
cerns (25) since the supervisor of Si must compute the
influence of all possible extensions in other systems.
At the expense of 1/ larger sets Ai, with many use-
less elements, and 2/ knowledge of extended systems
Se

i . It seems more realistic to assume that the local
supervisor of Si only knows tiles Ti, and thus cooper-
ates with neighbor supervisors to recursively build the
set Ai. Specifically, extensions performed in Aj and
impacting variables Vi ∩ Vj must be proposed as pos-
sible continuations for runs in Ai. An improvement of
A3 implementing this mechanism, and thus handling
minimal sets Ai of local runs, is described in [2].

5 Conclusion

We have proposed a framework to handle large dis-
tributed dynamic systems as a graph of interacting
components. This framework makes a tight connection
between dynamic systems on the one hand, and classi-
cal models like Markov fields or Bayesian networks on
the other hand. The common feature is the modular
definition of systems, by composition of local specifi-
cations on subsets of variables, from which a separa-
tion property is derived. The separation property on
Markov fields induces a notion of sufficient statistics,
which forms the basis of modular algorithms. By ex-
tension, a similar notion can be defined for distributed
dynamic systems, which opens the way to distributed
monitoring algorithms. The crucial advantage of dis-
tributed algorithms is their ability to work on large
systems by local computations : the global state of the
system is never handled. This is certainly a key to the
state explosion phenomenon.

The parallel between the static and the dynamic frame-
works allows to translate a large family of modular al-
gorithms developed for Markov fields into distributed
algorithms for distributed dynamic systems. We have
presented one of them here, to solve a distributed di-
agnosis problem, assuming the supervised system has
a tree structure. But potential extensions are numer-
ous, for example to deal with systems which do not
have a tree structure (this is the default situation with
Markov fields). Let us mention for example the cele-
brated turbo-decoding algorithms (dedicated to turbo
error correcting codes, for digital communications),
which are excellent approximate estimation algorithms
for complex fields. They have a natural counterpart on
the side of distributed dynamic systems.

Finally, let us mention that the present framework has
been successfully applied to perform distributed failure
diagnosis for SDH telecommunication networks, see the
MAGDA project at http://magda.elibel.tm.fr for
details.

References

[1] E. Fabre, “Compositional Models of Distributed
and Asynchronous Dynamical Systems,” CDC’02.

[2] E. Fabre, “Distributed Diagnosis for Large Dis-
crete Event Dynamic Systems,” in preparation.

[3] J. Pearl, “Fusion, Propagation, and Structur-
ing in Belief Networks,” Artificial Intelligence, vol. 29,
pp. 241-288, 1986.

[4] S.L. Lauritzen, D.J. Spiegelhalter, “Local compu-
tations with probabilities on graphical structures and
their application to expert systems,” J. Royal Statisti-
cal Society, Series B, vol. 50, n. 2, pp. 157-224, 1988.

[5] E. Fabre, A. Benveniste, C. Jard, L. Ricker,
M. Smith, “Distributed state reconstruction for dis-
crete event systems,” proc. 39th Conf. on Detection
and Control, Sydney, dec. 2000.

[6] A. Benveniste, E. Fabre, S. Haar “Markov Nets :
Probabilistic Models for Distributed and Concurrent
Systems,” Inria research report n. 4253, sept. 2001.

[7] J. Esparza, S. Römer, “An unfolding algorithm
for synchronous products of transition systems,” in pro-
ceedings of CONCUR’99, LNCS 1664.

[8] A. Arnold, “Finite Transition Systems,” Prentice
Hall, 1992.

[9] A. Aghasaryan, E. Fabre, A. Benveniste,
R. Boubour, C. Jard, “Fault Detection and Diagno-
sis in Distributed Systems : an Approach by Partially
Stochastic Petri nets,” Journal of Discrete Event Dy-
namic Systems, special issue on Hybrid Systems, vol. 8,
pp. 203-231, June 98.

[10] A. Benveniste, B.C. Levy, E. Fabre, P. Le Guer-
nic, “A Calculus of Stochastic Systems : Specification,
Simulation, and Hidden State Estimation,” Theoretical
Computer Science, no. 152, pp. 171-217, 1995.

[11] R. Debouk, S. Lafortune, D. Teneketzis, “Co-
ordinated decentralized protocols for failure diagnosis
of discrete event systems,” Journal of Discrete Event
Dynamic Systems : Theory and Applications, vol. 10,
no. 1-2, pp. 33-86, Jan. 2000.

[12] P. Baroni, G. Lamperti, P. Pogliano, M. Zanella,
“Diagnosis of large active systems,” Artificial Intelli-
gence 110, pp. 135-183, 1999.

[13] L. Rozé, M-O. Cordier, “Diagnosis Discrete-
Event Systems: Extending the Diagnoser Approach to
Deal with Telecommunication Networks,” J. of Dis-
crete Event Dynamic Sytems: Theory and Applica-
tions, vol. 12, pp. 43-81, 2002.

[14] M. Raynal, “Distributed Algorithms and Proto-
cols,” Wiley & Sons, 1988.

