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ABSTRACT
Differential Algebraic Equation (DAE) systems constitute
the mathematical model supporting physical modeling lan-
guages such as Modelica, VHDL-AMS, or Simscape. Unlike
ODEs, they exhibit subtle issues because of their implicit la-
tent equations and related differentiation index. Multi-mode
DAE (mDAE) systems are much harder to deal with, not
only because of their mode-dependent dynamics, but essen-
tially because of the events and resets occurring at mode
transitions. Unfortunately, the large literature devoted to the
numerical analysis of DAEs does not cover the multi-mode
case. It typically says nothing about mode changes. This
lack of foundations cause numerous difficulties to the existing
modeling tools. Some models are well handled, others are
not, with no clear boundary between the two classes. In this
paper we develop a comprehensive mathematical approach
to the structural analysis of mDAE systems which properly
extends the usual analysis of DAE systems. We define a
constructive semantics based on nonstandard analysis and
show how to produce execution schemes in a systematic way.

Keywords
Multi-mode systems, differential algebraic equations, DAE,
differential index, structural analysis, operational semantics,
nonstandard analysis

1. INTRODUCTION
Multi-mode DAE systems constitute the mathematical mo-

del supporting physical modeling languages such as Modelica.
Multi-mode DAE models can be represented as systems of
equations of the form

if γj(the xi and their derivatives)
do fj(the xi and their derivatives) = 0

(1)

where x1, . . . , xn denote the system variables, γj(. . . ) is a
predicate guarding the DAE fj(. . . ) = 0. The meaning is
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that, if γj has the value true, then equation fj(. . . ) = 0 has
to hold, otherwise it is discarded. In particular, when all the
predicates are the constant true, one obtains a single-mode
DAE, that is a standard DAE defined by the set of equations
fj(. . . ) = 0. When the functions fj have the special form
x′j − gj(x1, . . . , xn), one recovers the usual Ordinary Differ-
ential Equations (ODE) system x′j = gj(x1, . . . , xn). DAEs
are a strict generalization of ODEs, where the so-called state
variables x1, . . . , xn are implicitly related to their time deriva-
tives x′1, . . . , x

′
n. Finally, our modeling framework is fully

compositional, since systems of systems of equations of the
form (1) are just systems of equations (with eventually addi-
tional constraints connecting the different state variables).

Solving numerically single-mode DAEs faces the well
known issue of differentiation index [6], originating from the
possible existence of so-called latent constraints. Informally,
latent constraints in DAE systems are additional equations
obtained from the original equations fj(. . . ) = 0 by time
differentiation, assuming the existence of smooth enough
solutions for those extra equations to be well-defined. A
DAE has differential index n if one or more equations must
be differentiated n-times until the equations can be alge-
braically transformed to an ODE form with the xi as states.
In particular, ODEs are fully explicit differential equations
and are therefore DAEs of index 0. In practice, systems
with index greater than 1 are common (e.g., the DAE of a
pendulum in Cartesian coordinates has index 3) and higher
indexes are often encountered in common Modelica mod-
els. The Structural Analysis of DAE systems, such as the
Pantelides algorithm [14], is an abstract lightweight graph-
based analysis that constructively computes a “structural”
differentiation index which can be formally related to the
numerical differentiation index. Such structural analysis
is often performed as a pre-processing step before calling
numerical solvers.

Unlike single-mode DAE systems, however, no theory ex-
ists that supports the structural analysis of multi-mode DAE
systems. The usual approach consists in performing the
structural analysis for each mode. This, however, tells noth-
ing about how mode changes could be handled. Even more
so when mode changes occur in cascades.

Related Work: Multi-domain modeling languages that
support DAEs such as Modelica or VHDL-AMS, but also
proprietary languages such as Simscape have typically the
restriction that the number of equations cannot change during
simulation. Modeling tools have further restrictions, e.g. that
the DAE index cannot change during simulation, or that
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impulses occurring due to mode switches are not supported.
There are some proposals such as [11] that try to handle multi-
mode DAEs by using source to source model transformations
to bring the model in a form that is amenable to known
structural analysis and index reduction techniques. The class
of supported models is still however restricted, e.g., mode
changes leading to impulses cannot be handled. On the other
hand, there is a long tradition for mechanical systems to
handle contact problems and friction which lead to mode
changes, index changes and/or impulses. An overview of
the actual state of the art is for example given in [15]. It is,
however, not obvious how this domain-specific approach can
be generalized.

To our knowledge, the only work addressing the struc-
tural analysis of multi-mode DAE systems is [13]. While
this work contains interesting results regarding numerical
techniques to detect chattering between modes, it assumes
deterministic multi-mode systems where consistent resets
are already known for each mode. Such assumptions do not
hold in general, especially for a compositional framework
where one wants to assemble pre-defined physical compo-
nents. Besides, for complex systems, one often resorts to
simulations to better understand resets and mode changes.
In this work, we attempt to constructively build determin-
istic and causal execution schemes. In a sense, our analysis
could be regarded as a pre-processing step to perform prior
to simulating multi-mode DAE systems.

Contributions: In this paper, we consider systems of equa-
tions of the form (1) as a core framework for multi-mode
DAE systems. This modeling framework is fully equational
and compositional. We define a constructive (small-step)
semantics for such framework by relying on nonstandard
analysis [10, 1]. We handle in a unified way, discrete and
possibly impulsive mode changes on one hand, and purely
continuous evolution within one mode on the other hand.
This makes it possible to formally define which systems a
compiler should accept/refuse. We finally explain how to
generate an execution scheme from the nonstandard con-
structive semantics. We illustrate the different steps of our
analysis on a simple, yet challenging, example we explain
next.

Detailed discussions and more examples are available in
the companion technical report [2].

2. A SIMPLE CLUTCH
We consider a simple, idealized clutch involving two ro-

tating shafts where no motor or brake are connected. The
dynamics of each shaft i is modeled by ω′i = fi(ωi, τi) for
some functions fi, where ωi is the angular velocity, τi is
the torque applied to the shaft i, and ω′i denotes the time
derivative of ωi. Depending on the value of the input Boolean
variable γ, the clutch is either engaged (γ = t) or released
(γ = f). When the clutch is released, the two shafts rotate
independently: no torque is applied to them (τi = 0). When
the clutch is engaged, it ensures a perfect join between the
two shafts, forcing them to have the same angular velocity
(ω1 − ω2 = 0) and opposite torques (τ1 + τ2 = 0). If the
clutch is initially released, then at the instant of contact
the relative speed of the two rotating shafts jumps to zero
and, as a consequence, an impulse generally occurs on the
torques. This idealized clutch model is not supported by the
existing Modelica tools at the date of this writing—we later

give explanations about what the difficulty is. The clutch
model is summarized below.

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

if γ do ω1 − ω2 = 0 (e3)
and τ1 + τ2 = 0 (e4)

if not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

(2)

We first analyze separately the model for each mode of the
clutch (Section 2.1). Then, we discuss the difficulties aris-
ing when handling mode changes (Section 2.2). Finally, we
propose a global comprehensive analysis in Sections 2.3 and
2.4. For convenience, we recall basic notions of nonstandard
analysis in Section 2.3.

2.1 Separate Analysis of Each Mode
In the released mode, when γ is false in System (2), the

two shafts are independent and one obtains the following
two independent ODEs for ω1 and ω2:

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

τ1 = 0 (e5)
τ2 = 0 (e6)

(3)

In the engaged mode, however, γ holds true, and the two
velocities and torques are algebraically related:

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

ω1 − ω2 = 0 (e3)
τ1 + τ2 = 0 (e4)

(4)

Due to the additional constraints (e3) and (e4), System (4)
is no longer an ODE, but rather a DAE. Notice in particular
that the derivatives of the torques are not explicitly given
and that the state variables ωi have to satisfy the extra
constraint (e3) as long as the system evolves in that mode.

If one is able to uniquely determine the leading variables
(ω′1, ω

′
2, τ1, τ2) given a consistent value for the state vari-

ables (ω1, ω2), one could regard the DAE as an “extended
ODE” [17] where an integration step is performed to update
the current positions (ω1, ω2) using the computed values
for their derivatives (ω′1, ω

′
2). Here, by consistent values for

(ω1, ω2) we mean a pair that satisfies (e3).
It turns out that this does not work for System (4) as is. To

intuitively explain what the problem is, we move to discrete
time by applying an explicit first order Euler scheme with
constant step size δ > 0:

ω•1 = ω1 + δ · f1(ω1, τ1) (eδ1)
ω•2 = ω2 + δ · f2(ω2, τ2) (eδ2)

ω1 − ω2 = 0 (e3)
τ1 + τ2 = 0 (e4)

(5)

where ω•(t) =def ω(t + δ) denotes the forward time shift
operator by an amount of δ. Suppose we are given consistent
initial values for ω1 and ω2 satisfying (e3). Attempting to
apply the Euler scheme (5) fails in that, generically, there
is no unique values for the ω•i . Indeed, we have only three
equations eδ1,eδ2, and e4 for four unknowns, τ1, τ2, ω•1 , and ω•2 .
However, since System (5) is time invariant, and assuming
that the system remains in the engaged mode for at least δ
seconds, there exists an additional latent constraint on the
set of variables (ω1, ω2, τ1, τ2, ω

•
1 , ω

•
2), namely

ω•1 − ω•2 = 0 (e•3) (6)

obtained by shifting (e3) forward. One can now use Sys-
tem (5) augmented with Eq. (6) to get an execution scheme
for the engaged mode of the clutch (see Exec. Sch. 1 below).
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Execution Scheme 1 System (5)+Eq. (6).

Require: consistent ω1 and ω2, i.e., satisfying (e3).
1: Solve {eδ1, eδ2, e•3, e4} . 4 equations, 4 unknowns
2: (ω1, ω2)← (ω•1 , ω

•
2) . Update (ω1, ω2)

3: Tick . Move to next discrete step

Since the new values of the state variables satisfy (6)
by construction, the consistency condition is met at the
next iteration step (should the system remains in the same
mode). The implicit assumption behind Line 1 in Exec. Sch. 1
is that solving {eδ1, eδ2, e•3, e4} always returns a unique set
of values. In our example, this is true in a “generic” or
“structural” sense,1 because we are solving four algebraic
equations involving four dependent variables.

Observe that the same analysis could be applied to the orig-
inal continuous time dynamics (System (4)) by augmenting
the latter with the following latent differential equation:

ω′1 − ω′2 = 0 (e′3) (7)

obtained by differentiating (e3)—since (e3) holds at any
instant, (e′3) follows as long as the solution is smooth enough
for the derivatives ω′1 and ω′2 to be defined. The result-
ing execution scheme is given in Exec. Sch. 2 (compare
with Exec. Sch. 1).

Execution Scheme 2 System (4)+Eq. (7).

Require: consistent ω1 and ω2, i.e., satisfying (e3).
1: Solve {e1, e2, e′3, e4} . 4 equations, 4 unknowns
2: ODESolve (ω1, ω2) . Update (ω1, ω2)
3: Tick . Move to next step

Line 1 is identical for the two schemes and is assumed
to give a unique solution, generically. It fails if one omits
the latent equation (e′3). In Exec. Sch. 1, getting the next
values for the ω1 and ω2 was straightforward. In Exec. Sch. 2,
however, the derivatives (ω′1, ω

′
2) are first evaluated, and

then used to update the state by using an ODE solver (here
denoted by ODESolve). Note that, when considering an exact
mathematical solution, if ω1 − ω2 = 0 holds initially and
ω′1 − ω′2 = 0, then the linear constraint (e3) will be satisfied
for all positive time.

Exec. Sch. 2 is known in the literature as the method of
dummy derivatives [12]. It requires adding the (smallest
set of) latent equations needed for Line 1 of the execution
scheme to become solvable and deterministic. The maximal
amount of successive differentiation operations needed in
obtaining all the latent equations is called the differentiation
index [6], or simply the index. In Exec. Sch. 2, differentiating
(e3) once was sufficient. If, e.g., the second derivative of the
state variables were involved in the system model, then, two
successive differentiations would be needed. Observe that
both execution schemes 1 and 2 rely on an algebraic equation
system solver.

To conclude this section, we briefly discuss the initialization
problem. Unlike ODE systems, the initialization problem is
far from trivial for DAE systems, even more so when the state
variables have to satisfy additional user-defined constraints.
This is in fact often the case for multi-mode systems since

1See Section 3.1 for what is formally meant by “structural”
in this context.

the system has to start a new mode from a previously known
state. For the clutch example, if one considers System (4) as a
standalone DAE, the initialization is performed as indicated
in Exec. Sch. 3.

Execution Scheme 3 Initialization of System (4)+Eq. (6).

1: (ω1, ω2, τ1, τ2, ω
′
1, ω
′
2) ← Solve{e1, e2, e3, e′3, e4}

. 5 equations, 6 unknowns

Observe that we have 6 unknowns and only 5 equations, so
we are left with 1 degree of freedom—mathematically speak-
ing, the set of all initial values for the 6-tuple of variables is
a manifold of dimension 1. For example, one can freely fix
the initial common rotation speed so that (e3) is satisfied.
Notice that the latent equation (e′3) is mandatory in order
to determine the initial value of the torques τi.

2.2 Mode Transitions
In an attempt to reduce the full clutch model to the analysis

of the DAE of each mode, one hopes that the handling of
a mode change reduces to applying the initialization given
in Exec. Sch. 3. If one was to treat resets at mode changes
as initializations, it would mean that the clutch system is
nondeterministic precisely because of the extra degree of
freedom of Exec. Sch. 3. In contrast, the physics tells us that
the state of the system should be entirely determined when
the clutch is engaged after being released. This, therefore,
comforts the intuition that resets at mode changes are not
mere initializations.

If, however, one considers the known values of the state vari-
ables “immediately” before switching to the engaged mode,
the system becomes over-determined as generically the equa-
tion (e3) won’t be satisfied. In this case, it is unclear what
constraint should be relaxed and why.

This is precisely why this clutch model cannot be simulated
as is with Modelica tools. A work around would be to
compute and specify reset values by hand in the model.
Such approach, however, impairs modularity since significant
additional manual work is needed when building the clutch
model from the two separate models for each mode.

We present next our approach to tackle such problems
using nonstandard analysis.

2.3 Nonstandard Semantics
While the meaning of the clutch model in System (2) is

fully clear when the system evolves continuously inside one
of the two modes, the model does not say explicitly what
happens at mode changes. We are in particular interested in
two specific issues:

• (i) in case of discontinuous trajectories, what meaning
one can give to the equations involving derivatives
and what role those equations play in determining the
discontinuity gap.

• (ii) if an event enables new constraints that make the
system overdetermined, then what constraints one has
to relax (and why) for the simulation to proceed.

To answer those questions, we use the nonstandard anal-
ysis [10] and in particular the nonstandard semantics of
hybrid systems introduced in [1]. Nonstandard reals, a.k.a.
hyperreals, denoted by ?R, extend the usual reals with in-
finitesimals and infinite numbers. A totally ordered field,
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?R, could be constructed from the reals very much like R is
constructed from the rationals using Cauchy sequences. A
nonstandard real could be regarded as an infinite, not nec-
essarily converging, sequence of real numbers. For instance,
any real number a is a nonstandard real since it defines the
sequence {a, a, a, . . . }. A hyperreal ε is said to be infinitesi-
mal if |ε| < r for all positive real numbers r. For instance,
the sequences of {n−1}n∈N∗ and {n−2}n∈N∗ are (positive)
infinitesimals.

Functions over the reals can be internalized as functions
over the hyperreals by considering the constant sequence
formed by the same function. If x : t 7→ x(t) denotes a func-
tion defined over R, and ∂ = {∂n} denotes an infinitesimal
then one defines ?x(t+ ∂) as the infinite sequence formed by
x (t+ ∂n). To simplify the notations, we will simply write
x instead of ?x whenever the distinction is clear from the
context. We now formally define the immediate next value
of a function we used earlier for the clutch example. Ob-
serve that such notion cannot be defined over the reals since
bounded open sets do not have extrema over the reals.

Definition 1 (Forward Shift). Let x be a real val-
ued function defined over [t, s) for some t, s ∈ R, t < s. Let
∂ denote a positive infinitesimal. We define x• ∈ ?R as

x•(t) =def x(t+ ∂) .

Observe that t + ∂ < s for any positive infinitesimal ∂
(by definition of the infinitesimals). Thus, for any positive
infinitesimal ∂, one can find an equivalent positive infinitesi-
mal such that almost all the elements of its sequence are in
[0, s− t).2 Notice also that the definition of the forward shift
is dependent on the infinitesimal ∂.

Solutions of multi-mode DAEs may be non differentiable
and even non continuous at events of mode change. To give
a meaning to the derivative x′ at a point t of a function
x : t 7→ x(t), we will define x′ as the nonstandard difference
quotient of x at t. For a fixed nonzero infinitesimal ε, the
nonstandard difference quotient is formally defined as

x(t+ ε)− x(t)

ε
. (8)

Such definition is motivated by the role the difference quotient
plays in characterizing differentiable functions in the classical
sense: a real (total) function f is differentiable at a ∈ R if
and only if there exists a real number b such that

f(a+ ε)− f(a)

ε
≈ b

for all non zero infinitesimals ε (See for instance Proposition
I.3.5 in [10]), where u ≈ v means that u− v is infinitesimal.

In this paper, we restrict our attention to simulating the
system when time moves forward. Thus, we consider that
the system is at a known finite state and the goal of the
simulation is to compute its next (in time) state, that is
the next values of its state variables. This means that we
can restrict our attention to right derivatives, and thus to
positive infinitesimals in Eq. (8).

Substituting x′(t) by the expression of Eq. (8), for a pos-
itive infinitesimal ∂, allows to extend the definition of the
derivation operator even if x is non differentiable in the
classical sense at t, in particular at events of modes change.

2We refer the reader to the companion report [2] for more
details on the meaning of “equivalent” and “almost”.

Notice that by doing so, one obtains a difference algebraic
equations (dAE) system.3

Let us for instance examine the multi-mode dAE (mdAE)
obtained from System (2) by replacing the ω′i by their corre-
sponding (positive) difference quotients for a fixed ∂:



ω•
1−ω1

∂
= f1(ω1, τ1) (e∂1 )

ω•
2−ω2

∂
= f2(ω2, τ2) (e∂2 )

if γ do ω1 − ω2 = 0 (e3)
and τ1 + τ2 = 0 (e4)

if not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

(9)

Following the reasoning of Section 2.1, one sees at once that
within each mode, one obtains a discrete system very much
like the explicit Euler scheme of Section 2.1, except that
the step size is now infinitesimal and that the variables are
all nonstandard reals. The crucial difference is that the
nonstandard system will allow us to carefully analyze what
happens at events of modes change. Recall that the state
variables are ω1, ω2 whereas the leading variables are now
γ, τ1, τ2, and ω•1 , ω

•
2 . Notice that we now add the guard γ

to the set of leading variables. The rationale is that γ is an
input variable and is not evaluated at the previous instant
(unlike the state variables ω1, ω2). Since γ is a predicate, it
must be evaluated first (causality principle).

Case 1. If γ=f, equations (e∂1 ), (e∂2 ), (e5) and (e6) are
enabled, and can be evaluated, one at a time, in the following
order: (e5) sets τ1 to 0; (e6) sets τ2 to 0; then (e∂1 ) is solved
to compute ω•1 ; and finally (e∂2 ) is solved to compute ω•2 .
Case 2. If γ=t, equations (e3) and (e4) become enabled

with the notable difference that (e3) involves the state vari-
ables ωi (unlike (e5) and (e6) in the previous case where
only the τi are involved). We discuss below the two possible
subcases.

Case 2.1. If ω1 − ω2 = 0, then we are left with equations
(e∂1 ), (e∂2 ), (e4) with dependent variables ω•1 , ω

•
2 , τ1, τ2, which

brings us back to the underdetermined case we discussed
about System (5): we add the latent equation ω′1 − ω′2 =
0, which, when transformed to its nonstandard form and
simplified by (e3), gives ω•1 − ω•2 = 0. Note that ω1 − ω2 = 0
provably holds if we were already in the same mode at the
previous instant. Hence, this case gives the nonstandard
version of the continuous evolution within the engaged mode.

Case 2.2. If ω1 − ω2 6= 0, the system is overdetermined.
A first idea would be to reject this model. This would be
unfortunate as the original (standard) model seemed natural
for the clutch. To overcome this issue, we defer the enabled
equation (e3) (which made the system overdetermined) to
an immediate next instant t+ ∂. This amounts to replacing
the equation (e3) by its forward shift (e•3) : ω•1 − ω•2 = 0. By
doing so, one hopes that the system recovers a consistent
initial condition for the new mode in an infinitesimal time
starting from its previous non consistent state.

The corresponding nonstandard execution scheme is sum-
marized below (Exec. Sch. 4). We use the variable ∆ to
encode the context : that is the equations known to be sat-
isfied by the state variables. At each tick, the context gets
eventually updated to account for the equations that the
new state satisfies. The procedure Reset solves the system

3Throughout this paper, we consistently use letters “D” and
“d” to refer to “Differential” and “difference”, respectively.
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of equations in its argument to determine the reset values
of the state variables (the computation is detailed next in
Section 2.4). The procedure Solve, solves the (algebraic)
system to determine the new values of the leading variables.

Execution Scheme 4 for Nonstandard System (9).

Require: ω1 and ω2.
1: if γ then
2: if e3 /∈ ∆ then
3: (ω•1 , ω

•
2) ← Reset

{
e∂1 , e

∂
2 , e
•
3, e4

}
4: Tick: ∆← ∆ ∪ {e3}
5: else
6: (τ1, τ2, ω

•
1 , ω

•
2) ← Solve

{
e∂1 , e

∂
2 , e
•
3, e4

}
7: Tick: ∆ unchanged

8: else
9: (τ1, τ2, ω

•
1 , ω

•
2) ← Solve

{
e∂1 , e

∂
2 , e5, e6

}
10: Tick: ∆← ∆ \ {e3}

Observe that Exec. Sch. 4 would work without changes if
the guard γ was a predicate on the state variables ω1, ω2.

2.4 Standardization
Exec. Sch. 4 cannot be executed as is since it involves non-

standard reals. Thus, to recover executable code over the real
numbers, a supplementary standardization step is needed. Re-
call that any finite nonstandard real can be written uniquely
as a sum of a real number and an infinitesimal. For a finite
nonstandard real x, we will denote by st(x) ∈ R its real
(or standard) part. The standardization procedure aims at
recovering the standard parts of the leading variables from
their nonstandard version. We distinguish two cases: contin-
uous evolutions within each mode, assuming the sojourn time
in each mode is not reduced to a single point, and discrete
evolutions at events of mode change.

Standardization within continuous modes: If x : t 7→ x(t),
t ∈ [s, p), denotes the real continuous solution at a given
mode, then, if it exists, such solution is in particular right
differentiable for all t in [s, p). Thus, for all t ∈ [s, p), there
exists a real number x′(t) ∈ R infinitely close to the difference
quotient (x• − x)/∂. In this case, we show that e∂1 and e∂2
standardize as e1 and e2 respectively. In addition, for the
engaged mode, where the DAE has index 1, the pair (e3), (e•3)
standardizes as the pair (e3), (e′3). Thus, the (standard)
latent equation (e′3) is recovered as expected.

Standardization at the instants of mode change: Suppose
we have an event of mode change at time t, meaning that
γ(t) 6= γ(•t).

For the clutch model, the transition γ : t → f does not
result in an overdetermined system. Therefore, there is no
need to compute any resets for this transition. Indeed, in this
case, the standardization of the continuous released mode
is sufficient. The transition γ : f→ t is more involved. As
established in Exec. Sch. 4, in order to compute the reset
values, we use the system of 4 equations {e∂1 , e∂2 , e•3, e4} to
determine the leading variables (τ1, τ2, ω

•
1 , ω

•
2). In particular,

from e∂i , we get

ω•i − ωi
∂

= fi(ωi, τi), i = 1, 2. (10)

Assuming ω1 − ω2 6= 0, since ω•1 − ω•2 = 0 holds, the right

difference quotient

(ω•1 − ω•2)− (ω1 − ω2)

∂
= f1(ω1, τ1)− f2(ω2, τ2)

cannot be a finite nonstandard real because if it was, that
would mean that the function ω1 − ω2 is right continuous
which contradicts with the above assumption. Thus, the
nonstandard real f1(ω1, τ1) − f2(ω2, τ2) is necessarily not
finite. However, we assumed continuous functions fi and we
started at a finite state (ω1, ω2). Thus, one of the torques τi is
infinite at t. And because of equation (e4), τ1 + τ2 = 0, both
torques are in fact infinite. This informal impulse analysis
can be formalized by abstracting variables by their magnitude
order with respect to the infinitesimal ∂. For instance, the
magnitude order of the finite hyperreals is zero, whereas the
magnitude order of an infinite (or impulse) of the form ∂−1r
for a finite non zero real number r is 1. (See Appendix A.1
for more details about the impulsive analysis).

It remains to compute the reset values for the state vari-
ables. To simplify our exposure, we assume that the fi are
linear in their arguments, i.e., fi has the following form,
where b1 and b2 are the inverse moments of inertia of the
rotating masses and a1 and a2 are damping factors divided
by the corresponding moment of inertia:

fi(ωi, τi) = aiωi + biτi . (11)

By symbolic manipulations, one finally gets

st(ω•i ) =
b2ω1 + b1ω2

b1 + b2
, (12)

that is the weighted arithmetic mean of ω1 and ω2. Eq. (12)
provides us with the reset values for the positions in the
engaged mode, which is enough to restart the simulation in
this mode. The actual impulsive values for the torques can
be discarded. The above direct rewriting technique is limited
to this linear case. We develop in Appendix A.2 a technique
that applies whenever Taylor expansions are available for the
functions fi.

As a final observation, instead of computing the exact stan-
dard part of ω•i , one could instead attempt to approximate
it by substituting ∂ with a small (but non infinitesimal) step
size δ. It would then be interesting to study more in depth
the numerical accuracy and convergence of such schemes.
We leave this as a future work.

Figure 1 shows a simulation of the clutch model where the
resets are explained above. One can see that the reset value
is, as one may expect physically, between the two values of ω1

and ω2 when γ : f→ t (at t = 5s), and that the transition
is continuous at the second reset (at t = 10s).

3. STRUCTURAL ANALYSIS
The definition of an operational semantics of mDAE sys-

tems is a challenging problem. The root cause of this difficulty
is that the classical structural analysis theory of DAE sys-
tems [6] does not apply because the set of active (or enabled)
equations evolve over time when the system switches from
one mode to another. In this section, we propose a novel
approach to this problem, based on a formalization of the
intuitions developed on the clutch example (Section 2).

As depicted in Figure 2, the method consists in several
steps. The first step consists in transforming the mDAE
system into a system of multi-mode difference Algebraic
Equations (mdAE) using the nonstandard interpretation of
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Figure 1: Simulation of the clutch model with re-
sets. Mode change f→ t occurs at t = 5s and mode
change t→ f occurs at t = 10s.
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Figure 2: Structural analysis of mDAE systems.

the derivatives. The second step applies Algorithm 5 (See
Section 3.3) to the mdAE system. The algorithm performs a
structural analysis resulting in a new mdAE system where
latent equations and a scheduling of blocks of equations
are made explicit. The last steps are standardization steps,
where the smooth dynamics in each mode, and the possi-
bly discontinuous/impulsive state jumps occurring at mode
changes are recovered from the latter mdAE system.

3.1 Structural Analysis of DAE Systems
As a background and to contrast the differences and the

inherent difficulties of mDAEs, we first recall the structural
analysis for DAE systems (single-mode) before extending it
to the multi-mode case.

Consider a system of smooth algebraic equations with n
equations and n dependent variables (unknowns) y1, . . . , yn:

fj(x1, . . . , xm, y1, . . . , yn) = 0, j = 1, . . . , n (13)

rewritten as F (X,Y ) = 0 where X and Y denote the vec-
tors (x1, . . . , xm) and (y1, . . . , yn), respectively, and F is the
vector (f1, . . . , fn). The Implicit Function Theorem (see,
e.g., Theorem 10.2.2 in [7]) states that, if (u, v) ∈ Rm+n is
a value for the pair (X,Y ) such that F (u, v) = 0 and the
Jacobian of F with respect to Y (denoted by ∇Y F ) at (u, v)
is nonsingular, then there exists, in an open neighborhood
U of u, a unique set of functions G such that v = G(u) and
F (w,G(w)) = 0 for all w ∈ U . In words, Eq. (13) uniquely
determines Y as a function of X, locally around u. Solving
for Y , given F and a value u for X, requires forming ∇Y F
as well as inverting it.

Structural BTF decomposition: One could instead avoid
forming ∇Y F by focusing on its structural nonsingularity,
which only exploits the incidence graph GF of system F (GF
is the bipartite graph having F]Y as set of vertices and an
edge (f, y) if and only if variable y occurs in function f).
A square matrix is said to be structurally nonsingular if it
remains almost everywhere4 nonsingular when its nonzero
coefficients vary over some neighborhood. It has been shown
(see for instance [14, 12, 16, 17]) that the Jacobian ∇Y F is
structurally nonsingular if and only if there exists a bijective
assignment ψ : Y 7→F such that (ψ(y), y) is an edge of GF
for every y∈Y . Having this bijection we turn GF into a
directed graph ~GF by fixing the orientation z→ψ(y)→y for
every z 6=y such that (ψ(y), z) ∈ GF . The strongly connected

components of ~GF are called the blocks of F and are indepen-
dent from the particular choice for ψ. Blocks are partially
ordered by the order induced by ~GF . The set of blocks of
F equipped with this partial order is called the (structural)
Block Triangular Form (BTF) decomposition of F [8].

Index reduction: For DAE, determining the leading vari-
ables as functions of the state variables (assuming a consistent
initial value) requires finding all the latent equations, until
the augmented system becomes a semi-explicit DAE:{

X ′ = G(X,Y )
0 = F (X,Y )

with ∇Y F nonsingular, (14)

so that the Implicit Function Theorem applies to F . The
number of successive differentiations needed for getting this
form is called the differentiation index [6] and the whole
process is referred to as index reduction. Unlike ODEs, how-
ever, where the derivatives are explicitly given as functions of
the state variables, simulating a semi-explicit DAE requires
computing the Jacobian ∇Y F and inverting it. Such com-
putation will be performed eventually several times while
searching for latent equations.

In practice, such brute force approach is ineffective and
does not scale up. Tools handling DAE systems perform
instead a structural index reduction, by exploiting the struc-
tural BTF decomposition of the involved Jacobians using the
incidence graph of the system. The resulting procedure is
called the structural analysis of DAE systems [14, 12, 17]. It
may miss some numerical corner cases, but is computation-
ally much more attractive than the full numerical approach.
In the coming subsections we extend the structural analysis
to multi-mode systems, by handling continuous modes and
events with their resets as equal citizens.

3.2 Multi-Mode Systems
We now formally define the class of systems of multi-mode

Differential/difference Algebraic Equations we are concerned
with in this paper. Consider a finite set of variables X; for
x ∈ X and m ∈ N, the m-differentiation and m-shift of x
are denoted by x(′m) and x(•m), respectively. Let X(′m) and
X(•m) denote the set of all x(′m) and x(•m), for x ranging
over the set X of variables. We define:

X(′) =def

⋃
m∈N

X(′m) and X(•) =def

⋃
m∈N

X(•m) (15)

Definition 2. A mDAE ( multi-mode DAE system),
resp. mdAE ( multi-mode dAE system), s is a tuple of n

4Outside a set of values of Lebesgue measure zero.
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guarded equations:

s =def e1, . . . en
ei =def if γi do fi = 0

where: X is a finite set of variables; fi is a smooth scalar
function over X(′), resp. X(•); γi is a predicate over X(′),
resp. X(•).

In a mDAE or mdAE, a mode is a valuation in {f,t} of
its guards γi, i = 1, . . . n. In the guarded equation (ei) :=
(if γi do fi = 0), the equation fi = 0 is enabled if and only
if the guard γi holds. Otherwise the equation is disabled.
Thus, a mode enables a subset of the equations fi = 0 and
disables the others.

A mDAE s1 is transformed to an mdAE s2 through the
following syntactic transformation:

s2 =def s1
[
x′ is replaced by x•−x

∂

]
(16)

3.3 Constructive Semantics
The notion of constructive semantics was first introduced

in the context of reactive synchronous programming lan-
guages [5, 3, 4], where it played an important role regarding
causality and scheduling. Essentially, a constructive seman-
tics for a discrete time dynamical system consists of:

1. A specification of the set of atomic actions, which
are effective, non-interruptible, state transformation
operations. Executing an atomic action is often referred
to as performing a micro-step;

2. A specification of the correct scheduling of the set of
micro-steps constituting a reaction, by which discrete
time progresses, from the current instant to the next
one.

The principle of a constructive semantics is to decompose a
time step into a sequence of micro-steps. The effect of atomic
actions is to propagate knowledge regarding the statuses (not
evaluated, evaluated) and values of variables. For synchronous
languages, atomic actions are restricted to either (i) the
evaluation of a single equation, or (ii) control flow operations.

For mdAE systems, atomic actions comprise: (i) the eval-
uation of a guard; (ii) solving a block of numerical equations;
(iii) equation management operations, for instance, adding a
latent equation to a mdAE system.

Observe that solving systems of mixed logico-numerical
equations, involving a combination of guards and numerical
variables, is not considered as an atomic action. The con-
structive semantics presented in this Section, requires that
the evaluation of a guard γi precedes the resolution of the
equation body fi = 0.

3.3.1 Abstract Domain, Statuses and Contexts
The structural analysis method is based on an abstract

semantics, in which numerical values are ignored and no
numerical computation actually takes place. Instead, the
abstract semantics defines a computation as an evolving
knowledge regarding the statuses of the guards, variables
and equations of a mdAE, namely:

• A guard may be not evaluated, evaluated to true or
evaluated to false;

• A variable may be undefined, or defined;

• An equation may be not evaluated, disabled, enabled
but not evaluated, or evaluated.

Unlike mono-mode DAE, the set of equations describing the
current status of an mDAE are mode related and evolve
therefore dynamically. To capture this important fact, we
tag as irrelevant all those equations that are not currently
involved. Formally, the semantics defines computations in a
partially ordered finite domain of values D:

D = {i,u, f,t} with i < u < f,t (17)

The meaning of these values is as follows:

• The minimal element i is used to represent the fact that
a variable, a guard, or an equation is irrelevant, that
is not used to define the current status of the mdAE
system.

• Value u means that a variable, guard or equation has
not been evaluated yet. At the beginning of a time-step,
only state variables are known, and all other variables
are set to u, meaning that their numerical values are
not known yet.

• Maximal element t has different meanings, depending
on whether it applies to a variable, a guard or an
equation. In the case of a variable, it means that the
numerical value of the variable has been computed,
whatever it could be. For a guard, it means that the
guard has been evaluated to true. For an equation, it
means that the equation has been solved.

• Maximal element f also has different meanings, depend-
ing on whether it applies to a guard or an equation. In
the context of a guard, it means that the guard has
been evaluated to false. When it applies to an equation,
it means that the equation is disabled. Notice that this
value does not apply to variables.

The constructive semantics defines the allowed micro-steps
as a non-deterministic transition relation between abstract
states, called statuses.

Definition 3 (Status). The set V of S-variables is
defined by

V =def

{
x(•m)

}
x∈X,m∈N

∪ {γi}i=1...n ∪
{
e
(•m)
i

}
i=1...n,m∈N

A status σ is a valuation in D of the S-variables, that is a
mapping V → D. A status σ : V → D is said to be finite
if it is almost everywhere equal to i. The set of statuses is
partially ordered by the product order: σ1 ≤ σ2 if and only if
for all v ∈ V , σ1(v) ≤ σ2(v).

The partial order relation on statuses plays an important
role to guarantee that knowledge increases at every micro-
step of the semantics. This is ensured by the fact that the
transition relation is strictly monotonous.

We define the incidence graph ρ ⊆ V × V of a mdAE
system s as follows:(

γi, x
(•m)

)
∈ ρ iff x(•m)appears in γi(

e
(•p)
i , x(•m)

)
∈ ρ iff x(•m) appears in f

(•p)
i
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Given a guard γi, ρ(γi) is the set of variables x(•m) appearing

in γi. Given equation e
(•p)
i , ρ

(
e
(•p)
i

)
is the set of variables

x(•m) appearing in f
(•p)
i .

The constructive semantics follows a causality principle,
namely that an equation can not be solved before its guard
has been evaluated true. Similarly, a guard can not be
evaluated before all its incident variables have been defined.
This results in the following coherence property which is
an invariant of the constructive semantics: A status σ is
coherent if and only if the following properties hold:(

γi, x
(•m)

)
∈ ρ and σ

(
x(•m)

)
≤ u ⇒ σ(γi) ≤ u(

e
(•p)
i , x(•m)

)
∈ ρ and σ

(
x(•m)

)
≤ u ⇒ σ

(
e
(•p)
i

)
≤ f

σ(γi) ≤ u ⇒ σ
(
e
(•m)
i

)
≤ u

The constructive semantics must also take into account
knowledge regarding the consistent initialization of the
dAE system defined by the set of enabled equations in a
given mode. This is the purpose of contexts, exemplified in
Exec. Sch. 4 (Section 2). A context

∆ ⊆
{
e
(•m)
i

}
i=1...n,m∈N

is a set of equations. Given a context ∆, equation e
(•m)
i ∈ ∆

is assumed to be satisfied, as soon as its guard γi has been
evaluated to true. In this case, the constructive semantics sets
such an equation as being solved, without actually solving
the equation. This means that the equation is treated as a
redundant equation, that is known to be satisfied.

3.3.2 Constructive Semantics
Given a finite coherent initial status σ0, and a finite context

∆, the constructive semantics of a mdAE system s is the set
of the finite increasing sequences of statuses, called runs:

σ0 < σ1 < · · · < σk < σk+1 < · · · < σK (18)

such that for every k < K, the pair (σk, σk+1) is a micro-step
in the context ∆. A micro-step transforms status σk into
status σk+1 by updating the values of a bounded subset of
S-variables, from u to t or f, or from i to u.

Enabled Sets, Shifting Degree and Leading Variables: Given
a coherent status σ, i = 1 . . . n, guard γi is enabled in σ if and

only if for all x(•m) ∈ ρ(γi), σ
(
x(•m)

)
= t. Given a coherent

status σ, i = 1 . . . n and m ∈ N, equation e
(•m)
i is enabled in σ

if and only if σ(γi) = t. Denote by Enγ(σ) the set of guards
that are enabled in σ, and by Enf (σ) the set of equations that
are enabled in σ. Notice that for any finite status σ, these
sets are finite. Denote by Undef(σ) =def {v ∈ V |σ(v) ≤ u}
the set of S-variables that are either irrelevant or undefined.

Define doσ(x), the shifting degree of x in σ, to be the least

upper bound of the shifting degree m of all variables x(•m)

that are incident to an equation enabled in σ:

doσ(x) =def sup

m
∣∣∣∣∣∣∣
∃i = 1 . . . n, p ∈ N s.t.

e
(•p)
i ∈ Enγ(σ) and

x(•m) ∈ ρ
(
e
(•p)
i

)


Notice that the shifting degree doσ(x) = −∞ if x is not
incident to any enabled equation in σ. Furthermore, the
shifting degrees in a finite status are bounded: given a finite

status σ, there exists N ∈ N such that doσ(x) ≤ N for all
x ∈ X.

Given a status σ, the set of leading variables in status σ
is the set of variables of maximal shifting degree that are
incident to an enabled equation:

Ld(σ) =def

{
x(•m) |x ∈ X andm = doσ(x) ≥ 0

}
Definition 4. A run σ0 < . . . < σK is called successful

if and only if in status σK is successful, that is all equations
ei have either the value t or f and no leading variable has the
value u. The constructive semantics succeeds for an initial
status σ0 and context ∆ if it has, for every mode, at least
one successful run.

When a run is successful, the system can proceed to the
next time step, by executing a Tick micro-step, where, in a
nutshell, time is advanced and defined variables are shifted.
Algorithm 5 defines the computation of a micro-step from a
given status σ and context ∆. To produce a run, Algorithm 5
should be iterated, until a Tick micro-step is performed. The
different steps of the algorithm are explained below.

Algorithm 5 Computation of a Micro-Step

Require: a finite coherent status σ, and a finite context ∆
return (updated) σ, ∆

1: if Success(σ) then
2: (σ,∆)← T ick(σ)
3: else
4: F ← Enf (σ) ∩ Undef(σ)
5: if exists B ∈ Blocks(F ) then
6: σ ← EvaluateBlock(B, σ)
7: else
8: if exists γi ∈ Enγ(σ) ∩ Undef(σ) then
9: σ(γi)← t or f

10: σ ← EvaluateRedundent (γi,∆, σ)
11: else
12: if exists e

(•m)
i ∈ Overdetermined(F ) then

13: σ ← ForwardShift
(
e
(•m)
i , σ

)
14: else
15: L← LatentEquations(F )
16: if L = ∅ then
17: fail
18: else
19: σ ← AddEquation (L, σ)

The algorithm starts with a finite coherent status σ and
a context ∆. The context ∆ is the (possibly empty) set of
equations known to be satisfied by the defined values in the
current time-step. Notice that the context is updated at each
T ick.

Line 1: Function Success(σ) decides whether status σ is
successful, according to Definition 4.

Line 2: If the status is deemed successful, a T ick micro-
step is performed. This has the effect of shifting defined
variables, and setting all other S-variables v ∈ V , either to
u, if v is in the mdAE s, or i, otherwise. The new context
is defined to be the set of equations that are known to be

260



ω1, ω2start

γ, ω1, ω2,
e3, e4

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e3,

e4, e5, e6

γ, ω1, ω2,
e5, e6,

e•3 replaces e3

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e
•
3,

e4, e5, e6,
e•3 replaces e3

ω1, ω2, ]e3

γ, ω1, ω2,
e3, e4

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e3,

e4, e5, e6

γ, ω1, ω2,
e3, e5, e6,
latent e•3

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e3, e

•
3,

e4, e5, e6,
latent e•3

γ; e3; e4

γ; e5; e6; FS(e3)

e5; e6;
e∂1 ; e∂2

Tick

e∂1 + e∂2 + e•3 + e4

Tick
γ; e3; e4

γ; e5; e6; PR(e3); LE(e3)

e5; e6; e∂1 ; e∂2

Tick

e∂1 + e∂2+
e•3 + e4

Tick

Figure 3: Constructive semantics of the Simple
Clutch. Notations: For all statuses (shown in boxes), v (resp.
v) means v = t (resp. v = f), and not mentioning v means
v = u. ]e means that ef belongs to context ∆. FS(.) (resp.
LE(.); resp. PR(.)) refers to line 13, forward shift (resp. 15,
latent equation; resp. 10, redundent equations) of Algorithm 5.
Blue (resp. black) transitions belong to a continuous-time (resp.
discrete-time) dynamics. The red transition is impulsive. A
semicolon is the sequential composition of micro-steps, and the
+ sign denotes blocks of equations.

satisfied. Formally T ick(σ) =def (σ′,∆′), where:

σ′(γi) = u

σ′
(
x(•m)

)
= if σ

(
x(•m+1)

)
= t then t

else if x(•m) is a variable of mdAE s
then u else i

σ′
(
e(•m)

)
= if e(•m) is a variable of s then u else i

∆′ =

e(•m)
i

∣∣∣∣∣∣∣
∃j = 1 . . . n, fj is
syntactically identical to fi

andσ
(
e
(•m+1)
j

)
= t


The system F is formed Line 4 by the enabled guarded

equations in the status σ that are still undefined. By ap-
plying the procedure BTF (Section 3.1) to F one gets three
distinct sets: Bns, Bo, and Bu, the enabled, overdetermined,
and underdetermined blocks, respectively. We further apply
a post processing step to the standard BTF: for the overde-
termined subsystem, we select a maximum square triangular
submatrix and append it to Bns to obtain Blocks(F ) (Line 5).

mode ¬γ : index 0
τ1 = 0; τ2 = 0;
ω′1 = a1ω1 + b1τ1;
ω′2 = a2ω2 + b2τ2

start

mode γ : index 1
τ1 = (a2ω2 − a1ω1)/(b1 + b2); τ2 = −τ1;
ω′1 = a1ω1 + b1τ1; ω′2 = a2ω2 + b2τ2;
constraint ω1 − ω2 = 0

when γ do
τ1 = NaN; τ2 = NaN;

ω1 =
b2ω

−
1 +b1ω

−
2

b1+b2
;

ω2 = ω1

done

when ¬γ do
τ1 = 0; τ2 = 0;
ω1 = ω−1 ;
ω2 = ω−2
done

Figure 4: Standardization of the clutch’s construc-
tive semantics. Blocks have been standardized and then
symbolically pivoted. x− is the previous value of state variable
x, which is the left limit of x when exiting a mode. Continuous-
time dynamics are colored blue; non-impulsive (resp. impulsive)
state-jumps are colored black (resp. red). The dynamics in
mode ¬γ is defined by an ODE system, while in mode γ, it is
defined by an over-determined index-1 DAE system consisting
of an ODE system coupled to an algebraic constraint. In the
transition from mode ¬γ to mode γ, variables τ1 and τ2 are
impulsive, and their standardization is undefined. This explains
why they are set to NaN (Not a Number).

Function Overdetermined (Line 12) returns what is left in
Bo. For instance, for the system F := {f1(x1)=0, f2(x1)=0},
BTF gives Bu = Bns = ∅ and Bo = {f1=0, f2=0}. We
match arbitrarily either f1 or f2 to x1. We therefore get
Blocks(F ) = {f1=0}, and Overdetermined(F ) = {f2=0}.
The impact of the different possible choices on the simulation
of the system is left as a future work.

The procedure σ′ =def EvaluateBlock(B, σ) (Line 6) up-
dates the status σ to reflect that the undefined variables and
equations involved in B becomes defined. Formally, for all

e
(•p)
i ∈ B, σ′(e

(•p)
i ) = t and for all v ∈ ρ

(
e
(•p)
i

)
, σ′(v) = t.

Line 8 selects one enabled but undefined guard γi, and eval-
uates it to t or f (Line 9). Both cases must be explored, and
an implementation will fork two child Micro-Step procedures
to explore the graph of all possible runs. Such implementa-
tion details are out of scope for this paper.

In Line 10, the context ∆ is used to update the status σ.
For the freshly evaluated guard γi, all its corresponding equa-

tions e
(•m)
i belonging to the context ∆ are set to evaluated

(t). Equations e
(•m)
i /∈ ∆ remain unchanged.

Line 13: The algorithm attempts to relax an overdeter-
mined system F by shifting one blocking (overdetermined)
equation at a time.

Definition 5 (Structural Forward Shift). The

forward shift of equation e
(•m)
i =def if γi do f

(•m)
i = 0, is

defined by e
(•m+1)
i =def if γi do f

(•m+1)
i = 0 where f

(•k)
i

amounts to shifting forward k-times the arguments of fi.
Notice that only the body of the equation is shifted, not its
guard.

Line 15: Exhibiting latent equations is a classical task
since we are just dealing with a dAE (difference Algebraic
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Equation) system. We can, e.g., use the Pantelides algo-
rithm [14] or the Σ-method of [17], which also identifies when
the index is infinite. Indeed, the algorithm rejects models
with infinite structural index (Lines 16 and 17). Intuitively,
this problem occurs when exhibiting latent equations results
in introducing at least as many extra variables as new equa-
tions making the perfect matching problem unsolvable in
finitely many steps.

Line 19: The procedure AddEquation extends the support
of the status σ with the finitely many extra latent equations
in L such that the newly obtained status is coherent and
σ (v) > i for all v ∈ L.

Properties of the Constructive Semantics: Algorithm 5 is
iterated in order to generate all possible runs, corresponding
to the different modes of the system. This is done until all
reachable pairs (σ,∆) of statuses and contexts have been
explored. As a result, we obtain the Constructive Semantics
in the form of a graph CS having as nodes the different
encountered status-context pairs and as edges the micro-
steps. Elementary cycles of CS capture runs with stationary
valuations of the guards and define the continuous dynamics
in each mode. Other runs capture mode changes and their
reset actions, we call them reset runs. Elementary cycles of
CS containing at least two reset runs and having stationary
assignments of the guards correspond to an execution looping
forever, in an attempt to handle a mode change: a model
exhibiting this situation is rejected—see [2] for a simple
example.

In Figure 3, we depict the graph CS produced for the clutch
example and Figure 4 shows the effective code resulting from
the standardization of CS.

4. CONCLUSION
We propose a formal approach for the structural analysis

of multi-mode DAE systems that extends and adapts the
dummy derivatives method of [12]. We further complement
our analysis with a standardization step leading, when suc-
cessful, to execution schemes that could be used for numerical
simulations. The use of nonstandard analysis was essential
in defining an operational semantics when discrete events
occur. We see our work as a generalization of adequate
formalizations where only ODEs are involved [9].

We identified several interesting avenues for future work.
In particular, we plan to work on generic standardization
techniques to handle a larger class of problems. This is
a crucial step for our structural analysis to be useful in
practice. The exact computation of standard finite solutions
has the advantage of giving exact reset maps at events of
mode changes. It, however, requires symbolic manipulations
and could therefore be computationally expensive. A viable
and relatively cheaper approach would be to use numerical
approximations where the infinitesimals are substituted by
small real numbers. In this case, one has to rely on sufficient
conditions to prove the existence of the standard solutions
and to study further the accuracy and the effect of their
numerical approximations on subsequent computations. We
are also currently implementing Algorithm 5 to assess its
performance on real case studies. The prototype will help
us studying the confluence of local nondeterministic choices
when handling overdetermined modes and, more importantly,
their effect on the overall simulation.
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APPENDIX
A. STANDARDIZATION

We mechanize below the manual reasoning performed in
Section 2 for a larger class of continuous functions.

A.1 Impulse Analysis
The impulse analysis consists in abstracting hyperreals

with their magnitude order (or simply “order”) compared to
the infinitesimal ∂. The order of the hyperreal x, denoted by
[x], is defined as the integer n ∈ Z, if it exists, such that the
standard part of x.∂n is a nonzero finite real number. By
convention, the order of 0 is −∞.

For instance, the order of any nonzero real number, seen
as a hyperreal, is 0. Multiplying x by ∂m, for some integer
m shifts [x] by −m: [x.∂m] := −m + [x]. The order for a
monomial function is given by [xr11 · · ·xrnn ] =

∑n
i=1 ri[xi]. For

a multivariate polynomial function, the order is the maximum
of the orders of all its monomials with highest total degree,
and, for a rational function P

Q
, the order is [P ]− [Q]. For

instance, the order of a linear function f(x1, . . . , xn) is

[f(x1, . . . , xn)] = max
i∈[1,...,n]

[xi] . (19)

whereas the order of f(x1, x2) := x1 +x1x2 +x22 is max{[x1]+
[x2], 2[x2]}. We leave the general case for continuous func-
tions as a future work.

We develop below the impulse analysis for the two transi-
tions γ : t→ f and γ : f→ t of System (9) assuming linear
fi as in Eq. (11).

Mode change γ : t → f: Recall that when γ goes from
t to f, we obtain a system of 4 equations (e∂1 , e

∂
2 , e5, e6) for

4 unknowns (τ1, τ2, ω
•
1 , ω

•
2) and we assume that the state

variables ω1 and ω2 are known and finite. Thus, [ωi] ≤ 0
(we use an inequality to take into account the special case
ωi = 0, in which case the order would be −∞). This yields
the following abstraction (i = 1, 2): [ω•i − ωi] = −1 + [fi] ([e∂i ])

[τ1] = −∞ ([e5])
[τ2] = −∞ ([e6])

(20)

In (20), since fi, i = 1, 2, are linear, [fi] = max{[ωi], [τi]} (cf.
Eq. (19)), and therefore, [fi] ≤ [ωi] ≤ 0. We are interested
in the order of the difference ω•i − ωi, regarded as a single
hyperreal. Eq. (20) thus gives [ω•i − ωi] = −1 + [fi] ≤ −1 +
[ωi] ≤ −1 and we conclude that the transition is continuous
in ωi.

Mode change γ : f→ t: Similar to the previous case, we
also assume that the values of ωi are known and are finite
from the previous step. Thus [ωi] ≤ 0. When γ becomes t,
the new state may not satisfy ω1 − ω2 = 0, since (eq•3) was
not active in previous mode (γ = f).

We eliminate, in the system of Line 3 in Exec. Sch. 4, (eq•3)
and (eq4) by setting ω• =def ω

•
1 = ω•2 and τ =def τ1 = −τ2,

which yields{
ω• − ω1 = ∂.f1(ω1, τ) (eq∂1 )
ω• − ω2 = ∂.f2(ω2, τ) (eq∂2 )

(21)

Using (19), the impulse analysis for the simplified system
yields, for i = 1, 2:

[ω• − ωi] = −1 + max{[ωi], [τ ]}

At this point, two cases can occur: if [τ ] ≤ 0, then [ω•−ωi] ≤
−1 for i = 1, 2, which is not possible since it would require
ω1 = ω2, which does not hold in general. Thus, [τ ] ≥ 1 and τ
is impulsive. This implies [ω•−ωi] ≥ 0, expressing impulsive
torques and discontinuous angular velocities.

A.2 Computation of Resets
In this section we mechanize the computation of the resets.

We replace the manual rewriting used in Section 2.4 by a
calculus on formal power series. In (21), we now regard the
leading variables ω•, τ , as formal power series in the variable
∂−1. The support of these series is determined by the impulse
analysis developed in Appendix A.1:

ω• =

∞∑
k=0

ω•k ∂
k

τ = ∂−1
∞∑
k=0

τk ∂
k

(22)

where all coefficients ω•k, τk are finite. Using this expansion
and the linearity of the fi, (21) becomes

∞∑
k=0

ω•k ∂
k − ω1 = ∂.

(
a1ω1 + b1

(
∂−1

∞∑
k=0

τk ∂
k

))
∞∑
k=0

ω•k ∂
k − ω2 = ∂.

(
a2ω2 − b2

(
∂−1

∞∑
k=0

τk ∂
k

))
We standardize this system by keeping only the dominant
terms: {

ω•0 − ω1 = b1τ0
ω•0 − ω2 = −b2τ0 (23)

It remains to solve this system for the standard variables
(coefficients) ω•0 , τ0). Thus,

ω•0 =
b2ω1 + b1ω2

b1 + b2
(24)

and our analysis is complete.
Dividing the value τ0 for the solution of (23) by the actual

(non infinitesimal) step size δ used, yields an estimate of
the Dirac impulse for the torque, integrated over the time
interval of length δ. It would be interesting to study the
accuracy of this estimate.
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