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coke.

Abstract: In this paper we survey our results on model validation,
change detection, and diagnosis, based on thelocal approach.We see this
work as a counterpart of the central contribution by LennartLjung to a
systematic approach to system identification. We reuse concepts brought
by Lennart such as: model set, true system model, identification method,
and we enrich this set of concepts by considering also the nominal model.

The local approach consists in assuming that nominal and true mod-
els differ by a factor of order1/

√
N , whereN is the sample length. This

allows deriving Gaussian approximations for the (generalized) likelihood
ratio statistics relating these two models. This allows designing system-
atically criteria and test statistics for model validation, change detection,
and diagnosis.

We report our experience in using these techniques in the area of vi-
brations monitoring in mechanical engineering, where theyhave proven
very useful and effective.

1 Introduction: why Lennart Ljung made this
work possible

As very well explained by Michel Gevers Gevers (2005), the essential and deep-
est contribution of Lennart Ljung to system identification was the clarification of
the following key concepts:

• the data and the system producing the data;

• the model set and the best fit within the model set;
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• the algorithm to estimate the best fit and its bias and variance error.

All this occurred in the late seventies and late 70’s Ljung (1977b,a, 1978); Ljung
and Soderström (1983), and contributed dramatically to theclarification of the
area. It considerably cleaned the jungle of system identification algorithms, by
classifying the variants with respect to each of the above concepts.

In the late seventies, our group started working on change detection. At that
time the area was dominated by results from statisticians Brown et al. (1975);
Hinkley (1970); Lehmann (1968); Shiryaev (1961); Wald (1947); Willsky and
Jones (1967). While these were very elegant and technically deep results, they
were essentially focusing on likelihood based methods.

Sometimes problems are raised that cause decisive breaks inthe activity of
researchers. Our group experienced this when Bruno Barnouin, from CNEXO
(now IFREMER, the French institute for research on sea), asked us in 1981 to
consider the problem of detecting fatigues in offshore structures before the dam-
age could actually occur. One difficulty was that measured data were clearly
nonstationary, much more so because of the turbulent natureof the excitation by
the swell and cavitation effects that follow, than because of the damage itself. We
were able to show that Instrumental Variable methods for output only eigenstruc-
ture identification were robust against such input nonstationarities Benveniste and
Fuchs (1985).

This opened the possibility to perform fatigue detection through the compari-
son of results from identifications, performed on the one hand while the structure
was safe, and on the other hand at the current instant. This was not satisfactory
to us, however, since identification of structures subject to vibrations was (and
still is) difficult and not fully automatic. We thought that deciding upon changes
should, by principle, be simpler than, first, performing identification, and, sec-
ond, comparing the models.

Two sources of inspiration helped us finding what we wanted. First, Igor
Nikiforov Nikiforov (1983) made us aware that Le Cam, a statistician, discov-
ered in the late sixties that it was indeed natural to consider testing problems in
which the alternatives were closer along with the size of thedata set at hand: the
larger the data set, the closer the alternatives for discrimination can be Le Cam
(1960); Davies (1973); Le Cam (1986); Roussas (1972). Taking a gap of or-
der1/

√
N (whereN is the size of the data set) gave a likelihood ratio that was

asymptotically Gaussian. This was called thelocal hypothesisand Le Cam’s
approach and its elegant consequences were called thelocal approach.

The original Le Cam local approach was ideologically “likelihoodist”, how-
ever. We knew we wanted to work with Instrumental Variables,for their robust-
ness properties. Ljung and the swedish school had paved the way we should go:
clarify the concepts, and then go for a possible generalization of the likelihood
techniques. Once we realized this, finding the right concepts was not too dif-
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ficult. The ODE concept “̇θ = h(θ)” had demonstrated the importance of the
mean gradienth(θ); the asymptotic behavior of the ODE associated with recur-
sive stochastic algorithms could tell us a lot about the asymptotic behavior of the
algorithm itself. For our change detection problem, the right concepts became
clear:

• the data and the (unknown) systemθ⋆ producing the data;

• the nominal modelθ0 to confront to the data;

• the statistics to assess the above confrontation, by using the nominal model
and the data at hand; corresponding to Ljung’sh(θ) function was a function
h(θ0, θ⋆) assessing “in the mean” the gap betweenθ0 andθ⋆.

This was developed in Benveniste et al. (1987, 1990); Basseville and Nikiforov
(1993); Zhang et al. (1994). Still, this approach remained essentially confidential,
much more than Lung’s results for identification. It is only in the area of modal
identification and health monitoring of structures in mechanical engineering that
this approach found an interesting field of application. Reasons for this possibly
are: data sets are large, models are huge (several dozens of poles, corresponding
to reduced order models for FE models with thousands of degrees of freedom),
and damages results in slight changes in the model characteristics (a fraction of
a percent to a few percent for the frequencies).

This is why we have chosen to collect in this paper in honor of Lennart Ljung
our experience in modal monitoring with local approaches.

2 Running application: modal identification and
health monitoring of mechanical structures

In this section we discuss our application area, namely modal identification and
health monitoring of mechanical structures.

2.1 Context and benchmark example

The design and maintenance of mechanical structures subject to noise and vibra-
tions is an important topic in mechanical engineering. It isan important com-
ponent of comfort (cars and buildings) and contributes significantly to the safety
related aspects of design and maintenance (aircrafts, aerospace vehicles and pay-
loads, civil structures). Requirements from these application areas are numerous
and demanding:

• Detailed physical models derived from first principles are developed as part
of system design (although detailed modeling of the links with the ground
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is not feasible, for civil engineering structures). These models involve the
dynamics of vibrations, sometimes complemented by other physical as-
pects (fluid-structure interaction, aerodynamics, thermodynamics).

• Laboratory and in-operation tests are performed on the prototype struc-
ture, in order to get so-calledmodal models, i.e., to extract the modes and
damping factors (these correspond to system poles), the mode shapes (cor-
responding eigenvectors), and loads. These results are used for updating
the design model for a better fit to data, and sometimes for certification
purposes (e.g.,in flight domain opening for new aircrafts).

• Themonitoringof structures is an important activity for the system mainte-
nance and health monitoring. This is particularly important for civil struc-
tures. Damaged structures would typically exhibit changesin their stiff-
ness due to the occurrence of micro-cracks or faults, or modifications of
the links to the ground. A key difficulty is that such system characteristics
are also sensitive to environmental conditions, such as temperature effects
(for civil structures), or external loads (for aircrafts).In fact these envi-
ronmental effects even dominate the effect of damage. This is why, for
very critical structures such as aircrafts, detailed active inspection of the
structures is performed as part of the maintenance. Still, in many cases
(e.g.,civil structures), health monitoring based on modal techniques is the
preferred, non invasive, mode of monitoring. Of course,the localization of
a damage must be expressed in terms of the physical model, notin terms of
the modal model used in system identification.

Consequently, the following elements are encountered and must be jointly dealt
with when addressing these applications:design modelsfrom the system physics,
modal modelsused in structural identification, and, of course,datafrom sensors.
Corresponding characteristics are given now:

• Design models are Finite Element models, with tens or hundreds of thou-
sands elements. These models are linear if only small vibrations are con-
sidered; still, these models are of huge order. In addition,nonlinearities
enter as soon as large vibrations or other physical effects (aerodynamics,
thermodynamics. . . ) are considered.

• Sensors can range from a handful of accelerometers or straingauges, to
hundreds of them, or even more if laser based measurement technology is
used.

• Consequently, modal models used for structural identification are of very
high order, and are always the result of drastic model reduction.
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Figure 1: The simulation example: a realistic bridge (courtesy of Etienne
Balmes).

Fig. 1 shows a simulated bridge structure (courtesy of Etienne Balmes), which
will support our various use cases. The structure has13668 nodes,9642 finite
elements, and40976 degrees of freedom. Its first five modes are listed in Table 1.

Mode f1 f2 f3 f4 f5
Safe 1.28 2.63 2.7 6.05 6.34

Damaged 1.29 2.61 2.69 6.05 6.33
Table 1: First five modes of the structure of Fig. 1 (in Hz).

We now briefly indicate which parameters are used for identification. For
time invariant structures subject to small vibrations, theclassical discrete time
linear model can be used, namely:

{
Xk+1 = AXk + Vk

Yk = CXk +Wk
(1)

Themodesof the structure are nothing but the poles of the system,i.e., the eigen-
values ofA. Mode information decomposes into afrequencyand adamping.For
λ a mode, its associatedmode shapeis ϕλ =def CΦλ, whereΦλ is the eigen-
vector ofA corresponding toλ. Intuitively, the mode shapeϕλ indicates, in the
complex domain, how the structure behaves, for its motion atfrequencyωλ. The
collection of modes and mode shapes constitutes the eigenstructure of the sys-
tem, they are collected in the parameter vectorθ. Eigenstructureθ is a canonical
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parameterization of the pole part of system (1). In mechanical engineering jar-
gon, this is referred to as themodal modelof the structure. All use cases we shall
discuss handle the modal model with or without joint use of the finite element
model.

2.2 Some new difficulties as compared to system
identification

We argued in the introduction that detection is easier than identification, so that
one should not perform re-identification in order to detect and diagnose changes.
In this section, we shall see that, on the other hand, change detection raises new
problems, not encountered in system identification. We discuss these in the con-
text of modal monitoring.

2.2.1 Model matching when models are close

We first discuss a problem that is typically encountered in modal monitoring. As-
sume that the designer has a nominal model for the above system, together with
a measured data set. The nominal model can be, for instance, obtained from a Fi-
nite Element design model. The designer wishes to focus on the frequency range
1–8Hz, where this nominal model possesses five poles denoted byf0,1, . . . , f0,5,
of which onlyf0,3, f0,4, f0,5 are identifiable with the selected sensor positions.
The designer wishes to know if these three poles match her data set well.

One possible way or performing this would be as follows: the designer would
perform modal identification on the measured data set, and then compare the
obtained modes with the nominal ones. This is illustrated onFig. 2. On the
top diagram of this figure, we zoom on a restricted bandwidth of a plot of poles
identified for this data set, for different model orders. This is called astabilization
diagramby mechanical engineers. Stabilization diagrams are used to (visually
or automatically) select relevant poles in a very high ordersystem,i.e.,poles that
are stable for different model orders and have mechanical meaning. The three
lines of poles correspond tof3, f4, andf5, ordered from bottom to top.

Now, comparing the nominal poles with the stabilization diagram of Fig. 2
raises the difficulty ofmodel matching: how to pair the nominal poles with the
identified ones, especially when poles are close? In contrast, Fig. 2, bottom
diagram, shows that having a good model/data gap allows to assess how good
the nominal model is, without being faced with the model matching problem.

2.2.2 Nuisance parameters

Fig. 3 shows another, more important and more difficult, problem. Vibrating
structures are subject to damages and temperature effects.Both factors affect
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Figure 2: Simulation example of Fig. 1. Top: stabilization diagram show-
ing three frequencies for different model orders. The threefrequencies are
f3, f4, f5, ordered from bottom to top. Bottom: model/data gap when the
two frequenciesf4 (on X-axis), andf5 (on Y-axis), is shifted below and
above its nominal value by2.5%.
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their dynamics, but only damage is for monitoring by the engineer. In Fig. 3, we
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Figure 3: Simulation example of Fig. 1. We plot how a given system fre-
quency is shifted on a structure subject to vibrations when the temperature
increases from0 to 8 degrees Celsius, for a safe (inblue) and damaged (in
red) structure, respectively.

plot how one given pole is shifted when the temperature increases, from0 to 8
degrees Celsius, for a safe (inblue) and damaged (inred) structure, respectively.
As the reader can see, for an increase of6 degrees and more, the temperature
effect is larger than that of the damage at0 degree Celsius.

This is referred to asnuisanceparameters,i.e.,parameters that cause changes
in the observed dynamics but are irrelevant for the problem in consideration.
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3 The local approach for the independent,
identically distributed case, with likelihood
based methods

3.1 Problem setting

In this section, we assume a sequenceYk of independent, identically distributed
(i.i.d.) random variables whose distributionpθ(Yk) depends on some parameter
vector θ. SymbolEθ denotes the expectation under distributionpθ, and “ln”
denotes the logarithm. For a givenN -size sampleYN

1 =def Y1, . . . , YN , two
values of interest for parameter vectorθ are considered:

• The true valueθ⋆ is such thatYk was actually drawn underpθ⋆ ; the true
value is generally not known.

• A nominalvalueθ0 that is given, regardless of the considered sample. Typ-
ically, θ0 may be chosen by the user; or it may be given by some computed
design model; or it may be the true or estimated value for another data
sample.

The aim is to confrontθ0 to θ⋆, or, equivalently, to confrontθ0 to the observed
data sampleYN

1 =def Y1, . . . , YN .
In the sixties, Le Cam made the following observation: the longer the avail-

able data set is, the closer models we wish to discriminate can be. Thus it makes
sense assuming a deviation of order1/

√
N between nominal and true models,

whereN is the sample length:

θ
0
− θ⋆ =

1√
N
δ,. (2)

In (2), δ is a given fixed vector “gap” not depending on sample size. Normal-
ization (2) is known as thestatistical local approach. Under (2), a number of
simplifications occur that can be exploited for our present purpose.

3.2 A simple example where calculations can be made
explicit

As a simple example, consider the case of scalar i.i.d. Gaussian random vari-
ablesyk ∼ N (θ, σ2), having fixed and known varianceσ2 but unknown transla-
tion parameterθ. Assume thatθ⋆ = 0 and compute the likelihood and negative
loglikelihood, respectively:

pθ(y) =
1

σ
√

2π
e−

(y−θ)2

2σ2 , − log pθ(y) = log(σ
√

2π) +
(y − θ)2

2σ2
.
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Next, consider the following quantity:

ζN (θ) =def
1√
N

N∑

1

∂

∂θ
log pθ(yk) =

1√
N

N∑

1

yk − θ

σ2

Using the local approach (2), renormalizeθ
0
− θ⋆ = 1√

N
δ; this yields

ζN (θ0) = − δ

σ2
+

(
1√
N

N∑

1

yk

σ2

)

whence, forN large, by Central Limit Theorem,

ζN (θ
0
) ∼ − δ

σ2
+ N

(
0,

1

σ2

)
(3)

Data-to-model gapζN (θ) is proportional to signal/noise ratio and subject to a
1/σ2 random perturbation. In the next section we generalize thisto any vector
i.i.d. random sequenceYk.

3.3 Basic facts supporting the local approach

The log-likelihoodof YN
1 =def (Y1, . . . , YN ) is defined as:

ln pθ(YN
1 ) =def

N∑

k=1

lθ(Yk) , wherelθ(y) =def ln pθ(y) .

For any givenθ0, theefficient scoreζN (θ0) is the value, atθ0, of the gradient,
w.r.t. θ, of the log-likelihood normalized by

√
N :

ζN (θ0) =def
1√
N

∂

∂θ
ln pθ(YN

1 )

∣∣∣∣
θ=θ0

=
1√
N

N∑

k=1

∂

∂θ
lθ(Yk)

∣∣∣∣
θ=θ0

(4)

Note that the efficient score only depends on the data and the nominal model. It
is therefore available to the designer.

Next, the following function of the pair consisting of the nominal and true
models will be important:

h(θ0, θ⋆) =def Eθ⋆

(
∂

∂θ
lθ(Yk)

∣∣∣∣
θ=θ0

)

Observe that the function inside the parentheses is parameterized by the nomi-
nal modelθ0, whereas expectation holds under the true modelθ⋆ (which is the
distribution of the data at hand).
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Consequences of assuming θ0 = θ⋆ i.e., the nominal model equals the
true one. For this paragraph, we assumeθ0 = θ⋆ and discuss the conse-
quences. SinceEθ(Yk) =

∫
pθ(y)dy = 1 holds for everyθ, conditionθ0 = θ⋆

implies:

h(θ0, θ⋆) =

∫ ( ∂
∂θ
lθ(y)

∣∣∣
θ=θ0

)
pθ⋆(y) dy =

( ∂
∂θ

∫
pθ(y)dy

)∣∣∣
θ=θ⋆

= 0. (5)

Formula (5) has the following consequences. First, the efficient score is unbiased:

for everyN , θ0 = θ⋆ impliesEθ⋆(ζN (θ0)) = 0 . (6)

Second, by the Law of Large Numbers (LLN) and formula (5),θ0 = θ⋆ implies

1√
N
ζN (θ0) =

1

N

N∑

k=1

∂

∂θ
lθ(Yk)

∣∣∣∣
θ=θ0

−→ 0 when N → +∞. (7)

Third, by the Central Limit Theorem, ifθ0 = θ⋆ holds, then

ζN (θ0) → N
(

0 , I(θ⋆)
|
)

whenN → +∞, (8)

whereI(θ) is theFisher information matrixdefined by:

I(θ) =def Eθ

[(
∂

∂θ
lθ(Yk)

)(
∂

∂θ
lθ(Yk)

)T
]

= − Eθ

[
∂2lθ(Yk)

∂θ2

]
. (9)

Using Le Cam’s local approach. Under the local approach (2), taking a first
order Taylor expansion of the efficient score aroundθ⋆ yields:

ζN (θ0) − ζN (θ⋆) ≈
(

1

N

N∑

k=1

∂2lθ(Yk)

∂θ2

∣∣∣∣
θ=θ⋆

)
δ ≈ −I(θ⋆) δ, by (9). (10)

By (8) and (10), the local hypothesis (2) implies:

ζN (θ0) → N
(
−I(θ⋆) δ , I(θ⋆)

′

)
whenN → +∞. (11)

In (11), it turns out that, forN large and under the local hypothesis (2), we can
equally well evaluate the Fisher matrix atθ⋆ or atθ0. This flexibility is important
in practice.

The efficient score as a data/model gap. We shall use (11) in many ways
throughout this paper, by interpreting the efficient score as a data/model gap.



92 The local approach to change detection, diagnosis, and model validation: . . .

3.4 Using the local approach for model validation or
change detection

Model validation can be defined as the following problem:

Problem1 (model validation). We are given anominal modelθ0 and aN -size
data setYN

1 . Can we accept or should we rather reject the hypothesis thatYN
1

was drawn under distributionpθ0
?

Under the local approach, this can be answered by using (11) as follows:
simply replace Problem 1 with the asymptotically equivalent

Problem2 (model validation, local equivalent). We are given anominal model
θ0 and the efficient scoreζN (θ0). Can we accept or should we rather reject the
hypothesis thatδ = 0 in the normal distribution (11) ofζN (θ0)?

The interest of Problem 2 is that it is much simpler to solve than Problem
1, since it involves deciding whether or not a Gaussian vector random variable
of known covariance matrix has zero mean. The relevant test is based on the
following χ2-statistics:

χ(θ0) =def ζT
N (θ0) I

−1(θ⋆) ζN (θ0), (12)

which must be distributed according to a centeredχ2 with a known number of de-
grees of freedom ifδ = 0 holds—this property can be used to tune the threshold
when deciding whether or notδ = 0 can be accepted.

Still, an issue remains. Sinceθ⋆ in (12) is unknown, so is the matrixI(θ⋆).
However, by (10) and subsequent remark, this unknown matrixI(θ⋆) can be
replaced in (12) by its estimator

ÎN (θ0) =def

(
1

N

N∑

k=1

∂2lθ(Yk)

∂θ2

∣∣∣∣
θ=θ0

)

which is based only on the known nominal model and observed data. Our final
statistics to answer Problem 2, and hence also (asymptotically) Problem 1, is
therefore

χN (θ0) =def ζT
N (θ0) Î

−1
N (θ0) ζN (θ0) , (13)

which has to be compared against some pre-tuned threshold—this threshold is
tuned to achieve a pre-specified level for the test. Theχ2 test statistics (13)
takes into account both the size of the deviation of the nominal model from true
model, as well as all uncertainties due to measurement noises and other type of
randomness.
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3.5 Using the local approach for system identification

Here we consider the problem of identifying the true modelθ⋆ from anN -size
data set. To this end, we consider themaximum likelihood estimator̂θN defined
by

θ̂N =def argθ

[
1

N

∂

∂θ
ln pθ(YN

1 ) = 0

]
= argθ

[
ζN (θ) = 0I

]
(14)

By definition of θ̂N , 1
N

∑N
1

∂
∂θ lθ(Yk)

∣∣
θ=bθN

= 0. On the other hand, by the law

of large numbers, forN large, 1
N

∑N
1

∂
∂θ lθ(Yk)

∣∣
θ=bθN

≈ h(θ̂N , θ⋆). 1 Hence

0 ≈ h(θ̂N , θ⋆) for N large. (15)

Next, focus on (5). It says thatθ = θ⋆ impliesh(θ, θ⋆) = 0. Assume, conversely,
thath(θ, θ⋆) = 0 impliesθ = θ⋆ (this holds under suitable regularity conditions
not detailed here). Now, with this assumption, using (15) and assumingh regular
yields thatthe maximum likelihood estimatorθ̂N converges to the true parameter
θ⋆ whenN → +∞ Delyon et al. (1997).

3.6 Relating system identification and model validation

Applying (2) and (10) withθ0 = θ̂N and recalling (14), yields

√
N
(
θ̂N − θ⋆

)
≈ I

−1(θ⋆) ζN (θ⋆) (16)

Eqn. (16) relates the identification errorθ̂N − θ⋆ to the efficient scoreζN (θ⋆)
at the true model, under the local approach. Informally, Eqn. (16) relates iden-
tification to model validation. On the other hand, the asymptotic distribution of
ζN (θ⋆) is known to us: just takeδ = 0 in (11). Combining this observation with
(16), we re-derive the well known fact that the maximum likelihood estimator
has asymptotic convergence rate

√
N
(
θ̂N − θ⋆

)
≈ N

(
0 , I−1(θ⋆)

)
(17)

1An expert reader may have recognized that we cheated somehow atthis point: the LLN holds for
a fixedvalue for parameterθ; here we used it for a varying one, sincebθN depends on the data. This
is kind of a “uniform” LLN that holds under suitabe regularityconditions Delyon et al. (1997), not
detailed here.
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4 The local approach for the general case with
arbitrary methods

In Section 3, we have discussed the local approach for i.i.d.sequences based on
likelihood techniques, and we have seen that both topics areindeed tightly re-
lated. This is nice but still not enough as this assumes that:1/ likelihood methods
are applied, and 2/ the efficient score can be effectively computed. The latter
is a demanding assumption, since likelihood functions are not easily computed,
except for specific classes of distributions. It is therefore tempting to look for a
generalization of the above approach to more general distributions and methods.

In this section, we thus assume a stationary sequenceYk of possibly depen-
dent random variables whosejoint distributionpθ(YN

1 ) depends on some param-
eter vectorθ, for each sample sizeN . SymbolEθ denotes the expectation under
this joint distribution. Fortunately, the local theory generalizes to this more gen-
eral setting, under appropriate smoothness assumptions, see Delyon et al. (1997).
We now give a brief presentation of this.

4.1 The pseudo-score

For our general case, we assume that the counterpart of the efficient score is
available in the form of the followingpseudo-score

ζN (θ) =def
1√
N

N∑

k=1

H(θ, Yk)

where the functionH(θ, y), is such that—compare with (5):

h(θ0, θ⋆) =def Eθ⋆ (H(θ0, Yk)) satisfies: θ0 = θ⋆ ⇔ h(θ0, θ⋆) = 0.(18)

By the LLN for stationary random sequences, conditionθ0 = θ⋆ implies:

1√
N
ζN (θ0) =

1

N

N∑

k=1

H(θ0, Yk) −→ 0, (19)

and, by the Central Limit Theorem, again for stationary random sequences,2 if
θ0 = θ⋆ holds, then

ζN (θ0) −→ N
(

0 , R(θ⋆)
|
)

(20)

2CLT for stationary but dependent random sequences are not easy to obtain; typically some kind
of asymptotic independence is assumed, meaning that observations separated by a long period of time
are almost independent. See Benveniste et al. (1990); Delyonet al. (1997) for details.
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for some covariance matrixR(θ⋆). Closed form formulas exist forR(θ⋆) but
are not very useful. Empirical estimates for this covariance matrix, based on
random trials ofζN (θ0), can be used instead—this is referred to assubsampling
in statistics Davison and Hinkley (1997).

4.2 Extending the local approach

Regarding the generalization of the local approach, the following can be said.
Taking a first order Taylor expansion ofζN (θ) aroundθ⋆ yields that, under the
local hypothesis

θ0 − θ⋆ =
1√
N
δ,

we have

ζN (θ0) − ζN (θ⋆) ≈
(

1

N

N∑

k=1

∂H(θ, Yk)

∂θ

∣∣∣∣
θ=θ⋆

)
δ ≈ −J(θ⋆) δ, (21)

where

J(θ) =def −Eθ

(
∂H(θ, Yk)

∂θ

)
(22)

Now, combining (20) and (21) yields (compare with (11) and observe in particu-
lar that, in general,J(θ) 6= R(θ) ): under local hypothesisθ0 − θ⋆ = 1√

N
δ, we

have

ζN (θ0) → N
(
−J(θ⋆) δ , R(θ⋆)

′

)
whenN → +∞. (23)

which yields the following generalization for the chi-square test introduced in
(12):

χ(θ0) =def ζT
N (θ0)R

−1
J
(
J

T
R

−1
J
)−1

J
T
R

−1 ζN (θ0), (24)

Regarding identification procedures, so-called M-estimators have been first con-
sidered in the sixties by Huber Huber (1981)—compare with (14):

θ̂N =def argθ

[
ζN (θ) = 0I

]
. (25)

Applying (21) withθ0 = θ̂N , and recalling (25) yields (we assumeJ invertible
for simplicity):

√
N
(
θ̂N − θ⋆

)
≈ J

−1(θ⋆) ζN (θ⋆) (26)



96 The local approach to change detection, diagnosis, and model validation: . . .

i.i.d. / likelihood general / pseudo-score

H(θ, y) = ∂
∂θ log pθ(y) selectH(θ, y) such that

h(θ
0
, θ⋆) = Eθ⋆H(θ

0
, Yk) h(θ

0
, θ⋆) = Eθ⋆H(θ

0
, Yk); this implies

h(θ
0
, θ⋆) = 0 ⇔ θ

0
= θ⋆ h(θ

0
, θ⋆) = 0 ⇔ θ

0
= θ⋆

scoreζN (θ) pseudo-scoreζN (θ)

=def
1√
N

∑N
1 H(θ, Yk) =def

1√
N

∑N
1 H(θ, Yk)

θ
0
− θ⋆ = δ√

N
implies θ

0
− θ⋆ = δ√

N
implies

ζN (θ
0
) ∼ N

(
−I(θ⋆) δ , I(θ⋆)

′

)
ζN (θ

0
) ∼ N

(
−J(θ⋆) δ , R(θ⋆)

′

)

I(θ⋆) = − ∂
∂θh(θ, θ⋆)

∣∣
θ=θ⋆

J(θ⋆) = − ∂
∂θh(θ, θ⋆)

∣∣
θ=θ⋆

= Fisher information matrix R(θ⋆) = limN→∞ covζN (θ⋆)

χ(θ0) = ζT
N (θ0)I

−1(θ0)ζN (θ0) χ(θ0) = ζT
N (θ0)K

−1ζN (θ0)

K
−1 =def R

−1
J
(
J

T
R

−1
J
)−1

J
T
R

−1

Table 2: The local approach, for the i.i.d. case with likelihood methods, and
for the general case. In the last two lines,J,R,K, should readJ(θ0), etc.

Eqn. (26) relates the identification errorθ̂N − θ⋆ to the efficient scoreζN (θ⋆)
at the true model, under the local approach. Informally, Eqn. (26) relates iden-
tification to model validation. On the other hand, the asymptotic distribution of
ζN (θ⋆) is known to us: takeδ = 0 in (23). Combining this observation with
(26), we re-derive the known result that the maximum likelihood estimator has
asymptotic convergence rate

√
N
(
θ̂N − θ⋆

)
≈ N

(
0 , J−1(θ⋆)R(θ⋆)J

−T (θ⋆)
)

(27)

The comparison between i.i.d. case with likelihood methodsand the general case
of M-estimators is shown in Table 2.

5 Some use cases for the local approach

We discuss in this section some typical use cases of the localapproach in the
context of vibration mechanics.
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5.1 Estimating confidence bounds in identification

As we have seen, M-estimators are appropriate for system identification in this
context. Now, getting an estimate for the uncertainty of M-estimators can be
difficult—for example, convergence rates for subspace methods are extremely
complicated to get and impractical to compute Bauer et al. (1999). Of course,
empirical estimates for such confidence bounds,e.g.,obtained from bootstrap or
jacknife methods Davison and Hinkley (1997), can always be computed but at a
prohibitive cost in computing time and amount of data.

By using the results of Section 4, we see that an alternative approach is pos-
sible. Assume we can compute (an estimate of) the Jacobian matrix J(θ̂N )—
typically, this is easier than computing the full convergence rate as given in (27).
Then, by (23) applied withδ = 0, we can estimate the missing matrixR(θ̂N ) via
an empirical covariance estimator of the “pseudo-score”ζN (θ̂N ). And then we
can conclude by (27).

This is illustrated on Fig. 4, for the case of amode shape; we show, inred,
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modeshape of the mode n° 2 : f=2.62 Hz  with 10* confidence bounds

n° of the sensor

Figure 4: Simulation example of Fig. 1. Confidence bounds on a mode
shape (real part). To make it readable, the size of the bound is multiplied by
a factor of10.
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the considered mode shape (it is a subset of the coordinates of parameterθ), and
its upper and lower bounds, inblue.

5.2 Model validation

Assume a nominal modelθ0 is at hand—it may have been identified on some
data set. Then, assume that validation data are available. If the nominal model
is close enough to the true one so that the local approach makes sense, then
1/ compute the pseudo-scoreζN (θ̂N ) and 2/ test whether the hypothesis that
δ = 0 in (23) can be accepted—this amounts to computing theχ2-test of Table
2. Again, this requires computing estimates of the Jacobianmatrix J(θ̂N ) and
the covariance matrixR(θ̂N ), either based on identification data or on validation
data. Fig. 2 illustrates the above method; see also Mevel andGoursat (2006) for
further results, both on simulation and real data.

5.3 Change detection

In fact, the same approach allows us to perform damage detection: take forθ0 a
model of the safe structure and decide, based on current measurement data sets,
whether the hypothesis thatδ = 0 in (23) can still be accepted. This amounts to
comparing chi-square statistics of Table 2 to an appropriate threshold.

This is illustrated on Fig. 5 for the simulation example of Fig. 1. The two
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Figure 5: Damage detection. Simulation example of Fig. 1. Stabilization
diagram and corresponding chi-square tests, following Table 2.

diagrams shown are (zooms of)stabilization diagrams, i.e.,plots of frequencies
obtained from identifications performed with different model orders. In Fig. 5,
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the estimatesfi, i = 1, 2, 3 for the frequencies were obtained via such a pro-
cessing. Note that the change is adequately revealed by the chi-square statistics,
although it causes a very small shift in the frequencies.

A real example. Fig. 6 shows a real example, using real data from the Z24

Figure 6: Damage detection. The Z24 bridge: histograms of the damage
detection test for the9 month period. Note the shift toward larger values for
the test, for the last two histograms, clearly reflecting theinduced damages.

bridge Mevel et al. (2003), tested in the framework of the BRITE-EURAM project
SIMCES. The bridge used for validation is bridge Z24 in Canton Bern, Switzer-
land, connecting Koppigen and Utzenstorf. The bridge is a highway overpass of
the A1, linking Bern and Zürich. Z24 is a prestressed bridge,with three spans,
two lanes and 60 m overall length. The experiment was performed during year
1998. On 10.08.98 the settlement of pier was cut by 20 mm, and then 40mm on
12.08.98, 80mm on 17.08.98, 95mm on 18.08.98. Finally, a tilt was performed on
the foundation on 19.08.98. Data were recorded, from January 1998 to Septem-
ber 1998. They were provided blindly to the competitors of the benchmark test.
Results are shown on Fig. 6, in the form of9 histograms, ordered as follows: first
line: january, february, march; second line: april, etc. Each histogram depicts
the distribution of the chi-square test computed for a number of records in the
considered month. Histograms are close to identical for months1–7. A change
is visible on month8 (the histogram is shifted toward larger values for the test),
where damage was applied, and even more on month9 since the structure was
damaged for the entire month.
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On-line monitoring. So far all algorithms we have discussed are off-line,
since the (pseudo)score assumes aN -size data sample. A simple on-line form
exists for the particular case in which the parameterθ for monitoring is a scalar—
this does not require that the model itself shall be parameterized by a scalar, as the
next sections show. For this case, the pseudo-scoreζN (θ0) = 1√

N

∑N
1 H(θ0, Yk)

is a scalar, and on-line monitoring with the local approach boils down to detect-
ing a change in the mean of the sequence of random variablesH(θ0, Yk). By the
CLT, we can even do as if these variables were Gaussian and independent Ben-
veniste et al. (1990). Very simple and effective CUSUM testsallow for detecting,
e.g.,a change, fromθ > 0, to θ < 0, see for example Mevel et al. (2005). For
more general situations where the parameter for monitoringhas to be a vector,
no such simple solution exist, but of course the situation isnot worse than for
identification and on-line forms can be found on a case by casebasis.

5.4 Focusing monitoring on some subspace

In some cases, one is not interested in monitoringθ for arbitrary changes. For
example, the designer wishes to monitor one mode of her vibrating structure (by
a mode, we mean the collection consisting of the frequency, damping, and mode
shape or eigenvector). This can be captured in the followingway. We assume that
the monitoring is restricted to a subspace of the parameter space. This subspace is
spaned by some parameterµ, of dimension smaller than that ofθ. Thus, referring
to eqn. (2), we have

δ = Lµ, dim(µ) < dim(θ)

where we recall thatδ is the normalized deviation between true and nominal
model. The same substitution applies to (23), which gives raise to the appropriate
modification of the chi-square statistics of Table 2, namely:

χL
N (θ0) =def ζT

N (θ0)L
(
LT

K̂N (θ0)L
)−1

LT ζN (θ0). (28)

This method is fine to decide between the casesµ = 0 (no change) andµ 6= 0
(some change occured forµ). But the analysis does not tell us how the above
chi-square statistics reacts if indeed a change occurs thatis not explicated byµ,
i.e., δ 6∈ range(L). For example, ifµ collects a subset of the coordinates ofδ,
then it may be that a change affects other coordinates than those collected inµ. In
general, unfortunately, the chi-square statistics will react to such a change. The
solution to this problem consists in considering changes inother coordinates as a
nuisance and rejecting them.
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5.5 Sensitivity versus robustness: rejection of nuisances

Sensitivity of estimators or decision tests is of course an issue of primary inter-
est. However, in many practical cases, the actual probability distribution of our
observations may also depend on other parameters that are ofno interest or are
irrelevant for the problem under consideration. A typical example is the effect of
temperature on a structure, which can possibly mask the onset of a damage, cf.
Section 2.2.2. Such undesirable or irrelevant parameters are callednuisances.

In general, this is a difficult problem. However, if the effect of the nuisance
on the actual distribution is known, then robustness of identification or tests can
be predicted. More precisely, we now assume that our parameter θ decomposes
as follows:

θ =

[
θu

θn

]
(29)

where superscriptsu andn refer to the “useful” and “nuisance” parts of parameter
θ, respectively. Following the decomposition (29) ofθ, we decompose

J
−1(θ⋆)R(θ⋆)J

−T (θ⋆) =def ∆(θ⋆) =

[
∆uu(θ⋆) ∆un(θ⋆)
∆nu(θ⋆) ∆nn(θ⋆)

]
(30)

Assume that decomposition (30) yields a block-diagonal matrix. Then, by (27),
estimateŝθu

N andθ̂n
N are asymptotically independent,i.e., they do not influence

each other. Similarly, the pseudo-score (23) decomposes into two independent
random vectors. This means that we can safely ignore the nuisance parameter
and do as if we had only the reduced size parameterθu of interest in parameter-
izing the distribution aspθu . Practically, this allows us to consider reduced size
parameter identification by ignoring the nuisance in our M-estimator. This also
allows us to perform testing for changes by using the same reduced size model:
changes in the nuisance will not affect our test.

The closer to block-diagonal decomposition (30) is, the better is the situation.
If this desirable situation fails to happen, then the residual

ζN (θu/θn) =def ζu
N (θ0) − Eθ⋆(ζu

N (θ0) | ζn
N (θ0)), (31)

whereEθ⋆(. | .) denotes conditional expectation under distributionpθ⋆ , projects
away the effect of the nuisance on the pseudo-score and provides a statistics that
is robust against changes in the nuisance and still maximally sensitive to changes
in the parameter of interest. Recall that the random vectorsinvolved in (31) are
asymptotically Gaussian for large data sets, which makes iteasy to compute this
conditional expectation.

We now indicate how to computeζN (θu/θn) in practice. LetH(θu, θn, Yk)
now depend both on the parameterθu of interest (e.g., referring to Section 2.2.2,
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modes and mode shapes), and on the nuisance parameterθn (e.g., referring to
Section 2.2.2, the temperature). Let

ζN (θu, θn) =def
1√
N

N∑

1

H(θu, θn, Yk)

be the pseudo-score as before. Then we can computeζN (θu/θn) as follows:

ζN (θu/θn) =def UT ζN (θu, θn)

where matrixU is orthogonal, and of maximal rank such that

UT

(
∂

∂θn
h(θu, θn; θu

⋆ , θ
n
⋆ )

∣∣∣∣
(θu,θn)=(θu

⋆,θn
⋆)

)
= 0

The robust pseudo-scoreζN (θu/θn) will not react to changes inθn and will do
its best at reacting to changes inθu. Denote by

χu
N (θ0) (32)

the resulting chi-square statistics.
Rejecting the temperature effect for the example of Section2.2.2 is illustrated

in Fig. 7, see Balmès, Basseville, Mevel and Nasser (2006). In this example, we
show inblue (resp. inred) the statistics computed on the safe (resp. damaged)
structure, for increasing temperature, with and without using the nuisance rejec-
tion mechanism. Note the local nature of the rejection mechanism: it is efficient
for a small temperature change, but its effect decreases when the change gets
larger, as revealed by the quadratic shape of the nuisance rejection test under no
damage. In fact, a deeper use of the physical model involvingtemperature effects
allows getting better rejection, see Fig. 8 and Basseville et al. (2006).

5.6 Diagnosis

When a change is detected by the chi-square statistics of Table 2, we would
like to know which coordinates of parameterθ are most affected by this change.
To this end, list the candidate subspaces for monitoring; for example, we could
consider the case where all1-dimensional subspacesLi, i = 1, . . . ,dim(θ) of
the parameter space are for monitoring. Then, two differentways can be used:

• Compute the statisticsχLi

N (θ0), i = 1, . . . ,dim(θ) corresponding to (28),
and compare them.

• Alternatively, compute the statisticsχui

N (θ0), i = 1, . . . ,dim(θ) corre-
sponding to (32), and compare them.

Many variants can be considered.
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Figure 7: Simulation example of Fig. 1, when temperature changes. Re-
jecting the temperature effect with the approach of Section5.5. The figure
shows that the robust chi-square test (in solid line) separates well safe from
damaged states for the structure, for temperature ranging from 0 to 8 degrees
Celsius. Note that the basic chi-square test (dashed lines)performs poorly,
as expected from the frequency plots shown in Fig. 3.

5.7 Diagnosis in terms of a design model

Now, the most interesting situation is when diagnosis is to be performed in terms
of adesign model,not in terms of the parameter space used in identification. Typ-
ically, design models are much richer than those used for identification. There-
fore, they are of much larger dimension. Referring to the simulation example of
Fig. 1, the dimension of the true system parameter space is nearly 105, whereas
actual identification is performed with parameter spaces ofdimension a few hun-
dreds.

The approach we advocate is illustrated in Fig. 9. The key idea is to avoid
mapping back changes, from the parameter space used for identification, to the
space used for the design model. Reason for this is that such an inverse mapping
is very ill conditioned—it corresponds to the difficult problem ofmodel updating,
i.e., the problem of adjusting a high dimensional design model to best match a
given identified one.
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Figure 8: Simulation example of Fig. 1, when temperature changes. Re-
jecting the temperature effect on a larger temperature range (0–16 degrees
Celsius), by making a deeper (non local) use of the physical model.

Instead, we use a direct mapping, from the physical space down to the modal
space. This is well conditioned and requires computing Jacobians. We express
the failure hypotheses of interest in the physical space. Their number would
typically be very large (one failure for each parameter involved in each finite ele-
ment). Mapping these failure hypotheses to the modal space yields a collection of
points. Equip the modal space with the metrics associated tothe local approach,
namely the one defined by the matrixK

−1 of Table 2. With this metrics, some
failure hypotheses, when mapped to the modal space, become indistinguishable
from the safe situation, they are not diagnosable. Some diagnosable failures can-
not be isolated from each other. To take this into account, weperform clustering
of the hypotheses in modal space, with the metrics associated to the local ap-
proach. This yieldsmacro-failurehypotheses in the form of clustered classes
Cj , j ∈ J . For each classCj , we select a representativeFj . This representative
spans a subspace in the modal space, we represent it by its column matrixLj .
Having done this, we are back to the diagnosis situation of Section 5.6.

This technique is illustrated on the bridge example of Fig. 1, see Balmès,
Basseville, Mevel, Nasser and Zhou (2006). Fig. 10 shows theresult of the clus-
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Figure 9: Diagnosis in terms a design model: principle of the approachfor
the case of structural diagnosis with Finite Element (FE) parameters,e.g.,
Young modulus and mass of each element.

tering. Fig. 11 shows the simulated damage along thex-axis, inred. The actual

Figure 10: FE Diagnosis. Showing the results of clustering. Four macro-
failures are shown by marking in black the corresponding elements.

localization of the damage, on the(y, z)-plane is shown on Fig. 12, top-right
picture.

The results of diagnosis are shown on the other diagrams of Fig. 12. The very
noisy plot on top-left displays the value of the chi-square test designed to monitor
each hypothesis attached to each individual finite element,by using the focusing
method of Section 5.4. On the second row, the plot on the left displays, for each
finite element, the value of the chi-square test for the macro-failure containing
the considered element (by using again the focusing method of Section 5.4). By
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Figure 11: FE Diagnosis. Showing the simulated damage, inred.

construction, all elements belonging to the same macro-failure get the same value
for the chi-square test.

The macro-failure that reacts most to this test is shown on the picture sitting
on the right hand side—compare with the localization of the damage in Fig. 11
and Fig. 12, top right. On the third row we show the same, but for a different
tuning of the clustering, where more macro-failures are found having fewer finite
elements each. Note the similarity between the three plots displaying the values
of the test for each case. Still, thanks to the clustering, the interpretation of the
second (and third) plots is made much easier.

6 Concluding remarks: is the local approach a
panacea?

Le Cam’s local approach, combined with Ljung’s clean separation between model
structure and statistical considerations, allowed us to derive a general and power-
ful technique for confronting models to data. Having this, we were able to answer
a large variety of questions involving the triple

{physical design model, identified model, data}

Well, all this sounds miraculous, and is indeed often so. Unfortunately, real life
is not a dream. We list below a number of issues that, when not properly noticed,
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Figure 12: FE Diagnosis. Showing the results.

may prevent the local approach from delivering its promises:

What does the local hypothesis (2) mean in practice? What does it mean,
for the nominal model, to sit “at an order of1/

√
N ” away from the true param-

eter? Well, this is not really a concern when deducing convergence rates for
identification algorithms, or estimating associated errorcovariance matrices: by
definition, identification algorithms should provide “close-to-true” estimates.

In contrast, this becomes a concern when model validation ordamage detec-
tion are considered: we actually do not know whether the deviation from true
model, or actual damage, can be considered “small of order1/

√
N ”. The test

statistics obtained from the local approach can always be considered and com-
puted, but its efficiency may become questionable when changes become large!

The work Mevel and Goursat (2006) illustrates the above discussion. The
experiments reported there show that the validation statistics behaves as a convex
quadratic function (as expected) when the nominal and true values are close to
each other, but this holds only locally.

All our analysis so far assumes that the true model belongs to the model
set, i.e.,the actual distributionp exactly equalspθ for some “true” valueθ = θ⋆
for the parameter. However, in many practical situations, model reduction is
enforced, which prevents this ideal situation from occurring.

This situation has been widely discussed by L. Ljung in his book Ljung
(1999) on system idenfication. There is typically a “best model” in the model set,
represented by parameterθ⋆; in addition, atrue parameterΘ⋆ must be consid-
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ered, typically in a space of larger dimension. The discrepancy δθ⋆ = θ⋆ − Θ⋆

due to model reduction causes an additional bias to occur in the larger dimen-
sional pseudo-score,i.e., even ifθ0 = θ⋆, the pseudo-score is not zero-mean—
compare with (20).

Worse, this bias may be conflicting with the local hypothesis(2): strictly
speaking, we need that the bias on the pseudo-score caused bymodel reduction
is of same magnitude order as the variance contribution due to noises and uncer-
tainties.

This analysis provides theoretical guidelines for selecting model order: bias
and variance should be of same magnitude order—recall the latter relates to
sample size. Unfortunately, this guideline is not very easyto use in practice.
See Zhang et al. (1994) for details on this subject.

The sensitivity and covariance matrices J(θ⋆) and R(θ⋆) of Section 4
may be difficult estimating, due to numerical instabilities. From our experi-
ence, most difficult is the estimation ofR(θ⋆). Of course, a poor estimate would
impair the quality of confidence bounds in parameter identification, or the actual
value of the test for model validation or damage detection.

A Appendix: selected modal analysis methods
for use with the local approach

Here we cast some popular approaches to structural analysisin the framework
of Section 4. We leave as an exercise for the reader to performthis task for her
favorite algorithm.

Max Likelihood, prediction error, equation error, and relat ed methods.
Maximum likelihood approaches have been recently extensively considered for
structural identification, both in time- and frequency-domain Verboven et al.
(2004); Guillaume (2006).

Since the exact likelihood can be difficult expressing, several methods have
been proposed that replace the exact likelihood for maximization by approxi-
mations of it. In the statistics litterature, these are known aspseudo-likelihood
methods, whereas in the control litterature they are referred to asprediction er-
ror or equation errormethods Ljung (1999). These methods generally consist in
defining an error

ek(θ) = xk − f(θ,Xk−1,Uk−1),

whereθ is the model parameter vector,uk andxk are the input and output at
instantk, respectively,Uk−1 = (uk−1, . . . , uk−p) and similarly forXk−1, and
f(θ,Xk−1,Uk−1) is a “prediction” ofxk. Typical criteria for minimization are
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then
∑N

k=1 |ek(θ)|2, or its counterpart in the frequency domain. The function
H(θ, y) is then taken equal to

H(θ, Yk) =def
∂

∂θ
|ek(θ)|2, where

ek(θ) = xk − f(θ,Xk−1,Uk−1) and

Yk =def (xk,Xk−1,Uk−1).

Of course, it is important that∂∂θ ek(θ) can be effectively computed, at a rea-
sonable cost. From our previous analysis, we see that dealing with uncertainties
require estimatingR(θ) andJ(θ); we discussed this in Section 6.

Subspace methods for output-only structural identificatio n. Consider
the following linear system

{
xk = Axk−1 + vk

yk = Cxk−1 + wk
(33)

wherek ∈ Z, x is theR
p-valued state,v andw are unobserved input distur-

bances, andy is theR
q-valued observed output. The problem we consider is the

identification of the pair(C,A) up to a change of basis in the state space of sys-
tem(33). Equivalently, we identify the pairs(λ,Cϕλ), whereλ ranges over the
set of eigenvalues ofA (the poles of system (33)) andϕλ are the corresponding
eigenvectors. Said in words, we consider the problem ofeigenstructure identifi-
cation.

Thesubspace methodfor eigenstructure identification can be seen as follows.
Consider the following parameter vectorθ:

θ =def

(
Λ

vec Φ

)

whereΛ is the diagonal matrix whose elements are the eigenvaluesλ andΦ is the
matrix whose columns are theϕλ’s defined above. Then, consider the following
observability matrix in modal form:

O(θ) =def




Φ
ΦΛ
ΦΛ2

...
ΦΛm



,

and letS(θ) be a matrix of maximal rank such that

ST (θ)O(θ) = 0.
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Assume aN -size sampley−m, . . . , yN+m. Then, defineYk andY̌k by Y T
k =def[

yT
k yT

k−1 . . . yT
k−m

]
and Y̌ T

k =def

[
yT

k yT
k+1 . . . yT

k+m

]
, respectively, and

consider the empiricalHankel matrix:

H =def

N∑

k=0

Y̌kY
T
k =




R̂0 R̂1 R̂2 . . . R̂m

R̂1 R̂2 . . . . . . R̂m+1

R̂2 . . . . . . . . . . . .
. . . . . . . . . . . . . . .

R̂m R̂m+1 . . . . . . R̂2m




whereR̂i is the ith empirical covariance matrix of observationyk. Then, the
subspace algorithm for identifying the eigenstructureθ is given by:3

θ̂N =def argθ

[
ζN (θ) = 0I

]

where

ζN (θ) =def
1√
N

ST (θ)H =
1√
N

N∑

k=0

ST (θ)Y̌kY
T
k

=def
1√
N

N∑

k=1

H(θ, Yk, Y̌k) ,

which shows that subspace methods are just an instance of M-estimators. Hence
Section 4 applies. This is the method we have used in the reported examples.
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