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Early detection and localization of damage allow increased expectations of reliability, safety
and reduction of the maintenance cost. This paper deals with the industrial validation of
a technique to monitor the health of a structure in operating conditions (e.g. rotating
machinery, civil constructions subject to ambient excitations, etc.) and to detect slight
deviations in a modal model derived from in-operation measured data. In this paper,
a statistical local approach based on covariance-driven stochastic subspace identi"cation is
proposed. The capabilities and limitations of the method with respect to health monitoring
and damage detection are discussed and it is explained how the method can be practically
used in industrial environments. After the successful validation of the proposed method on
a few laboratory structures, its application to a sports car is discussed. The example
illustrates that the method allows the early detection of a vibration-induced fatigue problem
of a sports car.
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1. INTRODUCTION

Over the last years, industry is showing an increasing interest in techniques aiming at the
detection, localisation and quanti"cation of damage in structures such as rotating machin-
ery, aircraft, bridges, o!-shore platforms, etc. Early identi"cation of damage is of crucial
importance, not only for safety reasons, but also for economical reasons as it allows to
e$ciently program maintenance and repair actions and, consequently, to reduce the
associated costs. Nowadays, visual, systematic inspections of the system are typically
performed, often requiring that the system is shutdown and disassembled. The key idea is to
replace these inspections by health monitoring systems which regularly acquire and analyse
response data and indicate a malfunction or damage in an early stage. A relevant approach
is to monitor the vibrations of the structure in operating conditions. Several techniques to
identify damage from vibration data have been proposed. They include advanced signal
processing procedures such as wavelet analysis and neural networks, as well as model-based

sThis work has been carried out within the framework of the Eureka project no. 1562 SINOPSYS (Model based
Structural monitoring using in-operation system identi"cation) coordinated by LMS, Leuven, Belgium. The data
analyses were performed when L. Mevel was at LMS, Leuven.
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methods such as experimentally derived modal models or FE models. An overview of
techniques on health monitoring of mechanical systems is given in [1].

Generally speaking, four levels can be distinguished in the damage identi"cation prob-
lem, as proposed in [2]:

f ¸evel 1 Determination that damage is present in the structure.
f ¸evel 2 Determination of the geometric location of the damage.
f ¸evel 3 Quanti"cation of the severity of the damage.
f ¸evel 4 Prediction of the remaining service life of the structure.

This paper is concerned with the "rst level using experimentally derived modal models.
The objective is to answer the simple question whether there is damage or not, only using
vibration data measured on the structure in operating condition. From economical and
practical points of view, such an output-only damage identi"cation technique o!ers the
great advantage that the system does not need to be shutdown or arti"cially excited
(e.g. shaker or hammer).

A straightforward strategy to tackle the damage detection problem would be the com-
parison of the reference modal model with the modal model derived from the fresh data.
This requires the extraction of modal parameters from output-only data. Over the last
years, several techniques have been proposed and successfully validated for output-only
system identi"cation. They include auto-regressive moving average models (ARMA) [3],
stochastic subspace methods [4], and the natural excitation technique (NeXT) [5]. In [6, 7],
the capabilities and limitations of the NeXT technique and the stochastic subspace
method have been evaluated for their applicability to industrial cases. In many
cases (e.g. civil engineering structures), the change in modal parameters due to damage
is very small and it is extremely di$cult to statistically decide whether the di!erence
is due to damage or due to measurement and modelling precision, changing excitation,
environmental in#uences, etc. In addition, the modal parameters need to be extracted from
each acquired data set. As the modal parameter extraction requires user interaction, this
approach is not suitable to health monitoring applications, unless the modal analysis can be
automated.

A relevant approach to the vibration monitoring problem has been proposed based on
the modelling of modes through state-space representations [8], the use of output-only and
covariance-driven identi"cation methods (such as instrumental variables or balanced real-
ization algorithms) [9], and the computation of speci"c s2-type tests based on the so-
called instrumental statistics [10], and more generally [11] on subspace-based linear
systems identi"cation methods [4, 12, 13]. In practice, these tests turn out to be robust w.r.t.
non-stationary excitation.

In this paper, these algorithms are brie#y described, and their capabilities are
investigated for a few test cases. The paper is structured in four parts. Section 2 describes
the algorithm developed in [11]. Section 3 discusses some practical considerations.
Section 4 presents the experimental results obtained on simple laboratory set-ups, and
"nally Section 5 discusses the application of the algorithm to operating data measured on
a sports car.

2. THEORY

In Section 2.1, we recall the mechanical model and its modal representation. Then, we
describe the subspace-based identi"cation methods in Section 2.2. Finally, in Section 2.3 we
present the proposed damage detection method.
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2.1. MECHANICAL MODEL

We start with the following "nite elements model of the mechanical structure:

MZ}G (t)#CZ}0 (t)#KZ} (t)"l(t)
(1)

>(t)"¸Z} (t)

where t denotes continuous time, the vector Z} represents the displacement of the degrees of
freedom (dof ) of the FE model, M is the mass matrix, C the damping matrix and K the
sti!ness matrix. The external (non-measured) force l is modelled as a non-stationary white
noise with time-varying covariance Ql(s). Measurements are collected in the (low-dimen-
sional) vector >, and matrix ¸ indicates where the the sensors are located.

The mechanical characteristics (M, C, K) of the system cannot be recovered from output-
only data. Hence identi"able modal characteristics of the system are introduced: the
vibration eigenfrequencies denoted generally by k, the eigenvectors denoted by tk and
the mode shapes or observed eigenvectors denoted by /k . These quantities are solutions of
the following equation:

(Mk2#Ck#K)tk"0, /k"¸tk . (2)

Sampling model (1) at rate 1/q yields the discrete time model in state-space form:

X
k`1

"FX
k
#e

k`1 (3)
>

k
"HX

k
#l

k

where the state and the output are

X
k
"C

Z} (kq)
Z}0 (kq)D , >

k
"> (kq) (4)

the state transition and observation matrices are

F"eLq, L"C
0

!M~1K

I

!M~1CD , H"[¸ 0] (5)

and where state noise e
k`1

is zero mean, white noise, with covariance matrix

Q
k`1

"E (e
k`1

eT
k`1

)"P
(k`1)q

kq
eLsQI (s) eLTs ds (6)

with

QI (s)"C
0

0

0

M~1Ql(s)M~TD
and where E( ) ) denotes the expectation operator.

The measurement noise process (l
k
) is added to take noise over sensor measurements into

account. Generally, it is assumed to be an unmeasured MA(n) Gaussian sequence with zero
mean. In this paper, we will assume that n"0, corresponding to white (i.i.d.) measurement
noise. Note that, with this MA assumption for its structure, measurement noise not a!ect the
eigenstructure of system (3).

The modal characteristics de"ned in equation (2) are equivalently found in the eigenstruc-
ture (j,tj) of F:

eqk"j, and /k"/j"Htj . (7)
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The problem we consider is to monitor the observed system eigenstructure, i.e. the
collection of m pairs (j, /j), where j ranges over the set of eigenvalues of state transition
matrix F. In the sequel, such a pair (j, /j), is called a mode. The set of the m modes is
considered as the system parameter h:

h $%&"A
K

vec UB . (8)

In equation (8), K is the vector whose elements are the eigenvalues j, U is the matrix
whose columns are the /j's, and vec is the column stacking operator. Parameter h has size
(r#1)m. The problem is to detect changes in the parameter vector h.

At "rst glance, it seems reasonable to consider that diagnosis of failures can be performed
by comparing a new modal signature to a reference one. However, the comparison of two
di!erent modal signatures is an extremely di$cult task. In order to decide how eigen-
frequencies and corresponding mode shapes have been modi"ed, eigenfrequencies of di!er-
ent signatures must be correlated and compared. Moreover, how do you decide whether
a given change in eigenfrequency or mode shape is really signi"cant? This is really a di$cult
point if numerical approaches are used to estimate such signatures. In the same vein,
heuristic approaches lead to false alarms, since it is di$cult for the human operator to
evaluate how sensor noise a!ects the uncertainty in the eigenfrequency or mode shape
estimates.

For this reason, the statistical approach has been developed, to overcome both draw-
backs. Given a reference modal signature and new data, the basic idea is to evaluate whether
the new data agree with the signature, without determining the signature from the new data.
This makes the proposed procedure much simpler than a modal comparison approach
since it requires much less involvement of the human operator.

2.2. SUBSPACE-BASED IDENTIFICATION

We are given a sequence of covariances:

R
j
$%&"E (>

k`j
>T

k
) (9)

of output >
k
of a state model (3). For q*p#1, let H

p`1,q
be the block-Hankel matrix:

H
p`1,q

"A
R

1
R

2
2 R

q
R

2
R

3
2 R

q`1
F F } F

R
p`1

2 2 R
p`q

B . (10)

Choosing the eigenvectors of matrix F as a basis for the state space of model (3) yields the
following particular representation of the observability matrix introduced in [10]:

O
p`1

(h)"A
U

UD

F

UDpB (11)

where diagonal matrix D is de"ned as D"diag(K), and K and U are as in equation (8).
From [10], we get that the following property characterizes whether a nominal para-

meter h
0

agrees with a given output covariance sequence (R
j
) [13]:

O
p`1

(h
0
) and H

p`1, q
have the same left kernel space. (12)
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Property (12) can be checked as follows:

1. From h
0

as de"ned in equation (8), form O
p`1

(h
0
), and pre-multiply it by some

invertible weighting matrix=
1
.

2. Pick an orthonormal basis of the left kernel space of matrix=
1
O
p`1

(h
0
), in terms of the

columns of some matrix S of co-rank m such that

STS"I
s

(13)

ST=
1
O
p`1

(h
0
)"0 (14)

3. The parameters h
0

which actually corresponds to the output covariance sequence (R
j
)
j

is characterized by
ST(h

0
)=

1
H

p`1, q
=T

2
"0 (15)

where=
2

is another invertible weighting matrix.

It has been shown in [11] that under exact known model order assumption any choice
of such weightings should give the same test result. So any weightings, including those
corresponding to the Balance Realization (BR) and Canonical Variate Analysis (CVA)
methods are acceptable (see [4] for a description of these methods). For BR, the weighting
matrices equal the identity matrix. We stress that the above only holds in the case of known
system order. In practice, both BR and CVA methods were tested and gave similar results.
Small di!erences might occur from numerical issues and from the e!ect of model reduction.
In the following we retain the BR method for the test computation, as this method does not
require the computation of the weightings.

2.3. THE DAMAGE DETECTION METHOD

Assume we have at hand a nominal model h
0
, and some newly collected data >

1
,2, >

n
.

Form the empirical covariance sequence, perform steps 1 and 2 of Section 2.2, and replace
step 3 by:

3. De"ne the residual vector

f
n
(h

0
)$%&" Jn vec (ST(h

0
)=

1
H)

p`1, q
=T

2
) (16)

where H)
p`1, q

is the empirical block-Hankel matrix obtained by substituting RK
j
for R

j
in

equation (10).
From equation (15) we already know that the expectation of the residual vector should

be zero if and only if this residual vector is computed using samples generated under the
reference h

0
parameter value. Testing if the hypothesis is valid requires knowledge of the

distribution of f
n
(h

0
) when the actual parameter for the new data sample is h. Unfortunately,

this distribution is unknown, in general. One manner to circumvent this di$culty is to use
a local approach, that is to assume close hypotheses:

(Safe) H
0
: h"h

0
and (Faulty) H

1
: h"h

0
#

B

Jn
(17)

where vector B is unknown, but "xed.
More precisely, let Eh and covh be the expectation and the covariance, respectively, when

the actual system parameter is h. We de"ne the mean deviation

M(h
0
) $%&"!

1

Jn

L
Lh

Eh0 f
n
(h) Kh/h0

(18)
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and the residual covariance matrix

R(h
0
) $%&" lim

n?=

Eh0 (f
n
fT
n
) . (19)

According to Basseville et al. [11] and Delyon [14], a deviation in the system parameter
h is re#ected into a change in the mean value of residual f

n
, which is asymptotically

Gaussian distributed with constant covariance matrix. The sensitivity of residual f
n

w.r.t.
parameter h is captured by the Jacobian matrix M(h

0
). The uncertainty in residual f

n
is

captured by the covariance matrix &(h
0
).

Let MK , RK be consistent estimates of M(h
0
), R (h

0
). The detection problem, namely deciding

that residual f
n
is signi,cantly di!erent from zero, can be achieved as follows.

Theorem 2.1. (s2-test [11]). Assume additionally that

Jacobian matrix M(h
0
) is full column rank ( f.c.r). (20)

¹hen the test between the hypotheses H
0

and H
1

de,ned in equation (17) is achieved
through

s2
n
$%&" fT

n
RK ~1MK (MK TRK ~1MK )~1MK T&K ~1f

n
(21)

which should be compared to a threshold. In equation (21), the dependence on h
0

has been
removed for simplicity. ¹est statistics s2

n
is asymptotically distributed as a s2-variable, with

rank(M) dofs and with non-centrality parameter under H
1
:

BTMTR~1MB. (22)

3. PRACTICAL IMPLEMENTATION

Application of the proposed damage identi"cation method is basically a 3 or 4 steps
procedure, depending whether training data sets are available or not:

1. Identi"cation of the nominal modal model h
0
.

2. Estimation of the residual covariance and the sensitivity matrix.
3. Use of training data sets for the estimation of the mean and variance of the test for the

healthy structure, resulting in an alarm threshold for the s2-test.
4. Evaluation of the s2-test on newly collected data sets, making use of the data prepared

in steps 1}3.

When no training data are available, step 2 is immediately followed by step 4. The four
steps are detailed below.

Step 1: The "rst step is the identi"cation of the nominal model h
0

with data from the
same sensor locations as those used in the monitoring application. In principle, any kind of
modal parameter extraction technique can be used. However, as the laboratory conditions
may di!er from the in-operation conditions, it is preferred to extract the modal parameters
from output-only data measured in operating conditions. Therefore, the stochastic subspace
identi"cation method can be employed. Our simulations have shown that the quality of the
nominal model is of crucial importance for monitoring. In case one is not sure about
a particular mode in the identi"cation process, we highly recommend not to retain it. One
drawback is that mechanical expertise is required in order to distinguish the physical poles
from the spurious ones.

Step 2: In order to perform the s2-test in (21), the sensitivity matrix (18) and the
covariance matrix (19) need to be estimated. As they do not depend on the fault vector B in
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equation (17), they do not need to be re-estimated when testing the hypotheses. Instead,
they can be estimated prior to the testing, using data acquired on the safe system.
Typically, the same data as used in step 1 for the identi"cation of the nominal model
will be used. A consistent estimate of the sensitivity matrix can be obtained from a
data sample using a simple average, while an empirical estimate based on a sample
version of the jackknife method is recommended for the estimation of the
residual covariance matrix [3]. The latter basically means that the n-size data sample
is divided into a number of segments of n

4%'
samples. For each segment, the residual

vector is computed according to equation (16) and multiplied by its transpose. The
matrices obtained for each segment are then averaged, resulting in an estimate of
the residual covariance matrix. Via an eigenvalue decomposition and truncation of
the negative eigenvalues, this estimate is forced to be positive de"nite. Important
to note is that the number of averages should exceed the number of parameters in h,
i.e. m(r#1). On the other hand, the number of samples should be larger than p#q!1.
Thus,

p#q!1;n
4%'

;

n

m(r#1)
. (23)

After the choice of the n
4%'

parameter, the user has to specify p and q and the weighting
matrices=

1
and=

2
. Simulations have shown that good results are obtained with q"p#1

and with a minimal value for p satisfying the inequality pr'm. Taking p and q too high
loads to huge matrices and high computational load. The weighting matrices are the same
as in the stochastic subspace identi"cation methods BR and CVA.

The nominal model h
0
, the choice for p and q as well as the estimates of the sensitivity and

the covariance matrices can be validated by performing the s2-test on the same data as the
data used to derive the nominal model. The value of the s2-test, further referred to as the
calibration value, should be close to the number of degrees of freedom, i.e. m(r#1). In case
this is not true, some further tuning of the parameters p and n

4%'
or a new extraction of the

nominal model might be needed. Another reason for a poor calibration value could be that
the number of data samples is insu$cient to accurately estimate the sensitivity and the
covariance matrices. Especially in case the unknown excitation is non-stationary (e.g. civil
structure subject to ambient excitation), a huge amount of data is necessary to obtain
accurate estimates.

Step 3: As mentioned above, in case of no damage, the theory says that the
expected value of the s2-test equals the number of dofs. In practice, data measured on
the healthy structure will not yield this value. Therefore, the value of the s2-test needs
to be compared with a threshold. In order to determine this threshold, training data
sets can be used, allowing to estimate the mean and the variance of the s2-test.
Basically, this means that the test is applied to several data sets measured on the
healthy structure. The data could e.g. be acquired at the beginning of the monitoring
process. The mean and variance of the test value can be easily computed, allowing to
determine a realistic threshold. In case no training data are available, user's experience
is needed to specify a good threshold (e.g. 100 times higher than the calibration
value).

Step 4: The nominal model, the estimates for the sensitivity and covariance matrices, the
weighting matrices and the threshold for the s2-test, derived in steps 1}3 are fed to the
health monitoring system. The monitoring system acquires new data, reduces them to
covariance data and performs the s2-test on a regular basis. In case the test exceeds the
threshold, the system raises an alarm. This alarm generation mechanism is fast, automatic
and does not require any human intervention.
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4. THE WHOLE PROCEDURE AS A LABORATORY EXPERIMENT

In this section, the s2-test is applied to laboratory structures and the results are discussed.
Our goal is to detect, as soon as possible, a small change in the modal parameters due to
a slight damage in the structure. The performance of the s2-test is critically evaluated for
progressive damage tests. For each damage scenario, the subspace-based identi"cation
method is also employed to extract the modal parameters, in order to be able to address the
changes in the modal parameters.

4.1. FIRST EXPERIMENT

We use a horizontal aluminium beam which is clamped at one end and free at the other
end. The characteristics of the beam are as follows: the beam is 700 mm long, 20 mm wide,
and has a thickness of 2 mm. At the free end, it is excited by a shaker with white noise. We
place eight sensors on the beam (distance between sensors is 100mm), with the "rst sensor
located at the same location as the shaker (see Fig. 1). The signals are sampled at 1600Hz:
32 000 samples are taken, corresponding to a duration of 26 s.

After measuring the response signals on the safe structure, damage is introduced to the
beam by making a cut, 24.4 cm apart from the shaker position. The initial depth of the cut is
3 mm ("rst damage). The depth of the cut is then increased to 7.05 mm (second damage),
9.15 mm (third damage) and 12.1 mm (fourth damage).

Table 1 contains the results of the damage test for each damage scenario: we show the
ratio of the s2-tests values obtained on the possibly damaged sets and the reference data set.
This is further referred to as the normalised s2-test value. This value should be close to 1 if
the structure is not damaged and much higher if damage occurred.

Table 2 contains the frequencies of the modes identi"ed by the BR-identi"cation method.
It is important to note that the modal parameters listed in Table 2 are not required for the
test. They are shown in Table 2 in order to be able to assess the changes in the modal
parameters. It can be clearly seen that the di!erences are quite small, making their
interpretation in terms of damage or not di$cult. Damping ratios are not shown in Table 2
as they are typically less accurately identi"ed from output-only data. Therefore, we recom-
mend not to monitor them.

Figure 1. Set-up of the "rst experiment: (top) the sensor and shaker locations, (bottom) the damage location and
size.
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TABLE 1

s2-test results for the ,rst experiment

Safe structure Validation structure 1st damage 2nd damage 3rd damage 4th damage

1 4 6600 16 600 94 000 400 000

TABLE 2

For each damage scenario, we give the natural frequencies of all modes (modal analysis
of the ,rst experiment) identi,ed by the BR-identi,cation method

Safe structure 35.6 77.1 127.5 186.7 252.9 339.4 486.2 584.8 698.1
1st damage 35.5 77.0 127 186.5 251.6 339 485.6 583.8 698
2nd damage 35.5 76.9 126.4 186.4 251.5 337.9 484.3 580.1 696.8
3rd damage 35.2 76.9 126.2 186.3 251.4 337.5 483 577.7 696.6
4th damage 35.1 76.8 124.9 185.6 251.3 336.3 480.2 572.6 694.5

Now we investigate the robustness of the test against changes in excitation. The test was
applied to response data of the healthy structure for a di!erent excitation. The second
column of Table 1 illustrates this. In this case, the test has a higher value than expected, but
much lower than a test value corresponding to a damage scenario. This result however
suggests that the algorithm should be trained with a large set of safe structures (damaged
structures) to de"ne upper (lower) bounds for the H

0
(H

1
) test using some sort of training

method as described in step 3 of Section 3.
To investigate the importance of the choice of the number and location of sensors, we

display in Fig. 2, the normalized s2-test values on a log-scale, for experiments with four
sensors (instead of 8) located at di!erent positions on the beam. The best results are
obtained with sensors near the damage or with sensors uniformly spread over the beam.
This illustrates the importance of the choice of the location of sensors for monitoring. This
question is addressed in [3, 15, 16], where some techniques are developed to "nd the
optimal set of sensors. This data information can be obtained from measurements on
the healthy structure.

4.2. SECOND EXPERIMENT

A calibration test is performed on a breadboard model of a steel frame (see Fig. 3). The
structure resembles a subframe of a car to be connected to the body at four locations, and
on which the engine has to be mounted. The frame is approximately 720 mm long and
170 mm wide and its weight is about 9.8 kg. The subframe is suspended on four #exible
threads, the response is measured in the vertical direction at 27 points for vertical excitation
at two points. Using dual random shaker excitation, 32 000 samples are measured, for each
output, sampled at 1024 Hz.

The modal frequencies of the structure, identi"ed with only three sensors, are shown in
Fig. 4, for three di!erent states: safe structure, decrease in mass, increase in sti!ness by
adding a sti!ener between two frames. For both damages, the frequencies increase, but to
a lower extent for the sti!ness modi"cation. The corresponding s2-test values are shown in
Table 3. As expected the test is highly sensitive to the mass change, and less, but still
signi"cantly sensitive to the sti!ness change.
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Figure 2. Di!erent locations of sensors for the "rst experiment: the horizontal axis represents the damage
scenarios (1}5, 1 being safe), the vertical axis is the normalized test value on a log-scale: (]) sensors near the cut;
(*) sensors spread over the beam, (L) sensors located at the other end.

Figure 3. Finite elements representation of the steel frame in the second experiment.

Figure 4. Modal analysis of the second experiment (left) decrease of mass, (right) increase of sti!ness. The lower
curve (] symbol) displays the modal frequencies of the safe structure, whereas the upper curve (L symbol)
represents the modi"ed structure.
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TABLE 3

¹est result for the second experiment: all values are normalised by the test value obtained
on the reference data set

Safe structure Validation structure Damaged structure

Mass change 1 12 340 000
Sti!ness change 1 5 250

5. APPLICATION OF THE s2-TEST TO A SPORTS CAR

Prior to assessing the performance of the proposed approach to detect a fatigue failure
of a sports car related to the gearbox mounting with the car body, a scale model was
manufactured which showed some geometrical similarity to the fatigue problem. Tests are
performed on the scale model in Section 5.1, then on the sports car in Section 5.2.

5.1. APPLICATION TO A SCALE MODEL

The construction consists of two vertical plates supported by a very sti! bottom plate.
Between the two plates, a mass is connected by four rubber elements. The structure is
vertically excited such that the mass moves up and down while introducing bending
moments in the vertical plates. In order to obtain stress concentration, notches in the plates
are introduced at the position of maximal bending strains. As the construction is light, large
deformations are possible so the fatigue testing can be done in an acceptable time frame.
Figure 5 shows the scale model mounted to the shaker. The structure is mounted under an
angle of 153 in order to better excite the modes. The centre of gravity is above the vertical
axis of the shaker. The design of the foot allows the measurement of the vertically
introduced forces.

The structure is submitted to an endurance test. A #at force spectrum is realised during
the whole test by controlling the voltage sent to the shaker. This favours the output-only
identi"cation process which assumes that the unknown excitation is white. Measurements
are recorded every 3 min. One accelerator is located on the vertical plate, two on the mass
and one on the bottom plate. About 8000 samples were recorded for each data set at
a sampling rate of 250 Hz.

First, the modal model of the healthy structure is extracted from the acceleration data.
The nominal model h

0
consists of the "rst three modes, which are well identi"ed:

f Mode 1 Bending of plates in phase at 15Hz.
f Mode 2 Bending of plates out of phase at 30.8 Hz.
f Mode 3 Roll mode of the mass at 50.8 Hz.

The identi"cation process is then repeated for each record. The frequency of the second
mode is shown in Fig. 6 (left): the resonance frequency is decreasing. This process starts
quite soon after the beginning of the test. The crack initiation period is very short and the
accelerometers pick up the changes very soon during the crack growth. This reduces the
sti!ness characteristics and, consequently, reduces the resonance frequency.

Figure 6 (right) shows the s2-test value as a function of test time. The values are
normalised by the calibration value, i.e. the test value obtained on the "rst data set, which is
used to estimate the nominal model and the sensitivity and covariance matrices. So, in case
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Figure 5. Scale model mounted to the shaker.

Figure 6. Natural frequency of mode 2 (left) and s2-test (right) vs time.

of no damage, the test value should be close to 1. For the covariance estimation in equation
(23), the size of the segment n

4%'
is set to 50 samples. The s2-test is not too sensitive to this

parameter: similar results were found for a segment size of e.g. 100 samples. Figure 6
(right) shows that the decrease in natural frequency is well detected. By setting a threshold
of e.g. 500, the fatigue problem can already be detected after 6 min without any user
interaction.

5.2. APPLICATION TO A SPORTS CAR

5.2.1. Introduction to the fatigue problem

A car is driven on the endurance track until a fatigue problem of the gearbox mounting
with the car body occurs. With this knowledge of the failure, a second test car is in-
strumented to measure the relevant strain and acceleration signals [17].

Figure 7 depicts the test wireframe. There are six measurement points on the car body
and four points on the powertrain. All measurements are done in the vertical direction.
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Figure 7. Test wireframe of the car.

A spectral and coherence analysis of the strain and acceleration signals identi"es the
acceleration at the gearbox mounting and at the front di!erential in vertical direction
around 17 Hz as the most important accelerations for the description of the dynamic
behaviour causing the fatigue crack. The modal parameters of the car are derived from the
in-operation acceleration data. Correlation of these modes with operational de#ection
shapes of the "rst, second and third principal component at 17 Hz revealed that three
modes highly contribute to the response:

f Vertical front di!erential.
f Rolling mode of the powertrain coupled to the car body-torsion.
f Vertical powertrain coupled to car body-bending.

The mode shape of the second mode at 17.2 Hz is shown in Fig. 8.

5.2.2. Health monitoring during the endurance test in the lab

An endurance 4-shaker test on a body-in-white equipped with the powertrain was then
undertaken in the lab. To avoid problems in the attachment areas of the shakers to the
body, the front and rear suspension including the wheels are also built in and the wheels are
directly put on the four hydraulic shakers. Some local masses are added so that the dynamic
behaviour is roughly equivalent to the one of the car which has been tested on the test track.
For the excitation, a narrowband period random signal with a trapezoidal frequency
content (10}14}18}22 Hz) and random phase is used. Two independent excitation signals
are sent to the left and right hydraulic front shakers. The same signals, but delayed with
a time corresponding to the critical speed (50 km/h), are sent to the rear shakers. Objective
of the test is to reproduce the same failure, but in a much shorter time and in well-controlled
conditions. The result of the test is that cracks are obtained in exactly the same locations as
on the test track. The damage is however less severe in the test lab than on the test track: the
critical areas had to be processed with special contrast lack to reveal the crack. During the
test, the acceleration and strain signals are recorded every half an hour in order to see
whether early detection of the fatigue problem is possible. About 10 000 samples are taken
at a sampling rate of 378Hz. The tests have been performed within the framework of the
Esprit project 2486 &DYNAMO'.
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Figure 8. Mode shape of the mode at 17.2Hz. Rolling mode of the powertrain coupled to the car body-torsion.

Figure 9. Waterfalls of autopower: (left) strain signal, (right) gearbox acceleration.

In a "rst analysis, the autopowers of a strain signal close to the crack area and the
gearbox acceleration are estimated for each measurement taken every 30 min and plotted in
a waterfall diagram, as shown in Fig. 9.

Figure 9 shows that the height of the peaks "rst remains approximately constant,
increases next, but after some time, stays about constant again till the end of the test. The
gearbox acceleration shows no change "rst, a slight decrease next and a quite sudden
change when the strain becomes constant again. This can be interpreted as follows. The "rst
period refers to the initiation period of the crack. When the crack starts to be macroscopic
(crack growth), the strain gauge starts to register the change. This is also re#ected in the
acceleration signals. After some time, the crack growth stops and during the remaining time,
the component is #apping in response to the input.

The data measured at the beginning of the endurance test are used to derive the modal
model using the stochastic subspace identi"cation method. Stabilisation diagrams have to
be used to select the physical poles. About "ve modes below 22 Hz were found. Then, the
residual sensitivity and covariance matrix are estimated from the time data and the
calibration s2-test value is computed.

This calibration value is about 20 times higher than its expected value. The main reason is
that the data length was too short for an accurate estimation of the residual covariance
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Figure 10. Results of the s2-test as a function of test time: (left) six sensors on the body and four sensors on the
powertrain; (right) six sensors on the body.

matrix. The calibration value is used to normalise the test values and it is veri"ed whether
the s2-test could detect the change for short time signals. Two groups of sensor position are
evaluated. The "rst group consisted of the six sensors on the body and four sensors on
the powerstrain. The s2-test values are shown in Fig. 10 (left) as a function of time. The value
slightly increases during the crack growth. When the crack growth ends, the test value
signi"cantly increases. Similar conclusions can be drawn when using the six sensors on the
body, as shown in Fig. 10 (right).

6. CONCLUSION

This paper illustrates how a subspace-based damage detection method can be success-
fully used to detect damage in vibrating structures. It shows that the proposed method is
capable of detecting damage in an early stage of damage occurring during the experiments.
The proposed approach was successfully applied to a few laboratory structures and
acceleration data measured on a scale model and a sports car during an endurance test. The
paper described how the method can be practically implemented and incorporated in
a health monitoring system. Once the user has prepared some data like the nominal modal
model and the residual sensitivity and covariance matrix, the s2-test can be quickly
evaluated. By comparing the test value with a threshold, the simple question whether the
structure is healthy or not can be successfully answered.
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