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Abstract:  In this paper we survey our results on model validation,
change detection, and diagnosis, based ofotted approach We see this
work as a counterpart of the central contribution by Lenh@rhg to a
systematic approach to system identification. We reuseegadrought
by Lennart such as: model set, true system model, identdicatethod,
and we enrich this set of concepts by considering also thenamodel.

The local approach consists in assuming that nominal ardnbd-
els differ by a factor of ordet/+/N, whereN is the sample length. This
allows deriving Gaussian approximations for the (geneeal) likelihood
ratio statistics relating these two models. This allowsgleésg system-
atically criteria and test statistics for model validatichange detection,
and diagnosis.

We report our experience in using these techniques in treeaira-
brations monitoring in mechanical engineering, where theye proven
very useful and effective.

Introduction: why Lennart Ljung made this
work possible

As very well explained by Michel Gevers Gevers (2005), tre=atial and deep-
est contribution of Lennart Ljung to system identificatioasithe clarification of
the following key concepts:

¢ the data and the system producing the data;

e the model set and the best fit within the model set;
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e the algorithm to estimate the best fit and its bias and vagianr.

All this occurred in the late seventies and late 70’s Ljur@j/(ab,a, 1978); Ljung
and Soderstrém (1983), and contributed dramatically toctagfication of the
area. It considerably cleaned the jungle of system ideatifin algorithms, by
classifying the variants with respect to each of the aboveepts.

In the late seventies, our group started working on chantgetien. At that
time the area was dominated by results from statisticiarsvBret al. (1975);
Hinkley (1970); Lehmann (1968); Shiryaev (1961); Wald (Zp4Willsky and
Jones (1967). While these were very elegant and technicadlp desults, they
were essentially focusing on likelihood based methods.

Sometimes problems are raised that cause decisive bredks activity of
researchers. Our group experienced this when Bruno Barnéoim CNEXO
(now IFREMER, the French institute for research on sea)edsis in 1981 to
consider the problem of detecting fatigues in offshorecstmes before the dam-
age could actually occur. One difficulty was that measurdd deere clearly
nonstationary, much more so because of the turbulent naftihe excitation by
the swell and cavitation effects that follow, than becadsh@damage itself. We
were able to show that Instrumental Variable methods fquutanly eigenstruc-
ture identification were robust against such input normtatiities Benveniste and
Fuchs (1985).

This opened the possibility to perform fatigue detecticwotigh the compari-
son of results from identifications, performed on the onedhahile the structure
was safe, and on the other hand at the current instant. Thiswatasatisfactory
to us, however, since identification of structures subjeatibrations was (and
still is) difficult and not fully automatic. We thought tha¢ciding upon changes
should, by principle, be simpler than, first, performingritiication, and, sec-
ond, comparing the models.

Two sources of inspiration helped us finding what we wantenist,Hgor
Nikiforov Nikiforov (1983) made us aware that Le Cam, a stitian, discov-
ered in the late sixties that it was indeed natural to comg&ing problems in
which the alternatives were closer along with the size ofida set at hand: the
larger the data set, the closer the alternatives for discétion can be Le Cam
(1960); Davies (1973); Le Cam (1986); Roussas (1972). Tpkirgap of or-
der1/v/N (whereN is the size of the data set) gave a likelihood ratio that was
asymptotically Gaussian. This was called tbeal hypothesisand Le Cam’s
approach and its elegant consequences were calldddhleapproach.

The original Le Cam local approach was ideologically “likelodist”, how-
ever. We knew we wanted to work with Instrumental Variabfestheir robust-
ness properties. Ljung and the swedish school had pavedapeve should go:
clarify the concepts, and then go for a possible generaizaf the likelihood
techniques. Once we realized this, finding the right corscegts not too dif-
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ficult. The ODE concepté = h(6)” had demonstrated the importance of the
mean gradienk(0); the asymptotic behavior of the ODE associated with recur-
sive stochastic algorithms could tell us a lot about the amgtic behavior of the
algorithm itself. For our change detection problem, thétrigconcepts became
clear:

¢ the data and the (unknown) systé@mproducing the data;
e the nominal modef, to confront to the data;

o the statistics to assess the above confrontation, by uséigdminal model
and the data at hand; corresponding to Ljurkg) function was a function
h(0o, 0,) assessing “in the mean” the gap betwégmandd,.

This was developed in Benveniste et al. (1987, 1990); Biksewd Nikiforov
(1993); Zhang et al. (1994). Still, this approach remairesiatially confidential,
much more than Lung’s results for identification. It is ontythe area of modal
identification and health monitoring of structures in medbal engineering that
this approach found an interesting field of application. $&@a for this possibly
are: data sets are large, models are huge (several dozeoesf gorresponding
to reduced order models for FE models with thousands of ésgréfreedom),
and damages results in slight changes in the model chasdict®(a fraction of
a percent to a few percent for the frequencies).

This is why we have chosen to collect in this paper in honoresfriart Ljung
our experience in modal monitoring with local approaches.

2 Running application: modal identification and
health monitoring of mechanical structures

In this section we discuss our application area, namely iddatification and
health monitoring of mechanical structures.

2.1 Context and benchmark example

The design and maintenance of mechanical structures subjecise and vibra-
tions is an important topic in mechanical engineering. krsimportant com-
ponent of comfort (cars and buildings) and contributesifantly to the safety
related aspects of design and maintenance (aircraftssere vehicles and pay-
loads, civil structures). Requirements from these apfitinaareas are numerous
and demanding:

e Detailed physical models derived from first principles azeadoped as part
of system design (although detailed modeling of the linkhwhe ground
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is not feasible, for civil engineering structures). Thesmleis involve the
dynamics of vibrations, sometimes complemented by othgsipal as-
pects (fluid-structure interaction, aerodynamics, thetynamics).

Laboratory and in-operation tests are performed on theofyqo¢ struc-
ture, in order to get so-calladodal modelsi.e., to extract the modes and
damping factors (these correspond to system poles), the stwpes (cor-
responding eigenvectors), and loads. These results agefasepdating
the design model for a better fit to data, and sometimes fdification
purposes€.g.,in flight domain opening for new aircrafts).

Themonitoringof structures is an important activity for the system mainte
nance and health monitoring. This is particularly impotfan civil struc-
tures. Damaged structures would typically exhibit charnigeseir stiff-
ness due to the occurrence of micro-cracks or faults, or fisatibns of
the links to the ground. A key difficulty is that such systenamtteristics
are also sensitive to environmental conditions, such apeesture effects
(for civil structures), or external loads (for aircraftdn fact these envi-
ronmental effects even dominate the effect of damage. Bhishiy, for
very critical structures such as aircrafts, detailed acinspection of the
structures is performed as part of the maintenance. Stilinany cases
(e.g.,civil structures), health monitoring based on modal teghes is the
preferred, non invasive, mode of monitoring. Of coutke,localization of
a damage must be expressed in terms of the physical modai, teoins of
the modal model used in system identification.

Consequently, the following elements are encountered arsl be jointly dealt

with when addressing these applicatiodesign modelfom the system physics,
modal modelsised in structural identification, and, of courdatafrom sensors.

Corresponding characteristics are given now:

e Design models are Finite Element models, with tens or husdoé thou-

sands elements. These models are linear if only small vilmsgre con-
sidered; still, these models are of huge order. In additrmmlinearities
enter as soon as large vibrations or other physical effegioflynamics,
thermodynamics. ..) are considered.

Sensors can range from a handful of accelerometers or gjaaiges, to
hundreds of them, or even more if laser based measuremémiolegy is
used.

Consequently, modal models used for structural identi6ioadre of very
high order, and are always the result of drastic model réoluct
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Figure 1: The simulation example: a realistic bridge (courtesy oé#itie
Balmes).

Fig. 1 shows a simulated bridge structure (courtesy of BaeBalmes), which
will support our various use cases. The structure 13868 nodes, 9642 finite
elements, and0976 degrees of freedom. Its first five modes are listed in Table 1.

Mode fi fo | fs | Jo | S5
Safe 1.28| 2.63| 2.7 | 6.05| 6.34
Damaged| 1.29 | 2.61 | 2.69 | 6.05| 6.33

Table 1: First five modes of the structure of Fig. 1 (in Hz).

We now briefly indicate which parameters are used for ideatifon. For
time invariant structures subject to small vibrations, thessical discrete time
linear model can be used, namely:

Xpr1 = AXp+ Vi )
Yy = CXp+ Wy

Themodef the structure are nothing but the poles of the systemthe eigen-
values ofA. Mode information decomposes intdraquencyand adamping.For

A a mode, its associatedode shapés ¢ =qer CP), Whered, is the eigen-
vector of A corresponding ta. Intuitively, the mode shapg, indicates, in the
complex domain, how the structure behaves, for its motidreguencyw,. The

collection of modes and mode shapes constitutes the eigetse of the sys-
tem, they are collected in the parameter veétdeigenstructurd is a canonical
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parameterization of the pole part of system (1). In meclem@ngineering jar-
gon, this is referred to as tmeodal modebf the structure. All use cases we shall
discuss handle the modal model with or without joint use effihite element
model.

2.2 Some new difficulties as compared to system
identification

We argued in the introduction that detection is easier thentification, so that

one should not perform re-identification in order to detext diagnose changes.
In this section, we shall see that, on the other hand, chaeigetibn raises new
problems, not encountered in system identification. Weudisthese in the con-
text of modal monitoring.

2.2.1 Model matching when models are close

We first discuss a problem that is typically encountered idahmonitoring. As-
sume that the designer has a nominal model for the abovensysigether with

a measured data set. The nominal model can be, for instateéned from a Fi-
nite Element design model. The designer wishes to focusefrélquency range
1-8Hz, where this nominal model possesses five poles denotgglby. ., fo 5,

of which only fy 3, fo.4, fo,5 are identifiable with the selected sensor positions.
The designer wishes to know if these three poles match harsgatvell.

One possible way or performing this would be as follows: tesigher would
perform modal identification on the measured data set, aad tompare the
obtained modes with the nominal ones. This is illustrated=mn 2. On the
top diagram of this figure, we zoom on a restricted bandwidlth @lot of poles
identified for this data set, for different model orders. sliBicalled astabilization
diagramby mechanical engineers. Stabilization diagrams are uséddually
or automatically) select relevant poles in a very high osyestemj.e., poles that
are stable for different model orders and have mechanicahing. The three
lines of poles correspond tf3, f4, andf5, ordered from bottom to top.

Now, comparing the nominal poles with the stabilizationgdéan of Fig. 2
raises the difficulty olmnodel matchinghow to pair the nominal poles with the
identified ones, especially when poles are close? In cdntFg. 2, bottom
diagram, shows that having a good model/data gap allowssesashow good
the nominal model is, without being faced with the model g problem.

2.2.2 Nuisance parameters

Fig. 3 shows another, more important and more difficult, fmob Vibrating
structures are subject to damages and temperature effBotb. factors affect



A. Benveniste, M. Basseville, M. Goursat, and L. Mével 87
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Figure 2: Simulation example of Fig. 1. Top: stabilization diagranosh

ing three frequencies for different model orders. The tlreguencies are
f3, fa, [5, ordered from bottom to top. Bottom: model/data gap when the
two frequenciesfy (on X-axis), andfs (on Y-axis), is shifted below and
above its nominal value B.5%.
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their dynamics, but only damage is for monitoring by the aegr. In Fig. 3, we
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Figure 3: Simulation example of Fig. 1. We plot how a given system fre-
quency is shifted on a structure subject to vibrations whhertémperature
increases from to 8 degrees Celsius, for a safe fifue) and damaged (in
red) structure, respectively.

plot how one given pole is shifted when the temperature aszs, fron to 8
degrees Celsius, for a safe filue) and damaged (ired) structure, respectively.
As the reader can see, for an increasé afegrees and more, the temperature
effect is larger than that of the damagéategree Celsius.

This is referred to asuisanceparameterg,e., parameters that cause changes
in the observed dynamics but are irrelevant for the probleconsideration.
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3 The local approach for the independent,
identically distributed case, with likelihood
based methods

3.1 Problem setting

In this section, we assume a sequehgef independent, identically distributed
(i.i.d.) random variables whose distributipp(Y}.) depends on some parameter
vectord. SymbolEy denotes the expectation under distributjgn and ‘In”
denotes the logarithm. For a givévi-size sample))¥ =4 Yi,..., Yy, two
values of interest for parameter vectoare considered:

e Thetrue valued, is such thatt}, was actually drawn under, ; the true
value is generally not known.

e A nominalvalued, thatis given, regardless of the considered sample. Typ-
ically, 8, may be chosen by the user; or it may be given by some computed
design model; or it may be the true or estimated value forterodata
sample.

The aim is to confron®, to 6y, or, equivalently, to confrord, to the observed
data sampley =g4e¢ Yi,...,YnN.

In the sixties, Le Cam made the following observation: thegkr the avail-
able data set is, the closer models we wish to discriminatéeaThus it makes
sense assuming a deviation of ord¢r/ N between nominal and true models,
whereN is the sample length:

1
0o 0* = ﬁ 5,. (2)
In (2), ¢ is a given fixed vector “gap” not depending on sample size. niNdr
ization (2) is known as thetatistical local approach Under (2), a number of
simplifications occur that can be exploited for our presemppse.

0

3.2 A simple example where calculations can be made
explicit

As a simple example, consider the case of scalar i.i.d. Gausandom vari-
ablesy;, ~ N (6, 0?), having fixed and known varianee but unknown transla-
tion parametef. Assume that, = 0 and compute the likelihood and negative
loglikelihood, respectively:

1 _ w02 (3/ - ‘9)2
= o2 71 1 = 1 2 .
po(y) v A ogpe(y) = log(ov2m) + 572
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Next, consider the following quantity:

yr — 0
5)

1 Lo 1 &
0) =qet —F— —lo = —
CN(0) =def i El 50 g po(Yr) N §1 -
Using the local approach (2), renormalize— 6, = ﬁ 0; this yields

) 1 & Yy
v(b) = —— + <\/ﬁ UZ)
1

whence, forlV large, by Central Limit Theorem,

x(6) ~ ~ %5+ (0. @3

Data-to-model gagy (¢) is proportional to signal/noise ratio and subject to a
1/0% random perturbation. In the next section we generalizetthany vector
i.i.d. random sequencs;.

3.3 Basic facts supporting the local approach
Thelog-likelihoodof V¥ =4¢¢ (Y1,...,Yw) is defined as:

N

p(V}Y) =aet Y lo(Yx), wherely(y) =acr Inpo(y)-.
k=1

For any giverdy, the efficient score;y (0y) is the value, abty, of the gradient,
w.r.t. , of the log-likelihood normalized by/N:

19 1 X9
—dof —— —-Inpy(YN = — = 1o(Y]
df\/ﬁae JZIN%; ﬁ;@@g(k)
Note that the efficient score only depends on the data andoiménal model. It
is therefore available to the designer.

Next, the following function of the pair consisting of themimal and true
models will be important:

9_90>

Observe that the function inside the parentheses is pagaimer by the nomi-
nal modelf,, whereas expectation holds under the true mégdivhich is the
distribution of the data at hand).

(n(0o) 4)

0=0¢ 0=0q

0
h(Bo,0x) =det Eo, (6919(3@)
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Consequences of assuming 6y = 0y i.e., the nominal model equals the

true one. For this paragraph, we assurig = 6, and discuss the conse-
quences. SincEy(Y;) = [ po(y)dy = 1 holds for every, conditiondy = 6,
implies:

o0, = [ (50, _, o) dv = (35 [ )], 0. )

Formula (5) has the following consequences. First, thelefficcore is unbiased:
for every N, 6y = 0, impliesEy, ((y(6y)) =0. (6)

Second, by the Law of Large Numbers (LLN) and formula @)= 6. implies

1 1 X9
ﬁ(N(%) = N};%ZQ(Y@

Third, by the Central Limit Theorem, &, = 0, holds, then

— 0 when N — +o0. (7)
0=0,

Cn(0o) — N(o, 1(9*)) whenN — 400, @8)

wherel(0) is theFisher information matribxdefined by:

(20 (Z0i)

Using Le Cam’s local approach. Under the local approach (2), taking a first
order Taylor expansion of the efficient score arodpgields:

021,(Y;
1(6) =det Eog - Ey { o(Ye)

) ©

N

o0 -x0 = (7 3 7

k=1

) § ~ —1(6,) 8, by (9). (10)

0=05

By (8) and (10), the local hypothesis (2) implies:

(o) — N(—I(H*)(S, 1(9*)) whenN — foo. (11)

In (11), it turns out that, forV large and under the local hypothesis (2), we can
equally well evaluate the Fisher matrixégtor atf,. This flexibility is important
in practice.

The efficient score as a data/model gap. We shall use (11) in many ways
throughout this paper, by interpreting the efficient scara data/model gap.
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3.4 Using the local approach for model validation or
change detection

Model validation can be defined as the following problem:

Problem1 (model validation) We are given amominal modeb, and aN-size
data sefy}¥. Can we accept or should we rather reject the hypothesigifiat
was drawn under distributiopy, ?

Under the local approach, this can be answered by using @ #llaws:
simply replace Problem 1 with the asymptotically equivalen

Problem2 (model validation, local equivalent)\e are given amominal model
0y and the efficient scorex (6p). Can we accept or should we rather reject the
hypothesis thai = 0 in the normal distribution (11) afy (69)?

The interest of Problem 2 is that it is much simpler to solentiProblem
1, since it involves deciding whether or not a Gaussian veetodom variable
of known covariance matrix has zero mean. The relevant $elsased on the
following y2-statistics:

X(00) =daet (X (00) T (04) Cn(0o), (12)

which must be distributed according to a centeyéavith a known number of de-
grees of freedom if = 0 holds—this property can be used to tune the threshold
when deciding whether or nét= 0 can be accepted.

Still, an issue remains. Singg in (12) is unknown, so is the matri6,).
However, by (10) and subsequent remark, this unknown métflx) can be
replaced in (12) by its estimator

N

= 1 0?1 (V)
In(60) =det <N Z 8979(2]6) >
= 0=00

which is based only on the known nominal model and observéal daur final
statistics to answer Problem 2, and hence also (asymgtgfi€aoblem 1, is
therefore

Xn(00)  =aet CH(00) Tt (60) (v (bo) (13)

which has to be compared against some pre-tuned thresholslththshold is
tuned to achieve a pre-specified level for the test. Thdest statistics (13)
takes into account both the size of the deviation of the nahritodel from true
model, as well as all uncertainties due to measurementsaise other type of
randomness.
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3.5 Using the local approach for system identification

Here we consider the problem of identifying the true matiefrom an N-size
data set. To this end, we consider thaximum likelihood estimataly defined
by

N%lnpg(yfv) = 0| = arg [CN(0) = O] (14)

ON =det argg[

By definition oy, & SV Z1(Yi)|,_g, = 0. On the other hand, by the law
of large numbers, folV large, & Zf/ %lg(Yk)\gng ~ h(fy,0,).1 Hence

0=~ h(@N, 6,) for N large. (15)

Next, focus on (5). It says thét= 6, impliesh(0, 6,) = 0. Assume, conversely,
thath(6, 6,) = 0 impliesd = 0, (this holds under suitable regularity conditions
not detailed here). Now, with this assumption, using (1%) assuming: regular
yields thatthe maximum likelihood estimatoy converges to the true parameter
0, whenN — +o00 Delyon et al. (1997).

3.6 Relating system identification and model validation

Applying (2) and (10) withd, = §N and recalling (14), yields

VN (@N - e*) ~ T-1(6,) Cn (6) (16)

Egn. (16) relates the identification err@rf — 0, to the efficient score y (64)
at the true model, under the local approach. Informally,.Hd®) relates iden-
tification to model validation. On the other hand, the asytiptdistribution of
¢n(0y) is known to us: just také = 0 in (11). Combining this observation with
(16), we re-derive the well known fact that the maximum likebd estimator
has asymptotic convergence rate

VN (§N _ 9*) ~ N (0,171(6,)) (17)

1An expert reader may have recognized that we cheated someltiais point: the LLN holds for
afixedvalue for parametef; here we used it for a varying one, sin@ﬁ depends on the data. This
is kind of a “uniform” LLN that holds under suitabe regularitgnditions Delyon et al. (1997), not
detailed here.
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4 The local approach for the general case with
arbitrary methods

In Section 3, we have discussed the local approach for seduences based on
likelihood techniques, and we have seen that both topicsndezd tightly re-
lated. This is nice but still not enough as this assumes tdikelihood methods
are applied, and 2/ the efficient score can be effectivelypded. The latter
is a demanding assumption, since likelihood functions ateeasily computed,
except for specific classes of distributions. It is therefmpting to look for a
generalization of the above approach to more generalldisiopns and methods.

In this section, we thus assume a stationary sequEpaé# possibly depen-
dent random variables whogent distributionp, ()#¥) depends on some param-
eter vectod, for each sample siz&. SymbolEy denotes the expectation under
this joint distribution. Fortunately, the local theory gealizes to this more gen-
eral setting, under appropriate smoothness assumpteafelyon et al. (1997).
We now give a brief presentation of this.

4.1 The pseudo-score

For our general case, we assume that the counterpart of fibeerf score is
available in the form of the followingseudo-score

N
<N(0) —def \/% ]; H(Q, Yk)

where the functiorf (6, y), is such that—compare with (5):
h(0o,0+) =det Eo, (H(00,Y))) satisfies: 0y = 0, < h(6o,0x) = (0(18)
By the LLN for stationary random sequences, conditign= 6, implies:

1

N
WCN(‘%) = ]{[EH(907Yk) — 0, (19)

and, by the Central Limit Theorem, again for stationary mndequencesjf
0y = 04 holds, then

Cv(B) — N (0. R(5:) (20)

2CLT for stationary but dependent random sequences are spteabtain; typically some kind
of asymptotic independence is assumed, meaning that obsevagparated by a long period of time
are almost independent. See Benveniste et al. (1990); Delyain(1997) for details.
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for some covariance matriR(0,). Closed form formulas exist foR(6,) but
are not very useful. Empirical estimates for this covar@antatrix, based on
random trials of x (6y), can be used instead—this is referred tsalssampling
in statistics Davison and Hinkley (1997).

4.2 Extending the local approach

Regarding the generalization of the local approach, thieviihg can be said.
Taking a first order Taylor expansion of (6) aroundd, yields that, under the
local hypothesis

we have

where

_ OH (0,Y})
3(0) =aer —By (69 ) (22)
Now, combining (20) and (21) yields (compare with (11) andex®e in particu-
lar that, in generalJ () # R(0) ): under local hypothest — 0, = \%ﬁ J, we

have

Cn (o) — N(—J(o*)(s, R(G*)) whenN — +oo. (23)

which yields the following generalization for the chi-sgeidest introduced in
(12):

X(00) =aet (X (00)R™'T (JTR—lJ)‘1 JTR (N (6), (24)

Regarding identification procedures, so-called M-estimsahave been first con-
sidered in the sixties by Huber Huber (1981)—compare with:(14

é\N =def ar'gy [CN(G) = 0] (25)

Applying (21) with6, = O, and recalling (25) yields (we assurdénvertible
for simplicity):

VN (B —0.) =~ 37(0.) Cn 6) (26)
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i.i.d. / likelihood

general / pseudo-score

H(0,y) = & logpe(y)
h(0,,0x) = Eo, H(0,, Yk)
h(8,,0,) =0 < 6, = 6,
score(y ()

—det T 21 H(6,Y2)
0, — 0y = LN implies

i
Cn(0) ~ N (~1(6)6. 1(64) )
1(0,) = —%h(@, 0) ‘9:9*

= Fisher information matrix
x(00) = ¢ (60)T" (60)¢n (60)

selectH (0, y) such that

h(6,,0+) = Eg, H(0,,Y}); this implies

h(f,,0x) =0 <6, =0,
pseudo-scoréy ()

=det T S H(0,Y5)
0, — Oy = % implies

5
Cn(0) ~ N (~3(6.)6, R(6.))
J(0x) = —%h(é‘, 0) ‘9:9*

R(G*) = limN_,oo COVCN(G*)
X(6o) = ¢& (60) K~ Cn (o)

K !'=g; RIJ(ITRJ) T ITR!

Table 2: The local approach, for the i.i.d. case with likelihood noets, and
for the general case. In the last two lindsR., K, should read (6,), etc.

Eqgn. (26) relates the identification err@{f — 0, to the efficient score y (64)
at the true model, under the local approach. Informally,.H@®) relates iden-
tification to model validation. On the other hand, the asytiptistribution of
(n(0x) is known to us: také = 0 in (23). Combining this observation with
(26), we re-derive the known result that the maximum liketid estimator has

asymptotic convergence rate

VN (éN 79*) ~ N (0, I7HO)R0:)I7T(6,))

(27)

The comparison between i.i.d. case with likelihood mettard$the general case
of M-estimators is shown in Table 2.

5 Some use cases for the local approach

We discuss in this section some typical use cases of the épgabach in the

context of vibration mechanics.
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5.1 Estimating confidence bounds in identification

As we have seen, M-estimators are appropriate for systentifidation in this
context. Now, getting an estimate for the uncertainty of $fireators can be
difficult—for example, convergence rates for subspace nusttawe extremely
complicated to get and impractical to compute Bauer et 899). Of course,
empirical estimates for such confidence bourdg,,obtained from bootstrap or
jacknife methods Davison and Hinkley (1997), can alwaysdraputed but at a
prohibitive cost in computing time and amount of data.

By using the results of Section 4, we see that an alternagipecach is pos-
sible. Assume we can compute (an estimate of) the Jacobimixrﬂ@N)—
typically, this is easier than computing the full convergenate as given in (27).
Then, by (23) applied with = 0, we can estimate the missing math(@\N) via
an empirical covariance estimator of the “pseudo—chne(’?N). And then we
can conclude by (27).

This is illustrated on Fig. 4, for the case oh@de shapewe show, inred

modeshape of the mode n° 2 : f=2.62 Hz with 10* confidence bounds

T T T 1T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

n° of the sensor

Figure 4: Simulation example of Fig. 1. Confidence bounds on a mode
shape (real part). To make it readable, the size of the baumaiftiplied by
a factor of10.
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the considered mode shape (it is a subset of the coordinfpesameter), and
its upper and lower bounds, biue

5.2 Model validation

Assume a nominal modé, is at hand—it may have been identified on some
data set. Then, assume that validation data are availabilee hominal model

is close enough to the true one so that the local approachsvskese, then
1/ compute the pseudo—sco(@v(HAN) and 2/ test whether the hypothesis that
§ = 0in (23) can be accepted—this amounts to computingytheest of Table

2. Again, this requires computing estimates of the Jacolmatrix J(@N) and
the covariance matriR(@N), either based on identification data or on validation
data. Fig. 2 illustrates the above method; see also MeveGanudisat (2006) for
further results, both on simulation and real data.

5.3 Change detection

In fact, the same approach allows us to perform damage datetake forf, a
model of the safe structure and decide, based on currenunesasnt data sets,
whether the hypothesis that= 0 in (23) can still be accepted. This amounts to
comparing chi-square statistics of Table 2 to an appraptraeshold.

This is illustrated on Fig. 5 for the simulation example offF1. The two

nnnnnnnnnnnnnnnnnn

o 0000030,
o MG
N B XX

a, ‘Q,AAAAOoW " A AAMXW
safe damaged
f3 =1.79, fo = 3.66, f1 = 3.70 f3=1.77, f» = 3.66, f1 = 3.71
x = 40 x = 60

Figure 5: Damage detection. Simulation example of Fig. 1. Stabibrat
diagram and corresponding chi-square tests, followindeTab

diagrams shown are (zooms afpbilization diagrams, i.eplots of frequencies
obtained from identifications performed with different nebdrders. In Fig. 5,
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the estimates;,: = 1,2,3 for the frequencies were obtained via such a pro-
cessing. Note that the change is adequately revealed byitsggare statistics,
although it causes a very small shift in the frequencies.

A real example.  Fig. 6 shows a real example, using real data from the 224

Figure 6: Damage detection. The Z24 bridge: histograms of the damage
detection test for th@ month period. Note the shift toward larger values for
the test, for the last two histograms, clearly reflectingittuieiced damages.

bridge Mevel et al. (2003), tested in the framework of the BREURAM project
SIMCES. The bridge used for validation is bridge Z24 in Carern, Switzer-
land, connecting Koppigen and Utzenstorf. The bridge igyhway overpass of
the A1, linking Bern and Zirich. Z24 is a prestressed bridgéh three spans,
two lanes and 60 m overall length. The experiment was peddrduring year
1998. On 10.08.98 the settlement of pier was cut by 20 mm, lzgxd 40mm on
12.08.98, 80mm on 17.08.98, 95mm on 18.08.98. Finallyt it performed on
the foundation on 19.08.98. Data were recorded, from Jgrl898 to Septem-
ber 1998. They were provided blindly to the competitors ef blenchmark test.
Results are shown on Fig. 6, in the formadfistograms, ordered as follows: first
line: january, february, march; second line: april, etc.clichistogram depicts
the distribution of the chi-square test computed for a nunabeecords in the
considered month. Histograms are close to identical fortheni-7. A change
is visible on montt8 (the histogram is shifted toward larger values for the fest)
where damage was applied, and even more on m@isihce the structure was
damaged for the entire month.
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On-line monitoring.  So far all algorithms we have discussed are off-line,
since the (pseudo)score assumes-aize data sample. A simple on-line form
exists for the particular case in which the parameéter monitoring is a scalar—
this does not require that the model itself shall be pararnzegby a scalar, as the
next sections show. For this case, the pseudo-g6p(®)) = \/% Zf’ H(0o,Yy)

is a scalar, and on-line monitoring with the local approagcitstdown to detect-
ing a change in the mean of the sequence of random variak{és Y} ). By the
CLT, we can even do as if these variables were Gaussian aegendent Ben-
veniste et al. (1990). Very simple and effective CUSUM taditsw for detecting,
e.g.,a change, fron# > 0, to § < 0, see for example Mevel et al. (2005). For
more general situations where the parameter for monitdragyto be a vector,
no such simple solution exist, but of course the situationosworse than for
identification and on-line forms can be found on a case by lbasis.

5.4 Focusing monitoring on some subspace

In some cases, one is not interested in monitofirigr arbitrary changes. For
example, the designer wishes to monitor one mode of hertiilgratructure (by
a mode, we mean the collection consisting of the frequeraapping, and mode
shape or eigenvector). This can be captured in the followigng We assume that
the monitoring is restricted to a subspace of the parampéees This subspace is
spaned by some parameterof dimension smaller than that 6f Thus, referring
to eqn. (2), we have

§ = Ly, dim(p) < dim(6)

where we recall thad is the normalized deviation between true and nominal
model. The same substitution applies to (23), which giveser@ the appropriate
modification of the chi-square statistics of Table 2, namely

ko) =ar )L (LT Rn(00)L) LT Cn(b)  (29)

This method is fine to decide between the cases 0 (no change) ang: # 0
(some change occured fp)). But the analysis does not tell us how the above
chi-square statistics reacts if indeed a change occurssthat explicated by,

i.e., 0 ¢ rangéL). For example, ifu collects a subset of the coordinatesdof
then it may be that a change affects other coordinates tloge ttollected ip. In
general, unfortunately, the chi-square statistics walcte¢o such a change. The
solution to this problem consists in considering changedher coordinates as a
nuisance and rejecting them.
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5.5 Sensitivity versus robustness: rejection of nuisances

Sensitivity of estimators or decision tests is of coursesane of primary inter-
est. However, in many practical cases, the actual prolablistribution of our
observations may also depend on other parameters that aceioferest or are
irrelevant for the problem under consideration. A typicample is the effect of
temperature on a structure, which can possibly mask thet ohsedamage, cf.
Section 2.2.2. Such undesirable or irrelevant parametersadlednuisances.

In general, this is a difficult problem. However, if the effet the nuisance
on the actual distribution is known, then robustness oftifleation or tests can
be predicted. More precisely, we now assume that our pastheiecomposes
as follows:

o= o] (29)

where superscriptsand™ refer to the “useful” and “nuisance” parts of parameter
0, respectively. Following the decomposition (29)¥ofve decompose

{ AM(0)  AM(0y)

Jil(a*)R(e*)‘]iT(G*) —def A(e*) = Anu(e*) Ann(e*)

(30)
Assume that decomposmon (30) yields a block-diagonafimathen, by (27),
esumatesé)“ and&” are asymptotically independemg., they do not influence
each other S|m|larly, the pseudo-score (23) decomposesvio independent
random vectors. This means that we can safely ignore themegsparameter
and do as if we had only the reduced size paranttef interest in parameter-
izing the distribution apy.. Practically, this allows us to consider reduced size
parameter identification by ignoring the nuisance in our $flreator. This also
allows us to perform testing for changes by using the samgceztisize model:
changes in the nuisance will not affect our test.

The closer to block-diagonal decomposition (30) is, thédoés the situation.
If this desirable situation fails to happen, then the residu

v (0°/0") =aer (N (00) — Eo, (Cr(60) | CXr(60)), (31)

whereEy, (. | .) denotes conditional expectation under distributigp, projects
away the effect of the nuisance on the pseudo-score anddesoui statistics that
is robust against changes in the nuisance and still mayrsatisitive to changes
in the parameter of interest. Recall that the random vedomved in (31) are
asymptotically Gaussian for large data sets, which makessiy to compute this
conditional expectation.

We now indicate how to computgy (6“/6™) in practice. LetH (6%,0™,Y)
now depend both on the parameté&rof interest (e.g., referring to Section 2.2.2,
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modes and mode shapes), and on the nuisance paraffieter., referring to
Section 2.2.2, the temperature). Let

N
1
CN(91L7971) =def WZ:H(GU’QTL’Y]C)

be the pseudo-score as before. Then we can congput&‘/0™) as follows:
(N (0%/0")  =aer UTCN(0",07)
where matrixU is orthogonal, and of maximal rank such that

0

u” (h(QU,an;az,af) =0

oon (9u,9n)_(9;¢,9;)>
The robust pseudo-scocg (6“/0™) will not react to changes it and will do
its best at reacting to changestiti. Denote by

X (6o) (32)

the resulting chi-square statistics.

Rejecting the temperature effect for the example of Se&iar? is illustrated
in Fig. 7, see Balmeés, Basseville, Mevel and Nasser (2006his example, we
show inblue (resp. inred) the statistics computed on the safe (resp. damaged)
structure, for increasing temperature, with and withoungishe nuisance rejec-
tion mechanism. Note the local nature of the rejection meisha it is efficient
for a small temperature change, but its effect decreases Wigechange gets
larger, as revealed by the quadratic shape of the nuisajetioa test under no
damage. In fact, a deeper use of the physical model invobeimgperature effects
allows getting better rejection, see Fig. 8 and Basseuild. €2006).

5.6 Diagnosis

When a change is detected by the chi-square statistics o& Tyblve would
like to know which coordinates of parameteare most affected by this change.
To this end, list the candidate subspaces for monitoringexample, we could
consider the case where alldimensional subspacds,i = 1,...,dim(0) of
the parameter space are for monitoring. Then, two differenyts can be used:

e Compute the statisti%ﬁ (0p),i = 1,...,dim(#) corresponding to (28),
and compare them.

e Alternatively, compute the statisticgy/ (0y),7 = 1,...,dim(6) corre-
sponding to (32), and compare them.

Many variants can be considered.
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x10*
18

= = = safe without rejection x
= % = damaged without rejection ’
16 H = safe with rejection ,
—— damaged with rejection ’

Figure 7: Simulation example of Fig. 1, when temperature changes. Re-
jecting the temperature effect with the approach of Sediiéin The figure
shows that the robust chi-square test (in solid line) se¢panaell safe from
damaged states for the structure, for temperature rangingd to 8 degrees
Celsius. Note that the basic chi-square test (dashed |peE&)rms poorly,

as expected from the frequency plots shown in Fig. 3.

5.7 Diagnosis in terms of a design model

Now, the most interesting situation is when diagnosis isstpé&rformed in terms
of adesign modehot in terms of the parameter space used in identificatiop: Ty
ically, design models are much richer than those used fatifitzation. There-
fore, they are of much larger dimension. Referring to theutition example of
Fig. 1, the dimension of the true system parameter spaceityni®®, whereas
actual identification is performed with parameter spacebménsion a few hun-
dreds.

The approach we advocate is illustrated in Fig. 9. The keg idgo avoid
mapping back changes, from the parameter space used faificigion, to the
space used for the design model. Reason for this is that suiclverse mapping
is very ill conditioned—it corresponds to the difficult prebt ofmodel updating,
i.e., the problem of adjusting a high dimensional design modelest match a
given identified one.
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Figure 8: Simulation example of Fig. 1, when temperature changes. Re-
jecting the temperature effect on a larger temperatureerig 6 degrees
Celsius), by making a deeper (non local) use of the physicalah

Instead, we use a direct mapping, from the physical space timthe modal
space. This is well conditioned and requires computinghiacs. We express
the failure hypotheses of interest in the physical spaceeirumber would
typically be very large (one failure for each parameter imed in each finite ele-
ment). Mapping these failure hypotheses to the modal spaltsya collection of
points. Equip the modal space with the metrics associatdtetincal approach,
namely the one defined by the matik—! of Table 2. With this metrics, some
failure hypotheses, when mapped to the modal space, becatiséinguishable
from the safe situation, they are not diagnosable. Somend&able failures can-
not be isolated from each other. To take this into accounipevéorm clustering
of the hypotheses in modal space, with the metrics assdciatéhe local ap-
proach. This yieldsnacro-failurehypotheses in the form of clustered classes
Cj,j € J. For each clas€’;, we select a representativg. This representative
spans a subspace in the modal space, we represent it byutarcohatrix L ;.
Having done this, we are back to the diagnosis situation ofi@e5.6.

This technique is illustrated on the bridge example of Figsde Balmes,
Basseville, Mevel, Nasser and Zhou (2006). Fig. 10 showsahelt of the clus-
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Jacobian’?/*

FE domain

changes .
g modal domain

changes

Figure 9: Diagnosis in terms a design model: principle of the apprdach
the case of structural diagnosis with Finite Element (FEapeterse.g.,
Young modulus and mass of each element.

tering. Fig. 11 shows the simulated damage alongrtagis, inred The actual

LY % 4, A

Figure 10: FE Diagnosis. Showing the results of clustering. Four macro
failures are shown by marking in black the correspondingelgs.

localization of the damage, on thg, z)-plane is shown on Fig. 12, top-right
picture.

The results of diagnosis are shown on the other diagramgoflEi The very
noisy plot on top-left displays the value of the chi-squasd tlesigned to monitor
each hypothesis attached to each individual finite elenignising the focusing
method of Section 5.4. On the second row, the plot on the igfilays, for each
finite element, the value of the chi-square test for the méaitore containing
the considered element (by using again the focusing meth8eaion 5.4). By
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100

Figure 11: FE Diagnosis. Showing the simulated damageein

construction, all elements belonging to the same mactoréget the same value
for the chi-square test.

The macro-failure that reacts most to this test is shown erpitture sitting
on the right hand side—compare with the localization of theage in Fig. 11
and Fig. 12, top right. On the third row we show the same, buafdifferent
tuning of the clustering, where more macro-failures araébliaving fewer finite
elements each. Note the similarity between the three plepdaying the values
of the test for each case. Still, thanks to the clusteringitkerpretation of the
second (and third) plots is made much easier.

6 Concluding remarks: is the local approach a
panacea?

Le Cam’s local approach, combined with Ljung’s clean sejpamdetween model
structure and statistical considerations, allowed us tovel@a general and power-
ful technique for confronting models to data. Having this,were able to answer
a large variety of questions involving the triple

{physical design model, identified model, data}

Well, all this sounds miraculous, and is indeed often so.oduohately, real life
is not a dream. We list below a number of issues that, whennopigply noticed,
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Figure 12: FE Diagnosis. Showing the results.

may prevent the local approach from delivering its promises

What does the local hypothesis (2) mean in practice? What does it mean,
for the nominal model, to sit “at an order bf+/N” away from the true param-
eter? Well, this is not really a concern when deducing cayerece rates for
identification algorithms, or estimating associated ecmrariance matrices: by
definition, identification algorithms should provide “cés#o-true” estimates.

In contrast, this becomes a concern when model validatiataorage detec-
tion are considered: we actually do not know whether theali®n from true
model, or actual damage, can be considered “small of ordefN”. The test
statistics obtained from the local approach can always bsidered and com-
puted, but its efficiency may become questionable when asbgcome large!

The work Mevel and Goursat (2006) illustrates the aboveudision. The
experiments reported there show that the validation sitagisehaves as a convex
quadratic function (as expected) when the nominal and talieeg are close to
each other, but this holds only locally.

All our analysis so far assumes that the true model belongs to the model
set, i.e.,the actual distributiop exactly equalg, for some “true” valug = 0,
for the parameter. However, in many practical situationsdeh reduction is
enforced, which prevents this ideal situation from ocagri

This situation has been widely discussed by L. Ljung in hiskbajung
(1999) on system idenfication. There is typically a “best etbuoh the model set,
represented by parametgyr; in addition, atrue paramete©®, must be consid-
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ered, typically in a space of larger dimension. The disanepdfd, = 6, — O,
due to model reduction causes an additional bias to occurerarger dimen-
sional pseudo-scorég., even if6y = 6., the pseudo-score is not zero-mean—
compare with (20).

Worse, this bias may be conflicting with the local hypoth&2is strictly
speaking, we need that the bias on the pseudo-score causeddegy reduction
is of same magnitude order as the variance contributionaueises and uncer-
tainties.

This analysis provides theoretical guidelines for setertnodel order: bias
and variance should be of same magnitude order—recall ther laglates to
sample size. Unfortunately, this guideline is not very emsyse in practice.
See Zhang et al. (1994) for details on this subject.

The sensitivity and covariance matrices ~ J(6,) and R(fx) of Section 4
may be difficult estimating, due to numerical instabilities. From our experi-
ence, most difficult is the estimation Bf(6,.). Of course, a poor estimate would
impair the quality of confidence bounds in parameter ideatiibn, or the actual
value of the test for model validation or damage detection.

A Appendix: selected modal analysis methods
for use with the local approach

Here we cast some popular approaches to structural anatysie framework
of Section 4. We leave as an exercise for the reader to petfientask for her
favorite algorithm.

Max Likelihood, prediction error, equation error, and relat ed methods.
Maximum likelihood approaches have been recently extehssonsidered for
structural identification, both in time- and frequency-d&mVerboven et al.
(2004); Guillaume (2006).

Since the exact likelihood can be difficult expressing, savmethods have
been proposed that replace the exact likelihood for matium by approxi-
mations of it. In the statistics litterature, these are kn@spseudo-likelihood
methods, whereas in the control litterature they are refeto asprediction er-
ror or equation errormethods Ljung (1999). These methods generally consist in
defining an error

e(0) =z — (0, Xy—1,Uy—1),

whered is the model parameter vectar;, andz;, are the input and output at
instantk, respectivelyl,_1 = (ux—1,...,ur—p) and similarly forx;_;, and
f(0, X—1,Ui—1) is a “prediction” ofz,.. Typical criteria for minimization are
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then Z,]Ll lex ()|, or its counterpart in the frequency domain. The function
H(6,y) is then taken equal to

0
H(0,Y) =qor %|ek(9)\2, where
ek(e) = T — f(9, Xk_huk_l) and
Yi =aet (@, X1, Up—1).

Of course, it is important thaé%ek(e) can be effectively computed, at a rea-
sonable cost. From our previous analysis, we see that deaith uncertainties
require estimatin@®.(0) andJ(0); we discussed this in Section 6.

Subspace methods for output-only structural identificatio n. Consider
the following linear system
T = A.’Ekfl + v
33
{yk = Crp1 + wy (33)

wherek € Z, x is theRP-valued statep andw are unobserved input distur-
bances, ang is theR?-valued observed output. The problem we consider is the
identification of the paifC, A) up to a change of basis in the state space of sys-
tem(33). Equivalently, we identify the paifs\, Cv,), whereX ranges over the
set of eigenvalues ol (the poles of system (33)) ang, are the corresponding
eigenvectors. Said in words, we consider the problemigdnstructure identifi-
cation.

Thesubspace methddr eigenstructure identification can be seen as follows.
Consider the following parameter vectar

A
0 =aet ( vec O )

whereA is the diagonal matrix whose elements are the eigenvalaesl® is the
matrix whose columns are the,’s defined above. Then, consider the following
observability matrix in modal form:

d
DA

O(0) =aet eA% |
@A'Hl
and letS(0) be a matrix of maximal rank such that

ST(0)0(0) = 0.
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Assume aV-size sampl@,vm, ..., YUN+m-. Then, defing;, andY;, by YL =det
Wi vy owil,] and Yl =aee [yl wly - wlL.]. respectively, and
consider the empiricdlankel matrix

Ry Ry Ry ... R,

N B Rl R2 Rm+1
H =get Z ViVl =| Ry
Rm Rms1 ... ... Rop
where R; is theith empirical covariance matrix of observatigp. Then, the
subspace algorithm for identifying the eigenstructiie given by?

ON =der argg [¢n(0) = 0]

where
1
Cn(0)  =det ﬁST(Q)H \/7 ZST YkYk

1
=def \FZH (60, Y, Ys) ,

which shows that subspace methods are just an instance sfiMators. Hence
Section 4 applies. This is the method we have used in thetezpexamples.
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