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ABSTRACT
Explicit hybrid systems modelers like Simulink/Stateflow al-
low for programming both discrete- and continuous-time be-
haviors with complex interactions between them. A key is-
sue in their compilation is the static detection of algebraic or
causality loops. Such loops can cause simulations to dead-
lock and prevent the generation of statically scheduled code.

This paper addresses this issue for a hybrid modeling lan-
guage that combines synchronous data-flow equations with
Ordinary Differential Equations (ODEs). We introduce the
operator last(x) for the left-limit of a signal x. This oper-
ator is used to break causality loops and permits a uniform
treatment of discrete and continuous state variables. The
semantics relies on non-standard analysis, defining an exe-
cution as a sequence of infinitesimally small steps. A signal
is deemed causally correct when it can be computed sequen-
tially and only changes infinitesimally outside of announced
discrete events like zero-crossings. The causality analysis
takes the form of a type system that expresses dependences
between signals. In well-typed programs, signals are prov-
ably continuous during integration provided that imported
external functions are also continuous.

The effectiveness of this system is illustrated with sev-
eral examples written in Zélus, a Lustre-like synchronous
language extended with hierarchical automata and ODEs.

Categories and Subject Descriptors
I.6.2 [Simulation and Modeling]: Simulation Languages
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1. CAUSALITY AND SCHEDULING
Tools for modeling hybrid systems [7] such as Modelica,1

LabVIEW,2 and Simulink/Stateflow,3 are now rightly
understood and studied as programming languages. Indeed,
models are used not only for simulation, but also for test-case
generation, formal verification and translation to embedded
code. This explains the need for formal operational seman-
tics for specifying their implementations and proving them
correct [15, 9].

The underlying mathematical model is the synchronous
parallel composition of stream equations, Ordinary Differ-
ential Equations (ODEs), hierarchical automata, and im-
perative features. While each of these features taken sepa-
rately is precisely understood, real languages allow them to
be combined in sophisticated ways. One major difficulty in
such languages is the treatment of causality loops.

Causality or algebraic loops [20, 2-34] pose problems of
well-definedness and compilation. They can lead to math-
ematically unsound models. They can prevent simulators
from statically ensuring the existence of a fixed point, and
compilers from generating statically scheduled code. The
static detection of such loops, termed causality analysis, has
been studied and implemented since the mid-1980s in syn-
chronous data-flow language compilers [12, 13, 1]. The
classical and simplest solution is to reject cycles (feed-back
loops) which do not cross a unit delay. For instance, the
Lustre-like equations:4

x = 0 -> pre y and y = if c then x + 1 else x

define the two sequences (xn)n∈N and (yn)n∈N such that:

x(0) = 0 y(n) = if c(n) thenx(n) + 1 elsex(n)

x(n) = y(n− 1)

They are causally correct since the feedback loop for x con-
tains a unit delay pre y (‘previous’). Replacing pre y with
y gives two non-causal equations. Causally correct equations
can be statically scheduled to produce a sequential, loop-free
step function. Below is an excerpt of the C code generated
by the Heptagon compiler [11] of Lustre:

if (self->v_1) {x = 0;} else {x = self->v_2;};
if (c) {y = x+1;} else {y = x;};
self->v_2 = y; self->v_1 = false;

1http://www.modelica.org
2http://www.ni.com/labview
3http://www.mathworks.com/products/simulink
4The unit delay 0 -> pre(·), initialized to 0, is sometimes
written as 0 fby · (‘0 followed by’), or in Simulink: 1

z
.
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It computes current values of x and y from that of c. The
internal memory of function step is in self, with self->v_1

initialized to true and set to false (to encode the Lustre
operator ->) and self->v_2 storing the value of pre y.

ODEs with resets: Consider now the situation of a pro-
gram defining continuous-time signals only, made of ODEs
and equations. For example:

der y = z init 4.0 and z = 10.0 - 0.1 * y and k = y + 1.0

defines signals y, z and k, where for all t ∈ R+, dy
dt

(t) = z(t),

y(0) = 4, z(t) = 10 − 0.1 · y(t), and k(t) = y(t) + 1.5 This
program is causal simply because it is possible to generate a
sequential function derivative(y) = let z = 10− 0.1 ∗ y in z
returning the current derivative of y and initial value 4 for y
so that a numeric solver [8] can compute a sequence of ap-
proximations y(tn) for increasing values of time tn ∈ R+ and
n ∈ N. Thus, for continuous-time signals, integrators break
algebraic loops just as delays do for discrete-time signals.

Can we reuse the simple justification we used for data-
flow equations to justify that the above program is causal?
Consider the value that y would have if computed by an
ideal solver taking an infinitesimal step of duration ∂ [4].
Writing ?y(n), ?z(n) and ?k(n) for the values of y, z and k
at instant n∂, with n ∈ ?N a non-standard integer, we have:

?y(0) = 4 ?z(n) = 10− 0.1 · ?y(n)
?y(n+ 1) = ?y(n) + ?z(n) · ∂ ?k(n) = ?y(n) + 1

where ?y(n) is defined sequentially from past values and
?y(n) and ?y(n + 1) are infinitesimally close, for all n ∈ ?N,
yielding a unique solution for y, z and k. The equations are
thus causally correct.

Troubles arise when ODEs interact with discrete-time con-
structs, for example when a reset occurs at every occurrence
of an event. E.g., the sawtooth signal y : R+ 7→ R+ such
that dy

dt
(t) = 1 and y(t) = 0 if t ∈ N can be defined by an

ODE with reset,

der y = 1.0 init 0.0 reset up(y - 1.0) -> 0.0

where y is initialized with 0.0, has derivative 1.0, and is reset
to 0.0 every time the zero-crossing up(y - 1.0) is true, that
is, whenever y - 1.0 crosses 0.0 from negative to positive.
Is this program causal? Again, consider the value y would
have were it calculated by an ideal solver taking infinitesimal
steps of length ∂. The value of ?y(n) at instant n∂, for all
n ∈ ?N would be:

?y(0) = 0 ?y(n) = if
?z(n) then 0.0 else ?ly(n)

?ly(n) = ?y(n− 1) + ∂ ?c(n) = (?y(n)− 1) ≥ 0
?z(0) = false

?z(n) = ?c(n) ∧ ¬?c(n− 1)

This set of equations is clearly not causal: the value of ?y(n)
depends instantaneously on ?z(n) which itself depends on
?y(n). There are two ways to break this cycle: (a) consider
that the effect of the zero-crossing is delayed by one cycle,
that is, the test is made on ?z(n− 1) instead of on z(n), or,
(b) distinguish the current value of ?y(n) from the value it
would have had were there no reset, namely ?ly(n). Testing
a zero-crossing of ly (instead of y),

?c(n) = (?ly(n)− 1) ≥ 0,

5der y = e init v0 stands for y = 1
s
(e) inititialized to v0 in

Simulink.

gives a program that is causal since ?y(n) no longer depends
instantaneously on itself. We propose writing this ♣6:

der y = 1.0 init 0.0 reset up(last y - 1.0) -> 0.0

where last(y) stands for ly , that is, the left-limit of y. In
non-standard semantics [4], it is infinitely close to the previ-
ous value of y, and written ly(n) ≈ y(n− 1). When y is de-
fined by its derivative, last(y) corresponds to the so-called
‘state port’ of the integrator block 1

s
of Simulink, which is

introduced expressly to break causality loops like the one
above ♣.7 According to the documentation [19, 2-685]:

“The output of the state port is the same as the
output of the block’s standard output port ex-
cept for the following case. If the block is reset
in the current time step, the output of the state
port is the value that would have appeared at
the block’s standard output if the block had not
been reset.”

Simulink restricts the use of the state port. It is only de-
fined for the integrator block and cannot be returned as a
block output: it may only be referred to in the same con-
text as its integrator block and used to break algebraic loops.
The use of the state port reveals subtle bugs in the Simulink
compiler. Consider the Simulink model shown in Figure 1a
with the simulation results given by the tool for x and y

in Figure 1b. The model contains two integrators. The one
at left, named ‘Integrator0’ and producing x, integrates the
constant 1. The one at right, named ‘Integrator1’ and pro-
ducing y, integrates x; its state port is fed back through
a bias block to reset both integrators, and through a gain
of −3 to provide a new value for Integrator0. The new value
for Integrator1 comes from the state port of Integrator0 mul-
tiplied by a gain of −4. In our syntax ♣:

der x = 1.0 init 0.0 reset z -> -3.0 * last y
and der y = x init 0.0 reset z -> -4.0 * last x
and z = up(last x - 2.0)

In the non-standard interpretation of signals, the equations
above are perfectly causal: the current values of ?x(n) and
?y(n) only depend on previous values, that is:

?x(n) = if
?z(n) then−3 · ?y(n− 1) else ?x(n− 1) + ∂

?y(n) = if ?z(n) then−4 · ?x(n− 1)
else ?y(n− 1) + ∂ · ?x(n− 1)

?x(0) = 0 ?y(0) = 0
?c(n) = (?x(n− 1)− 2) ≥ 0 ?z(n) = ?c(n) ∧ ¬?c(n− 1)

Yet, can you guess the behavior of the model and explain
why the trajectories computed by Simulink are wrong?

Initially, both x and y are 0. At time t = 2, the state
port of Integrator1 becomes equal to 2 triggering resets at
each integrator as the output of block u − 2.0 crosses zero.
The results show that Integrator0 is reset to −6 (= 2 · −3)

6The ♣’s link to http://zelus.di.ens.fr/hscc2014/.
7The Simulink integrator block outputs both an integrated
signal and a state port. We write (x, lx ) = 1

s
(x0, up(z), x′)

for the integral of x′, reset with value x0 every time z crosses
zero from negative to positive, with output x and state port
lx . The example would thus be written:

(y, ly) = 1
s
(0.0, up(ly − 1.0), 1.0).
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(b) Simulation results

Figure 1: A miscompiled Simulink model (R2009b) ♣

and that Integrator1 is reset to 24 (= −6 · −4). The latter
result is surprising since, at this instant, the state port of
Integrator0 should also be equal to 2, and we would thus
expect Integrator1 to be reset to −8 (= 2 · −4)!

The Simulink implementation does not satisfy its doc-
umented behavior [19, 2-685]. Inspecting the C function
which computes the current outputs, mdlOutput in Figure 2,
the code of the two integrators appears in an incorrectly
scheduled sequence.8 At the instant of the zero-crossing
(conditions ssIsMajorTimeStep(S) and zcEvent are true),
the state port of Integrator0 (stored in sGetContStates(S)

-> Integrator0_CSTATE) is reset using the state port value
of Integrator1. Thus, Integrator1 does not read the value
of Integrator0’s state port (that is ?x(n− 1)) but rather the
current value (?x(n)) leading to an incorrect output. The
Simulink model is not correctly compiled—it needs another
variable to store the value of ?x(n− 1), just as a third vari-
able is normally needed to swap the values of two others.
We argue that such a program should either be scheduled
correctly or give rise to a warning or error message. Provid-
ing a means to statically detect and explain causality issues
in a hybrid model is a key motivation of this paper.

Any loop in Simulink, whether of discrete- or continuous-
time signals, can be broken by inserting the so-called mem-
ory block [19, 2-831].9 If x is a signal, mem(x) is a piece-
wise constant signal which refers to the value of x at the
previous integration step (or major step). If those steps
are taken at increasing instants ti ∈ R, mem(x)(t0) = x0
where t0 = 0 and x0 is an explicitly defined initial value,
mem(x)(ti) = x(ti−1) for i > 0 and mem(x)(ti + δ) = x(ti−1)
for 0 ≤ δ < ti+1 − ti. As integration is performed globally,

8The same issue exists in release R2014a.
9In contrast, the application of a unit delay 1

z
to a

continuous-time signal is statically detected and results in a
warning.

// P_0 = -2.0 P_1 = -3.0 P_2 = -4.0 P_3 = 1.0

static void mdlOutputs(SimStruct * S, int_T tid)
{ _rtX = (ssGetContStates(S));

...
_rtB = (_ssGetBlockIO(S));

_rtB->B_0_0_0 = _rtX->Integrator1_CSTATE + _rtP->P_0;
_rtB->B_0_1_0 = _rtP->P_1 * _rtX->Integrator1_CSTATE;

if (ssIsMajorTimeStep (S))
{ ...

if (zcEvent || ...)
{ (ssGetContStates (S))->Integrator0_CSTATE =

_ssGetBlockIO (S)->B_0_1_0;
}

... }

(_ssGetBlockIO (S))->B_0_2_0 =
(ssGetContStates (S))->Integrator0_CSTATE;
_rtB->B_0_3_0 = _rtP->P_2 * _rtX->Integrator0_CSTATE;

if (ssIsMajorTimeStep (S))
{ ...

if (zcEvent || ...)
{ (ssGetContStates (S))-> Integrator1_CSTATE =

(ssGetBlockIO (S))->B_0_3_0;
}
...

}
... }

Figure 2: Excerpt of C code produced by RTW (R2009b)

mem(y) may cause strange behaviors as the previous value of
a continuously changing signal x depends precisely on when
the solver decides to stop! ♣ Writing mem(y) is thus unsafe
in general [3].10 There is nonetheless a situation where the
use of the memory block is mandatory and still safe: The
program only refers to the previous integration step during a
discrete step. This situation is very common: it is typically
that of a system with continuous modes M1 and M2 pro-
ducing a signal x, with each of them being started with the
value computed previously by the solver, and mem(x) being
used to pass a value from one mode to the other ♣. Instead
of using the unsafe operator mem(x), we could better refer
to the left limit of x, and write it again last(x). Yet, the
unrestricted use of this operation may cause a new kind of
causality loop which has to be statically rejected. Consider
the following equation activated on a continuous time base:

y = -1.0 * (last y) and init y = 1.0

which defines, for all n ∈ ?N, the sequence ?y(n) such that:

?y(n) = − ?y(n− 1) ?y(0) = 1

Indeed, this differs little from the equation y = -1.0 * y.
Even though ?y(n) can be computed sequentially, its value
does not increase infinitesimally at each step, that is, y is not
left continuous even though no zero-crossing occurs. For any
time t ∈ R, the set {n∂ | n ∈ ?N∧n∂ ≈ t∧?y(n) 6≈ ?y(n+1)}
is infinite. Thus, the value of y(t) at any standard instant
t ∈ R is undefined.

Contribution and organization of the paper: This
paper presents the causality problem for a core language

10Quoting the Simulink manual (http://www.mathworks.
com/help/simulink/slref/memory.html), “Avoid using the
Memory block when both these conditions are true: - Your
model uses the variable-step solver ode15s or ode113. - The
input to the block changes during simulation.”
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that combines Lustre-like stream equations, ODEs with
reset and a basic control structure. The operator last(x)
stands for the previous value of x in non-standard semantics
and coincides with its left-limit when x is left-continuous.
This operation plays the role of a delay but is safer than
the memory block mem(x) as its semantics does not depend
on when a particular solver decides to stop. When x is
a continuous-state variable, it coincides with the so-called
Simulink state port. We develop a non-standard semantics
following [4] and a compile-time causality analysis in order
to detect possible instantaneous loops. The static analysis
takes the form of a type system, reminiscent of the simple
Hindley-Milner type system for core ML [21]. A type signa-
ture for a function expresses the instantaneous dependencies
between its inputs and outputs. We prove that well typed
programs only progress by infinitely small steps outside of
zero-crossing events, that is, signals are continuous during
integration provided imported operations applied point-wise
are continuous. We are not aware of such a correctness the-
orem based on a static typing discipline for hybrid modelers.

The presented material is implemented in Zélus [6], a syn-
chronous Lustre-like language extended with ODEs. More-
over, all examples in the paper are written in Zélus.

The paper is organized as follows. Section 2 introduces a
core synchronous language with ODEs. Section 3 presents
its semantics based on non-standard analysis. Section 4
presents a type system for causality and Section 5 a ma-
jor property: any well-typed program is proved not to have
any discontinuities during integration. Section 6 discusses
related work and we conclude in Section 7.

2. A SYNCHRONOUS LANGUAGE + ODES
We now introduce a kernel language. It is not intended

to be a full language but a minimal one for the purpose of
the present paper. It includes data-flow equations, ordinary
differential equations and control structures. Its syntax is:

d ::= letx= e | let k f(p) = e whereE | d; d

e ::= x | v | op(e) | e fby e | last(x) | f(e) | (e, e) | up(e)

p ::= (p, p) | x

E ::= () | x = e | init x = e | next x = e | derx = e
| E and E | local x in E | if e thenE elseE
| present e then E else E

k ::= D | C | A

A program is a sequence of definitions (d), that either bind
the value of expression e to x (letx= e) or define a function
(let k f(p) = e whereE). In a function definition, k is the
kind of the function f , p denotes formal parameters, and
the result is the value of an expression e which may contain
variables defined in the auxiliary equations E. There are
three kinds of function: k = A means that f is a combina-
tional function (typically a function imported from the host
language, e.g., addition); k = D means that f is a sequential
function that must be activated at discrete instants (typ-
ically a Lustre function with an internal discrete state);
k = C denotes a hybrid function that may contain ODEs
and which must be activated continuously.

An expression e can be a variable (x), an immediate value
(v), e.g., a boolean, integer or floating point value, the point-
wise application of an imported function (op(e)) such as +,

∗ or not(·), an initialized unit delay (e1 fby e2), the left-limit
of a signal (last(x)), a function application (f(e)), a pair
(e, e) or a rising zero-crossing detection (up(e)), which, in
this language kernel, is the only basic construct to produce
an event from a continuous-time signal (e). A pattern p
is a tree structure of identifiers (x). A set of equations E
is either an empty equation (()); an equality stating that
a pattern equals the value of an expression at every in-
stant (x = e); the initialization of a state variable x with
a value e (init x = e); the value of a state variable x at
the next instant (next x = e); or, the current value of the
derivative of x (derx = e). An equation can also be the
conjunction of two sets of equations (E1 and E2); the dec-
laration that a variable x is defined within, and local to, a
set of equations (local x in E); a conditional that acti-
vates a branch according to the value of a boolean expres-
sion (if e thenE1 elseE2), and a variant that operates on
an event expression (present e then E1 else E2).

Notational abbreviations:

(a) if e then E
def
= if e thenE else ().

(b) present e then E
def
= present e then E else ().

(c) derx = e init e0
def
= init x = e0 and derx = e

(d) derx = e init e0 reset z → e1
def
=

init x = e0 and present z then x = e1 else derx = e

Equations (E) must be in Static Single Assignment (SSA)
form: every variable has a unique definition at every instant.

3. NON-STANDARD SEMANTICS

3.1 Semantics
Let ?R and ?N be the non-standard extensions of R and N.

?N is totally ordered and every set bounded from above (resp.
below) has a unique maximal (resp. minimal) element. Let
∂ ∈ ?R be an infinitesimal, i.e., ∂ > 0, ∂ ≈ 0. Let the global
time base or base clock be the infinite set of instants:

T∂ = {tn = n∂ | n ∈ ?N}

T∂ inherits a total order from ?N; in addition, for each ele-
ment of R+ there exists an infinitesimally close element of
T∂ . Whenever possible we leave ∂ implicit and write T in-
stead of T∂ . Let T = {t′n | n ∈ ?N} ⊆ T. T (i) stands for t′i,
the i-th element of T . In the sequel, we only consider sub-
sets of the time base T obtained by sampling a time base on
a boolean condition or a zero-crossing event. Any element
of a time base will thus be of the form k∂ where k ∈ ?N. If
T ⊆ T, we write •T (t) for the immediate predecessor of t in
T and T •(t) for the immediate successor of t in T . For an
instant t, we write its immediate predecessor and successor
as, respectively, •t and t•, rather than as •T(t) and T•(t).
For t ∈ T ⊆ T, neither •t nor t• necessarily belong to T .
min(T ) is the minimal element of T and t ≤T t′ means that
t is a predecessor of t′ in T .

Definition 1 (Signals). Let V⊥ = V + {⊥} where V
is a set. S(V ) = T 7→ V⊥ is the set of signals. A signal
x : T 7→ V⊥ is a total function from a time base T ⊆ T to
V⊥. Moreover, for all t 6∈ T, x(t) = ⊥. If T is a time base,
x(T (n)) and x(tn) are the value of x at instant tn where
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n ∈ ?N is the n-th element of T . The clock of a signal x is
clock(x) = {t ∈ T | x(t) 6= ⊥}.

Sampling: Let bool = {false, true} and x : T 7→ bool⊥.
The sampling of T according to x, written T on x, is the
subset of instants defined by:

T on x = {t | (t ∈ T ) ∧ x(t) = true}

Note that as T on x ⊆ T , it is also totally ordered. The
zero-crossing of x : T 7→ ?R⊥ is up(x) : T 7→ bool⊥. To
emphasize that up(x) is defined only for t ∈ T , we write its
value at time t as up(x)(T )(t). For t /∈ T , up(x)(T )(t) = ⊥.
In the definition below < is the total order on ?R.

up(x)(T )(t0) = false where t0 = min(T )

up(x)(T )(t) = ∃n ∈ ?N, n≥1. ∧ (x(t−n∂) < 0)
∧ (x(t−(n−1)∂) = 0)
∧ . . .
∧ (x(t−∂) = 0)
∧ (x(t) > 0)

(1)

where t ∈ T

The above definition means that a zero-crossing on x occurs
when x goes from a strictly negative to a strictly positive
value, possibly with intermediate values equal to 0.

Let V be a set of values closed under product and sum. ?V
is its non-standard extension such that ?(V1 × V2) = ?V1 ×
?V2, ?V = V for any finite set V . ?V ⊥ = ?V + {⊥} with
⊥ as the minimum element. Let L = {x1, ..., xn, ...} be a
set of local variables and Lg = {f1, ..., fn, ...} a set of global
variables. An environment associates names to values. A
local environment ρ and a global environment G map names
to signals and signal functions:

ρ : L 7→ S(?V ) G : Lg 7→ (S(?V ) 7→ S(?V ))

Operations on environments: Consider ρ1 and ρ2.

• (ρ1 + ρ2)(x)(t) is ρ1(x)(t) if ρ2(x)(t) = ⊥, ρ2(x)(t) if
ρ1(x)(t) = ⊥, and ⊥ otherwise.

• ρ = merge (T ) (s) (ρ1) (ρ2) is the merge of two environ-
ments according to a signal s ∈ S(bool). The value of
a signal x at instant t ∈ T is the one given by ρ1 if s(t)
is true and that of ρ2 otherwise. Nonetheless, in case
x is not defined in ρ1 (respectively ρ2), it implicitly
keeps its previous value, that is ρ1(•clock(x)(t)). This
corresponds to adding an equation x = last(x) when
no equation is given in one branch of a conditional.

For all x and t ∈ T , ρ(x)(t) = ρ1(x)(t) if s(t) =
true and x ∈ Dom(ρ1); ρ(x)(t) = ρ(x)(•clock(x)(t))
if s(t) = true and x 6∈ Dom(ρ1). ρ(x)(t) = ρ2(x)(t)
if s(t) = false and x ∈ Dom(ρ2); finally, ρ(x)(t) =
ρ(x)(•clock(x)(t)) otherwise.

Expressions: Expressions are interpreted as signals and
node definitions as functions from signals to signals. For
expressions, we define ?[[e]]ρG(T )(t) to give at every instant
t ∈ T both the value of e and a Boolean value true if e raises
a zero-crossing event. The definition is given in Figure 3.

Let us explain the definition. The value of expression e
is considered undefined outside of T . The current value of
an immediate constant v is v and no zero-crossing event
is raised. The current value of x is the one stored in the
environment ρ(x) and no event is raised. The semantics of

?[[e]]ρG(T )(t) = ⊥,⊥ if t 6∈ T
?[[v]]ρG(T )(t) = v, false

?[[x]]ρG(T )(t) = ρ(x)(t), false

?[[op(e)]]ρG(T )(t) = let v, z = ?[[e]]ρG(T )(t) in

op(v), z

?[[(e1, e2)]]ρG(T )(t) = let v1, z1 = ?[[e1]]ρG(T )(t) in

let v2, z2 = ?[[e2]]ρG(T )(t) in

(v1, v2), (z1 ∨ z2)

?[[e1 fby e2]]ρG(T )(t0) = ?[[e1]]ρG(T )(t0) if t0 = min(T )

?[[e1 fby e2]]ρG(T )(t) = ?[[e2]]ρG(T )(•T (t)) otherwise

?[[last(x)]]ρG(T )(t) = ρ(x)(•clock(x)(t)), false

?[[f(e)]]ρG(T )(t) = let s(t′), z(t′) = ?[[e]]ρG(T )(t′) in

let v′, z′ = G(f)(s)(t) in

v′, z(t) ∨ z′

?[[up(e)]]ρG(T )(t) = let s(t′), z(t′) = ?[[e]]ρG(T )(t′) in

let v′ = up(s)(T )(t) in

v′, z(t) ∨ v′

Figure 3: The non-standard semantics of expressions

op(e) is obtained by applying the operation op to e at every
instant, an event is raised only if e raises one. An expression
(e1, e2) returns a pair at every instant and raises an event if
either of e1 or e2 does. The initial value of a delay e1 fby e2 is
that of e1. Afterward, it is the previous value of e2 according
to clock T . E.g., the value of 0 fbyx on clock T is the value
x had at the previous instant that T was active. This is not
necessarily the previous value of x. On the contrary, last(x)
is the previous value of x the last time x was defined. The
semantics of f(e) is the application of the function f to the
signal value of e, which raises an event when either e or
the body of f does. Finally, the semantics of up(e) is given
by operator up(.), which raises a zero-crossing event when
either e does or up(s)(T )(t) is true.

Equations: If E is an equation, G is a global environment, ρ
is a local environment and T is a time base, ?[[E]]ρG(T ) = ρ′, z
means that the evaluation of E on the time base T returns
a local environment ρ′ and a zero-crossing signal z. As for
expressions, the value of E is undefined outside of T , that
is, for all t 6∈ T , ρ′(x)(t) = ⊥ and z(t) = ⊥. For all t ∈ T ,
z(t) = true signals that a zero-crossing occurs at instant t
and z(t) = false means that no zero-crossing occurred at
that instant. The semantics of equations is given in Figure 4,
where the following notation is used: if z1 : T 7→ bool⊥ and
z2 : T 7→ bool⊥ then z1 or z2 : T 7→ bool⊥ and ∀t ∈
T.(z1 or z2)(t) = z1(t) ∨ z2(t) if z1(t) 6= ⊥ and z2(t) 6= ⊥,
and otherwise, (z1 or z2)(t) = ⊥.

Function definitions: Function definition is our final con-
cern: we must show the existence of fixed points in the sense
of Kahn process network semantics based on Scott domains.

The prefix order on signals S(V ) indexed by T is defined
as: signal x is a prefix of signal y, written x≤S(V ) y, if
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?[[x = e]]ρG(T ) = [s/x], z where ∀t ∈ T.s(t), z(t) = ?[[e]]ρG(T )(t)

?[[E1 and E2]]ρG(T ) = ρ1 + ρ2, z1 or z2 where ρ1, z1 = ?[[E1]]ρG(T ) ∧ ρ2, z2 = ?[[E2]]ρG(T )

?[[present e then E1 else E2]]ρG(T ) = ρ′, z or z1 or z2 where ∀t ∈ T.s(t), z(t) = ?[[e]]ρG(T )(t)

and ρ1, z1 = ?[[E1]]ρG(T on s)

and ρ2, z2 = ?[[E2]]ρG(T on not(s))

and ρ′ = merge (T ) (s) (ρ1) (ρ2)

?[[if e thenE1 elseE2]]ρG(T ) = ρ′, z or z1 or z2 as for present (see extended version)

?[[init x = e]]ρG(T ) = [s/x], z where s(t0), z(t0) = ?[[e]]ρG(T )(t0)

and t0 = min(T )

and ∀t 6= t0.s(t) = ρ(x)(t) ∧ z(t) = false

?[[next x = e]]ρG(T ) = [s/x], z where ∀t ∈ T. (v, z = ?[[e]]ρG(T )(t)) ∧ (s(t•) = v)

?[[derx = e]]ρG(T ) = [s/x], z where ∀t ∈ T. (v, z = ?[[e]]ρG(T )(t)) ∧ (s(t•) = s(t) + ∂ × v)

Figure 4: The non-standard semantics of equations

x(t) 6= y(t) implies x(t′) = ⊥ for all t′ such that t ≤ t′. The
minimum element is the undefined signal ⊥S(V ) for which
∀t ∈ T, ⊥S(V )(t) = ⊥. When possible, we write ⊥ for ⊥S(V )

and x ≤ y for x ≤S(V ) y. The symbol
∨

denotes a supre-
mum in the prefix order. A function f : S(?V ) 7→ S(?V ) is
continuous if

∨
i f(xi) = f(

∨
i xi) for every increasing chain

of signals, where increasing refers to the prefix order. If f
is continuous, then equation x = f(x) has a least solution
denoted by fix (f), and equal to

∨
i f

i(⊥). We name such
continuity on the prefix order Kahn continuity [14].

The prefix order is lifted to environments so that ρ ≤ ρ′

iff for all x ∈ Dom(ρ) ∪ Dom(ρ′), ρ(x) ≤ ρ′(x). It is lifted
to pairs such that (x, y) ≤ (x′, y′) iff x ≤ x′ and y ≤ y′.

Property 1 (Kahn continuity). Let [s/p] be an en-
vironment, G a global environment of Kahn-continuous func-
tions and T a clock. The function:

F : (L 7→ S(?V ))× S(bool) 7→ (L 7→ S(?V ))× S(bool)

such that:

F (ρ, z) = let ρ′, z′ = ?[[E]]
ρ+[s/p]
G (T ) in ρ′, z or z′

is Kahn continuous, that is, for any sequence (ρi, zi)i≥0:

F (
∨
i∈I(ρi, zi)) =

∨
i∈I(F (ρi, zi))

As a consequence, an equation (ρ, z) = F (ρ, z) admits a
least fixed point fix (F ) =

∨
i(F

i(⊥,⊥)).
The declaration of ?[[let k f(p) = e whereE]]G(T ) defines

a Kahn-continuous function ?f such that

?[[let k f(p) = e whereE]]G(T )(s)(t) = ?f(T )(s)(t)

where

?f(T )(s)(t) = let s′(t′), z(t′) = ?[[e]]
ρ′+[s/p]
G (T )(t′) in

s′(t), z(t) ∨ z′(t)

and with

(ρ′, z′) = fix ((ρ, z) 7→ ?[[E]]
ρ+[s/p]
G (T ))

Yet, Kahn-continuity of ?f does not mean that the function
computes anything interesting. In particular, the semantics
gives a meaning to functions that become ‘stuck’, like11

let hybrid f(x) = y where rec y = y + x

The semantics of f is ?f(x) = ⊥ since the minimal solution
of equation y = y + x is ⊥. The purpose of the causality
analysis is to statically reject this kind of program.

3.2 Standardization
We now relate the non-standard semantics to the usual

super-dense semantics of hybrid systems. Following [18],
the execution of a hybrid system alternates between integra-
tion steps and discrete steps. Signals are now interpreted
as total functions from the time index S = R × N to V⊥.
This time index is called super-dense time [18, 15] and is
ordered lexically, (t, n) <S (t′, n′) iff t <R t′, or t = t′ and
n <N n

′. Moreover, for any (t, n) and (t, n′) where n ≤N n
′,

if x(t, n′) 6= ⊥ then x(t, n) 6= ⊥.
A timeline for a signal x is a function Nx : R+ 7→ N⊥.

Nx(t) is the number of instants of x that occur at a real
date t and such timelines thus specify a subset of super-
dense time SNx = {(t, n) ∈ S | n ≤N Nx(t)}. In particular,
if Nx is always 0, then SNx is isomorphic to R+. For t ∈ R
and T ⊆ T, define:

set(T )(t)
def
= {t′ ∈ T | t′ ≈ t ∧ t ∈ R} ⊆ T

that is, the set of all instants infinitely close to t. T is totally
ordered and hence so is set(T )(t). Let x : T 7→ ?V⊥.

We now proceed to the definition of the timeline Nx of x
and the standardization of x, written

st(x) : R× N 7→ V⊥,

such that st(x)(t, n) = ⊥ for n > Nx(t).

Let T ′
def
= set(T )(t) and consider

st(x(T ′))
def
= {st(x(t′)) | t′ ∈ T ′}.

11The keyword hybrid stands for k = C and node for k = D.
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(a) If st(x(T ′)) = {v} then, at instant t, x’s timeline is
Nx(t) = 0 and its standardization is st(x)(t, 0) = v.

(b) If st(x(T ′)) is not a singleton set, then let

Z
def
= {t′ | t′ ∈ T ′ ∧ x(t′) 6≈ x(T ′

•
(t′))}

i.e., Z collects the instants at which x experiences a
non-infinitesimal change. Z is either finite or infinite:

(i) If Z = {tz0 , . . . , tzm} is finite, timeline Nx(t) =
m and the standard value of signal x at time t is:

∀n ∈ {0, . . . ,m}.st(x)(t, n) = st(x(tzn))

(ii) If Z is infinite (it may even lack a minimum ele-
ment), let

Nx(t) = ⊥ and ∀n.st(x)(t, n) = ⊥

which corresponds to a Zeno behavior.

Our approach differs slightly from [15], where the value of a
signal is frozen for n > N(t). We decide instead to set it to
the value ⊥. Each approach has its merits. For ours, parts
of signals that do not experience jumps are simply indexed
by (t, 0) which we identify with t. In turn, we squander the
undefined value ⊥ which is usually devoted to Scott-Kahn
semantics and causality issues.

3.3 Key properties
We now define two main properties that reasonable pro-

grams should satisfy. The first one states that discontinuities
do not occur outside of zero-crossing events, that is, signals
are continuous during integration. The second one states
that the semantics should not depend on the choice of the
infinitesimal. These two invariants are sufficient conditions
to ensure that a standardization exists.

Invariant 1 (Zero-crossings). An expression e eval-
uated under G, ρ and a base time T has no discontinuity
outside of zero-crossing events. Formally, define s(t), z(t) =
?[[e]]ρG(T )(t), then ∀t, t′ ∈ T such that t ≤ t′:

t ≈ t′ ⇒ (∃t′′ ∈ T, t ≤ t′′ ≤ t′ ∧ z(t′′)) ∨ s(t) ≈ s(t′)

This invariant states that all discontinuities are aligned on
zero-crossings, that is, signals must evolve continuously dur-
ing integration. Discrete changes must be announced to the
solver using the construct up(.). Not all programs satisfy
the invariant, e.g.,

let hybrid f()= y where rec y = last y + 1 and init y = 0

f takes a single argument () of type unit and returns a
value y. Writing ?y(n) for the value of y at instant n∂ with
n ∈ ?N, we get ?y(0) = 0 and ?y(n) = ?y(n − 1) + 1. Yet,
?y(n) 6≈ ?y(n−1) while no zero-crossing is registered for any
instant n ∈ ?N. This program will be statically rejected by
using the type system developed in the next section.

Invariant 2 (Independence from ∂). The semantics
of e evaluated under G, ρ and a base time T is indepen-
dent of the infinitesimal time step. Formally, define s(t) =
fst(?[[e]]ρG(T∂)(t)) and s′(t) = fst(?[[e]]ρG(T∂′)(t)), then:

∀t ∈ R, n ∈ N, st(s)(t, n) = st(s′)(t, n)

When satisfied, this invariant ensures that properties and
values on non-standard time carry over to standard time
and values.

4. A LUSTRE-LIKE CAUSALITY
Programs are statically typed. We adopt, for our lan-

guage, the type system presented in [3]. Well-typed pro-
grams may still exhibit causality issues, that is, the defini-
tion of a signal at instant t may instantaneously depend on
itself. A classical causality analysis is to reject loops which
do not cross a delay. This ensures that outputs can be com-
puted sequentially from current inputs and an internal state.
This simple solution is used in the academic Lustre com-
piler [12], Lucid Synchrone [22] and Scade 6.12 We pro-
pose generalizing it to a language mixing stream equations,
ODEs and their synchronous composition. The causality
analysis essentially amounts to checking that every loop is
broken either by a unit delay or an integrator.

The analysis gives sufficient conditions for invariants 1
and 2. We adopt the convention quoted below [3, 4]. A
signal is termed discrete if it only changes on a discrete clock :

A clock is termed discrete if it has been declared
so or if it is the result of a zero-crossing or a
sub-sampling of a discrete clock. Otherwise, it is
termed continuous.

A discrete change on x at instant t ∈ T means that x(•t) 6≈
x(t) or x(t) 6≈ x(t•). Said differently, all discontinuities have
to be announced using the programming construct up(.).

Two classes of approaches exist to formalize causality anal-
yses. In the first, causality is defined as an abstract preorder
relation on signal names. The causality preorder evolves dy-
namically at each reaction. A program is causally correct if
its associated causality preorder is provably a partial order
at every reaction. In the second class, causality is defined
as the tagging of each event by a ‘stamp’ taken from some
preordered set. The considered program is causally correct
if its set of stamps can be partially ordered—similarly to
Lamport vector clocks. Previous works [1, 4] belong to the
first class whereas this paper belongs to the second.

Our analysis associates a type to every expression and
function via two predicates: (typ-exp) states that, under
constraints C, global environment G, local environment H,
and kind k ∈ {A, D, C}, an expression e has type ct; (typ-

env) states that under constraints C, global environment G,
local environment H, and kind k, the equation E produces
the type environment H ′.

(typ-exp)

C | G,H `k e : ct

(typ-env)

C | G,H `k E : H ′

The type language is

σ ::= ∀α1, ..., αn : C. ct
k→ ct

ct ::= ct× ct | α
k ::= D | C | A

where σ defines type schemes, α1, ..., αn are type variables
and C is a set of constraints. A type is either a pair (ct×ct)
or a type variable (α). The typing rules for causality are
defined with respect to an environment of causality types.
G is a global environment mapping each function name to
a type scheme (σ). H is a local environment mapping each
variable x to its type ct:

G ::= [σ1/f1, ..., σk/fk] H ::= [ct1/x1, ..., ctn/xn]

12http://www.esterel-technologies.com/scade
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(taut)

C + α1 < α2 ` α1 < α2

(trans)

C ` ct1 < ct′ C ` ct′ < ct2

C ` ct1 < ct2

(pair)

C ` ct1 < ct′1 C ` ct2 < ct′2

C ` ct1 × ct2 < ct′1 × ct′2

(env)

∀i ∈ {1, .., n}, C ` cti < ct′i

C ` [x1 : ct1; ...;xn : ctn] < [x1 : ct′1; ...;xn : ct′n]

Figure 5: Constraints between types

If H1 and H2 are environments, H1 + H2 is their disjoint
union. H1, H2 is their concatenation; and H1 ∗H2 is a new
environment such that (H1 +[x : ct])∗(H2 +[x : ct]) = (H1 ∗
H2)+[x : ct] where + and ∗ are associative and commutative.

Precedence relation: C is a precedence relation between
variables with the following intuition. If C | G,H `k e : α1

holds and α1 < α2, the current value of e is ready at α1

and also later, within the execution of the same reaction, at
α2. < must be a strict partial order: it must not be possible
to deduce both α1 < α2 and α2 < α1 from the transitive
closure of C.

C ::= {α1 < α′1, ..., αn < α′n}

The predicate C ` ct1 < ct2, defined in Figure 5, means
that ct1 precedes ct2 according to C. All rules are simple
distribution rules.

The initial environment G0 gives type signatures to im-
ported operators, synchronous primitives and the zero-cros-
sing function.

(+), (−), (∗), (/) : ∀α. α× α A→ α

pre(·) : ∀α1, α2 : {α2 < α1}.α1
D→ α2

· fby · : ∀α1, α2 : {α2 < α1}.α1 × α2
D→ α1

For example, the operation x + y depends on both x and
y, that is, it must be computed after x and y have been
computed. Indeed, if C | G,H ` x : α1 and C | G,H ` y :
α2, C ` α1 < α and C ` α2 < α, then C | G,H ` x : α,
C | G,H ` y : α. Thus C | G,H ` x + y : α. pre(x) does
not depend on x. For up(x), two policies can be considered:

up(·) : ∀α1, α2 : {α2 < α1}.α1
C→ α2 up(·) : ∀α1 : α1

C→ α1

With the first one, the effect of a zero-crossing is delayed by
one cycle. Hence, up(x) does not depend instantaneously on
x. With the second, the effect is instantaneous.

Instantiation/Generalization The types of global defini-
tions are generalized to types schemes (σ) by quantifying
over free variables.

Gen(C)(ct1
k→ ct2) = ∀α1, ..., αn : C.ct1

k→ ct2

where {α1, ..., αn} = Vars(C) ∪ Vars(ct1) ∪ Vars(ct2). The
variables in a type scheme σ can be instantiated. ct ∈
Inst(σ) means that ct is an instance of σ. For ~α′ and k ≤ k′:

C[~α′/~α], ct1[~α′/~α]
k′→ ct2[~α′/~α] ∈ Inst(∀~α : C.ty1

k→ ty2)

The typing relation is defined in Figure 6:

Rule (var). A variable x inherits the declared type ct.

Rule (const). A constant v has any causality type.

Rule (app). An application f(e) has type ct2 if f has func-

tion type ct1
k→ ct2 from the instantiation of a type scheme

giving a new set of constraints C, and e has type ct1.

Rule (last). last(x) is the previous value of x. In this sys-
tem, we only allow last(x) to appear during a discrete step
(of kind D).

Rule (eq). An equation x = e defines an environment [ct/x]
if x and e are of type ct.

Rule (sub). If e is of type ct and ct < ct′ then e can also be
given the type ct′.

Rule (der). An integrator has a similar role as a unit de-
lay: it breaks dependencies during integration. If e : ct1
then any use of x does not depend instantaneously on the
computation of e and can thus be given a type ct2.

Rules (present) and (if). The present statement returns an
environment H1 ∗H2. The first handler is activated during
discrete steps and the second one has kind C. The rule
for conditionals is the same except that the handlers and
condition must all be of kind k.

Rule (local). The declaration of a local variable x is valid
if E gives an equation for x which is itself causal.

Rule (def). For a function f with parameter p and result e,
the body E is first typed under an environment H and con-
straints C. The resulting environment H ′ must be strictly
less than H. This forbids any direct use of variables in H
when typing E.

We can now illustrate the system on several examples.

Example: The following program is a classic synchronous
(thus discrete-time) program written in the concrete syntax
of Zélus. Calling the forward Euler integrator integr be-
low, the function heat is valid since temp does not depend
instantaneously on gain - temp. step is a global constant.

let node integr(xi, x’) = x where
rec x = xi fby (x + x’ * step)

let node heat(temp0, gain) = temp where
rec temp = integr(temp0, gain - temp))

The causality signatures are:

val integr : {’a < ’b}.’a * ’b -C-> ’a
val heat : {’a < ’b}.’a * ’b -C-> ’a

The signature for integr states that the output depends
instantaneously on its first argument but not the second
one. The following program is statically rejected:

let cycle() = (x, y) where rec y = x + 1 and x = y + 2

Indeed, taken x : αx and y : αy, the first equation is correct
if both C ` αx < αy and C ` αy < αx. This means that
C must contain {αx < αy, αy < αx} which is cyclic. This
following two are correct, der playing the role of a delay:
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(var)

C | G,H + x : ct `k x : ct
(const)

C | G,H `k v : ct

(app)

C, ct1
k→ ct2 ∈ Inst(G(f)) C | G,H `k e : ct1

C | G,H `k f(e) : ct2

(last)

C ` ct2 < ct1

C | G,H + x : ct1 `D last(x) : ct2

(eq)

C | G,H `k x : ct C | G,H `k e : ct

C | G,H `k x = e : [ct/x]

(der)

C | G,H `C e : ct1 C ` ct2 < ct1

C | G,H `C derx = e : [ct2/x]

(init)

C | G,H `C e : ct

C | G,H `C init x = e : [ct/x]

(next)

C | G,H `D e : ct1 C ` ct2 < ct1

C | G,H `D next x = e : [ct2/x]

(sub)

C | G,H `k e : ct C ` ct < ct′

C | G,H `k e : ct′

(present)

C | G,H `C e : ct C | G,H `D E1 : H1 C | G,H `C E2 : H2

C | G,H `C present e then E1 else E2 : H1 ∗H2

(if)

C | G,H `k e : ct ∀i ∈ {1, 2} : C | G,H `k Ei : Hi

C | G,H `k if e thenE1 elseE2 : H1 ∗H2

(and)

C | G,H `k E1 : H1 C | G,H `k E2 : H2

C | G,H `k E1 and E2 : H1 ∗H2

(local)

C | G,H + [x : ct1] `k E : H ′ + [x : ct2] C ` ct2 < ct1

C | G,H `k local x in E : H ′

(pair)

∀i ∈ {1, 2} : C | G,H `k ei : cti

C | G,H `k (e1, e2) : ct1 × ct2

(def)

C | G,H `k E : H ′ C ` H ′ < H C | G,H `k p : ct1 C | G,H `k e : ct2

` let k f(p) = e whereE : [Gen(C)(ct1
k→ ct2)/f ]

Figure 6: A Lustre-like Causality Analysis

let hybrid f(x) = o where
rec der y = 1.0 - x init 0.0 and o = y + 1.0

let hybrid loop(x) = y where rec y = f(y) + x

val f : {’b < ’a }.’a -C-> ’b
val loop : ’a -C-> ’a

In the present system, last(x) is restricted to only appear in
a discrete context. Hence, the following program is rejected.

let hybrid g(x) = o where
rec der y = 1.0 init 0.0
and x = last x + y and init x = 0.0

If up(.) is considered to instantaneously depend on its input,
loop is rejected:

let hybrid f(z) = y where
der y = 1.0 init -1.0 reset up(z) -> -1.0

let hybrid loop() = y where rec y = f(y)

Indeed, f has signature ∀α.α → α. For loop to be well-
typed, we would need to be able to state an equation αy <
αy where y : αy.

Type simplification: The Zélus compiler implements a
simplification algorithm to eliminate useless constraints. It
follows the algorithm [23] to partition type variables accord-
ing to Input-Output (IO) relations. Moreover, as causality
analysis is performed after typing, some relations can be re-
moved. E.g., the actual signature of the unit delay is simply:

pre(·) : ∀α1, α2 : α1
D→ α2

The State Port: The present causality analysis restricts
the use of last(x) to appear only under a discrete context.

An extension is to allow last(x) to appear in a continu-
ous context provided x is a continuous state variable, i.e.,
it is defined by an equation derx = e. Indeed, during in-
tegration last(x) and x are infinitely close to each other
(?x(n − 1) ≈ ?x(n)). The Zélus compiler implements this
minor extension.

5. THE MAIN THEOREM
We can now state the main result of this paper: The se-

mantics of well-typed programs satisfies Invariants 1 and 2.
This theorem requires assumptions on primitive operators
and imported functions, as the following example shows.

A Nonsmooth Model ♣: It comprises several modules
(written in Zélus syntax). The first two are an integrator
and a time base with a parameterized initial value t0:

let hybrid integrator(y0, x) = y where
rec init y = y0 and der y = x

let hybrid time(t0) = integrator(t0, 1.0)

Then a function producing a quasi-Dirac (Dirac with a
width strictly greater than 0). It yields a function dirac(d, t)

such that
∫ +∞
−∞ dirac(d, t)dt = 1 for every constant d > 0.

let dirac(d, t) = 1.0 / pi * d / (d * d + t * t)

Our goal is to produce, using a hybrid program, an in-
finitesimal value for d, so that dirac(d, t) standardizes as a
Dirac measure centered on t = 0. This can be achieved
by integrating a pulse of magnitude 1, but of infinitesimal
width. Such a pulse can be produced using a variable that
is reset twice by the successive occurrences, separated by a
∂, of two zero-crossings:
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let hybrid doublecrossing(t) = (x + 1.0) / 2.0 where
rec init x = -1.0
and present up(t) then do next x = 1.0 done else

present up(x) then do next x = -1.0 done
else do der x = 0.0 done

let hybrid infinitesimal(t1,t) =
integrator(0.0, doublecrossing(t1))

The first zero-crossing in doublecrossing occurs when t

crosses zero and causes an immediate reset of x from −1 to
+1, this in turn triggers an immediate zero-crossing on x and
a reset of x back to −1. The input of the integrator is thus
one for one ∂-step; the output of the integrator, initially 0,
becomes ∂ at time t1 + ∂.

The main program is the following, where t0 < t1 < t2:

let hybrid nonsmooth(t0, t1, t2) = x where
rec t = time(t0) and d = infinitesimal(t - t1)
and x = integrator(0.0, dirac(d,(t - t2)))

What is the point of this example? It is causally correct
and yet its standardization has a discontinuity at t2 though
no zero-crossing occurs. This is because dirac standardizes
to a Dirac mass.

Discussion: In the previous example, the problem arises
with the function dirac, that is not defined when t = 0 and
d = 0. However, it is defined everywhere when d 6= 0. In
particular, it is defined for d = ∂. The solution seems clear:
if a standard function f(x) of a real variable x is such that
f(x0) = ⊥, then the semantics must enforce f(x) = ⊥ for
any x ≈ x0. Applying this to the function d 7→ d

d2+t2
where

t = 0 is fixed gives ∂
∂2+t2

= ⊥. This is formalized through
the assumptions on operators and functions given below.

Given x, y ∈ ?R, relation x ≈ y holds iff st(x− y) = 0.
Recall that function f : ?R 7→ ?R is microcontinuous iff
for all x, y ∈ ?R, x ≈ y implies f(x) ≈ f(y). Recall that
the microcontinuity of f implies the uniform continuity of
st(f):R7→R [17]. Denote [t0, t1]T = {t ∈ T | t0 ≤ t ≤ t1},
with t0, t1 ∈ T finite.

Assumption 1. Operators op(·) of kind C are standard
and satisfy the following definedness, finiteness and conti-
nuity properties: op(⊥) = ⊥

∀v, op(v) 6= ⊥ implies op(v) finite
∀u, v, u ≈ v and op(u) 6≈ op(v) implies op(u) = ⊥

Assumption 2. Environment G is assumed to satisfy the
following assumption, for all external functions f of kind
C: for any bounded interval K = [t1, t2]T, for any input u
that is defined, finite and microcontinuous on K, if function
G(f)(u) is defined and produces no zero-crossing in K, then
it is assumed to be finite and microcontinuous on K:[

∀t ∈ K,
{

fst(G(f)(u)(t)) 6= ⊥ and

snd(G(f)(u)(t)) = false

]
⇓ ∀t ∈ K, fst(G(f)(u)(t)) finite, and

∀t, t′ ∈ K, t ≈ t′ implies
fst(G(f)(u)(t)) ≈ fst(G(f)(u)(t′))


Assumption 1 has several implications on the definitions

of the usual operators. For the square root function:
√
ε =

√
−ε =

√
0, for all ε ≈ 0, which yields two meaningful solu-

tions:
√
ε = ⊥ or

√
ε = 0 For the inverse: 1/ε = ⊥ for any

infinitesimal ε is the only solution.

Theorem 1. Under Assumptions 1 and 2, the semantics
of every causally correct equation E (wrt. typing rules of
Section 4) satisfies Invariants 1 and 2 and is standardizable.

This is a direct consequence of the following lemmas.

Lemma 1. Assume that Assumptions 1 and 2 hold. For
any activation clock T ⊆ T, for any bounded interval K =
[t1, t2]T, for any environment ρ that is defined, finite and
microcontinuous on K, if expression e, of kind A or C, is
defined and produces no zero-crossing on K, then it is finite
and microcontinuous on K:[

∀t ∈ K,
{

fst(?[[e]]ρG(T )(t)) 6= ⊥ and

snd(?[[e]]ρG(T )(t)) = false

]
⇓ ∀t ∈ K, fst(?[[e]]ρG(T )(t)) finite, and

∀t, t′ ∈ K, t ≈ t′ implies
fst(?[[e]]ρG(T )(t)) ≈ fst(?[[e]]ρG(T )(t′))


Given a bounded interval T = [t0, t1]T, define the following

nonstandard dynamical system on T :{
x(t0) = x0 finite

∀t ∈ T \ {t1}, x(t+ ∂) = x(t) + ∂ × f(t, x(t))

Lemma 2. If the solution x : T 7→ ?R of the dynamical
system defined above is infinite or discontinuous at t, then
there exists t′ < t such that f(t′, x(t′)) is infinite.

The corollary of this lemma, is that under Assumptions 1
and 2, the semantics of derx = e is smooth provided that
expression e is defined and triggers no zero-crossing:

Corollary 1. Assume that Assumptions 1 and 2 hold,
and that e is a causally correct expression of kind A or C.
For any activation clock T ⊆ T, for any bounded interval
K = [t1, t2]T, for any environment ρ that is defined, finite
and microcontinuous on K, if the least fixed point of the

operator ρ′, z′ 7→ ?[[derx = e]]ρ
′+ρ
G (T ) is defined and raises

no zero-crossing on K, then ρ′ is microcontinuous on K.

Lemma 3. Assume that Assumptions 1 and 2 hold. For
any activation clock T ⊆ T, for any bounded interval K =
[t1, t2]T, for any environment ρ that is defined, finite and
microcontinuous on K, if the semantics of E, a causally
correct equation of kind C, is defined and produces no zero-
crossing on K, then it is finite and microcontinuous on K:[

∀x, ∀t ∈ K,
{

fst(?[[E]]ρG(T ))(x)(t) 6= ⊥ and

snd(?[[E]]ρG(T ))(t) = false

]
⇓ ∀x, (∀t ∈ K, fst(?[[E]]ρG(T ))(x)(t) finite, and

∀t, t′ ∈ K, t ≈ t′ implies
fst(?[[E]]ρG(T ))(x)(t) ≈ fst(?[[E]]ρG(T ))(x)(t′))


6. DISCUSSION AND RELATED WORK

The present work continues that of Benveniste et al. [4],
by exploiting non-standard semantics to define causality in
a hybrid program. The proposed analysis gives a sufficient
condition for the program to be statically scheduled.
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The present work is related to Ptolemy [10] and the use
of synchronous language concepts to define the semantics
of hybrid modelers [16]. We follow the same path, replac-
ing super-dense semantics by non-standard semantics that
we found more helpful to explain causality constraints and
generalize solutions adopted in synchronous compilers. The
presented material is implemented in Zélus, a synchronous
language extended with ODEs [6]. It is more single-minded
than Ptolemy but Zélus programs are turned into sequen-
tial code whereas Ptolemy only provides an interpreter.

Causality has been extensively studied for the synchronous
languages Signal [1] and Esterel [5]. Instead of imposing
that every feedback loop crosses a delay, constructive causal-
ity checks that the corresponding circuit is constructive. A
circuit is constructive if its outputs stabilize in bounded time
when inputs are fed with a constant input. In the present
work, we adapted the simpler causality of Lustre and Lu-
cid Synchrone based on a precedence relation in order
to focus on specific issues raised when mixing discrete and
continuous-time signals. Schneider et al. [2] have considered
the causality problem for a hybrid extension of Quartz, a
variant of Esterel, with ODEs. But, they did not address
issues due to the interaction of discrete and continuous be-
haviors.

Regarding tools like Simulink, we think that the syn-
chronous interpretation of signals where time advances by
infinitesimal steps can be helpful to define causality con-
straints and safe interactions between mixed signals.

7. CONCLUSION
Causality in system modelers is a sufficient condition for

ensuring that a hybrid system can be implemented: general
fix-point equations may have solutions or not, but the subset
of causally correct systems can definitely be computed se-
quentially using off-the-shelf solvers. The notion of causality
we propose is that of a synchronous language where instan-
taneous feedback loops are statically rejected. An integrator
plays the role of a unit delay for continuous signals as the
previous value is infinitesimally close to the current value.

We introduced the construction last(x) which stands for
the previous value of a signal and coincides with the left limit
when the signal is left continuous. Then, we introduced a
causality analysis to check for the absence of instantaneous
algebraic loops. Finally, we established the main result:
causally correct programs have no discontinuous changes
during integration.
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