
1

Diagnosis of asynchronous discrete event systems, a
net unfolding approach

Albert Benveniste, Fellow, IEEE, Eric Fabre, Stefan Haar, and Claude Jard

Abstract— In this paper we consider the diagnosis of asynchronous dis-
crete event systems. We follow a so-called true concurrency approach, in
which no global state and no global time is available. Instead, we use only
local states in combination with a partial order model of time. Our basic
mathematical tool is that of net unfoldings originating from the Petri net re-
search area. This study was motivated by the problem of event correlation
in telecommunications network management.

Keywords: diagnosis, asynchronous diagnosis, discrete event systems, Petri
nets, unfoldings, alarm correlation.

I. INTRODUCTION

In this paper we study the diagnosis of truly asynchronous
systems. Typical examples are networked systems, such as
shown in Fig. 1. In this figure, the sensor system is distributed,

lo
ca

l t
im

e

Fig. 1. Supervision of a networked system.

it involves several local sensors, attached to some nodes of the
network (shown in black). Each sensor has only a partial view of
the overall system. The different sensors possess their own lo-
cal time, but they are not synchronized. Alarms are reported to
the global supervisor (depicted in grey) asynchronously, and this
supervisor performs diagnosis. This is the typical architecture
in telecommunications network management systems today, our
motivating application1. Events may be correctly ordered by
each individual sensor, but communicating alarm events via the
network causes a loss of synchronization, and results in a non-
deterministic and possibly unbounded interleaving at the super-
visor. Hence, the right picture, for what the supervisor collects,
is not a sequence of alarms, but rather a partially ordered set of
alarms.

Fault diagnosis in discrete event systems has attracted a sig-
nificant attention, see the work of Lafortune and co-authors
[35][10] for an overview of the literature and introduction to
the subject. Decentralized diagnosis is analyzed in [10], includ-
ing both algorithms and their diagnosability properties; the solu-

This work was supported by the RNRT project MAGDA, funded by the Min-
istère de la Recherche; other partners of the project are France Telecom R&D,
Alcatel, Ilog, and Paris-Nord University.

IRISA, Campus de Beaulieu, 35042 Rennes cedex, France. A.B.,
E.F., S.H. are with Inria, C.J. is with CNRS. Corresponding author Al-
bert.Benveniste@irisa.fr

1See [28] and the url http://magda.elibel.tm.fr/ for a presentation of the
MAGDA project on fault management in telecommunications networks.

tion is formulated in terms of a precomputed decentralized diag-
noser, consisting of a set of communicating machines that have
their states labeled by sets of faults and react to alarm observa-
tions and communications; the language oriented framework of
Wonham and Ramadge (see [9]) is used, and the systems archi-
tecture is that of communicating automata, with a synchronous
communication based on a global time, as revealed by the as-
sumption “A6” in [10]. The work [10] has been extended by the
same authors in [11] toward considering the effect of (bounded)
communication delays in decentralized diagnosis. Difficulties
resulting from communications in diagnosis are also investi-
gated by Sengupta in [36]. Finally, the recent work of Tripakis
[37] discusses issues of undecidability for a certain type of de-
centralized observability, this issue has again some relation with
asynchrony. Baroni et al. [4] propose a different approach, more
in the form of a simulation guided by the observed alarms, for
a model of communicating automata. The solution proposed
offers a first attempt to handle the problem of state explosion
which results from the interleaving of events involving different
components.

Diagnosis in the framework of Petri net models has also been
investigated by some authors. Hadjicostis and Verghese [22]
consider faults in Petri nets in the form of losses or duplica-
tions of tokens; this is different from using Petri nets as an asyn-
chronous machine model, for diagnosis. Valette and co-authors
[34] use Petri nets to model the normal behavior of systems, and
consider as faults the occurrence of events that do not match
firing conditions properly. The work closest to ours is that of
Giua and co-authors [23][24], it considers the estimation of the
current marking from observations.

Event correlation in network management is the subject of a
considerable literature, and a number of commercial products
are available. We refer the reader to Gardner [21] for a survey.
There are two main frameworks for most methods developed
in this area. The first one relates to rule-based or case-based
reasoning, an approach very different from the one we study
here. The second one uses a causal model, in which the relation
between faulty states and alarm events is modelled. The articles
by Bouloutas et al. [7][8][27] belong to this family, as well as
Rozé and Cordier [32] which relies on the diagnoser approach
of [35]. The case of event correlation in network management
also motivated the series of papers by Fabre et al. [6][2][3], on
which the present paper relies.

As said before, our present approach was motivated by the
problem of fault management in telecommunications networks,
so it is worth discussing how this context motivated some of
our choices. As seen from our bibliographical discussion, two
classes of approaches were available, to handle the diagnosis of
asynchronous systems.

2

A possible approach would consist in constructing a diag-
noser in the form of a Petri net, having certain places labeled
by faults, and transitions labeled by alarms. Received alarms
trigger the net, and visiting a faulty place would indicate that
some fault occurred in the original net for monitoring. Another
approach would consist in estimating the current marking of the
Petri net for monitoring, as in [23][24].

For our application, we needed to support distributed faults
and event propagation and distributed sensor setups, from which
wrong interleaving can result. Hence we feel it important, that
robustness against a wrong interleaving should be addressed.
However, the available approaches typically assume that alarms
are received in sequence and that this sequence is an actual fir-
ing sequence of the net, an assumption not acceptable in our
context.

Also, for our application in fault management in telecommu-
nications networks (where faults are typically transient), pro-
viding explanations in the form of scenarios, not just snapshots,
was essential. Finally, returning all scenarios compatible with
the observations, was the requirement from operators in network
management. They did not ask for a more elaborated informa-
tion such as fault identification, or isolation.

In this paper, we propose an approach to handle unbounded
asynchrony in discrete event systems diagnosis by using net un-
foldings, originally proposed by M. Nielsen, G. Plotkin, and
G. Winskel [30]. Unfoldings were used by Mc Millan [29]
for model checking in verification. They were subsequently de-
veloped by Engelfriet [13], Rozenberg and Engelfriet [33], Es-
parza, and Römer [14][15][16]. Net unfoldings are branching
structures suitable to represent the set of executions of a Petri net
using an asynchronous semantics with local states and partially
ordered time. In this structure, common prefixes of executions
are shared, and executions differing only in the interleaving of
their transition firings are represented only once. Our motiva-
tion, for using Petri nets and their unfoldings, is to have an ele-
gant model of asynchronous finite state machines, therefore we
restrict ourselves to safe Petri nets throughout this paper. Net
unfoldings are not well-known in the control community, they
have been however used for supervisory control in [25][26].

The paper is organized as follows. Section II is devoted to
the problem setting. Subsection II-A collects the needed back-
ground material on Petri nets and their unfoldings. Subsection
II-B introduces our first example. And our problem setting for
asynchronous diagnosis is formalized in subsection II-C, which
constitutes per se our first contribution.

In asynchronous diagnosis, some recorded alarm sequences
differ only via the interleaving of concurrent alarms, hence it
is desirable not to distinguish such alarm sequences. Similarly,
it is desirable not to distinguish diagnoses which only differ in
the interleaving of concurrent faults. Diagnosis nets are intro-
duced to this end in section III, they express the solution of asyn-
chronous diagnosis by using suitable unfoldings, and constitute
the main contribution of this paper. Diagnosis nets return diag-
nosis as scenarios recording the whole history of failed/unfailed
status and type of failure. Corresponding algorithms are given in
section IV. These algorithms have the form of pattern matching
rules and apply asynchronously.

II. ASYNCHRONOUS DIAGNOSIS: PROBLEM SETTING

In this section we first introduce the background we need on
Petri nets and their unfoldings. Then we introduce informally
asynchronous diagnosis on an example. And finally we formally
define asynchronous diagnosis.

A. Background notions on Petri nets and their unfoldings

Basic references are [31][9][12]. Homomorphisms, con-
flict, concurrency, and unfoldings, are the essential concepts on
which a true concurrency and fully asynchronous view of Petri
nets is based. In order to introduce these notions, it will be con-
venient to consider general “nets” in the sequel.

Nets and homomorphisms. A net is a triple P = (P,T,→), where
P and T are disjoint sets of places and transitions, and → ⊂
(P× T)∪ (T ×P) is the flow relation. The reflexive transitive
closure of the flow relation→ is denoted by�, and its irreflexive
transitive closure is denoted by ≺. Places and transitions are
called nodes, generically denoted by x. For x∈ P∪T , we denote
by •x = {y : y→ x} the preset of node x, and by x• = {y : x→ y}
its postset. For X ⊂ P∪ T , we write •X =

�
x∈X

•x and X• =
�

x∈X x•. An homomorphism from a net P to a net P ′ is a map
ϕ : P∪T 7−→ P′ ∪T ′ such that: 1/ ϕ(P) ⊆ P′, ϕ(T) ⊆ T ′, and
2/ for every node x of P , the restriction of ϕ to •x is a bijection
between •x and •ϕ(x), and the restriction of ϕ to x• is a bijection
between x• and ϕ(x)•.

Occurrence nets. Two nodes x,x′ of a net P are in conflict, writ-
ten x#x′, if there exist distinct transitions t, t ′ ∈ T , such that
•t ∩ •t ′ 6= /0 and t � x, t ′ � x′. A node x is in self-conflict if
x#x. An occurrence net is a net O = (B,E,→), satisfying the
following additional properties:

∀x ∈ B∪E : ¬[x#x] no node is in self-conflict

∀x ∈ B∪E : ¬[x≺ x] � is a partial order

∀x ∈ B∪E : |{y : y≺ x}|< ∞ � is well founded

∀b ∈ B : |•b| ≤ 1
each place has at most
one input transition

We will assume that the set of minimal nodes of O is contained
in B, and we denote by min(B) or min(O) this minimal set. Spe-
cific terms are used to distinguish occurrence nets from general
nets. B is the set of conditions, E is the set of events, ≺ is the
causality relation.

Nodes x and x′ are concurrent, written x⊥⊥x′, if neither x� x′,
nor x � x′, nor x#x′ hold. A co-set is a set X of concurrent
conditions. A maximal (for set inclusion) co-set is called a cut.
A configuration κ is a sub-net of O, which is conflict-free (no
two nodes are in conflict), and causally closed (if x′ � x and
x ∈ κ, then x′ ∈ κ).

Occurrence nets are useful to represent executions of Petri
nets. They are a subclass of nets, in which essential properties
are visible via the topological structure of the bipartite graph.

Petri nets. For P a net, a marking of P is a multiset M of
places, i.e., a map M : P 7−→ {0,1,2, . . .}. A Petri net is a pair
P = (P ,M0), where P is a net having finite sets of places and
transitions, and M0 is an initial marking. A transition t ∈ T is
enabled at marking M if M(p) > 0 for every p ∈ •t. Such a

3

transition can fire, leading to a new marking M′ = M− •t + t•,
we denote this by M[t〉M′. The set of reachable markings of P
is the smallest (w.r.t. set inclusion) set M0[〉 containing M0 and
such that M ∈M0[〉 and M[t〉M′ together imply M′ ∈M0[〉. Petri
net P is safe if M(P) ⊆ {0,1} for every reachable marking M.
Throughout this paper, we consider only safe Petri nets, hence
marking M can be regarded as a subset of places. A finite oc-
currence net B can be regarded as a Petri net, where the initial
marking is M0 = min(B).

Branching processes and unfoldings. A branching process of
Petri net P is a pair B = (O,ϕ), where O is an occurrence net,
and ϕ is an homomorphism from O to P regarded as nets, such
that: 1/ the restriction of ϕ to min(O) is a bijection between
min(O) and M0 (the set of initially marked places), and 2/ for
all e,e′ ∈ E, •e = •e′ and ϕ(e) = ϕ(e′) together imply e = e′.
By abuse of notation, we shall sometimes write min(B) instead
of min(O).

The set of all branching processes of Petri net P is uniquely
defined, up to an isomorphism (i.e., a renaming of the conditions
and events), and we shall not distinguish isomorphic branching
processes. For B ,B ′ two branching processes, B ′ is a prefix of
B , written B ′ v B , if there exists an injective homomorphism ψ
from B ′ into B , such that ψ(min(B ′)) = min(B), and the com-
position ϕ◦ψ coincides with ϕ′, where ◦ denotes the compo-
sition of maps. By theorem 23 of [13], there exists (up to an
isomorphism) a unique maximum branching process according
to v, we call it the unfolding of P , and denote it by UP . The
unfolding of P possesses the following universal property: for
every occurrence net O, and every homomorphism φ : O 7→ P ,
there exists an injective homomorphism ι : O 7→UP , such that:

φ = ϕ◦ ι, (1)

where ϕ denotes the homomorphism associated to UP . Decom-
position (1) expresses that UP “maximally unfolds” P . If P is
itself an occurrence net and M0 = min(P) holds, then UP iden-
tifies with P .

Configurations of the unfolding UP are adequate representa-
tions of the firing sequences of P . Let M0,M1,M2, . . . be a max-
imal firing sequence of P , and let Mk−1[tk〉Mk be the associated
sequence of fired transitions. Then there exists a unique maxi-
mal (for set inclusion) configuration κ of P having the follow-
ing properties: κ is the union of a sequence e1,e2, . . . of events
and a sequence c0,c1,c2, . . . of cuts, such that, for each k > 0,
ϕ(ck) = Mk, ϕ(ek) = tk, and ck−1 ⊇

•ek,e•k ⊆ ck. Conversely,
each maximal configuration of P defines a maximal firing se-
quence, which is unique up to the interleaving of structurally
concurrent transitions—transitions t and t ′ are structurally con-
current iff •t ′∩ (•t ∪ t•) = /0 and •t ∩ (•t ′∪ t ′•) = /0.

Example 1. Fig. 2 shows the example we will use throughout
this paper. A Petri net P is shown on the top left. Its places
are 1,2,3,4,5,6,7, and its transitions are i, ii, iii, iv,v,vi. Places
constituting the initial marking are encircled in thick.

A branching process B = (O,ϕ) of P is shown on the bottom.
Its conditions are depicted by circles, and its events are figured
by boxes. Each condition b of B is labeled by ϕ(b), a place
of P . Each event e of B is labeled by ϕ(e), a transition of P .
A configuration of Petri net P is shown in grey. Note that the

5

32 4

71

iiii ii

iv v vi

2

i

1 7

43

57

43
11

iii

iv
6

ii

11 7 5 6

44

657

432

11

i

1 7

2

11

2 3

ii

2 3

iii iv v

vi

iii iv v

iii

Fig. 2. Example 1 (top left), a configuration (top right), and a branching process
(bottom). For this and subsequent examples, we take the following convention
for drawing Petri nets and occurrence nets. In Petri nets, the flow relation is
depicted using directed arrows. In occurrence nets, since no cycle occurs, the
flow relation progresses downwards, and therefore there is no need to figure
them via directed arrows, standard solid lines are used instead.

minimal condition labeled by 7 is branching in B , although it
is not branching in P itself. The reason is that, in P , the token
can freely move along the circuit 1→ ii→ 2→ iii→ 1, and
resynchronize afterwards with the token sitting in 7.

The mechanism for constructing the unfolding of Petri net P
is illustrated in the top right, it is informally explained as fol-
lows. Put the three conditions labeled by the initial marking of
P , this is the minimal branching process of P . Then, for each
constructed branching process B , select a co-set X of B , which
is labeled by the preset •t of some transition t of P , and has no
event labeled by t in its postset within B . Append to X a net
isomorphic to •t → t → t• (recall that ϕ(•t) = X), and label its
additional nodes by t and t•, respectively. Performing this recur-
sively yields all possible finite branching processes of P . Their
union is the unfolding UP .

Labeled nets and their products. For P = (P,T,→) a net, a la-
beling is a map λ : T 7−→ A, where A is some finite alphabet. A
net P = (P,T,→,λ) equipped with a labeling λ is called a la-
beled net. For Pi = {Pi,Ti,→i,λi}, i = 1,2, two labeled nets,
their product P1×P2 is the labeled net defined as follows:

P1×P2 = (P,T,→,λ). (2)

4

In (2), P = P1]P2, where] denotes the disjoint union, and:

T =
{t1 ∈ T1 : λ1(t1) ∈ A1 \A2} (i)

∪ {(t1, t2) ∈ T1×T2 : λ1(t1) = λ2(t2)} (ii)
∪ {t2 ∈ T2 : λ2(t2) ∈ A2 \A1} , (iii)

p→ t iff
p ∈ P1 and p→1 t1 for case (ii) or (i)
p ∈ P2 and p→2 t2 for case (ii) or (iii)

t→ p iff
p ∈ P1 and t1→1 p for case (ii) or (i)
p ∈ P2 and t2→2 p for case (ii) or (iii)

In cases (i,iii) only one net fires a transition and this transition
has a private label, while the two nets synchronize on transitions
with identical labels in case (ii). Petri nets and occurrence nets
inherit the above notions of labeling and product.

B. Discussing asynchronous diagnosis on example 1

A labeled Petri net model. Our first example of Fig. 2 is redrawn
slightly differently in Fig. 3, in the form of a labeled Petri net.

component 1

component 2

ραα

ββρ

1

42 3

5 6
7

Fig. 3. Example 1, two interacting components modelled as a labeled Petri net.

The example is now interpreted as two interacting components,
numbered 1 and 2. Component 2 uses the services of compo-
nent 1 for its functioning, and therefore it may fail to deliver its
service when component 1 is faulty.

Component 1 has two states: nominal, figured by place 1,
and faulty, figured by place 2. When getting in faulty state, the
component 1 emits an alarm β, which is associated to transition
(i) and (ii) (cf. Fig. 2) as a label. The fault of component 1 is
temporary, and therefore self-repair can occur, this is figured by
the label ρ associated to transition (iii) (cf. Fig. 2).

Component 2 has three states, figured by places 4,5,6. State 4
is nominal, state 6 indicates that component 2 is faulty, and state
5 indicates that component 2 fails to deliver its service, due to
the failure of component 1. Fault 6 is permanent and cannot be
repaired.

The fact that component 2 may fail to deliver its service due
to a fault of component 1, is modelled by the shared place 3.
The monitoring system of component 2 only detects that this
component fails to deliver its service, it does not distinguish be-
tween the different reasons for this. Hence the same alarm α
is attached to the two transitions (iv,v) as a label (cf. Fig. 2).
Since fault 2 of component 1 is temporary, self-repair can also
occur for component 2, when in faulty state 5. This self-repair is
not synchronized with that of component 1, but is still assumed

to be manifested by the same label ρ. Finally, place 7 guaran-
tees that fault propagation, from component 1 to component 2,
occurs only when the latter is in nominal state.

The grey area indicates where interaction occurs between the
two components. The initial marking consists of the three (nom-
inal) states 1,4,7. Labels (alarms α,β or self-repair ρ) attached
to the different transitions or events, are generically referred to
as alarms in the sequel.

The different setups considered, for diagnosis. Three different
setups can be considered:
Setup S1: The successive alarms are recorded in sequence by
a single supervisor, in charge of fault monitoring. The sensor
and communication infrastructure guarantees that causality is
respected: for any two alarms that are causally related (α causes
α′), then α is recorded before α′.
Setup S2: Each sensor records its local alarms in sequence, by
respecting causality. The different sensors perform indepen-
dently and asynchronously, and there is a single supervisor
which collects the records from the different sensors. No as-
sumption is made on the communication infrastructure. Thus
any interleaving of the records from different sensors can oc-
cur, and possible causalities relating alarms collected at different
sensors are lost.
Setup S3: The fault monitoring is performed in a distributed
way, by different supervisors cooperating asynchronously. Each
supervisor is attached to a component, it records its local alarms
in sequence, and can exchange supervision messages with the
other supervisor, asynchronously. No assumption is made on
the communication infrastructure.
In this paper we consider S1 and S2 (and generalizations of
them), but not distributed diagnosis S3 (for distributed diagno-
sis, the reader is referred to [17][18]). Note that Internet cannot
be used as a communication infrastructure for setup S1, but it
can be used for setup S2.

The different setups are illustrated in Fig. 4, which is a com-
bination of Fig. 2 and Fig. 3. The labeled Petri net of Fig. 3
is redrawn, on the top, with the topology used in Fig. 2. In
the bottom left, we redraw the configuration shown in grey in
Fig. 2-right, call it κ, and we relabel its events by their associ-
ated alarms. Configuration κ expresses that component 1 went
into its faulty state 2, and then was repaired; concurrently, com-
ponent 2 moved to its faulty state 6, where self-repair cannot
occur. Note that the transmission of the fault of component 1 to
component 2, via place 3, is preempted, due to the fatal failure
of component 2.

How alarms are recorded is modelled by the two occurrence
nets shown in the third and fourth diagrams, we call them alarm
patterns. In the third diagram, we assume the first setup, in
which a single sensor is available to collect the alarms. Hence
configuration κ produces the alarms β,α,ρ, recorded in se-
quence. This record is modelled by the linear alarm pattern
shown in the third diagram. This alarm pattern has its events
labeled by alarms, but its conditions are “blind”, i.e., they have
no label. This manifests the fact that the different places of the
Petri net, which are traversed while producing the alarms β,α,

or ρ, are not observed.
Now, in the last diagram, we show the case of the second

setup, in which β,ρ are collected by the first sensor, and α is col-

5

5

32 4

71

ρ β β

α α ρ

6

β

α

ρ

β α

ρ

1 7

α

432

β

ρ

11 6

first setup

second setup

Fig. 4. Example 1, a scenario involving a single sensor, and two independent
sensors.

lected by the second one, independently. The result is an alarm
pattern composed of two concurrent parts, corresponding to the
records collected by each sensor. When collected by the su-
pervisor, these concurrent parts can interleave arbitrarily—this
manifests asynchrony.

Asynchronous diagnosis. Alarm patterns are generically denoted
by the symbol A . Note that each sensor delivers, as an alarm
pattern, some linear extension of the partial order of events it
sees. But the causality relations involving pairs of events seen
by different sensors, are lost. In general, observations may add
some causalities, may loose other ones, but they never reverse
any of them. Therefore, the only valid invariant between alarm
pattern A and the configuration κ that produced it, is that A and
κ possess a common linear extension. With this definition, we
encompass setups S1 and S2 in a common framework. From
the above discussion, we must accept as plausible explanations
of an alarm pattern A any configuration κ such that A and κ
possess a common linear extension. Such κ are said to explain
A . We are now ready to formalize our problem setting.

C. Asynchronous diagnosis: formal problem setting

Now, we formalize what an alarm pattern A is, and what it
means, for A , to be associated with some configuration κ. We
are given the following objects, where the different notions have
been introduced in subsection II-A:
• A labeled Petri net P = (P,T,→,M0,λ), where the range of
the labeling map λ is the alphabet of possible alarms, denoted
by A, and
• its unfolding UP = (B,E,→,ϕ).
Note the following chain of labeling maps:

E
︸︷︷︸

events

ϕ
−→ T

︸︷︷︸

transitions

λ
−→ A

︸︷︷︸

alarms

e 7−→ ϕ(e) 7−→ λ(ϕ(e))
∆
= Λ(e) , (3)

which defines the alarm label of event e, we denote it by Λ(e)—
we call it also “alarm”, for short, when no confusion can occur.

An extension of a net P = (P,T,→) is any net obtained by
adding places and flow relations but not transitions. Occurrence
nets inherit this notion. An occurrence net induces a labeled
partial order on the set of its events, extending this occurrence
net induces an extension of this labeled partial order 2.

Two labeled occurrence nets O = (B,E,→,Λ) and O ′ =
(B′,E ′,→′,Λ′) are called alarm-isomorphic if there exists an
isomorphism ψ, from (B,E,→) onto (B′,E ′,→′), seen as di-
rected graphs, which preserves the alarm labels, i.e., such that
∀e ∈ E : Λ′(ψ(e)) = Λ(e). Thus, two alarm-isomorphic occur-
rence nets can be regarded as identical if we are interested only
in causalities and alarm labels.

Definition 1 (alarm pattern) Consider P , UP , and Λ, as in
(3). A labeled occurrence net A = (BA ,EA ,→A ,λA) is an alarm
pattern of P iff:
1. Its labeling map λA takes its value in the alphabet A of
alarms,
2. A is itself a configuration (it is conflict free), its set of condi-
tions BA is disjoint from that of UP , and
3. There exists a configuration κ of UP , such that A and κ pos-
sess extensions that are alarm-isomorphic.

Assuming, for A , a set of places disjoint from that of UP ,
aims at reflecting that alarm patterns vehicle no information re-
garding hidden states of the original net. This justifies condition
2. Concerning condition 3 the allowed discrepancy between κ
and A formalizes the possible loss of some causalities (e.g., due
to independent and non synchronized sensors), and the possible
adding of other ones (e.g., when sensors record their alarms in
sequence). The key fact is that the information about the con-
currency of events produced by the system cannot be observed
by the supervisor. For instance, if the supervisor receives two
alarm events α,β that are not causally related, then the net P
may have produced α⊥⊥β, or α� β, or α� β.

To refer to our context of diagnosis, we say that the configu-
ration κ can explain A . For A a given alarm pattern of P , we
denote by

diag(A) (4)

the set of configurations κ of UP satisfying conditions 1,2,3 of
definition 1. Due to asynchrony, ambiguity frequently occurs
so that the set diag(A) is far from being a singleton. Therefore
the issue of how to compute and represent this solution set effi-
ciently is of great importance when large scale applications are
considered. In the next subsection, we propose an adequate data
structure to represent and manipulate the set diag(A) efficiently,
we call it a diagnosis net.

III. DIAGNOSIS NETS: EXPRESSING ASYNCHRONOUS

DIAGNOSIS BY MEANS OF UNFOLDINGS

In this section, we provide explicit formulas for the solution
of asynchronous diagnosis, in the form of suitable unfoldings.

2 Recall that the labeled partial order (X ,�) is an extension of labeled partial
order (X ′,�′) if labeled sets X and X ′ are isomorphic, and � ⊇�′ holds. When
(X ,�) is a total order, we call it a linear extension of (X ′,�′).

6

A first natural idea is to represent diag(A) by the minimal
subnet of unfolding UP which contains all configurations be-
longing to diag(A), we denote it by UP (A). Subnet UP (A)
inherits canonically by restriction, the causality, conflict, and
concurrence relations defined on UP . Net UP (A) contains all
configurations belonging to diag(A), but unfortunately it also
contains undesirable maximal configurations not belonging to
diag(A), as Fig. 5 reveals.

3

1

6

4

52

5

4

3

1

6

41

2

,

AP

diag(A)

Fig. 5. Example 2. Showing P ,A , and diag(A). Note that UP (A) = P .

In this figure, we show, on the top left, a Petri net P hav-
ing the set of places {1,4} as initial marking, note that P is
an occurrence net. In the top right, we show a possible as-
sociated alarm pattern A . Alarm labels are figured by col-
ors (black and white). The set diag(A) is shown on the bot-
tom, it comprises two configurations. Unfortunately the min-
imal subnet UP (A) of the original unfolding P which con-
tains diag(A), is indeed identical to P ! Undesirable configu-
rations are {(1, t12,2),(4, t46,6)} and {(1, t13,3),(4, t45,5)} (in
these statements, t12 denotes the transition separating states 1
and 2). But configuration {(1, t12,2),(4, t46,6)} is such that its
two transitions t12, t46 explain the same alarm event in A , and
therefore this configuration cannot explain A . And the same
holds for the other undesirable configuration.

Fig. 6 suggests an alternative solution, using the product
P ×A of P and A , seen as labeled nets with respective labels λ
and λA (see subsection II-C for these notations). The unfolding
UP×A is shown. The projection, on the set of nodes labelled by
nodes from P , is depicted using larger arrows. The reader can
verify that the corresponding set of maximal configurations co-
incides with diag(A). This suggests that UP×A is an appropri-
ate representation of diag(A). We formalize this in the theorem
to follow. We use the notations from subsections II-A and II-C,
and we need a few more notations.

For P = (P,T,→) a net and X a subset of its nodes, P |X de-
notes the restriction of P to X , defined as

P |X
∆
= (P∩X ,T ∩X ,→|X),

where the flow relation → |X is defined as the restriction, to
X ×X , of the flow relation →⊆ (P× T) ∪ (T ×P) given on
P . Be careful that we restrict the flow relation, not its transitive
closure.

2 5 6

4

3

1

1

2

5 3

6

4

P ×A

UP×A

Fig. 6. Example 2. Representing diag(A) by UP×A .

Let P = (P,T,→,M0,λ) and Q = (Q,S,→,N0,µ) be two la-
beled Petri nets, and U = (B,E,→,ϕ) a sub-net of the unfolding
UP×Q . Define the labeled occurrence net projP (U), the projec-
tion of U on P , as follows: 1/ restrict U to its subset of nodes
labelled by nodes from P , and 2/ project, onto T , the labels con-
sisting of synchronized pairs of transitions belonging to T × S.
Let us formalize this construction. The set E of events of U de-
composes as E = EP ∪EP ,Q ∪EQ , where EP is the set of events
labeled by transitions t ∈ T , EQ is the set of events labeled by
transitions s ∈ S, and EP ,Q is the set of events labelled by pairs
of synchronized transitions (t,s) ∈ T ×S. Then we define:

projP (U)
∆
=

(

U |ϕ−1(P)∪EP∪EP ,Q
,φ

)

(5)

where the labeling map φ is defined as follows: if b ∈ B, then
φ(b) = ϕ(b); if e ∈ EP , then φ(e) = ϕ(e); if e ∈ EP ,Q is such
that ϕ(e) = (t,s), then φ(e) = t. Hence projP (U) has P∪T , the
set of nodes of P , as its label set.

Finally, for O an occurrence net, we denote by config(O) the
set of all its configurations.

Theorem 1: Let UP be the unfolding of some Petri net P , A
an associated alarm pattern, and let diag(A) be defined as in

(4). Consider the unfolding UP×A
∆
= (B̄, Ē,→, ϕ̄), and its asso-

ciated projections projP (.) and projA (.). Then, κ ∈ diag(A) iff
there exists κ̄ ∈ config(UP×A), such that:

projP (κ̄) = κ and projA (κ̄) = A . (6)

Note that the product P ×A involves only synchronized transi-
tions. Note also that every κ̄ satisfying (6) must be a maximal
configuration of UP×A . Theorem 1 expresses that UP×A is an
adequate representation of diag(A), we call it a diagnosis net.

Proof: We first prove the if part. Let κ̄ be a configuration of
UP×A such that projA (κ̄) = A , and define κ = projP (κ̄). By
definition of net extensions (cf. definition 1 and above), κ̄ is an

7

extension of both κ and A . Hence, by definition 1, κ∈ diag(A).
This was the easy part.

Now we prove the only if part. Select an arbitrary κ ∈
diag(A). We need to show the existence of a κ̄ satisfying (6).
Since κ ∈ diag(A), then κ and A possess two respective exten-
sions, κe and Ae, that are alarm isomorphic, let ψ be the corre-
sponding isomorphism, from EA (the set of events of A), onto
the set of events of κ. Note that κe possesses additional dummy
conditions that are not labeled by places from P , and A e pos-
sesses conditions that do not belong to A .

Consider the following configuration κ̄e, obtained as follows.
Its set of events is the set of pairs (ψ(e),e), where e ranges over
EA . Then its set of conditions as well as its flow relation is
defined by:

flow relation of κ̄e :

{
•(ψ(e),e) = •ψ(e)∪ •e
(ψ(e),e)• = ψ(e)•∪ e•

(7)

where the pre- and postset operations occurring on the right hand
sides of the two equalities are taken from the extensions κe and
Ae. Informally speaking, κ̄e is obtained by glueing together κe

and Ae at their events associated via ψ. Note that κ̄e is circuit
free.

Now, erase, in κ̄e, the conditions that are neither labeled by
places from P , nor belong to A (such places originate from hav-
ing extended κ and A into κe and Ae, respectively). Call κ̄ the
so obtained configuration. By construction:

projP (κ̄) = κ and projA (κ̄) = A .

Thus it remains to show that κ̄ ∈ config(UP×A). On the one
hand, κ̄e was circuit/conflict free and causally closed, then so is
κ̄, thus κ̄ is a configuration. On the other hand, the flow relation
and nodes of κ̄ are also defined by formula (7), provided that the
pre- and postset operations occurring on the right hand sides of
the two equalities are taken from the original configurations κ
and A . By keeping in mind (7), we define the following labeling
map φ̄ on κ̄. For each event e:

φ̄(ψ(e),e) = (ϕ(ψ(e)) ,e),

and, for each b̄ ∈ •(ψ(e),e)∪ (ψ(e),e)•:
{

b̄ ∈ •e∪ e• ⇒ φ̄(b̄) = b̄
b̄ ∈ •ψ(e)∪ψ(e)• ⇒ φ̄(b̄) = ϕ

(
b̄
)

Hence, φ̄ is an homorphism from κ̄ into P ×A . By using the
universal property (1), there exists an injective homomorphism
from κ̄ into UP×A . This, and the fact that κ̄ was already proved
to be a configuration, shows that κ̄ ∈ config(UP×A), this fin-
ishes the proof of the theorem. �
Remark. Theorem 1 assumes the knowledge of the initial mark-
ing M0 for Petri net P . When only a set M0 of possible initial
markings is known instead, simply augment (P,T,→) as fol-
lows. Add some additional place p0 not belonging to P, for
each possible initial marking M0 ∈ M0 add one transition tM0

to T with label α0 not belonging to A, and add the branches
po → tM0 → M0 to the flow relation. To account for this addi-
tional places and transitions, add to A a dummy prefix of the
form b0 → e0 → min(A), where event e0 has label α0. Then,
apply theorem 1 to the so augmented Petri net.

Example 1, illustration of diagnosis nets, and comparison with
the use of the marking graph. Fig. 7 shows an illustration of the-

#

β

α

ρ5

32 4

71

α ρ

6

ρ β β

α

44

657

432

11

1 7

2

11

ρ

ρ ρ α α

ββ

Fig. 7. Example 1, diagnosis net, an illustration of theorem 1.

orem 1. In this figure we show the Petri net P of Fig. 3 (top left),
an associated alarm pattern A (top right), and the net UP×A , re-
stricted to its nodes labeled by nodes from P (bottom). We show
in dashed-thick the additional conflict relation between the two
otherwise concurrent events labeled by the same alarm ρ. This
conflict is inherited from the sharing of a common condition,
not shown, belonging to A . It is easily checked that diag(A) is
adequately represented by this diagram3.

Four alternative explanations are delivered by this diagno-
sis, this reflects the ambiguity resulting from asynchrony in this
example. Explanation 1: component 1 gets in its faulty state
without causing damage to component 2, and then gets self-
repaired; independently, component 2 gets into its fatal faulty
state 6; thus, for this scenario, (β ≺ ρ)⊥⊥α holds. Explanation
2: component 1 gets in its faulty state while causing damage to
component 2, and then gets self-repaired; independently, com-
ponent 2 gets into its fatal faulty state 6; again, for this scenario,
(β≺ ρ)⊥⊥α holds. Explanation 3: component 1 gets in its faulty
state while causing damage to component 2; consequently, com-
ponent 2 fails to delivers its service and gets into its state 5,
where it subsequently gets self-repaired; for this scenario, we
have β ≺ ρ ≺ α. Explanation 4: component 1 gets in its faulty
state while causing damage to component 2; consequently, com-
ponent 2 fails to delivers its service; independently component
1 gets self-repaired; thus β≺ (ρ⊥⊥α) holds for this scenario.

Fig. 8 compares diagnosis nets with the use of marking
graphs. The reader is referred again to our running example
1 (shown in Fig. 7), call it P . In the first diagram we show the

3The restriction, to its events, of this data structure, is an event structure ac-
cording to Winskel’s definition [30][38].

8

ρ

β
235 135

ρ

β
234 134

ρ ρ

275 175
ρ

β

ρ

β

ρ

β
176 276

ρ

β
136 236α

α

α β

ρ

α

β

β

α α

ρ 174 274

α

ρ

β α

275

175

234

β

174

ρ

236

136

β

236

α

β

ρβ

274

ρ

174

β

176

β

ρρ

236

β

236

136

276

176

ρ

274

174

ρ

174

ρ

134

234

235

β

275

Fig. 8. Marking graph of example 1 (top), and unfolding (bottom).

marking graph of P , denoted by M (P). It is a labeled Petri
net whose places are labeled by the reachable markings of P ,
shown by the combination of the places composing the different
markings. We identify the places of the marking graph M (P)
with the markings of P . Then, M[t〉M′ in P iff M→ τ→M′ in
M (P). Transition τ of M (P) is then labeled by transition t of
P . In Fig. 8 we have labeled instead the transitions τ of M (P)
by the alarm labels λ(t) = α,β,ρ of the associated transitions t
from P .

The pre/postset of each transition of M (P) is a singleton,
hence there is no concurrency, and M (P) represents an au-
tomaton. Note the diamond composed of the two branches
275→ ρ→ 175→ ρ→ 174 and 275→ ρ→ 274→ ρ→ 174, it
represents the two possible interleavings of the concurrent tran-
sitions labeled by ρ in P .

We can still regard M (P) as a Petri net, and consider its un-
folding UM (P), shown in part in the second diagram (some flow
relations are sketched in dashed, to save space). Now, we can
safely merge the two conditions labeled by 174 in the bottom of
this diagram. The reasons for this are the following: 1/ they are

both labeled by the same state (namely 174), hence they possess
identical continuations, and, 2/ their causal closures are labeled
by the same alarm sequence β,α,ρ,ρ, i.e., explain the same se-
quences of alarms. Merging the two conditions labeled by 174
in the bottom of the second diagram yields a lattice, i.e., a la-
beled net with branching and joining conditions but no circuit,
we denote it by LM (P). Lattices are not new, they are the data
structures used when applying the Viterbi algorithm for maxi-
mum likelihood estimation of hidden state sequences in stochas-
tic automata.

Being linear and not branching any more, LM (P) is a more
compact data structure than the unfolding UM (P). The reason
for merging the two places labeled by 174 in UM (P) is the dia-
mond occuring in M (P). But this diamond manifests the con-
currency of the two self-repairing transitions, and the unfolding
UP of P , shown in Fig. 2, already handles this properly: the
marking 174 is not duplicated in UP , unlike in UM (P). In fact,
this lattice corresponds to a prefix of the unfolding shown in
Fig. 2. The unfolding of Fig. 2 is more compact, but in turn,
building co-sets requires some processing, whereas this requires
no processing for the unfolding of Fig. 8, since co-sets are just
places. Therefore, for applications in which memory constraints
prevail over processing speed, unfoldings should be preferred.
Still, the generalization of lattices to Petri nets is of interest, and
their definition and use for diagnosis is investigated in the full
paper [1].

IV. ALGORITHMS

In this section, we detail the algorithms for the construction of
diagnosis nets. In subsection IV-B we consider the general case
considered in theorem 1, this encompasses setups S1 and S2 of
subsection II-B. Then, in subsection IV-C, we focus on S1, for
which we give an improved algorithm. In subsection IV-A we
first describe the framework we need for the description of these
algorithms.

A. Algorithms as pattern matching rules

As a prerequisite, we formally state an inductive construction
of the unfolding UP of a Petri net P in the form of a nested
family of branching processes B—this construction is borrowed
from [16], it was illustrated in Fig. 2.

We use the following notations. The conditions of UP have
the form (e, p), where e is an event of UP and p a place of P .
Similarly, events of UP have the form (X , t), where X is a co-
set of conditions belonging to UP , and t is a transition of P .
The homomorphism ϕ, from UP to P , is given by ϕ(e, p) =
p, and ϕ(X , t) = t. And the flow relation on UP is given by
•(e, p) = e, and •(X , t) = X . Conditions (nil, p) are those having
no input event, i.e., the distinguished symbol nil is used for the
minimal conditions of UP . Hence, we represent a branching
process as a pair B = (B,E) of conditions and events, and the
flow relation and homomorphism are derived implicitly, using
the above convention. The term coB denotes the set of co-sets of
B.

The set of branching processes of P = (P,T,→,M0) can be
inductively constructed as follows:
• ({(nil, p), p ∈M0}, /0) is a branching process of P .

9

• For (B,E) a branching process, t ∈ T , and X ∈ coB such that
ϕ(X) = •t, then the following term is also a branching process
of P :

(B∪{(e, p) | p ∈ t• } ,E ∪{e}) , where e = (X , t) . (8)

If e 6∈ E we call e a possible extension of (B,E), and we call
the corresponding extended branching process a continuation of
(B,E) by e. The inductive construction (8) can be expressed in
the form of a pattern matching rule:

if precondition {. . .} holds,

then, possible extension {. . .}
and its postset {. . .} result.

:
X ∈ coB , ϕ(X) = •t

e = (X , t)
e• = {(e, p) | p ∈ t• }

(9)

where the three {. . .} denote the corresponding three statements
shown on the right hand side. In rule (9), it is understood that
e = (X , t) is a possible extension of the current branching pro-
cess, meaning that e 6∈ E (the current event set), this will not be
repeated in the sequel. Most importantly, rule (9) applies asyn-
chronously, meaning that the continuation can be performed in
any order, from the different co-sets which have possible exten-
sions in the current branching process.

B. Asynchronous diagnosis

The raw rules: computing UP×A . We first provide the rules for
the computation of the unfolding UP1×P2 , for two nets P1 and
P2. For two nets P1 and P2, pi (resp. ti) denotes generically a
place (resp. transition) of net Pi, and the labeling map is denoted
by λi. The homomorphism of the unfolding under construction
is denoted by ϕ. Using these notations, we have the following
rules for inductively constructing the branching processes (B,E)
of P1×P2, whose union forms the unfolding UP1×P2 , cf. (2)—
in these rules, when the generic index i is used, the universal
quantification ∀i = 1,2 is understood:

Xi ∈ coBi , λi(ti) is private, and ϕ(Xi) = •ti
ei = (Xi, ti)

e•i = {(ei, pi) | pi ∈ t•i }

(10)

X1∪X2 ∈ coB , λ1(t1) = λ2(t2) : ϕ(Xi) = •ti
e = (X1∪X2,(t1, t2))

e• = {(e, p) | p ∈ t•1 ∪ t•2 }

(11)

Rule (10) performs a local continuation involving a single com-
ponent, whereas rule (11) performs a synchronized continuation.
Thanks to theorem 1, the above rules (10,11) can be specialized
to implement the inductive computation of the branching pro-
cesses (B,E) of P ×A: simply discard rule (10) since no private
label is involved. This yields:

X ∪XA ∈ coB , λ(t) = λA(eA) , ϕ(X) = •t , ϕ(XA) = •eA

e = (X ∪XA ,(t,eA))

e• =
{

(e, p)
∣
∣
∣ p ∈ t•∪ eA•

}

(12)

where eA denotes a generic event of A . Since the presence of
the term X ∪XA in the preset of the extension e always requires
the corresponding precondition X ∪XA ∈ coB, we shall omit the

term X ∪XA ∈ coB in the precondition of the rules in the sequel.
Thus rule (12) will be simply written:

λ(t) = λA(eA) , ϕ(X) = •t , ϕ(XA) = •eA

e = (X ∪XA ,(t,eA))

e• =
{

(e, p)
∣
∣
∣ p ∈ t•∪ eA•

}

.

Since continuations can occur from any co-set of the current
branching process, the whole branching process must be con-
tinuously maintained, for possible continuation, along the con-
struction of the unfolding. Of course this data structure is of
rapidly increasing complexity, and this makes the general algo-
rithm based on rule (12) quite cumbersome. Also, in this general
case, explanations of an alarm can occur with an arbitrary long
delay, but this is the unavoidable price to pay for handling asyn-
chrony with no restriction on the allowed sensor setup.

Refining the rules. Let us investigate how to refine rule (12).
Theorem 1 states that diag(A) is in one-to-one correspondence
with the set of κ̄’s satisfying (6). Thus, only a subnet of UP×A
has to be computed, not all of it. We investigate this issue next.
Consider the unfolding UP×A = (B,E). For A fixed, and A ′ a
subnet of A , denote by

explain A ′ (13)

the maximal subnet U of UP×A , such that: 1/ all events of U
are labeled by events of A ′, and 2/ min(U) and max(U) are
conditions. The subnet explain A ′ collects all events of UP×A
which can explain some alarm belonging to A ′. For W vUP×A
a branching process of P ×A , set:

A term
W = max

{
A ′ v A | (explain A ′)⊆W

}
. (14)

Then, A term
W is the terminated prefix of A , i.e., no further con-

tinuation of W will provide a new explanation for A term
W . Sym-

metrically, keeping in mind that UP×A = (B,E), set:

A fut
W = max

{
A ′ ⊆ A | (explain A ′)∩W ∩E = /0

}
(15)

Then, A fut
W collects the future alarms, that have not yet been con-

sidered at all in W . Note the subset symbol⊆ in (15), indicating
that A fut

W is not a prefix of A (it is in fact a postfix of A). Also,
the two “max” in (14) and (15) are well defined, since the corre-
sponding sets of A ′’s are stable under union. In general, the set
Aact

W of active alarms satisfies:

Aact
W

∆
= A \

(

A term
W ∪A fut

W

)

6= /0, (16)

and Aact
W can even have cardinality greater than 1. This means

that alarms cannot be processed in sequence, i.e., there is no on-
line algorithm. We shall see, however, that Aact

W = /0 holds for a
certain increasing chain of W ’s, for setup S1. In general, refined
rules must maintain the triple (A term

W ,Aact
W ,A fut

W).
For A ′ a prefix of A such that no node of A ′ is maximal in A ,

denote by

stop
(
A ′

)
(17)

10

the maximal subnet of UP×A ′ possessing no continuation in
UP×A , note that stop(A ′) is a postfix of UP×A ′ , and no con-
tinuation of it will explain alarms belonging to A \A ′. Hence
stop(A ′) should be pruned prior to further performing continu-
ations of UP×A ′ .

For an arbitrary branching process W of P ×A , we must

prune W term ∆
= stop

(
A term

W
)
, where A term

W is defined in (14), and

keep only W act ∆
= W \W term, from which continuation can pro-

ceed.
By maintaining the above objects along the steps of the algo-

rithm, refined versions of rule (12) can be derived. Using this
technique, in the next subsection we focus on setup S1 and pro-
vide for it an improved algorithm.

C. Asynchronous diagnosis, an improved algorithm for setup S1

Here we investigate the computation of the diagnosis net
UP×A , and then of diag(A), for the case of A being a totally
ordered alarm pattern of P —this corresponds to setup S1.

The reader may think of a very simple solution for this par-
ticular case, since A is strictly a firing sequence. Try to fire this
sequence in the Petri net from the initial marking. Each time an
ambiguity occurs (two transitions may be fired explaining the
next event in A). Then, a new copy of the trial is instanciated (a
new Petri net instance), to follow the additional firing sequence.
Each time no transition can be fired in a trial to explain a new
event, the trial is abandoned. Then, and the end of A , all the
behaviours explaining A have been obtained. The remaining
issue is to find a compact data structure to represent all these
behaviours: again, unfoldings are the adequate answer. In fact,
this is what our approach below directly provides, by specializ-
ing the general case.

We start with some lemmas. The first lemma establishes that
on-line algorithms exist for setup S1.

Lemma 1: Let A ′ v A be a prefix of A . Then:

UP×A ′ v explain A ′. (18)

If A is totally ordered, then we have:

UP×A ′ = explain A ′. (19)

Formula (19) says that, if A is totally ordered, then UP×A ′ con-
tains all explanations of A ′. In this case, as soon as UP×A ′ has
been constructed, we can forget A ′, this justifies the considera-
tion of on-line algorithms—we insist that this does not hold in
general, cf. (16)!

Proof: Inclusion (18) is obvious, so we need only to prove
equality (19) under the assumption that A is totally ordered.
This is the result of interest. It is trivial if A ′ = /0, so we can
assume that this is not the case.

In the sequel of the proof, symbols ē,f̄ denote events of the
unfolding UP×A , hence, using the notations of (12), ē has the
form:

ē = (X ∪XA ,(t,eA)),

and φA(projA (ē)) = eA , where φA denotes the labeling map of
projA (UP×A) (cf. (5)). Also, �(ē) denotes the configuration

spaned by the causal closure of ē in UP×A . Similar notations
and remarks hold for f̄ .

Pick ē ∈ explain A′, and set κ̄ =�(ē). Pick f̄ ∈ κ̄. Since
f̄ � ē, then either eA⊥⊥ f A or f A � eA holds (eA � f A is im-
possible, by definition of alarm patterns). But, since A is totally
ordered, then only f A � eA can hold, thus f A must belong to
A ′, since eA ∈ A ′. Since this holds ∀ f̄ ∈ κ̄, then κ̄ ⊂ UP×A ′ ,
therefore explain A ′ ⊆UP×A ′ , this proves the lemma. �

For the following results, we assume A totally ordered. For U
a subnet of UP×A , denote by #(U) the subnet of UP×A com-
prising the nodes that are in conflict with every node of U. The
following theorem indicates how the pruning introduced in sub-
section IV-B should be performed, it refines theorem 1 for the
case in which A is totally ordered:

Theorem 2: Assume that A is totally ordered.
1. If A ′ is the maximal strict prefix of A , then diag(A) coincides
with the set of all maximal configurations of UP×A \ stop(A ′).
2. Consider a chain A ′@A ′′ v A of prefixes of A . Then:

stop
(
A ′

)
= #(V) , where V ∆

= UP×A ′′ \UP×A ′ .

Proof: Point 1 follows from the definition (17) of stop(A ′).
Then, by lemma 1, we have V = (explain A ′′ \ explain A ′) ,
from which point 2 follows. �

The following lemma is of lesser importance, but it will be use-
ful for further optimizing our algorithm, by restricting the set of
co-sets than can serve for possible continuation. For U a subnet
of UP×A , denote by ⊥⊥(U) the subnet of UP×A consisting of
the nodes that are concurrent with some node of U—note the
difference with the definition of #(U).

Lemma 2: Let A ′,A ′′, and V be as in point 2 of theorem 2.
Set

ext
(
A ′′

) ∆
= V ∪ ⊥⊥(V) (20)

Then all possible extensions of UP×A ′′ have their preset con-
tained in ext(A ′′).

Proof: Assume this is not the case. Hence there exists a co-set
X not contained in the subnet sitting on the right hand side of
(20), and some event e ∈ (UP×A \UP×A ′′), such that •e = X .
Hence we must have:

X ∩ (≺(V)∪#(V)) 6= /0,

which implies that e ∈ #(V), a contradiction with theorem 2. �

Using the above results, successive optimizations of the generic
rule (12) are performed in several steps.

1. On-line computation of the successive branching processes,
(B,E), of unfolding UP×A . Write A = (BA ,EA ,→A ,λA), with:

BA = {b0,b1,b2, . . . ,bn, . . .},
EA = {e1,e2, . . . ,en, . . .},λA(ek) ∈ A,

∀n > 0 : bn−1 →A en →A bn,

(21)

where we recall that A is the alphabet of possible alarms—the
superscipt A has been removed from the events and conditions

11

of A , for the sake of clarity. In other words, the flow relation
is obtained by interleaving alternatively one condition from BA
and one event from EA . Using these notations, rule (12) rewrites
as follows:

λ(t) = λA(en) , ϕ(X) = •t , ϕ(XA) = bn−1

e = (X ∪XA ,(t,en))
e• = {(e, p) | p ∈ t• }∪{(e,bn)}

(22)

Denote by An = (b0→A e1→A b1→A . . .→A bn) the prefix of
length n of A , and apply lemma 1 with A ′ := An, we get:

(B̂n, Ên)
∆
= explain An = UP×An (23)

(recall that we represent branching processes as a pair of condi-
tion and event sets). Formula (23) expresses that we can forget
about An as soon as UP×An has been computed, and implement
an on-line computation of UP×An :

(B̂n, Ên) = R(22)
n (B̂n−1, Ên−1), where (24)

R(22)
n

∆
= [∀t : R(22)

n,t],

and R(22)
n,t denotes rule (22), for n and t seen as parameters. For-

mula (24) defines our on-line algorithm.

2. Computing the set {κ̄ ∈ config(UP×A) : projA (κ̄) = A}.
Theorem 1 indicates that we need only to compute those con-
figurations κ̄ of UP×A , such that projA (κ̄) = A . In UP×A ,
some configurations, while being maximal (for set inclusion) in
UP×A , explain only a strict prefix of A . To represent diag(A)
exactly, such configurations must be removed. For this we use
theorem 2. Consider

δÊn
∆
= Ên \ Ên−1,

the set of events added to Ên−1 by applying the rule R(22)
n , and

let #(δÊn) denote the set of nodes belonging to (B̂n, Ên) that
are in conflict with every node of δÊn. Apply theorem 2 with
A ′ := An−1,A ′′ := An, we deduce that stop(An−1) = #(δÊn),
i.e.,

the nodes belonging to #(δÊn) cannot belong
to a configuration explaining alarm n.

(25)

Thus, for computing the set {κ̄n ∈ config(UP×A) : projA (κ̄n) =
An} we must prune the nodes belonging to #(δÊn).

This pruning can then be interleaved with the successive ap-
plication of the on-line rule (24). Performing this yields the de-
sired sequence (Bn,En) of branching processes, and all maximal
configurations, κ̄n, of (Bn,En), are such that projA (κ̄n) = An.
Therefore, the following post-processing is applied after rule
(24):

pruneRn : remove #(δEn) from (Bn,En), (26)

and rule (24) is modified as follows:

R(22)
n ; pruneRn. (27)

The pruning mechanism (26) is illustrated in Fig. 9, the reader

#

β

ρ

α

α

5

32 4

71

α ρ

6

ρ β β

α

44

5

3

1 7

ρ

α

42

ρ

11

ρ

11 6

α

α

7

2

ββ

6

Fig. 9. The pruning mechanism (26), and optimization (28).

should compare with Fig. 7. In this figure, we have extended
the A shown in Fig. 7 by adding one more alarm labeled α (top
right). The branching process shown in the bottom is a contin-
uation of the one shown in Fig. 7. The result of the pruning
mechanism (26) is depicted in dark grey: corresponding nodes
are pruned from the updated UP×A , which is therefore the white
part of the diagram on the bottom. Note that the ambiguity has
been removed, since the remaining net is now itself a single con-
figuration. In fact, this figure shows directly this pruning mech-
anism on the restriction of diagnosis net UP×A , to the subset of
its nodes that are labeled by nodes from P .

3. Optimizing. We can still optimize rule (27) by noting that, in
the term (Bn,En) resulting from applying this rule, not all places
from Bn can serve for future continuations of (Bn,En)—compare
this situation with the general one discussed at the end of sub-
section IV-B. For this, we use lemma 2. Denote by ⊥⊥(δEn)
the set of places belonging to (Bn,En) that are concurrent with
some event belonging to δEn—note the difference with the for-
mer definition of #(δEn). Then, by lemma 2 we know that

only the nodes belonging to δE•n∪⊥⊥(δEn)
can serve for future continuations of (Bn,En).

(28)

Using claim (28), rule (22) rewrites as follows, note the modifi-
cation of the pre-condition:

R(29)
n,t :

X ∪XA ⊆
(
δE•n−1∪⊥⊥(δEn−1)

)

λ(t) = λA(en) , ϕ(X) = •t , ϕ(XA) = bn−1

e = (X ∪XA ,(t,en))
e• = {(e, p) | p ∈ t• }∪{(e,bn)}

(29)

12

The additional precondition is then updated as follows, prior to
handling the n+1st alarm:

δE•n∪⊥⊥(δEn) = δE•n∪ (⊥⊥(δEn−1)\
•δEn) , (30)

we call optimRn the so defined rule. Then, post-processing
(26) applies after rule (29) as well, hence the optimized rule
becomes:

R(29)
n ; pruneRn ; optimRn. (31)

This optimization is illustrated in Fig. 9. In this figure, the set
δE•n∪⊥⊥(δEn) consists of the three conditions encircled in thick,
in the diagnosis net shown on the right hand side. Hence co-
sets not contained in this set need not be tested, for possible
continuation. Note that, unlike the pruning, this optimization
does not modify the constructed branching process.

4. Maintaining co-sets. So far we have ignored the need for test-
ing the condition X ∈ coBn−1 , see the remark at the end of sub-
section IV-A. But the optimization optimR(n) applies, hence
only a postfix of the whole branching process is explored for
performing the continuation. Therefore we should avoid explor-
ing backward the entire branching process under construction, in
order to check the co-set property. So we need to maintain and
update explicitly the co-set property, restricted to δE•n∪⊥⊥(δEn).
We discuss this now.

Focus on rule (29). The following formula holds, to update
the co-set property while processing the nth alarm:

coB := coB ∪ (�
Y∈coB ,Y⊇X

Y [X ← e•]), (32)

where we denote by Y [X ← e•] the co-set Y in which X has
been substituted with e•. Formula (32) possesses the following
initialization and termination conditions:

initialization : coB := coBn−1 ,

termination : coBn := coB.

Finally, rule R(29)
n,t refines as:

R(33)
n,t :

X ∪XA ⊆
(
δE•n−1∪⊥⊥(δEn−1)

)

λ(t) = λA(en) , ϕ(X) = •t , ϕ(XA) = bn−1

e = (X ∪XA ,(t,en))
e• = {(e, p) | p ∈ t• }∪{(e,bn)}

coB := coB ∪ (
�

Y∈coB ,Y⊇X Y [X ← e•])

(33)

And the refined on-line algorithm is obtained by substituting

R(33)
n,t for R(29)

n,t in (31). Note that maintaining on-line the con-
currency relation is of low cost in this case, in contrast to the
general case where continuations can be performed from far in
the interior of the net under construction.

V. DISCUSSION

A net unfolding approach to on-line asynchronous diagnosis
was presented. This true concurrency approach is suited to dis-
tributed and asynchronous systems in which no global state and
no global time is available, and therefore a partial order model
of time is considered. In the present paper, our basic tool was

the net unfolding, a branching structure representing the set of
configurations of a Petri net, with asynchronous semantics, lo-
cal states, and partially ordered time. Diagnosis nets were intro-
duced as a way to encode all solutions of a diagnosis problem.
They avoid the well-known state explosion problem, that typi-
cally results from having concurrent components in a distributed
system interacting asynchronously. Whereas state explosion is
kept under control, the computing cost of performing the diag-
nosis on-line increases (due to the need to compute co-sets); but
this is typically a preferred tradeoff for the diagnosis of complex
asynchronous systems involving significant concurrency.

It is worth saying what this paper does not consider. We do
not follow a diagnoser approach. One can view a diagnoser
as a “compiled” algorithm for diagnosis. It consists in pre-
computing a finite state machine which accepts alarm events,
and has states labeled by, e.g., visited faults. In contrast, our ap-
proach can be seen as an “interpreted” one, since our diagnosis
nets are computed, on-line, by using only the original Petri net
structure. Also, we did not investigate issues of diagnosability.
Diagnosers for unbounded asynchronous diagnosis and related
diagnosability issues have not been considered in the literature,
at least to our knowledge. We believe this could be performed by
using so-called complete prefixes of the unfolding, see [15][16].

Complexity issues have not been addressed. However, the
following pragmatic argument can be given to justify the use
of unfoldings. Complete prefixes of unfoldings have been used
for model checking, an area in which practical complexity is of
paramount importance [29][14][15][16].

Various extensions of this work are under progress. The algo-
rithms developed in this paper return all explanations as a diag-
nosis. Our target application—fault management in telecommu-
nications networks—typically exhibits a great deal of ambiguity.
Hence it is of interest to return (the) most likely explanation(s).
Probabilistic versions of the present work have been developed
for this purpose, see [2][3][19], [20], and [5] for a theory of cor-
responding stochastic processes.

Since our algorithm is interpreted, not compiled, it can be
extended to asynchronous systems subject to dynamic changes
in their structure—this is typically a situation encountered in
network management. This feature favors the use of diagnosis
nets instead of the pre-computed diagnosers.

Then, this study is clearly an intermediate step toward dis-
tributed diagnosis, in which diagnosis is performed jointly by
a network of supervisors communicating asynchronously. Pa-
pers [17][18][19], [20] are a first attempt toward distributed di-
agnosis. These references concentrate on how to compute the
set of configurations diag(A) in a distributed way, but they do
not consider the issue of how to represent diag(A) efficiently
via unfoldings. The techniques of the present paper therefore
should be combined with those of [17][18][19], [20] for getting
an efficient solution for the distributed case, this topic will be
the subject of a forthcoming paper.

The robustness of algorithms against alarm losses or commu-
nications failures needs to be investigated. Also, due to the sys-
tems complexity, there is little hope indeed, that an exact model
can be provided, hence we need to develop diagnosis methods
that work based on an incomplete model, i.e., a model not able
to explain all observed behaviours.

13

Last but not least, getting the system model itself is a bot-
tleneck, for complex distributed systems such as, e.g., telecom-
munications network management systems. The issue of how
to partially automatize the model construction is investigated in
[28].

ACKNOWLEDGEMENT. The authors gratefully acknowledge the
reviewers, whose remarks contributed to improving a first ver-
sion of this paper.

REFERENCES

[1] Full version of this paper
http://www.irisa.fr/sigma2/benveniste/pub/B al asdiag 2001.html

[2] A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, C. Jard. A Petri net
approach to fault detection and diagnosis in distributed systems. Part II:
extending Viterbi algorithm and HMM techniques to Petri nets. CDC’97
Proceedings, San Diego, December 1997.

[3] A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, C. Jard. Fault De-
tection and Diagnosis in Distributed Systems : an Approach by Partially
Stochastic Petri nets, Discrete Event Dynamic Systems: theory and appli-
cation, special issue on Hybrid Systems, vol. 8, pp. 203-231, June 98.

[4] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella. Diagnosis of large
active systems. Artificial Intelligence 110: 135-183, 1999.

[5] A. Benveniste, E. Fabre, and S. Haar. “Markov nets: proba-
bilistic models for distributed and concurrent systems”. Irisa Re-
search Report 1415, September 2001, submitted for publication,
http://www.irisa.fr/sigma2/benveniste/pub/BlGFH2000.html

[6] R. Boubour, C. Jard, A. Aghasaryan, E. Fabre, A. Benveniste. A Petri
net approach to fault detection and diagnosis in distributed systems. Part
I: application to telecommunication networks, motivations and modeling.
CDC’97 Proceedings, San Diego, December 1997.

[7] A.T. Bouloutas, G. Hart, and M. Schwartz. Two extensions of the Viterbi
algorithm. IEEE Trans. on Information Theory, 37(2):430–436, March
1991.

[8] A.T. Bouloutas, S. Calo, and A. Finkel. Alarm correlation and fault iden-
tification in communication networks. IEEE Trans. on Communications,
42(2/3/4), 1994.

[9] C. Cassandras and S. Lafortune. Introduction to discrete event systems.
Kluwer Academic Publishers, 1999.

[10] R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized
protocols for failure diagnosis of discrete event systems. Discrete Event
Dynamic Systems: theory and application. 10(1/2), 33-86, 2000.

[11] R. Debouk, S. Lafortune, and D. Teneketzis. On the effect of communi-
cation delays in failure diagnosis of decentralized discrete event systems.
Control group report CGR00-04, Univ. of Michigan at Ann Arbor, submit-
ted for publication, 2001.

[12] J. Desel, and J. Esparza. Free Choice Petri Nets. Cambridge University
Press, 1995.

[13] J. Engelfriet. Branching Processes of Petri Nets. Acta Informatica 28,
1991, pp 575–591.

[14] J. Esparza. Model Checking Using Net Unfoldings. Sci. of Comp. Prog.
23:151–195, 1994.

[15] J. Esparza, S. Römer, and W. Vogler. An improvement of McMil-
lan’s unfolding algorithm. In T. Margaria and B. Steffen Eds., Proc. of
TACACS’96, LNCS 1055, 87-106, 1996. Extended version to appear in
Formal Methods in System Design, 2000.

[16] J. Esparza, and S. Römer. An unfolding algorithm for synchronous prod-
ucts of transition systems, in proceedings of CONCUR’99, LNCS 1664,
Springer Verlag, 1999.

[17] E. Fabre, A. Benveniste, C. Jard, L. Ricker, and M. Smith. Distributed state
reconstruction for discrete event systems. Proc. of the 2000 IEEE Control
and Decision Conference (CDC’2000), Sydney, Dec. 2000.

[18] E. Fabre, A. Benveniste, C. Jard. Distributed diagnosis for large discrete
event dynamic systems. In Proc of the IFAC congress, Jul. 2002.

[19] E. Fabre. Compositional models of distributed and asynchronous dynami-
cal systems. In Proc of the 2002 IEEE Conf. on Decision and Control, 1–6,
Dec. 2002, Las Vegas, 2002.

[20] E. Fabre. Monitoring distributed systems with distributed algorithms. In
Proc of the 2002 IEEE Conf. on Decision and Control, 411–416, Dec.
2002, Las Vegas, 2002.

[21] R.G. Gardner, and D. Harle. Methods and systems for alarm correlation.
In GlobeCom 96, London, November 1996.

[22] C.N. Hadjicostis, and G.C. Verghese. Monitoring discrete event systems
using Petri net embeddings. in Proc. of Application and theory of Petri
nets 1999, 188–208.

[23] A. Giua. —PN state estimators based on event observation. Proc. 36th Int.
Conf. on Decision and Control, San Diego, Ca, 4-86–4091, 1997.

[24] A. Giua, and C. Seatzu. Observability of Place/Transition Nets. Preprint,
2001.

[25] K.X. He and M.D. Lemmon. Liveness verification of discrete-event sys-
tems modeled by n-safe Petri nets. in Proc. of the 21st Int. Conf. on Appli-
cation and Theory of Petri Nets, Danmark, June 2000.

[26] K.X. He and M.D. Lemmon. On the existence of liveness-enforcing super-
visory policies of discrete-event systems modeled by n-safe Petri nets. in
Proc. of IFAC’2000 Conf. on Control Systems Design, special session on
Petri nets, Slovakia, June 2000.

[27] I. Katsela, A.T. Bouloutas, and S. Calo. Centralized vs distributed fault
localisation. Integrated Network Management IV, A.S. Sethi, Y. Raynaud,
and F. Faure-Vincent, Eds. Chapman and Hall, 251-261, 1995.

[28] A. Aghasaryan, C. Dousson, E. Fabre, Y. Pencolé, A. Os-
mani. Modeling Fault Propagation in Telecommunications Net-
works for Diagnosis Purposes. XVIII World Telecommunica-
tions Congress 22-27 September 2002 - Paris, France. Available:
http://www.irisa.fr/sigma2/benveniste/pub/topic distribdiag.html

[29] K. McMillan. Using Unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits. In: 4th Workshop on Computer
Aided Verification, pp. 164–174, 1992.

[30] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures, and
domains. Part I. Theoretical Computer Science 13:85–108, 1981.

[31] W. Reisig. Petri nets. Springer Verlag, 1985.
[32] L. Rozé and M-O. Cordier. Diagnosing discrete event systems: extending

the diagnoser approach to deal with telecommunications networks. Dis-
crete Event Dynamic Systems: theory and application, special issue on
WODES’98, 12(1), 43–82, Jan. 2002.

[33] G. Rozenberg and J. Engelfriet. Elementary Net Systems. In: Lectures on
Petri Nets I: Basic Models. LNCS 1491, pp. 12–121, Springer, 1998.

[34] A. Sahraoui, H. Atabakhche, M. Courvoisier, and R. Valette. Joining Petri
nets and knowledge-based systems for monitoring purposes. Proc. of the
IEEE Int. Conf. on Robotics Automation, 1160–1165, 1987.

[35] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis. Diagnosability of discrete-event systems. IEEE Trans. Autom.
Control 40(9), 1555-1575, 1995.

[36] R. Sengupta. Diagnosis and communications in distributed systems. In
Proc. of WODES 1998, international Workshop On Discrete Event Systems,
144-151, IEE, London, England, 1998.

[37] S. Tripakis. Undecidable problems of decentralized observation and con-
trol. In Proc. of the 40th IEEE Conf. on Decision and Control, Orlando,
Dec. 2001.

[38] G. Winskel. Event structures. In Advances in Petri nets, LNCS vol. 255,
325–392, Springer Verlag, 1987.

