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Analyse Structurelle des systèmes de DAE multi-modes

Résumé : La modélisation des systèmes physiques s’effectue de plus en plus à l’aide de langages utilisant
des DAE (Differential Algebraic Equation), et non plus seulement des ODE (Ordinary Differential Equation).
L’exemple le plus connu est Modelica, mais il existe d’autres outils (VHDL-AMS, Simscape, en particulier).
Les DAE présentent une difficulté nouvelle par rapport aux ODE: les notions d’équation latente et d’index de
différentiation. Ces deux notions ont été proposées et étudiées en profondeur par les mathématiciens depuis
bientôt trente ans et jouent un rôle important dans les outils de modélisation, à travers ce qu’on appelle
l’analyse structurelle de ces systèmes.

En revanche, les systèmes de DAE multi-modes (où la dynamique dépend du mode où se trouve le système)
sont beaucoup plus difficiles à étudier; non seulement parce que la dynamique dépend du mode, mais surtout
à cause des événements de changement de mode, avec les réinitialisations associées. Et, de fait, les systèmes
de DAE multi-modes ont été peu étudiés en profondeur. Avec pour conséquence que le traitement des
changements de mode est insuffisamment compris, et que les outils de modélisation ne traitent que des classes
restreintes de modèles, avec une absence de définition claire de la nature de ces restrictions.

Dans ce travail, nous présentons une approche systématique, mathématiquement fondée, pour l’analyse
structurelle des systèmes de DAE multi-modes. Nous utilisons l’analyse non-standard pour ramener l’analyse
structurelle à un problème sur des systèmes dynamiques à temps discret, et nous réutilisons les idées
provenant de la sémantique constructive des langages synchrones. Nous complétons ceci par des techniques de
standardisation (provenant de l’analyse non-standard) pour obtenir le code éxécutable final, où une structure
d’automate coiffe et coordonne le travail des solveurs.

Ce rapport de recherche est une version augmentée de la publication [2].

Mots-clés : Systèmes multi-mode, équations différentielles algébriques, DAE, indice différentiel, analyse
structurelle, sémantiques opérationnelles, analyse non standard



Structural Analysis of Multi-Mode DAE Systems 3

Contents

1 Introduction 4

2 A Simple Clutch 5
2.1 Separate Analysis of Each Mode . . . 5
2.2 Mode Transitions . . . . . . . . . . . . 7
2.3 Nonstandard Semantics . . . . . . . . 7
2.4 Standardization . . . . . . . . . . . . . 9

3 Structural Analysis 11
3.1 Background . . . . . . . . . . . . . . . 11
3.2 Multi-Mode DAE Systems . . . . . . . 12
3.3 Structural Analysis of multi-mode sys-

tems . . . . . . . . . . . . . . . . . . . 12
3.3.1 Abstract Domain . . . . . . . . 13
3.3.2 Constructive Semantics . . . . 14

4 Conclusion 18

A Standardization 20
A.1 Impulse Analysis . . . . . . . . . . . . 20
A.2 Computation of Resets . . . . . . . . . 20

B Overdetermined Example 21

RR n° 8933



Structural Analysis of Multi-Mode DAE Systems 4

1 Introduction

Multi-mode DAE systems constitute the mathemat-
ical model supporting physical modeling languages
such as Modelica. Multi-mode DAE models can be
represented as systems of equations of the form

if γj(the xi and their derivatives)
do fj(the xi and their derivatives) = 0

(1)

where x1, . . . , xn denote the system variables, γj(. . . )
is a predicate guarding the DAE fj(. . . ) = 0. The
meaning is that, if γj has the value true, then equa-
tion fj(. . . ) = 0 has to hold, otherwise it is dis-
carded. In particular, when all the predicates are
the constant true, one obtains a single-mode DAE,
that is a standard DAE defined by the set of equa-
tions fj(. . . ) = 0. When the functions fj have the
special form x′j − gj(x1, . . . , xn), one recovers the
usual Ordinary Differential Equations (ODE) sys-
tem x′j = gj(x1, . . . , xn). DAEs are a strict gener-
alization of ODEs, where the so-called state variables
x1, . . . , xn are implicitly related to their time deriva-
tives x′1, . . . , x

′
n. Finally, our modeling framework is

fully compositional, since systems of systems of equa-
tions of the form (1) are just systems of equations
(with eventually additional constraints connecting the
different state variables).

Solving numerically single-mode DAEs faces the
well known issue of differentiation index [6], origi-
nating from the possible existence of so-called latent
constraints. Informally, latent constraints in DAE
systems are additional equations obtained from the
original equations fj(. . . ) = 0 by time differentiation,
assuming the existence of smooth enough solutions
for those extra equations to be well-defined. A DAE
has differential index n if one or more equations must
be differentiated n-times until the equations can be
algebraically transformed to an ODE form with the
xi as states. In particular, ODEs are fully explicit
differential equations and are therefore DAEs of index
0. In practice, systems with index greater than 1 are
common (e.g., the DAE of a pendulum in Cartesian
coordinates has index 3) and higher indexes are often
encountered in common Modelica models. The Struc-
tural Analysis of DAE systems, such as the Pantelides
algorithm [14], is an abstract lightweight graph-based

analysis that constructively computes a “structural”
differentiation index which can be formally related to
the numerical differentiation index. Such structural
analysis is often performed as a pre-processing step
before calling numerical solvers.

Unlike single-mode DAE systems, however, no the-
ory exists that supports the structural analysis of
multi-mode DAE systems. The usual approach con-
sists in performing the structural analysis for each
mode. This, however, tells nothing about how mode
changes could be handled. Even more so when mode
changes occur in cascades.

Related Work: Multi-domain modeling languages
that support DAEs such as Modelica or VHDL-AMS,
but also proprietary languages such as Simscape have
typically the restriction that the number of equations
cannot change during simulation. Modeling tools
have further restrictions, e.g. that the DAE index
cannot change during simulation, or that impulses
occurring due to mode switches are not supported.
There are some proposals such as [11] that try to
handle multi-mode DAEs by using source to source
model transformations to bring the model in a form
that is amenable to known structural analysis and
index reduction techniques. The class of supported
models is still however restricted, e.g., mode changes
leading to impulses cannot be handled. On the other
hand, there is a long tradition for mechanical systems
to handle contact problems and friction which lead
to mode changes, index changes and/or impulses. An
overview of the actual state of the art is for example
given in [15]. It is, however, not obvious how this
domain-specific approach can be generalized.

To our knowledge, the only work addressing the
structural analysis of multi-mode DAE systems is [13].
While this work contains interesting results regarding
numerical techniques to detect chattering between
modes, it assumes deterministic multi-mode systems
where consistent resets are already known for each
mode. Such assumptions do not hold in general, espe-
cially for a compositional framework where one wants
to assemble pre-defined physical components. Besides,
for complex systems, one often resorts to simulations
to better understand resets and mode changes. In this
work, we attempt to constructively build deterministic
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and causal execution schemes. In a sense, our analysis
could be regarded as a pre-processing step to perform
prior to simulating multi-mode DAE systems.

Contributions: In this paper, we consider systems
of equations of the form (1) as a core framework for
multi-mode DAE systems. This modeling framework
is fully equational and compositional. We define a con-
structive (small-step) semantics for such framework
by relying on nonstandard analysis [10, 1]. We handle
in a unified way, discrete and possibly impulsive mode
changes on one hand, and purely continuous evolu-
tion within one mode on the other hand. This makes
it possible to formally define which systems a com-
piler should accept/refuse. We finally explain how to
generate an execution scheme from the nonstandard
constructive semantics. We illustrate the different
steps of our analysis on a simple, yet challenging,
example we explain next.

2 A Simple Clutch

We consider a simple, idealized clutch involving two
rotating shafts where no motor or brake are con-
nected. The dynamics of each shaft i is modeled by
ω′i = fi(ωi, τi) for some functions fi, where ωi is the
angular velocity, τi is the torque applied to the shaft
i, and ω′i denotes the time derivative of ωi. Depend-
ing on the value of the input Boolean variable γ, the
clutch is either engaged (γ = t) or released (γ = f).
When the clutch is released, the two shafts rotate
independently: no torque is applied (τ1 = τ2 = 0).
When the clutch is engaged, it ensures a perfect join
between the two shafts, forcing them to have the same
angular velocity (ω1 − ω2 = 0) and opposite torques
(τ1 + τ2 = 0). If the clutch is initially released, then
at the instant of contact the relative speed of the two
rotating shafts jumps to zero and, as a consequence,
an impulse generally occurs on the torques. This ide-
alized clutch model is not supported by the existing
Modelica tools at the date of this writing—we later
give explanations about what the difficulty is. The

clutch model is summarized below.

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

if γ do ω1 − ω2 = 0 (e3)
and τ1 + τ2 = 0 (e4)

if not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

(2)

We first analyze separately the model for each mode of
the clutch (Section 2.1). Then, we discuss the difficul-
ties arising when handling mode changes (Section 2.2).
Finally, we propose a global comprehensive analysis in
Section 2.4. For convenience, we recall basic notions
of nonstandard analysis in Section 2.3.

2.1 Separate Analysis of Each Mode

In the released mode, when γ is false in System (2),
the two shafts are independent and one obtains the
following two independent ODEs for ω1 and ω2:

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

τ1 = 0 (e5)
τ2 = 0 (e6)

(3)

In the engaged mode, however, γ holds true, and the
two velocities and torques are algebraically related:

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

ω1 − ω2 = 0 (e3)
τ1 + τ2 = 0 (e4)

(4)

Due to the additional constraints (e3) and (e4), Sys-
tem (4) is no longer an ODE, but rather a DAE. Notice
in particular that the derivatives of the torques are
not explicitly given and that the state variables ωi
have to satisfy the extra constraint (e3) as long as the
system evolves in that mode.

If one is able to uniquely determine the so called
leading variables (ω′1, ω

′
2, τ1, τ2) given a consistent

value for the state variables (ω1, ω2), one could re-
gard the DAE as an “extended ODE” [17] where an
integration step is performed to update the current
positions (ω1, ω2) using the computed values for their
derivatives (ω′1, ω

′
2). Here, by consistent values for

(ω1, ω2) we mean a pair that satisfies (e3).
It turns out that this does not work for System (4)

as is. To intuitively explain what the problem is, we

RR n° 8933
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move to discrete time by applying an explicit first
order Euler scheme with constant step size δ > 0:

ω•1 = ω1 + δ · f1(ω1, τ1) (eδ1)
ω•2 = ω2 + δ · f2(ω2, τ2) (eδ2)

ω1 − ω2 = 0 (e3)
τ1 + τ2 = 0 (e4)

(5)
where ω•(t) =def ω(t + δ) denotes the forward time
shift operator by an amount of δ. Suppose we are given
consistent initial values for ω1 and ω2, i.e., satisfying
(e3). Attempting to apply the Euler scheme (5) fails
in that, generically, there is no unique values for the
ω•i . Indeed, we have only three equations eδ1,eδ2, and
e4 for four unknowns, τ1, τ2, ω•1 , and ω•2 . However,
since System (5) is time invariant, and assuming that
the system remains in the engaged mode for at least
δ seconds, there exists an additional latent constraint
on the set of variables (ω1, ω2, τ1, τ2, ω

•
1 , ω

•
2), namely

ω•1 − ω•2 = 0 (e•3) (6)

obtained by shifting (e3) forward. One can now use
System (5) augmented with Eq. (6) to get an execu-
tion scheme for the engaged mode of the clutch (see
Exec. Sch. 1 below).

Execution Scheme 1 System (5)+Eq. (6).

Require: consistent ω1 and ω2, i.e., satisfying (e3).
1: Solve {eδ1, eδ2, e•3, e4} . 4 equations, 4 unknowns
2: (ω1, ω2)← (ω•1 , ω

•
2) . Update (ω1, ω2)

3: Tick . Move to next discrete step

Since the new values of the state variables satisfy
(6) by construction, the consistency condition is met
at the next iteration step (should the system remains
in the same mode). The implicit assumption behind
Line 1 in Exec. Sch. 1 is that solving {eδ1, eδ2, e•3, e4}
always returns a unique set of values. In our example,
this is true in a “generic” or “structural” sense,1 be-
cause we are solving four algebraic equations involving
four dependent variables.

Observe that the same analysis could be applied to
the original continuous time dynamics (System (4))
by augmenting the latter with the following latent

1See Section 3.1 for what is formally meant by “structural”
in this context.

differential equation:

ω′1 − ω′2 = 0 (e′3) (7)

obtained by differentiating (e3)—since (e3) holds at
any instant, (e′3) follows as long as the solution is
smooth enough for the derivatives ω′1 and ω′2 to be
defined. The resulting execution scheme is given
in Exec. Sch. 2 (compare with Exec. Sch. 1).

Execution Scheme 2 System (4)+Eq. (7).

Require: consistent ω1 and ω2, i.e., satisfying (e3).
1: Solve {e1, e2, e′3, e4} . 4 equations, 4 unknowns
2: ODESolve (ω1, ω2) . Update (ω1, ω2)
3: Tick . Move to next step

Line 1 is identical for the two schemes and is as-
sumed to give a unique solution, generically. It fails
if one omits the latent equation (e′3). In Exec. Sch. 1,
getting the next values for the ω1 and ω2 was straight-
forward. In Exec. Sch. 2, however, the derivatives
(ω′1, ω

′
2) are first evaluated, and then used to update

the state by using an ODE solver (here denoted by
ODESolve). Note that, when considering an exact
mathematical solution, if ω1 − ω2 = 0 holds initially
and ω′1 − ω′2 = 0, then the linear constraint (e3) will
be satisfied for all positive time.

Exec. Sch. 2 is known in the literature as the method
of dummy derivatives [12]. It requires adding the
(smallest set of) latent equations needed for Line 1 of
the execution scheme to become solvable and deter-
ministic. The maximal amount of successive differen-
tiation operations needed in obtaining all the latent
equations is called the differentiation index [6], or
simply the index. In Exec. Sch. 2, differentiating (e3)
once was sufficient. If, e.g., the second derivative of
the state variables were involved in the system model,
then, two successive differentiations would be needed.
Observe that both execution schemes 1 and 2 rely on
an algebraic equation system solver.

To conclude this section, we briefly discuss the
initialization problem. Unlike ODE systems, the ini-
tialization problem is far from trivial for DAE systems,
even more so when the state variables have to sat-
isfy additional user-defined constraints. This is in
fact often the case for multi-mode systems since the

RR n° 8933
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system has to start a new mode from a previously
known state. For the clutch example, if one considers
System (4) as a standalone DAE, the initialization is
performed as indicated in Exec. Sch. 3.

Execution Scheme 3 Initialization of Sys-
tem (4)+Eq. (6).

1: (ω1, ω2, τ1, τ2, ω
′
1, ω
′
2) ← Solve{e1, e2, e3, e′3, e4}

. 5 equations, 6 unknowns

Note that we have 6 unknowns and only 5 equa-
tions, so we are left with 1 degree of freedom—
mathematically speaking, the set of all initial values
for the 6-tuple of variables is a manifold of dimension
1. For example, one can freely fix the initial com-
mon rotation speed so that (e3) is satisfied. Notice
that the latent equation (e′3) is mandatory in order
to determine the initial value of the torques τi.

2.2 Mode Transitions

In an attempt to reduce the full clutch model to the
analysis of the DAE of each mode, one hopes that
the handling of a mode change reduces to applying
the initialization given in Exec. Sch. 3. If one was
to treat resets at mode changes as initializations, it
would mean that the clutch system is nondeterminis-
tic precisely because of the extra degree of freedom
of Exec. Sch. 3. In contrast, the physics tells us that
the state of the system should be entirely determined
when the clutch gets engaged. This, therefore, com-
forts the intuition that resets at mode changes are
not mere initializations.

If, however, one considers the known values of the
state variables “immediately” before switching to the
engaged mode, the system becomes over-determined
as generically the equation (e3) won’t be satisfied.
In this case, it is unclear what constraint should be
relaxed and why.

This is precisely why this clutch model cannot be
simulated as is with Modelica tools. A work around
would be to compute and specify reset values by hand
in the model. Such approach, however, impairs mod-
ularity since significant additional manual work is
needed when building the clutch model from the two

separate models for each mode.
We present next our approach to tackle such prob-

lems using nonstandard analysis.

2.3 Nonstandard Semantics

While the meaning of the clutch model in System (2)
is fully clear when the system evolves continuously
inside one of the two modes, the model does not say
explicitly what happens at mode changes. We are in
particular interested in two specific issues:

• (i) in case of discontinuous trajectories, what
meaning one can give to the equations involving
derivatives and what role those equations play in
determining the discontinuity gap.

• (ii) if an event enables new constraints that
make the system overdetermined, then what con-
straints one has to relax (and why) for the simu-
lation to proceed.

To answer those questions, we use the nonstandard
analysis [10] and in particular the nonstandard se-
mantics of hybrid systems introduced in [1]. Nonstan-
dard reals, a.k.a. hyperreals, denoted by ?R, extend
the usual reals with infinitesimals and infinite num-
bers. A totally ordered field, ?R, is constructed from
the reals very much like R is constructed from the
rationals using Cauchy sequences. Following the con-
struction proposed by [10], ?R is defined as the set
of all (not necessarily converging) sequences of real
numbers x = {xn} quotiented by some equivalence
relation ∼ such that, if the sequences x and y only
differ by a finite number of elements, then x ∼ y holds,
see [10] for details. Any real number a ∈ R is lifted
to a hyperreal ?a = {a, a, a, . . . }. A hyperreal ε is
said to be infinitesimal if |ε| < r for all positive real
numbers r. For instance, {n−1}n∈N∗ and {n−2}n∈N∗

are (positive) infinitesimals. We denote x ≈ y if x− y
is an infinitesimal (≈ should not be confused with the
relation ∼ used in the construction of ?R). Any finite
hyperreal x possesses a unique real number st(x) such
that x ≈ st(x), we call it its standard part [10].

Functions over the reals can be internalized as func-
tions over the hyperreals by considering the constant
sequence formed by the same function. If x : t 7→ x(t)

RR n° 8933
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denotes a function defined over R, and ∂ = {∂n} de-
notes an infinitesimal then one defines ?x(t+∂) as the
infinite sequence formed by x (t+ ∂n). To simplify
the notations, we will simply write x instead of ?x
whenever the distinction is clear from the context. We
now formally define the immediate next value of a
function we used earlier for the clutch example—such
notion does not exist over the reals.

Definition 1 (Forward Shift) Let x be a real val-
ued function defined over [t, s) for some t, s ∈ R,
t < s. Let ∂ denote a positive infinitesimal. We
define x• ∈ ?R as

x•(t) =def x(t+ ∂) .

Observe that t+∂ < s for any positive infinitesimal ∂
(by definition of the infinitesimals). Notice also that
the definition of the forward shift is dependent on the
infinitesimal ∂.

Solutions of multi-mode DAEs may be non differ-
entiable and even non continuous at events of mode
change. To give a meaning to x′(t) at a an arbitrary
point t of a function x : t 7→ x(t), we define it as the
nonstandard difference quotient of x at t for a fixed
positive infinitesimal ∂:

x′(t) =def
x(t+ ∂)− x(t)

∂
. (8)

The definition of x′ by equation (8) is motivated by the
following characterization of derivatives in nonstan-
dard analysis: a function f : R→ R is differentiable
at a ∈ R if and only if there exists a real number b
such that

f(a+ ε)− f(a)

ε
≈ b

for all non zero infinitesimals ε (See for instance Propo-
sition I.3.5 in [10]), where we recall that u ≈ v means
that u − v is infinitesimal. Then b is equal to the
derivative f ′(a). Thus, (8) coincides up to ≈ with the
derivative of x at the instants when x is differentiable.
In a multi-mode DAE system, substituting every oc-
currence of x′(t), for every t ∈ R, by its expression
in (8) yields a difference algebraic equation (dAE)
system.2

2Throughout this paper, we consistently use letters “D” and
“d” to refer to “Differential” and “difference”, respectively.

Applying such substitution for System (2) gives the
following multi-mode dAE (mdAE):

ω•
1−ω1

∂ = f1(ω1, τ1) (e∂1 )
ω•

2−ω2

∂ = f2(ω2, τ2) (e∂2 )
if γ do ω1 − ω2 = 0 (e3)

and τ1 + τ2 = 0 (e4)
if not γ do τ1 = 0 (e5)

and τ2 = 0 (e6)

(9)

The state variables are ω1, ω2 whereas the leading
variables are now γ, τ1, τ2, and ω•1 , ω

•
2 . Notice that we

now add the guard γ to the set of leading variables.
The rationale is that γ is an input variable and is not
evaluated at the previous instant (unlike the state
variables ω1, ω2).

Following the reasoning of Section 2.1, one sees at
once that within each mode, one obtains a discrete
system very much like the explicit Euler scheme of
Section 2.1, except that the step size is now infinitesi-
mal and that the variables are all nonstandard. The
added value of System (9) with respect to the explicit
Euler scheme of Section 2.1 is twofold: first, it is exact
up to infinitesimals within each mode, and, second,
it will allow us to carefully analyze what happens at
events of modes change.

We now move to deducing an execution scheme for
System (9). We obey the following Causality Principle:
since γ is a guard, it must be evaluated prior the DAE
it controls. Then, the following cases occur:

Case 1. If γ=f, equations (e∂1 ), (e∂2 ), (e5) and (e6)
are enabled and can be evaluated, one at a time, in
the following order: (e5) sets τ1 to 0; (e6) sets τ2 to
0; then (e∂1 ) is solved to compute ω•1 ; and finally (e∂2 )
is solved to compute ω•2 .

Case 2. If γ=t, equations (e3) and (e4) become
enabled with the notable difference that (e3) involves
the state variables ωi, which values were set at the
previous instant. (This contrasts with (e5) and (e6)
in the previous case where only the τi are involved.)
Two possible subcases follow, depending on the status
of the consistency equation (e3):

Case 2.1. If ω1 − ω2 = 0 holds, then we are left
with equations (e∂1 ), (e∂2 ), (e4) with dependent vari-
ables ω•1 , ω

•
2 , τ1, τ2, which brings us back to the un-

derdetermined case we discussed about System (5):

RR n° 8933
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we add the latent equation ω•1 − ω•2 = 0. Note that
ω1 − ω2 = 0 provably holds if we were already in the
same mode at the previous instant. Since ω1−ω2 = 0
and ω•1 − ω•2 = 0 together imply ω′1 − ω′2 = 0 by (8),
this case gives the nonstandard version of the continu-
ous dynamics (4) augmented with the latent equation
(7), within the engaged mode.

Case 2.2. If, however, the previous time step sets
values for the state variables such that ω1 − ω2 6= 0,
the system is overdetermined and the consistency
equation (e3) cannot be satisfied. A first idea would
be to reject this model. This would be unfortunate as
the original (standard) model seemed natural for the
clutch. To overcome this issue, we defer the enabled
equation (e3) (which made the system overdetermined)
to an immediate next instant t + ∂. This amounts
to replacing the equation (e3) by its forward shift
(e•3) : ω•1 − ω•2 = 0. By doing so, one hopes that the
system recovers a consistent initial condition for the
new mode in an infinitesimal time step, starting from
its previous non consistent state.

The corresponding nonstandard execution scheme
is summarized in Exec. Sch. 4. We use the variable ∆
to encode the context : that is the equations known
to be satisfied by the state variables. For instance,
e3 6∈ ∆ corresponds to Case 2.2 above. At each tick,
the context gets eventually updated to account for the
equations that the new state satisfies. The procedure
Reset solves the system of equations in its argument
to determine the reset values of the state variables
(the computation is detailed next in Section 2.4). The
procedure Solve, solves the (algebraic) system to
determine the new values of the leading variables.

Observe that Exec. Sch. 4 would work without
changes if the guard γ was a predicate on the state
variables ω1, ω2.

2.4 Standardization

Exec. Sch. 4 cannot be executed as is since it involves
nonstandard reals. To recover executable code over
the real numbers, a supplementary standardization
step is needed. Recall that any finite nonstandard
real x has a unique standard part st(x) ∈ R such that
x ≈ st(x). The standardization procedure aims at
recovering the standard parts of the leading variables

Execution Scheme 4 for Nonstandard System (9).

Require: ω1 and ω2.
1: if γ then
2: if e3 /∈ ∆ then
3: (ω•1 , ω

•
2) ← Reset

{
e∂1 , e

∂
2 , e
•
3, e4

}
4: Tick: ∆← ∆ ∪ {e3}
5: else
6: (τ1, τ2, ω

•
1 , ω

•
2) ← Solve

{
e∂1 , e

∂
2 , e
•
3, e4

}
7: Tick: ∆ unchanged

8: else
9: (τ1, τ2, ω

•
1 , ω

•
2) ← Solve

{
e∂1 , e

∂
2 , e5, e6

}
10: Tick: ∆← ∆ \ {e3}

from their nonstandard version. We distinguish two
cases: continuous evolutions within each mode, as-
suming the sojourn time in each mode is not reduced
to a single point, and discrete evolutions at events of
mode change.

Standardization within continuous modes: If x : t 7→
x(t), t ∈ [s, p), denotes the real continuous solution
at a given mode, then, such solution is in particular
differentiable for all t in [s, p). Thus, for all t ∈ [s, p),
there exists a real number

x′(t) ≈ x(t+ ∂)− x(t)

∂
=
x•(t)− x(t)

∂
.

In the sequel, for a given non zero infinitesimal ξ, we
denote by o(ξ) any nonstandard real number such that
o(ξ)/ξ is itself infinitesimal. For instance, any infinites-
imal is o(1). Notice that the ”o” notation has thus a
precise fixed meaning in nonstandard analysis. Hence
equations (e∂1 ) and (e∂2 ) rewrite ω′i = fi(ωi, τi) + o(1),
which can be shown to standardize as the differential
equations (e1) and (e2), respectively. This suffices to
recover the dynamics (3) in the released mode γ = f.

In the engaged mode γ = t, however, we need to
handle (e•3) : ω•1 − ω•2 = 0. The nonstandard charac-
terization of derivatives writes ω•i = ωi + ∂.ω′i + o(∂),
where ωi and ω′i are both standard. Since ω1−ω2 = 0
and ω•1 −ω•2 = 0 both hold, we inherit ω′1−ω′2 = o(1),
which implies ω′1 − ω′2 = 0 since the ω′i are standard.
We thus recover the dynamics (4) augmented with
the latent equation (7) in the engaged mode γ = t.

Standardization at the instants of mode change:
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Suppose we have an event of mode change at time t,
meaning that γ(t) 6= γ(t− ∂). Our aim is to use the
next values ω•i (t) = ωi(t + ∂) to initialize the state
variables for the next mode. However, the equations
defining the ω•i as functions of the ωi involve the
hyperreal ∂ as an explicit coefficient. To recover real
values for the next state we must standardize the
nonstandard expressions of the state variables.

The transition γ : t→ f raises no particular prob-
lem, since the target mode has an ODE dynamics
whose state variables are initialized by using the corre-
sponding exit values when leaving the previous mode.

The transition γ : f → t is more involved. As es-
tablished in Exec. Sch. 4, in order to compute the reset
values, we use the system of 4 equations {e∂1 , e∂2 , e•3, e4}
to determine the leading variables (τ1, τ2, ω

•
1 , ω

•
2). In

particular, from e∂i , we get

ω•i − ωi
∂

= fi(ωi, τi), i = 1, 2. (10)

Assuming ω1 − ω2 6= 0, since ω•1 − ω•2 = 0 holds, the
right difference quotient

(ω•1 − ω•2)− (ω1 − ω2)

∂
= f1(ω1, τ1)− f2(ω2, τ2)

cannot be a finite nonstandard real because if it was,
that would mean that the function ω1(t) − ω2(t) is
right continuous which contradicts the assumption
that ω1 − ω2 6= 0 at the immediate previous time.
Thus, the nonstandard real f1(ω1, τ1)− f2(ω2, τ2) is
necessarily infinite. However, we assumed continuous
functions fi and we started at a finite state (ω1, ω2).
Thus, one of the torques τi must be infinite at t. And
because of equation (e4), τ1 + τ2 = 0, both torques
are in fact infinite, i.e., are impulsive. This informal
“impulse analysis” can be formalized by abstracting
variables by their magnitude order with respect to the
infinitesimal ∂. For instance, the magnitude order of
the finite hyperreals is zero, whereas the magnitude
order of an infinite (or impulse) of the form ∂−1r for a
finite non zero real number r is 1. (See Appendix A.1
for more details about the impulsive analysis).

It remains to compute the (standard) reset values
for the state variables. To simplify our exposure, we
assume that the fi are linear in their arguments, i.e.,

fi has the following form:

fi(ωi, τi) = aiωi + biτi, (11)

where b1 and b2 are the inverse moments of inertia of
the rotating masses and a1 and a2 are damping factors
divided by the corresponding moment of inertia. This
yields the following dynamics at the instant when γ
switches from f to t:

ω•1 = ω1 + ∂.(a1ω1 + b1τ1) (e∂1 )
ω•2 = ω2 + ∂.(a2ω2 + b2τ2) (e∂2 )
ω•1 − ω•2 = 0 (e•3)
τ1 + τ2 = 0 (e4)

Eliminating the torques τi yields

ω•i =
b2ω1 + b1ω2

b1 + b2
+ ∂.

a1b2ω1 + a2b1ω2

b1 + b2

and therefore, the standard part of ω•i is

st(ω•i ) =
b2ω1 + b1ω2

b1 + b2
, (12)

that is the weighted arithmetic mean of ω1 and ω2.
Eq. (12) provides us with the reset values for the posi-
tions in the engaged mode, which is enough to restart
the simulation in this mode. The actual impulsive
values for the torques can be discarded. The above
direct rewriting technique is limited to this linear
case. We develop in Appendix A.2 a technique that
applies whenever Taylor expansions are available for
the functions fi.

As a final observation, instead of computing the
exact standard part of ω•i , one could instead attempt
to approximate it by substituting ∂ with a small (but
non infinitesimal) step size δ.It would then be inter-
esting to study more in depth the numerical accuracy
and convergence of such schemes by focusing on state
variables only and ignoring the impulsive ones. We
leave this as a future work.

Figure 1 shows a simulation of the clutch model
where the resets are explained above. One can see
that the reset value is, as one may expect physically,
between the two values of ω1 and ω2 when γ : f→ t
(at t = 5s), and that the transition is continuous at
the second reset (at t = 10s).
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Figure 1: Simulation of the clutch model with resets.
Mode change f→ t occurs at t = 5s and mode change
t→ f occurs at t = 10s.

3 Structural Analysis

Formally, defining how to derive execution code for
a general mDAE system is a challenging problem,
because the already difficult structural analysis for
DAE systems [6] gets complicated by the need for a
structural analysis of mode changes as well. In this
section, we propose a novel approach to this problem,
based on a formalization of the intuitions developed
on the clutch example (Section 2).

mdAEmDAE
domain

nonstandard
mapping to

causality analysis
latent equations

DAE model
continuous modes

reset equations
at events

standardization
impulse analysis
standardization

Figure 2: Structural analysis of mDAE systems.

As depicted in Figure 2, our method decomposes
into several steps. The first step consists in transform-
ing the mDAE system into a system of multi-mode
difference Algebraic Equations (mdAE) using the non-
standard interpretation of the derivatives. The sec-
ond step applies Algorithm 5 (See Section 3.3) to the

mdAE system. The algorithm performs a structural
analysis resulting in a new mdAE system where la-
tent equations and a scheduling of blocks of equations
are made explicit. The last steps are standardization
steps, where the smooth dynamics in each mode, and
the possibly discontinuous/impulsive state jumps oc-
curring at mode changes, are recovered from the latter
mdAE system.

3.1 Background

As a background and to contrast the differences and
the inherent difficulties of mDAEs, we first recall the
structural analysis for DAE systems (single-mode)
before extending it to the multi-mode case.

Consider a system of smooth algebraic equations
with n equations and n dependent variables (un-
knowns) y1, . . . , yn:

fj(x1, . . . , xm, y1, . . . , yn) = 0, j = 1, . . . , n (13)

rewritten as F (X,Y ) = 0 where X and Y denote
the vectors (x1, . . . , xm) and (y1, . . . , yn), respectively,
and F is the vector (f1, . . . , fn). The Implicit Func-
tion Theorem (see, e.g., Theorem 10.2.2 in [7]) states
that, if (u, v) ∈ Rm+n is a value for the pair (X,Y )
such that F (u, v) = 0 and the Jacobian of F with
respect to Y (denoted by ∇Y F ) at the point (u, v)
is nonsingular, then there exists, in an open neigh-
borhood U of u, a unique vector of functions G such
that v = G(u) and F (w,G(w)) = 0 for all w ∈ U . In
words, Eq. (13) uniquely determines Y as a function
of X, locally around u. Solving for Y , given F and
a value u for X, requires forming ∇Y F as well as
inverting it.

Structural BTF decomposition: One could instead
avoid forming ∇Y F by focusing on its structural non-
singularity, which only exploits the incidence graph
GF of system F (GF is the bipartite graph having
F]Y as set of vertices and an edge (f, y) if and only
if variable y occurs in function f). A square matrix
is said to be structurally nonsingular if it remains
almost everywhere3 nonsingular when its nonzero co-
efficients vary over some neighborhood. It has been

3Outside a set of values of Lebesgue measure zero.
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shown (see for instance [14, 12, 16, 17]) that the Ja-
cobian ∇Y F is structurally nonsingular if and only
if there exists a bijective assignment ψ : Y 7→F such
that (ψ(y), y) is an edge of GF for every y∈Y . Having

this bijection we turn GF into a directed graph ~GF
by fixing the orientation z→ψ(y)→y for every z 6=y
such that (ψ(y), z) ∈ GF . The strongly connected

components of ~GF are called the blocks of F and are
independent from the particular choice for ψ. Blocks
are partially ordered by the order induced by ~GF . The
set of blocks of F equipped with this partial order is
called the (structural) Block Triangular Form (BTF)
decomposition of F [8].

Index reduction: For DAE, determining the leading
variables as functions of the state variables (assuming
a consistent initial value) requires finding all the latent
equations, until the augmented system becomes a
semi-explicit DAE:{

X ′ = G(X,Y )
0 = F (X,Y )

with ∇Y F nonsingular, (14)

so that the Implicit Function Theorem applies to F .
The number of successive differentiations needed for
getting this form is called the differentiation index [6]
and the whole process is referred to as index reduc-
tion. Unlike ODEs, however, where the derivatives
are explicitly given as functions of the state variables,
simulating a semi-explicit DAE requires computing
the Jacobian ∇Y F and inverting it. Such computa-
tion will be performed eventually several times while
searching for latent equations.

In practice, such brute force approach is ineffec-
tive and does not scale up. Tools handling DAE
systems perform instead a structural index reduction,
by exploiting the structural BTF decomposition of the
involved Jacobians using the incidence graph of the
system. The resulting procedure is called the struc-
tural analysis of DAE systems [14, 12, 17]. It may
miss some numerical corner cases, but is computa-
tionally much more attractive than the full numerical
approach. In the coming subsections we extend the
structural analysis to multi-mode systems, by han-
dling continuous modes and events with their resets
as equal citizens.

3.2 Multi-Mode DAE Systems

We now formally define the class of systems of multi-
mode Differential/difference Algebraic Equations we
are concerned with in this paper.

Consider a finite set of variables X; for x ∈ X and
m ∈ N, the m-differentiation and m-shift of x are
denoted by x(′m) and x(•m), respectively. Let X(′m)

and X(•m) denote the set of all x(′m) and x(•m), for
x ranging over the set X of variables. We define:

X(′) =def

⋃
m∈N

X(′m) and X(•) =def

⋃
m∈N

X(•m) (15)

Definition 2 A mDAE (multi-mode DAE system),
resp. mdAE (multi-mode dAE system), s is a tuple
of n guarded equations:

s =def e1, . . . en
ei =def if γi do fi = 0

where: X is a finite set of variables; fi is a smooth
scalar function over X(′), resp. X(•); γi is a predicate
over X(′), resp. X(•).

In a mDAE or mdAE, a mode is a valuation in {f,t}
of its guards γi, i = 1, . . . n. In the guarded equation
(ei) := (if γi do fi = 0), the equation fi = 0 is
enabled if and only if the guard γi holds. Otherwise
the equation is disabled. Thus, a mode enables a
subset of the equations fi = 0 and disables the others.

A mDAE s1 is transformed to a (nonstandard)
mdAE s2 through the following syntactic transfor-
mation:

s2 =def s1

[
x′ is replaced by x•−x

∂

]
(16)

3.3 Structural Analysis of multi-mode
systems

The notion of constructive semantics was first intro-
duced in the context of reactive synchronous program-
ming languages [5, 3, 4], where it played an important
role in grounding compilation on solid mathematical
foundations. Essentially, a constructive semantics for
a discrete time dynamical system consists of:
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1. A specification of the set of atomic actions, which
are effective, non-interruptible, state transforma-
tion operations. Executing an atomic action is
often referred to as performing a micro-step;

2. A specification of the correct scheduling of the set
of micro-steps constituting a reaction, by which
discrete time progresses, from the current instant
to the next one.

The principle of a constructive semantics is to decom-
pose a time step into a sequence of micro-steps. The
effect of atomic actions is to propagate knowledge
regarding the statuses (not evaluated, evaluated) and
values of variables. For synchronous languages, atomic
actions are restricted to either (i) the evaluation of a
single expression, or (ii) control flow operations.

For mdAE systems, atomic actions comprise: (i) the
evaluation of a guard; (ii) solving a block of numerical
equations; (iii) equation management operations, for
instance, adding a latent equation.

Observe that solving systems of mixed logico-
numerical equations, involving a combination of
guards and numerical variables, is not considered as
an atomic action. The constructive semantics pre-
sented in this Section, requires that the evaluation
of a guard γi precedes the resolution of the equation
body fi = 0.

3.3.1 Abstract Domain

The structural analysis method is based on an abstract
semantics, in which numerical values are ignored and
no numerical computation actually takes place. In-
stead, the abstract semantics defines a computation
as an evolving knowledge regarding the statuses of the
guards, variables and equations of an mdAE, namely:

• A guard may be not evaluated, evaluated to true
or evaluated to false;

• A variable may be undefined, or defined;

• An equation may be not evaluated, disabled, or
evaluated.

Unlike mono-mode DAE, the set of equations describ-
ing the current status of an mDAE is mode dependent

and evolves therefore dynamically. To capture this
important fact, we tag as irrelevant all those equa-
tions that are not currently involved. Formally, the
semantics defines computations in a partially ordered
finite domain of values D:

D = {i,u, f,t} with i < u < f,t (17)

The meaning of these values is as follows:

• The minimal element i is used to represent the
fact that a variable, a guard, or an equation is
irrelevant, that is not used to define the current
status of the mdAE system.

• Value u means that a variable, guard or equation
has not been evaluated yet (say it is undefined).
At the beginning of a time-step, only state vari-
ables are known, and all other variables are set
to u, reflecting that their numerical values are
not known yet.

• Maximal element t has different meanings, de-
pending on whether it applies to a variable, a
guard or an equation. In the case of a variable,
it means that the numerical value of the variable
has been computed, whatever it could be. For a
guard, it means that the guard has been evalu-
ated to true. For an equation, it means that the
equation has been solved.

• Maximal element f also has different meanings,
depending on whether it applies to a guard or
an equation. In the context of a guard, it means
that the guard has been evaluated to false. When
it applies to an equation, it means that the equa-
tion is disabled. This value does not apply to
variables.

The constructive semantics defines the allowed micro-
steps as a non-deterministic transition relation be-
tween abstract states, called statuses.

Definition 3 (Status) The set V of S-variables is
defined by

V =def

{
x(•m)

}
x∈X,m∈N

∪
{
γi
}
i=1...n

∪
{
e
(•m)
i

}
i=1...n,m∈N
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A status σ is a valuation in D of the S-variables, that
is a mapping V → D. A status σ : V → D is said to
be finite if it is almost everywhere equal to i. The set
of statuses is partially ordered by the product order:
σ1 ≤ σ2 if and only if for all v ∈ V , σ1(v) ≤ σ2(v).

The partial order relation on statuses plays an im-
portant role to guarantee that knowledge increases
at every micro-step of the semantics. This is ensured
by the fact that the transition relation is strictly
monotonous.

Coherence conditions: We define the incidence
graph ρ ⊆ V × V of a mdAE system s as follows:(

γi, x
(•m)

)
∈ ρ iff x(•m) appears in γi(

e
(•p)
i , x(•m)

)
∈ ρ iff x(•m) appears in f

(•p)
i

Given a guard γi, ρ(γi) is the set of variables x(•m)

appearing in γi. Given equation e
(•p)
i , ρ(e

(•p)
i ) is the

set of variables x(•m) appearing in f
(•p)
i .

The constructive semantics follows a causality prin-
ciple, namely that an equation can not be solved
before its guard has been evaluated true. Similarly,
a guard can not be evaluated before all its incident
variables have been defined. This results in the follow-
ing coherence property which is an invariant of the
constructive semantics: A status σ is coherent if and
only if the following properties hold:(

γi, x
(•m)

)
∈ ρ and σ

(
x(•m)

)
≤ u⇒σ(γi) ≤ u(

e
(•p)
i , x(•m)

)
∈ ρ and σ

(
x(•m)

)
≤ u⇒σ

(
e
(•p)
i

)
≤ f

σ(γi) ≤ u⇒σ
(
e
(•m)
i

)
≤ u

Enabled Sets, Shifting Degree, Leading Variables:
Given a coherent status σ, i = 1 . . . n, guard γi is
enabled in σ if and only if for all x(•m) ∈ ρ(γi),
σ(x(•m)) = t. Given a coherent status σ, i = 1 . . . n

and m ∈ N, equation e
(•m)
i is enabled in σ (respec-

tively disabled in σ) if and only if σ(γi) = t (re-

spectively σ(γi) = f), where γi is the guard of e
(•m)
i .

Denote by Enγ(σ) the set of guards that are enabled
in σ, and by Enf (σ) (respectively Disf (σ)) the set of
equations that are enabled (respectively disabled) in σ.
Notice that for any finite status σ, these sets are finite.

Denote by Undef (σ) =def {v ∈ V | σ(v) ≤ u} the set
of S-variables that are either irrelevant or undefined
in status σ.

Define doσ(x), the shifting degree of x in σ, to be
the least upper bound of the shifting degree m of
all variables x(•m) that are incident to an equation
enabled in σ:

doσ(x) =def sup

m
∣∣∣∣∣∣∣∣
∃i = 1 . . . n, p ∈ N s.t.

e
(•p)
i ∈ Enγ(σ) and

x(•m) ∈ ρ
(
e
(•p)
i

)


Notice that the shifting degree doσ(x) = −∞ if x is not
incident to any enabled equation in σ. The shifting
degrees in a finite status are bounded: given a finite
status σ, there exists N ∈ N such that doσ(x) ≤ N for
all x ∈ X.

Given a status σ, the set of leading variables in
status σ is the set of variables of maximal shifting
degree that are incident to an enabled equation:

Ld(σ) =def

{
x(•m)

∣∣∣ x ∈ X and m = doσ(x) ≥ 0
}

Contexts: The constructive semantics must also
take into account possible consistency equations. This
is the purpose of contexts, exemplified in Exec. Sch. 4
(Section 2). A context

∆ ⊆
{
e
(•m)
i

}
i=1...n,m∈N

is a set of equations involving no leading variable in
the considered status. Given a context ∆, equation

e
(•m)
i ∈ ∆ is assumed to be satisfied, as soon as its

guard γi has been evaluated to true. In this case, the
constructive semantics sets such an equation as being
solved, without actually solving the equation. That
this equation is satisfied is known from the previous
time step.

3.3.2 Constructive Semantics

Given a finite coherent initial status σ0, and a finite
context ∆, the constructive semantics of a mdAE
system s is the set of the finite increasing sequences
of statuses, called runs:

σ0 < σ1 < · · · < σk < σk+1 < · · · < σK (18)
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such that for every k < K, the pair (σk, σk+1) is a
micro-step in the context ∆. A micro-step transforms
status σk into status σk+1 by updating the values of
a bounded subset of S-variables, from u to t or f, or
from i to u, via some atomic action.

Definition 4 A run σ0 < . . . < σK is called success-
ful if and only if in status σK is successful, that is
all equations ei have either the value t or f and no
leading variable has the value u. The constructive se-
mantics succeeds for an initial status σ0 and context
∆ if it has, for every mode, at least one successful
run.

When a run is successful, the system can proceed to
the next time step, by executing a Tick micro-step,
where, in a nutshell, time is advanced and defined
variables are shifted. Algorithm 5 defines the com-
putation of a micro-step from a given status σ and
context ∆. To produce a run, Algorithm 5 should be
iterated, until a Tick micro-step is performed.

The algorithm starts with a finite coherent status
σ and a context ∆. The context ∆ is the (possibly
empty) set of equations known to be satisfied by the
defined values in the current time-step. Notice that
the context is updated at each Tick.

Line 1: Function Success(σ) decides whether status
σ is successful, according to Definition 4.

Line 2: If the status is deemed successful, a Tick
micro-step is performed. This has the effect of shifting
backward defined variables, and setting all other S-
variables v ∈ V , either to u, if v is in the mdAE s, or
i, otherwise. The new context is defined to be the set
of equations that are known to be satisfied. Formally

Tick(σ) =def (σ◦,∆◦) ,

where:

σ◦(γi) = u

σ◦
(
x(•m)

)
= if σ

(
x(•m+1)

)
= t then t

else if x(•m) is a variable of mdAE s
then u else i

σ◦
(
e(•m)

)
= if e(•m) is a variable of s then u else i

∆◦ =

e(•m)
i

∣∣∣∣∣∣
∃j = 1 . . . n, fj is
syntactically identical to fi

andσ
(
e
(•m+1)
j

)
= t



Algorithm 5 Computation of a Micro-Step;
Atomic Actions are written in sans-serif font.
Require: a finite coherent status σ, and a finite con-

text ∆; return (updated) σ and ∆
1: if Success(σ) then
2: (σ,∆)← Tick(σ)
3: else
4: F ← Enf (σ) ∩Undef (σ)
5: if exists B ∈ Blocks(F ) then
6: σ ← EvaluateBlock(B, σ)
7: else
8: if exists γi ∈ Enγ(σ) ∩Undef (σ) then
9: σ ← EvaluateGuard(γi, σ)

10: σ ← DisableEquation(γi, σ)
11: σ ← EvaluateRedundant (γi,∆, σ)
12: else
13: if exists e

(•m)
i ∈ Overdetermined(F )

then
14: σ ← ForwardShift

(
e
(•m)
i , σ

)
15: else
16: L← LatentEquations(F )
17: if L = ∅ then
18: Fail(σ)
19: else
20: σ ← AddEquation (L, σ)

Note that Tick is not increasing (actually it does not
have to be so, since it applies when moving to the
next time step).

Line 4: The system F collects the enabled guarded
equations in the status σ that are still undefined. By
applying the procedure BTF (Section 3.1) to F one
gets three distinct sets: Bns, Bo, and Bu, the en-
abled, overdetermined, and underdetermined blocks,
respectively. We further apply a post processing step
to the standard BTF: for the overdetermined sub-
system, we select a maximum square triangular sub-
matrix and append it to Bns to obtain Blocks(F )
(Line 5). Function Overdetermined (Line 13) returns
what is left in Bo. For instance, for the system
F := {f1(x1)=0, f2(x1)=0}, BTF gives Bu = Bns = ∅
and Bo = {f1=0, f2=0}. We match arbitrarily either
f1 or f2 to x1. We therefore get Blocks(F ) = {f1=0},
and Overdetermined(F ) = {f2=0}. The impact of
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ω1, ω2start

γ, ω1, ω2,
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τ1, τ2, ω
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1 , ω
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∂
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e4, e5, e6
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∂
2 , e
•
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ω1, ω2, ]e3

γ, ω1, ω2,
e3, e4

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e3,

e4, e5, e6

γ, ω1, ω2,
e3, e5, e6,
latent e•3

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e3, e

•
3,

e4, e5, e6,
latent e•3

γ; e3; e4

γ; e5; e6; FS(e3)

e5; e6;
e∂1 ; e∂2

Tick

e∂1 + e∂2 + e•3 + e4

Tick
γ; e3; e4

γ; e5; e6; ∆← e3; LE(e3)

e5; e6; e∂1 ; e∂2

Tick

e∂1 + e∂2+
e•3 + e4

Tick

Figure 3: Constructive semantics of the Simple Clutch. Notations: For all statuses (shown in boxes), v (resp.
v) means v = t (resp. v = f), and not mentioning v means v = u. ]e means that ef belongs to context ∆. FS(.)
(resp. LE(.); resp. ∆← .) refers to line 14, forward shift (resp. 16, latent equation; resp. 11, redundent equations)
of Algorithm 5. Blue (resp. black) transitions belong to a continuous-time (resp. discrete-time) dynamics. The
red transition is impulsive. A semicolon is the sequential composition of micro-steps, and the + sign denotes
blocks of equations.

the different possible choices on the simulation of the
system is left as a future work.

Line 6: The atomic action EvaluateBlock(B, σ)
solves block B for its dependent variables, hence,
it updates the status σ to reflect that the undefined
variables and equations involved in B become defined.

Formally, in the resulting new status σ′,

∀e(•p)i ∈ B =⇒ σ′
(
e
(•p)
i

)
= t

∀v ∈ ρ
(
e
(•p)
i

)
=⇒ σ′(v) = t

Line 8: Select one enabled but undefined guard γi,
and evaluates it to t or f (Line 9). Both alternatives
must be explored, and an implementation will fork
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mode ¬γ : index 0
τ1 = 0; τ2 = 0;
ω′1 = a1ω1 + b1τ1;
ω′2 = a2ω2 + b2τ2

start

mode γ : index 1
τ1 = (a2ω2 − a1ω1)/(b1 + b2); τ2 = −τ1;
ω′1 = a1ω1 + b1τ1; ω′2 = a2ω2 + b2τ2;
constraint ω1 − ω2 = 0

when γ do
τ1 = NaN; τ2 = NaN;

ω1 =
b2ω

−
1 +b1ω

−
2

b1+b2
;

ω2 = ω1

done

when ¬γ do
τ1 = 0; τ2 = 0;
ω1 = ω−1 ;
ω2 = ω−2

done

Figure 4: Standardization of the clutch’s constructive semantics. Blocks have been standardized and then
symbolically pivoted. x− is the previous value of state variable x, which is the left limit of x when exiting a mode.
Continuous-time dynamics are colored blue; non-impulsive (resp. impulsive) state-jumps are colored black (resp.
red). The dynamics in mode ¬γ is defined by an ODE system, while in mode γ, it is defined by an over-determined
index-1 DAE system consisting of an ODE system coupled to an algebraic constraint. In the transition from mode
¬γ to mode γ, variables τ1 and τ2 are impulsive, and their standardization is undefined. This explains why they
are set to NaN (Not a Number).

two child Micro-Step procedures to explore the graph
of all possible runs. Such implementation details are
out of scope for this paper.

Line 10: If guard γi is evaluated to f, the equations
it controls is disabled (set to f).

Line 11: The context ∆ is used to update the status
σ through the atomic action EvaluateRedundant. For
the freshly evaluated guard γi, all its corresponding

equations e
(•m)
i belonging to the context ∆ are set

to evaluated (value t). Equations e
(•m)
i /∈ ∆ remain

unchanged.

Line 14: The atomic action ForwardShift attempts
to relax an overdetermined system F by shifting one
blocking (overdetermined) equation at a time.

Definition 5 (Forward Shift) The forward shift

of equation e
(•m)
i =def if γi do f

(•m)
i = 0 , is de-

fined by

e
(•m+1)
i =def if γi do f

(•m+1)
i = 0

where f
(•k)
i amounts to shifting forward k-times the

arguments of fi. Notice that only the body of the
equation is shifted, not its guard.

Forward shifting equation e
(•m)
i updates the status

from σ to σ′ as follows:

σ
(
e
(•m)
i

)
= u becomes σ′

(
e
(•m)
i

)
= f

σ
(
e
(•m+1)
i

)
= i becomes σ′

(
e
(•m+1)
i

)
= u

which is increasing.

Line 16: Exhibiting latent equations is a classical
task since we are just dealing with a dAE (difference
Algebraic Equation) system. We can, e.g., use the Pan-
telides algorithm [14] or the Σ-method of [17], which
also identifies when the index is infinite. Indeed, the
algorithm rejects models with infinite structural index
(Lines 17 and 18). Intuitively, this problem occurs
when exhibiting latent equations results in introduc-
ing at least as many extra variables as new equations
making the perfect matching problem unsolvable in
finitely many steps.
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Line 20: The atomic action AddEquation augments
the considered underdetermined block by adding the
latent equations, i.e., it extends the support of the
status σ with the finitely many extra latent equations
in L such that the newly obtained status is coherent
and σ (v) > i for all v ∈ L.

Properties of the Constructive Semantics: Al-
gorithm 5 is iterated in order to generate all possible
runs, corresponding to the different modes of the sys-
tem. This is done until all reachable pairs (σ,∆) of
statuses and contexts have been explored.

As a result, we obtain the Constructive Semantics
in the form of a graph CS having as nodes the dif-
ferent encountered status-context pairs and as edges
the micro-steps. Elementary cycles of CS capture
runs with stationary valuations of the guards and
define the continuous dynamics in each mode. Other
runs capture mode changes and their reset actions,
we call them reset runs. Elementary cycles of CS
containing at least two reset runs and having sta-
tionary assignments of the guards correspond to an
execution looping forever, in an attempt to handle
a mode change: a model exhibiting this situation is
rejected—see Appendix ?? for a simple example.

In Figure 3, we depict the graph CS produced for
the clutch example and Figure 4 shows the effective
code resulting from the standardization of CS.

4 Conclusion

We propose a formal approach for the structural anal-
ysis of multi-mode DAE systems that extends and
adapts the dummy derivatives method of [12]. We fur-
ther complement our analysis with a standardization
step leading, when successful, to execution schemes
that could be used for numerical simulations. The
use of nonstandard analysis was essential in defining
an operational semantics when discrete events occur.
We see our work as a generalization of adequate for-
malizations where only ODEs are involved [9].

We identified several interesting avenues for future
work. In particular, we plan to work on generic stan-
dardization techniques to handle a larger class of
problems. This is a crucial step for our structural

analysis to be useful in practice. The exact computa-
tion of standard finite solutions has the advantage of
giving exact reset maps at events of mode changes. It,
however, requires symbolic manipulations and could
therefore be computationally expensive. A viable and
relatively cheaper approach would be to use numerical
approximations where the infinitesimals are substi-
tuted by small real numbers. In this case, one has to
rely on sufficient conditions to prove the existence of
the standard solutions and to study further the accu-
racy and the effect of their numerical approximations
on subsequent computations.

We are also currently implementing Algorithm 5
to assess its performance on real case studies. The
prototype will help us studying the confluence of local
nondeterministic choices when handling overdeter-
mined modes and, more importantly, their effect on
the overall simulation.
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A Standardization

We mechanize below the manual reasoning performed
in Section 2 for a larger class of continuous functions.

A.1 Impulse Analysis

The impulse analysis consists in abstracting hyper-
reals with their magnitude order (or simply “order”)
compared to the infinitesimal ∂. The order of the
hyperreal x, denoted by [x], is defined as the integer
n ∈ Z, if it exists, such that the standard part of x.∂n

is a nonzero finite real number. By convention, the
order of 0 is −∞.

For instance, the order of any nonzero real num-
ber, seen as a hyperreal, is 0. Multiplying x by
∂m, for some integer m shifts [x] by −m: [x.∂m] :=
−m + [x]. The order for a monomial function is
given by [xr11 · · ·xrnn ] =

∑n
i=1 ri[xi]. For a multivari-

ate polynomial function, the order is the maximum
of the orders of all its monomials with highest total
degree, and, for a rational function P

Q , the order is

[P ]− [Q]. For instance, the order of a linear function
f(x1, . . . , xn) is

[f(x1, . . . , xn)] = max
i∈[1,...,n]

[xi] . (19)

whereas the order of f(x1, x2) := x1 + x1x2 + x22 is
max{[x1] + [x2], 2[x2]}. We leave the general case for
continuous functions as a future work.

We develop below the impulse analysis for the two
transitions γ : t → f and γ : f → t of System (9)
assuming linear fi as in Eq. (11).

Mode change γ : t → f: Recall that when γ
goes from t to f, we obtain a system of 4 equations
(e∂1 , e

∂
2 , e5, e6) for 4 unknowns (τ1, τ2, ω

•
1 , ω

•
2) and we

assume that the state variables ω1 and ω2 are known
and finite. Thus, [ωi] ≤ 0 (we use an inequality to take
into account the special case ωi = 0, in which case
the order would be −∞). This yields the following
abstraction (i = 1, 2): [ω•i − ωi] = −1 + [fi] ([e∂i ])

[τ1] = −∞ ([e5])
[τ2] = −∞ ([e6])

(20)

In (20), since fi, i = 1, 2, are linear, [fi] =
max{[ωi], [τi]} (cf. Eq. (19)), and therefore, [fi] ≤
[ωi] ≤ 0. We are interested in the order of the differ-
ence ω•i − ωi, regarded as a single hyperreal. Eq. (20)
thus gives [ω•i −ωi] = −1 + [fi] ≤ −1 + [ωi] ≤ −1 and
we conclude that the transition is continuous in ωi.

Mode change γ : f → t: Similar to the previous
case, we also assume that the values of ωi are known
and are finite from the previous step. Thus [ωi] ≤ 0.
When γ becomes t, the new state may not satisfy
ω1 − ω2 = 0, since (eq•3) was not active in previous
mode (γ = f). We eliminate, in the system of Line 3
in Exec. Sch. 4, (eq•3) and (eq4) by setting ω• =def

ω•1 = ω•2 and τ =def τ1 = −τ2, which yields{
ω• − ω1 = ∂.f1(ω1, τ) (eq∂1 )
ω• − ω2 = ∂.f2(ω2, τ) (eq∂2 )

(21)

Using (19), the impulse analysis for the simplified
system yields, for i = 1, 2:

[ω• − ωi] = −1 + max{[ωi], [τ ]}

At this point, two cases can occur: if [τ ] ≤ 0, then
[ω• − ωi] ≤ −1 for i = 1, 2, which is not possible
since it would require ω1 = ω2, which does not hold
in general. Thus, [τ ] ≥ 1 and τ is impulsive. This
implies [ω• − ωi] ≥ 0, expressing impulsive torques
and discontinuous angular velocities.

A.2 Computation of Resets

In this section we mechanize the computation of the
resets. We replace the manual rewriting used in Sec-
tion 2.4 by a calculus on formal power series. In (21),
we now regard the leading variables ω•, τ , as formal
power series in the variable ∂−1. The support of these
series is determined by the impulse analysis developed
in Appendix A.1:

ω• =

∞∑
k=0

ω•k ∂
k

τ = ∂−1
∞∑
k=0

τk ∂
k

(22)
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where all coefficients ω•k, τk are finite. Using this
expansion and the linearity of the fi, (21) becomes

∞∑
k=0

ω•k ∂
k − ω1 = ∂.

(
a1ω1 + b1

(
∂−1

∞∑
k=0

τk ∂
k

))
∞∑
k=0

ω•k ∂
k − ω2 = ∂.

(
a2ω2 − b2

(
∂−1

∞∑
k=0

τk ∂
k

))

We standardize this system by keeping only the dom-
inant terms: {

ω•0 − ω1 = b1τ0
ω•0 − ω2 = −b2τ0

(23)

It remains to solve this system for the standard vari-
ables (coefficients) ω•0 , τ0). Thus,

ω•0 =
b2ω1 + b1ω2

b1 + b2
(24)

and our analysis is complete.
Dividing the value τ0 for the solution of (23) by

the actual (non infinitesimal) step size δ used, yields
an estimate of the Dirac impulse for the torque, inte-
grated over the time interval of length δ. It would be
interesting to study the accuracy of this estimate.

B Overdetermined Example

We show in this appendix how Algorithm 5 behaves on
a simple overdetermined example, where only static
equations occur:

S :

 f1(x1, x2) = 0 (e1)
f2(x1, x2) = 0 (e2)
f3(x1, x2) = 0 (e3)

Equations are not guarded, equivalently, we regard all
the guards as being true. Thus, the three equations
are active and x1, x2 are the leading variables. The
following comments refer to lines of Algorithm 5.

Initialization: At the initialization of the step, noth-
ing is evaluated and the context is empty:

σ(x1, x2) = (u,u)
σ(e1, e2, e3) = (u,u,u)

∆ = ∅
(25)

and shifted versions of the above variables and equa-
tions have all the value i (irrelevant). Since the re-
sulting status is not successful, we move to Line 4.

Line 4: F is the whole system S. We thus ap-
ply BTF on the whole system S, which returns
Bu = Bns = ∅ and Bo = S, expressing that the
entire system is overdetermined. Performing the ad-
ditional processing of Line 4 returns, say, an enabled
block {e1, e2} with dependent variables x1, x2 and an
overdetermined equation (e3) having no dependent
variables. We thus go to Line 5, which brings us to
Line 6.

Line 6: We solve block {e1, e2} for x1, x2 and move
to the next micro-step with status and context

σ(e1, e2) = (t,t) ; σ(e3) = u
σ(x1, x2) = (t,t)

∆ = ∅

and other shifted S-variables being irrelevant.

Line 4: F is the singleton system {e3} with no
dependent variable. We thus go to Line 13, which
brings us to Line 14.

Line 14: We apply ForwardShift, which amounts
to replacing e3 by e•3, having x•1, x

•
2 as dependent

variables, and we move to the next micro-step with
status and context

σ(e1, e2) = (t,t) ; σ(e3) = f ; σ(e•3) = u
σ(x1, x2) = (t,t) ; σ(x•1, x

•
2) = (u,u)

∆ = ∅

and other shifted S-variables being irrelevant.

Line 4: F is the system {e•3} with x•1, x
•
2 as depen-

dent variables. {e•3} is underdetermined, so we go to
Line 16.

Line 16: Find latent equations in the system
{e1, e2, e•3} having dependent variables x1, x2, x

•
1, x
•
2.

Take e•1 as latent equation and add it to the system.
Move to the next micro-step with status and context

σ(e1, e2) = (t,t) ; σ(e3) = f ; σ(e•1, e
•
3) = (u,u)

σ(x1, x2) = (t,t) ; σ(x•1, x
•
2) = (u,u)

∆ = ∅

and other shifted S-variables being irrelevant.
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Line 4: F is the system {e•1, e•3} with x•1, x
•
2 as

dependent variables. BFT returns a single enabled
block, which we evaluate. The micro-step ends with
the successful status and context

σ(e1, e2, e
•
1, e
•
3) = (t,t,t,t) ; σ(e3) = f

σ(x1, x2, x
•
1, x
•
2) = (t,t,t,t)
∆ = ∅

and other shifted S-variables being irrelevant.

Line 2: We thus perform a Tick by forming the
initial status σ and context ∆ for the next time step:

σ(x1, x2) = (t,t)
σ(e1, e2, e3) = (u,u,u)

∆ = {e1, e3}
(26)

Observe that (26) differs from (25). So we are not in
a continuous mode. Since ∆ is not empty and guards
are all true, we move to Line 11.

Line 11: Update

σ(e1, e3) ← (t,t)

So we are left with (e2) overdetermined, so we go to
Line 13, which brings us to Line 14.

Line 14: We apply ForwardShift, which amounts
to replacing e2 by e•2, having x•1, x

•
2 as dependent

variables. Now, the leading variables become x•1, x
•
2.

Line 4: F is the system {e•2} with x•1, x
•
2 as depen-

dent variables. {e•2} is underdetermined, so we go to
Line 16.

Line 16: Find latent equations in the system
{e1, e•2, e3} having dependent variables x1, x2, x

•
1, x
•
2.

Take e•1 as latent equation and add it to the system.
Move to the next micro-step with status and context

σ(e1, e3) = (t,t) ; σ(e2) = f ; σ(e•1, e
•
2) = (u,u)

σ(x1, x2) = (t,t) ; σ(x•1, x
•
2) = (u,u)

∆ = ∅

and other shifted S-variables being irrelevant. Go to
Line 4.

Line 4: F is the system {e•1, e•2} with x•1, x
•
2 as

dependent variables. BFT returns a single enabled

block, which we evaluate. The micro-step ends with
the successful status and context

σ(e1, e3, e
•
1, e
•
2) = (t,t,t,t) ; σ(e2) = f

σ(x1, x2, x
•
1, x
•
2) = (t,t,t,t)
∆ = ∅

and other shifted S-variables being irrelevant.

Line 2: We thus perform a Tick by forming the
initial status σ and context ∆ for the next time step:

σ(x1, x2) = (t,t)
σ(e1, e2, e3) = (u,u,u)

∆ = {e1, e2}
(27)

Observe that (27) differs from (26). So we are not in
a continuous mode. Since ∆ is not empty and guards
are all true, we move to Line 11.

This goes further on. In finitely many rounds we
end up having a cycle, shown Figure 5. This cycle
has stationary guards (constantly true). The model
is rejected.

Of course, any DAE tool would immediately identify
S as being overconstrained. Our algorithm looks like a
significant overshoot for this case. Its merit, however,
is that it applies to all models. Clearly, nothing
forbids us to shorten the decisions by applying obvious
heuristics to simple cases.
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start

x1, x2,
e1, e2

x1, x2,
e1, e2,

e•3 replaces e3

x1, x2,
e1, e2,

e•3 replaces e3,
latent e•1

x1, x2, x
•
1, x
•
2,

e1, e2, e
•
1, e
•
3,

e•3 replaces e3,
latent e•1

x1, x2,
e1, e3

x1, x2,
e1, e3,

e•2 replaces e2

x1, x2,
e1, e3,

e•2 replaces e2,
latent e•1

x1, x2, x
•
1, x
•
2,

e1, e3, e
•
1, e
•
2,

e•2 replaces e2,
latent e•1

e1 + e2

FS(e3)

LE(e1)

e•1 + e•3

Tick;
∆← e1;
∆← e3

FS(e2)

LE(e1)

e•1 + e•2

Tick;
∆← e1;
∆← e2

Figure 5: Constructive semantics of the overdeter-
mined system. Notations are those of Fig. 3.
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