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Abstract:

We address the problem of mapping a set of processes which communicate synchronously
on a distributed platform. The Time Triggered Architecture (TTA) proposed by Kopetz for
the communication mechanism of a distributed platform offers a direct mapping that would
preserve the semantics of the specification. However, its exact implementation may, at
times, be problematic as it requires the distributed platform to have the clocks of its com-
ponents perfectly synchronized. We propose as implementation architecture a relaxation of
TTA called Loosely Time-Triggered Architecture (LTTA), in which computing units per-
form writes into and reads from the communication medium independently, triggered by
local, quasi-periodic but non synchronized, clocks. LTTA offers some of the advantages of
TTA with lower hardware cost and greater flexibility. So far LTTA was studied for single
directional two-users communications over an LTT bus. General topology was not studied.
In this paper we propose a design flow that ensures semantics preservation for an LTT com-
munication network with arbitrary topology. Key elements are two new protocols for clock
regeneration and predictive traffic shaping. Our approach relies on a mathematical Model
of Communication (MoC) that we describe in detail.
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Architectures Quasi-Synchrones et Communication par
Echantillonnage

Résumé : On étudie une nouvelle architecture répartie pour les applications temps-réel,
dont 'usage est en vigueur dans plusieurs secteurs industriels, dont ’avionique. Elle reprend
de I’architecture TTA de Hermann Kopetz ’idée d’un assemblage de composants de calcul et
de communication activés par le temps. Mais elle abandonne ’exigence de synchronisation
stricte des horloges, qui fait le fondement de TTA. 1l suffit que les horloges soient & peu preés
synchronisées, d’ott le nom LTTA (Loosely TTA). On étudie comment, lors du déploiement,
préserver la sémantique des données comme du temps.

Mots clés : systémes temps-réel, systémes répartis, synchrone, quasi-synchrone, TTA,
LTTA
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Loosely Time-Triggered Architectures 5

1 Introduction

In automotive and avionics applications, the propagation of information from one end to
the other of a functional chain is typically implemented by a set of periodically activated
tasks and messages. The execution platform is a distributed architecture consisting of sev-
eral ECUs connected by buses or an interconnection network. Some of the communications
between tasks must guarantee no loss of data. We refer to this constraint as data (or
stream) semantics preservation. Furthermore, real-time constraints may be defined on the
computation and communication latencies. We address the problem of mapping the func-
tional requirements onto an implementation platform so that stream semantics preservation
constraints are satisfied, timing constraints are met, and appropriate cost functions can be
optimized.

In this paper, following the basic philosophy of Platform Based Design [36], we consider
the following design flow:

1. We start from

e a set of (possibly interacting) functions. Each function obeys the following model:
it proceeds by a (possibly nonterminating) sequence of successive logical reactions
composed of a finite set of actions; in addition, timing constraints such as peri-
odicity and/or deadlines can be attached to each action.

e an implementation platform consisting of interconnected ECUs, protocols for ac-
cessing the interconnection network and middleware for each ECU. The platform
is characterized by its performance in terms of timing, capacity, power and cost.

2. We perform mapping of the functions onto the implementation architecture so that the
constraints are verified and cost functions defined on the implementation architecture
can be minimized.

The mapping problem is complex since the limitation of the implementation platform may
make stream semantics preservation difficult to achieve. Often, when the implementation
platform is event-based, guaranteeing that the logical and timing constraints are satisfied
is an unsolved problem or requires a large overhead. A possible solution to this problem
is to select the implementation architecture so that some of the constraints are satisfied by
construction and the analysis can be carried out using formal methods.

The Time Triggered Architecture (TTA) proposed by Kopetz in [19] for the commu-
nication mechanism of a distributed platform offers a direct mapping that would preserve
the semantics of the specification. It consists in implementing, on a distributed hardware,
the real-time periodic synchronous model. Using this approach, correctness of a distributed
implementation can be analyzed rigorously with formal techniques, see also [26]. However,
this approach carries cost and timing penalties (see, for instance, [22, 24]) that may not be
acceptable for some applications. In particular, TTA is not easily implementable for long
wires (such as in systems where control intelligence is widely distributed) or for wireless
communications.

PI n1854



6 A. Benveniste & al.

Hence, there has been growing interest in less constrained architectures such as the
Loosely Time-Triggered Architecture (LTTA) used in the aerospace industry and studied
in [9, 35, 20, 21, 8, 4]. LTTA is characterized by the following features:

e access to the communication medium occurs quasi-periodically, using the different local
clocks; while not synchronized, these clocks are bound to deviate from each other with
limited drift and jitter. We call such clocks quasi-periodic.

e writings and readings are performed independently at all nodes connected to the
medium in synchrony with the above mentioned local clocks;

e the communication medium behaves like a shared memory, i.e., values are sustained
and are periodically refreshed, based on a local clock owned by the medium; how
multi-user access to the communication medium is performed, is left unspecified.

This architecture prescribes the communication scheme but leaves several parts of an imple-
mentation unspecified offering designers further flexibility in the final implementation. In
fact, the LTTA mechanisms can be either implemented in customized hardware, or built on
top of existing distributed execution infrastructures — for example, CAN based networks
as shown in [14].

The LTTA mechanism has not been fully characterized nor a complete design flow with
potential design space exploration has been offered. In [37, 41, 38, &] protocols for time-
sensitive and LTT architectures were proposed to compensate for a change in latencies, from
specification to implementation. In [9], sufficient conditions were given to ensure preservation
of stream semantics. However, the results of [9] are specific to single-user case and provide no
basis for a systematic extension to multi-user, multi-bus, communication. Recent work [14]
extends the work of [9] by showing how cascade LTT communication can be implemented
on top of a CAN based architecture.

In this paper, we propose a comprehensive design flow that maps functional requirements
onto an LTTA with arbitrary topology that can be implemented in a variety of ways includ-
ing a set of LTT buses. The design flow is guaranteed to produce a semantic preserving
implementation if appropriate assumptions are satisfied.

Under the framework of Platform-based design, we define a process in which a functional
model is mapped into a distributed LTTA architecture by means of intermediate abstractions
(see Figure 1). The functional model is characterized by requirements of flow preservation
on communications and execution rates on both computations and communications (top of
the Figure). In the LTTA physical platform, nodes are characterized by clocks with limited
jitter and drift. Furthermore, the execution platform does not provide clock synchronization
(bottom of the Figure).

Our mapping uses a hierarchy of platforms, with the corresponding mappings from the
functional layer and to the LTTA architecture. The platforms are defined based on the
communication by sampling or CbS abstract model of computation. CbS is a quite general
communication model and, by itself, cannot provide flow preservation, nor rate guarantees.
A mapping on CbS into an LTTA architecture with the above described properties, can be
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Loosely Time-Triggered Architectures 7
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Requirements of execution rates and flow preservation
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Figure 1: Mapping of a functional model into an LTTA architecture: Platforms and proto-
cols.

defined so that a refined version of flow-preserving CbS (FP-CbS in the Figure) is obtained.
At this stage, flow preservation is guaranteed on single writer-to-reader links. This mapping
leverages a suitably defined LTTA protocol and refines CbS by restricting its semantics (in
the Figure CbS is actually included meaning that an additional protocol layer is built on
top of it.)

Another intermediate layer of abstraction called Loosely Time-Triggered Network (LTTN)
is useful to extend our approach to general topologies. LTTN uses pure communication-by-
sampling mechanisms. To guarantee that the mapping of the functional model on LTTN
is semantic preserving for general end-to-end flows, we introduce two protocols: the first
protocol performs clock regeneration to avoid cumulative slow down of clocks along directed
communication paths; and the second protocol performs predictive traffic shaping to avoid
writers to overload readers.

Our flow is completed by providing mappings of LT'TN into several medium access control
schemes for shared buses that may be available at the physical level.

The paper is organized as follows: we first present a mathematical toolkit in Section
2 that details the model of computation used throughout the paper. In particular, all
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8 A. Benveniste & al.

the needed protocols use a unique, fundamental, two-counter mechanism developed in this
section, which enlightens the elegance of our LTT Architecture. Communication by Sampling
is studied in detail in Section 3. Following this study, we propose a PBD approach to map a
set of functional requirements on LTTA potentially implemented with a set of LTT busses.
In particular, in Section 5 we present the LTTN and two protocols that guarantee semantics
preservation on the mapping of the requirements onto the network. How to replace the
ideal Communication by Sampling by an LTT bus and is analyzed in Section 7. Section
8 is devoted to multiple access; we study both Time Division and Priority Based Multiple
Access. Finally, fundamental mechanisms ensuring fault tolerance are proposed in Section
9.

2 Mathematical toolkit

In this section we develop the toolkit we shall use throughout this study. This toolkit collects
the building blocks of the LTTA MoCC, thus revealing its elegance by the small number of
needed mechanisms.

2.1 An algebra of flows, daters, and counters

A mathematical model for CbS must handle flows, defined as successive dated occurrences of
valued events. We first present the corresponding material, by building upon the pioneering
work [11]. Symbol N denotes the positive integers: N = 1,2,3,.... Formally, flows are
infinite sequences e = (e, )nen Of valued and dated events.

The wvalue of event e, is denoted by v.. Unless ambiguity can result from such an
overloading, we shall simply write e,, instead of vS. We call stream of e the sequence of
values (VS)n>0, where, by default, v§ = *, where symbol “x” means undefined. A clock is a
flow with values in the singleton set {tick}.

The dater of e is a sequence t¢ such that ¢t € R, is the date of e,,; denote by 7' the set
of all dates of events of flow e. When the considered flow is a clock «, by abuse of notation
we also denote by k its set of dates, instead of T". Accordingly,

we shall write k C k' to mean T% C T+ . (1)
The counter of e is a non decreasing function R, — N defined by
¢ =det Card{n |t <t} (2)
and we define the strict counter of e by

¢ =get li/n% ¢t = Card{n |t <t} 3)

The dater and the counter of a flow carry the same information. The counter can be
obtained from the dater as shown above. Alternatively, the dater can be obtained from the
counter as follows.
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Loosely Time-Triggered Architectures 9

t¢ = min{t | ¢f = n} (4)

To be able to refer to “the date of the nth event”, or “the index of the last event before ¢”,
or “the last value before t”, etc, we will need in the sequel to compose the above operators.

The following generic notation will be used for this purpose: the composition t¢oc® is defined
by

(te Oce)t =def tif

Formally, t¢ o c® is the composition of the two functions ¢ — ¢f and n +— t,. To simplify the
notations,

we shall write t° o ¢f instead of (¢ o ¢®);.

Thus, t° o ¢§ delivers, for flow e, the date of the event whose index is the last before or
including ¢.

It will be at times needed to reason about delayed flows. Flows can be delayed, both
logically (by passing them through a k-step shift register) and physically (by delaying the
date of event occurrences). Delaying flow e logically by an amount of k is modeled by
considering that date t¢ of the nth occurrence of e is in fact the date of the (n — k)th event
of the delayed flow ¢; that is, ¢’ is characterized by the delayed dater ¢ = t¢ o (Id + k),
where Id is the identity function and the context allows to determine whether it operates
on times or on indices. Thus, tf{ =15 5

Similarly, delaying flow e¢ physically by ¢ means that the new flow ¢’ is characterized
by the dater ¢ = ¢¢ + t. This can be modeled by considering that the number ¢¢ of
occurrences of e before time s is in fact the number of events of ¢’ at time s + ¢; that is, €’
can be characterized by the delayed counter ¢¢ = ¢ o (Id — t).

So far we discussed only daters and counters. The following macros are useful when
considering values.

Interpolating flows. It will be useful to interpolate values between the occurrences of
successive events. This is simply achieved by overloading the “value” operator v¢:

Vi€ Ry v =qer Vo0C]

The following current operator® is a variant of the former one. It sustains the last value
seen in the strict past:

Vte Ry 1 vf =gt vooC]

1 The names “current” and “when” (used later in this text) are taken from similar operators found in the
Lustre language [12].
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10 A. Benveniste & al.

For t = t¢, we get vf = vt_, and vf = vt, whereas, for t ¢ T°, vf = v{ holds. When no
confusion can result, we shall again use the

simplified notations e; and e; , instead of v{ and vf .
Regarding dates, the operator last provides at any time the last occurrence time of the flow:
lf —def t¢o Cf (5)
Combining flows. The operator when filters the occurrence of flow e according to some
predicate b provided synchronously with e (i.e., T® = T°):

e when b = ¢, where
T¢ = {t¢ | n € Nand o2 = true} (6)
VteT®: Vf = vf

The operator at delivers, at each occurrence of some flow x, the current value of flow e:

eatx = €, where
T¢ =1T" (7)
VneN: vf = véoctotf

2.2 Semantics preservation

Consider two flows e; and es. We say that flow eq stream preserves flow e; if the following
holds:

VneN:vt = v, (8)

n

Stream preservation between computing units guarantees that the considered distributed
architecture is GALS (Globally Asynchronous, Locally Synchronous), so that techniques
from [31, 32, 17] can be used to ensure correct-by-construction deployment of synchronous
(or polychronous) specifications.

The so defined stream preservation does not account for timing issues. Strict preserva-
tion of timing is too strong and irrelevant for LTTA. Instead, we shall complement stream
preservation with bounds on the relative periods and jitters, for the considered flows, in each
case.

3 Communication by Sampling

Communication by Sampling (CbS) is the only basic building block of our LTT Architecture.
CbS involves pairs of the form {writer, reader}. It is formalized using a composition operator
> between flows. First we discuss this operator informally and the define it formally and
provide some of its properties. Denote by w and r the flows of writings and readings. Then,

wbr
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Loosely Time-Triggered Architectures 11

is the flow collecting the successive deliveries, by the reader, of the successive writes. That
is:

e if w performs a writing that is overwritten by a subsequent writing before being read
by r, then no corresponding event for flow w > r is produced;

o if r performs a reading that follows a previous reading without having a writing oc-
curring between the two, then no corresponding event for flow w > r is produced;

o if w performs a writing that is followed by a corresponding reading of r prior to a next
writing, then an event for flow w>r is issued at the time of that reading; equivalently,
if r performs a reading that follows a corresponding writing of w, then an event for
flow w > r is issued at the time of this reading.

Operator w > r is illustrated on Figure 2. Note that, despite the notation, w>r depends on
the flow w of writings, but it depends on r only through its clock x,. So, we have

w>r = wb Ky, (9)

which enlightens the causal dependency, from the pair (w, ), to the output stream »".
We shall now formalize this description. To define w > r, we need to define two things:
its “timing aspect”, that is, its dater; and its “value aspect”, that is, its sequence of values.

Timing aspect. The dater of flow w > r is characterized by its counter:

C}:UDT
= Card {t; | [t A [ty —et 21]} (10)
= Card {t | [t¥ <] A [hincrap,) — che 2 1] } (11)

Formula (10) consists in counting the number of reads that are preceded by at least one
write. Dual formula (11) consists in counting the number of writes that are followed by at
least one read before being overwritten. These two formulas are illustrated in Figure 2.

Notice that the dater ¢*>" can be derived from the counter of w > r as shown in Equa-
tion (4).

Value aspect. Regarding values, the nth value read by the reader is the currently written
value at the time of the nth read:

w>r
I/’ﬂ

= w” ot (12)

This completes the definition of flow w > r.

PI n1854



12 A. Benveniste & al.

writes w /\ /\\‘ f\w‘ f\w‘ /\J /\\\

reads r

writes w

reads r

o ] | | L
1 | | 1

Figure 2: Illustrating: w>r—bottom; formula (10)-middle; and formula (11)-top. The origin
of each arrow points: for formula (10), to a read event (in blue) satisfying the associated
predicate, and, for formula (11), to a write event satisfying the associated predicate. The
end of each arrow points to the event that realizes satisfaction of the associated predicate.

3.1 Effective procedure for computing ¢**", and properties

Using formulas (10) and (11), the following precise description of ¢**” can be given, by
switching between these two formulas at appropriate times. To get such a formula, key
remarks are:

e Suppose that, for some ¢ > 0, condition

1

c;“‘{ - c;“‘i: >1 (13)

is satisfied for every ¢} < ¢. Then, applying formula (10) simply yields c}">" = ¢}. The
set of t’s satisfying this property is an interval of the form [0, t(lO))v where t10) = 0-

e Alternatively, suppose that, for some ¢ > 0, condition

C:nin(t,t};jrl) —cp 21 (14)
is satisfied for every ¢}’ < ¢. Then, applying formula (11) simply yields ¢}">" = ¢}". The
set of t’s satisfying this property is an interval of the form [0, t(ll)), where ta1) = 0.

When a read occurs, we know that no current write is pending, and thus we can regard this
read event as if it was the origin of times: ¢ = 0. Thus, we can repeat the above reasoning
starting from any read event. Read events of interest for doing this are obviously those
where one switches between the above two cases.

More precisely: call switch flow of w>r the flow ¢ consisting of the minimal (for set inclu-
sion) subset of events of r such that, within the interval (¢!, ,,t,] between two successive
events of /:

e either Condition (13) is satisfied for every interval

( Zflvtm g (tfnflvtfn]v
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Loosely Time-Triggered Architectures 13

expressing that there are more writes than reads in the considered interval. In such
an interval, we have

Vte TN (th th] 2 WP — e =l — ¢,

tmfl m—1
Hence we say that such an interval is of type read.

e or Condition (14) is satisfied for every interval
(t’llé)a tr o CT © t%’ﬂ] g (tfn—la tfn]v

expressing that there are more reads than writes in the considered interval. By defi-
nition of function composition, we have

toc oty =ty = max{t,, | t;, <t} (15)
k+1

In such an interval, we have

VEET N (tyoy b = " — ¢ = — ¢l

Hence we say that such an interval is of type write.

Intervals of type read and of type write alternate, and the evaluation of ¢;**” is performed
accordingly. This mechanism is illustrated on Figure 3. The switch from type write to type

_
writes V/
reads

-~
read write read

Figure 3: Illustrating the evaluation of ¢}"". The switching times between the two modes
are shown in red.
read is discovered at events of w. However it must be implemented at an event of r, whence
the backtracking shown by the backward pointing arrow in the figure, which actually realizes
formula (15).

From this analysis, a number of consequences can be drawn:

Property 1 (Communication by sampling)
1. If " = ¢}’ holds, then w>r stream preserves w, meaning that v**" = v*.

2. If writes are more frequent than reads (formally, type read always holds), then, for
everyt € T, c{’™" = c] holds, i.e., no read is superfluous.

3. If reads are more frequent than writes (formally, type write always holds), then, for
everyt € T", ¢’ = ¢}’ holds. Thus, in this case, w>r stream preserves w.

PI n1854



14 A. Benveniste & al.

4. We always have ¢’ < min(c}’, c}). Furthermore, this condition refines as follows:

VEET™ : T

= max
O=to<t1<-<tm—_1<tm=t
m
: w w ' r
E min (ctk —ci ¢ — ctk71> , (16)
k=1

where the mazimum ranges over the set of all finite partitions of interval (0,t]. Equality
is reached if 0 =ty <ty < - - <tpm_1 <ty =t are the successive dates of the switch
flow of wir.

5. We have
Imf(fh —tha) < If (7 — 1) < sup(r®” — 1) (17)
< 2sup(sup(ty — ¢ 1), ig%(tz —tp_1))

k>0

Statement 1 expresses that the preservation of counters guarantees stream preservation.
Statements 2 and 3 describe the behaviour of communication by sampling in case of slow /fast
and fast/slow modes for the pair {writer, reader}. Formula (16) provides exact evaluation of
wpr. Finally, formula (17) shows how lower and upper bounds for delays between successive
events are preserved by communication by sampling.

Proof: Statements 1 — 4 are immediate. So we focus on statement 5. Assume that suc-
cessive writes and successive reads are separated by at least duration 6. Then, flow w > r
cannot have two successive events in less than §. This shows the first inequality of (17).

To prove the second inequality of (17), assume that two successive reads always occur
within less than A, and the same holds for two successive writes. Then, assume that there
exists some k£ > 0 such that ¢}">" — t}'*] > 2A. By assumption on w, we must have at least
two writes and two reads in the open interval (¢}>7,¢}*>"). Suppose that one of these writes
occurs before one of these reads. Then, this would have resulted in an extra occurrence
of flow w > r in the considered interval; a contradiction. Therefore, no read can follow a
write in the considered open interval. Let w,,, be the first write and r,, be the last read
in the interval (¢3*7,¢}>"). Then, one of the two inequalities must hold, namely: either
thot1 —tn, > A, orty —ty > A. This contradicts the assumption and proves the
second inequality of (17).

3.2 Taking latencies into account

So far we have ignored delay in the operator >: we have assumed that what is written is
immediately available for reading. Clearly, this is rarely the case in practice, where various
types of latencies are introduced between a writer and a reader, including program and
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Loosely Time-Triggered Architectures 15

operating system execution, communication, etc. To account for latencies, we consider the
physically-delayed flow w’, related to w by Vn : v¥ = v¥ and

£ = £ 4 6, (18)

where dj, is a (possibly variable) positive latency. Since latencies d vary, it is possible that
the order of events is reverted in w’: for instance, if 0, — o1 >t} — t}’, then we have

' =t 4+ O >t 1t Okt = t}c“jrl. We wish to forbid this, therefore we make the following
assumption.

Assumption 1 Latencies d; do not revert data:
VEe Nt >t (19)

Using (19), (18) can be rewritten as V¢t € R, : c;“‘j;(; ., = ¢, also written as
‘t

¢ o (Id + bpw) = ¥ (20)
We denote by § the flow of latencies dx, k € N, and by
8 [w] (21)

the flow w’ related to w via (18) or (20). Whenever needed, all the results we provide in the
sequel can be adapted to handle latencies, by replacing a considered flow e by its delayed
version 0 [e].

3.3 Buffered Communication by Sampling

Up to now, we have considered basic CbS, where the communication medium behaves like a
shared memory. It is of interest to extend this mechanism with bounded buffers, as follows.
We assume that the reader is equipped with a buffer of size M. The buffering mechanism,
illustrated in Figure 4, is as follows:

e When the buffer is full, an additional writing puts the fresh data in place 1 of the
buffer, and shifts by 1 place all data previously sitting in the buffer. This causes the
loss of the oldest data, sitting in place M.

e Readings from the buffer get the oldest data from it, i.e., the data sitting at place
N{”", where N, is the buffer level at instant ¢.

e When the buffer level is > 1, then readings consume the data. Alternatively, when the
buffer level equals 1, then readings do not consume the data.

e The buffer is initially non-empty.
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16 A. Benveniste & al.

original reading writing

Figure 4: Buffered Communication by Sampling. Places in the buffer are indexed, from left
to right, by 1,2,3,4. Four scenarios are shown in the figure (from top to bottom). Each
scenario illustrates how the original buffer is transformed by a read or a write operation
(the write operation is applied to the original buffer and not to the buffer resulting after the
read). Grey boxes indicate places filled with data; white boxes are empty; and paved white
boxes indicate that the data is removed except when this would make the buffer empty.
Arrows indicate the move of data. When writing, a paved box is regarded as empty, as
depicted in the first row.

This mechanism is non blocking, for both writings and readings, and reduces to basic CbS
when M = 1. Note the first row in Figure 4, which illustrates that the data is not consumed
when buffer level is 1. This mechanism is denoted by

wbypT (22)
It is formalized next. For z and y two flows, set

Cor = ¢ — ¢

Ng/ = (cgy—cly) — min (cf, —cl,) (23)
’ ’ ’ u€E[s,t] ’
(Note that (23) generalizes the two-counter mechanism (34) to the case where the initial

instant is s instead of 0.)
Let w and 7 be the input and output flows of w >y r, respectively. The clocks of w
and r are the writer’s and reader’s clocks, respectively. In the following equations, vector
flow w[0,...,M — 1] is a buffer of size M, whose components are denoted by w[k| for
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k=0,...,M —1. Forevery m=0,...,M —1 and s € R, set

ttim,s] = min{t € T |t >sand m+ N;;" > M —1}
t"[m,s] = min{t € T" |¢t>sand m+ N;" <0} (24)
tlm,s] = min(t*[m,s|, t~[m,s])

p[m, s] = if t{m, s] =t~ [m, s] then 0 else M — 1

where, by convention, the minimum of the empty set is +occo. Instant ¢t [m, s| is the first
instant where the cumulated excess of writings over readings starting from level m at time
s, reaches M — 1. Symmetrically, ¢t~ [m, s] is the first instant where the cumulated excess of
writings over readings starting from level m at time s, reaches 0. Finally, if the buffer level
is m at time s, t[m, s] is the first instant where the buffer reaches one of the two boundaries
0 or M — 1, and p[m, s] gives the buffer level reached at that time. Define inductively the
following sequence of instants and buffer levels:

toZO 3 mQZO

25
tn+l = t[mnatn] y Mp41 = p[mnatn] ( )

If t,, = 400, then the subsequent terms of the sequence are also infinite. Then, for every
t € Ry, the buffer level at time ¢ is equal to:

th <t <tpy1 = NJY =m, + N (26)
And, finally, the buffer contents and output of the mechanism are given by:

’LU[O]t = Wt
Vk=1,...,N*" = wlk];, = wlk - 1], (27)
re = w[N""y

Equations (24)—(27) formalize buffered communication w >ps7. Observe that these equations
are easily implemented in an on-line form. When

holds, i.e., the buffer never gets full, Equations (24)—(27) simplify as follows:

N o= Ny’
wl0]: = wy
Vk=1,...,N'" = wlk]; = wk—1],;
re = w[N""]y
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4 Single write/read communication over an LTT bus

The next step in our design flow is to map the functional requirements and the communication
by-sampling mechanism over an LTTA. We proceed to solve the general problem by first
solving the problem of mapping a single write/read communication by sampling mechanism
over an LTT bus. That is, in this section, we consider a triple

{writer w, bus b, reader r}

communicating by sampling, in this order. The overall model of this communication medium
is described by

(w>b) o7 (30)

Not surprisingly, due to (9), (w>b)>r # w> (b>r) in general. Thus we prefer keeping
explicit bracketing when cascading CbS communications.
Using notation (21), LTT bus with latency is modeled by

(6 [web])>r (31)

Suppose that, in communication model (30), bus b implements M -buffered CbS commu-
nication, whence the overall communication, from writer to bus to reader, is modelled as
follows, see (22):

(w D>ar b) >r
Then, sufficient conditions for stream preservation are the following:

Property 2 (LTT bus with buffer) Assume that the writing, bus transmission, and read-
ing times satisfy the following conditions:

1. For every k>0, cot¥ —cbot¥ , > M holds.

2. Type write always holds for (w o (Id — N{**)) > b, where N"** is defined in (34).

Then, (wpb) b1 stream preserves w.

Proof: Condition 1 is just Hypothesis Hs of Section 6.1, reformulated for the pair (z,y) =
(w,b). Thus, if flow w puts tokens in the bus buffer for (possibly immediate) consumption,
then this buffer will never overflow. Equivalently, Condition 1 ensures that no write will be
missed by the bus. Note that this condition is equivalently reformulated as V¢ € Ry, N,” b <
M — 1. Thus we are in the case (28) where formulas (29) are valid for describing w > b.
Let us now focus on Condition 2. Note that, for every ¢ positive, v* o (Id — N*:*), is the
most recent relevant value input by the writer, that is output by the bus at or before time
t. Hence, by Property 1.3, Condition 2 ensures that the reader will not miss any such data. ¢
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More effective conditions can be stated that imply Conditions 1 and 2 of Property 2 and
refine the conditions of Theorem 1 of [9], for the case of buffered bus communications with
variable periods:

Corollary 1 (LTT bus with buffer) Assume that the writing, bus and reading times sat-
isfy the following equations, where 5°, A®, etc. are positive finite constants:

Vi 6w < W, — Y

Vp: 80 < b, —th < AP (32)
Vm : troa —th < AT
If
sw AT
§v > Ab and {EJ > 5 (33)

where |x| denotes the largest integer < x, then (w by b) > 1 stream preserves w.

Proof: First, note that condition 6% > A’ implies Condition 1 of Property 2. Next,
L‘SA—ZJ gives the minimal number of ticks of the bus clock that separate two successive writes
(see the proof of Theorem 1 of [9] for the details of this argument). Finally, | 55| is the
maximal number of ticks of the bus clock that separate two successive reads. Thus, the
second condition of (33) implies condition 2 of Property 2. This proves the corollary. o

Comment. Discrepancy between lower and upper bounds for the time-varying periods in
(32) is due to a combination of reasons. First, relative drift between physical clock exists as
soon as clocks are not strictly synchronized. Next, low level mechanisms of the write, read,
and fetch tasks in the communication medium causes jitter, that is, fluctuations in the period
that do not accumulate. Jitter amplitude is typically much larger than drift amplitude. On
one time period, both variations are subsumed by the single mechanism of lower and upper
bounds of (32). However, this no longer holds if several successive periods are considered:
while drifts accumulate, jitter does not. Therefore, in the long run, accumulated drift will
dominate jitter. To address this, some studies introduce explicitly drift and jitter in the
time model of the communication medium, e.g., see [14]. This is particularly important if
buffered transmission is considered. o

5 The LTT communication Network (LTTN)

The general case of arbitrary communication topology deployed on top of possibly several
buses requires additional work, because the conditions of Corollary 1 essentially require that
the writer must be slower than the reader.
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To cope with this problem, as a next step, we consider mapping over a LTT Network,
that is an ideal communication network in which every communication occurs according to
the exact (unbuffered) CbS scheme modeled in Section 3.

Formally, we consider a network involving computing units C;, 7 € I, where set I of sites
is finite. Each site C; is equipped with a quasi-periodic clock k,;. Clocks x; are loosely, not
strictly, synchronized (this is formalized later). The network is modeled as a directed graph
G having C;,7 € I as set of vertices. Having a branch C; — C; in G means that C; acts as a
writer w; and C; acts as a reader 7; in a point to point CbS communication. Bi-directional
and ring communications are allowed, thus G can have loops.

Communication C; — C; is by sampling, with the following characteristics (a) — (d),
where k | 2 denotes clock x, down sampled by a factor of 2, i.e.,

Vo >0: iR =5

(a) Loose synchronization: for evey pair (i, j) of sites such that C; — Cj is a branch of G,
pair (k; |2, k;) satisfies the assumption of Property 1.3, i.e., clock «; is more frequent
than downsampled clock k; | 2.

(b) Writes w; are tentatively triggered by clock x; | 2. Effective writes occur at a clock %,
downsampled from «; | 2 by traffic shaping [23], see below for a detailed description. A
key feature of our traffic shaping policy is that it only depends on the effective writer’s
clocks for the different sites, not on the messages transferred.

(c) Reads r; are triggered by clock «;. To cope with upsampling, from writer’s clock s}’
to reader’s clock k;, each message written by w; comes equipped with an additional
one-bit stamp that alternates between values 0 and 1. Alternations in the messages
read by r;, from 0 to 1 and from 1 to 0, indicate a fresh value. Other occurrences of
w; are repetitions. Together with the loose synchronization property (a), this one-bit
stamp is in charge of maintaining data semantics, in the Kahn process network sense
(see later).

(d) Only fresh data are used in performing writes w; at rate % C r; | 2. This operation
is called “clock regeneration” and is studied next.

Communication by sampling, from writer w; to reader r;, is illustrated on Figure 5.

We now have to link the LTTN to the underlying LTTA and to optimize the use of LTTA
resources. In LTTA, being loosely synchronized, the physical clocks may suffer from relative
drift and jitter. If not compensated for, clock drifts cause buffer overflows, thus resulting in
loss of data and lack of semantical preservation. Thus, a set of protocols will be developed
to ensure that the set of distributed logical clocks built on top of the loosely synchronized
physical clocks exhibit no relative drift, but only bounded jitter.
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cock ki —Fp—4+——F—+r—F—+—

cdock tj——f—4—F—4—F—+—

Figure 5: Illustrating communication in LTT network. Ticks of clock « | 2 are indicated by
large ticks of clock x. Red bars indicate fresh data. Directed arrows indicate copying values.

6 Protocols to adapt LTTA to LTTN semantics

The two protocols introduced here (Clock Regeneration and Predictive Traffic Shaping) use
a simple two-counter mechanism that we introduce first.

6.1 A generic two-counter monitoring protocol

All the protocols needed for LTTA will rely on a unique mechanism that we describe now.
Consider two flows = and y, together with one of the following two hypotheses:

H;: there exists a real number D > 0 such that, for every k > 0, t] -t/ | <D <t{—t7_,
holds.

Hj: there exists an integer M > 0 such that, for every k > M , cY oty —cVoti_,, > M
holds.

Hypothesis H; expresses that the (possibly time varying) period of flow y possesses an upper
bound that is also a lower bound for the period of flow x. Hypothesis Hs expresses that,
if flow x puts tokens in a buffer for (possibly immediate) consumption by flow y, then this
buffer will never overflow provided that it has size at least M. Define the following quantity,
for t € Ry

N =qet (¢f —¢f) — min (cf —cl) = ¢, —ci,, (34)
s€[0,t]

where
xT xT xT
cs,t =def €t — Cg

and s; is the last instant where the minimum over s € [0, ] is reached in (34) — s; exists
since counters are right continuous. Then, under H; we have V¢ € R,, N;”Y < 1 and,
under Hy we have Vi € Ry, N,”Y < M. So, monitoring the violation of either hypothesis is
performed by maintaining counter N*¥ and comparing it with the appropriate threshold.
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However, formula (34) defining N*¥ is not suitable for on-line evaluation. We shall thus
reformulate (34) in an on-line form. First, note that, although it is integer valued, N**¥ is
not a counter associated to some flow in the sense of Section 2.1. We must regard it as a
flow itself. Seen as a flow, N*¥ has set TV"" of dates of occurences, and sequence of values
vN"" for n = 1,2,..., which we shall denote by N*¥, with the abuse of notation proposed
in the beginning of Section 2.1. This being said, note that

TN = 7*yTY, (35)

Then, let z be the flow with values in the set {—1,0,+1}, such that 7% = T* U TY, and
whose value at a given occurence is +1 if x occurred alone, —1 if y occurred alone, and 0 if
both x and y occurred simultaneously. Formally:

v e {-1,0,+1} (36)
T2 = T*UTY
+1 if z occurred alone at ¢
VteT?:vf = ¢ —1 if y occurred alone at ¢

0 if otherwise

Then, the following recursive formula for evaluating the successive values N7"¥, N;¥, ... of
flow N*¥ holds: Nj*¥ = 0, and, for every n > 0:

NZY = max(Ny% + 2, 0) (37)

This mechanism (35-37) for monitoring the violation of an hypothesis of the form H; or Hy
will be used in several contexts to develop our LTT architecture.

Comment: link with statistics. On-line algorithm (37) for monitoring buffer level pos-
sesses some interesting robustness properties. We introduced it for the on-line monitoring
of buffer level in a deterministic setting, with hard bounds specified by hypotheses H; or
Ho.

Now, suppose we are instead in an adaptive, Quality of Service oriented, context [16]
where we do not seek for zero loss in buffers, but with “low probability” loss in situations
where reads are more frequent than writes in the average. This is formalized by equipping
flow 2 defined in (36) with a probability law making the successive values of z probabilistically
independent with P(v* = —1,0,4+1) = «a, 3, , where a + 5 4+ v = 1. Expressing that reads
are probabilistically more frequent than writes is then formalized by the condition a > .
As long as this condition holds, then the probability of buffer overflow can be made small
by proper sizing of the buffer.

Problems arise if condition o > v gets violated, say, if @ < ~ becomes true at some
time for some reason. Suppose, for simplicity, that o — v changes, from 7 to —n for some
positive parameter 7 (excess read becomes symmetric excess write). Then, it turns out that
comparing N*¥ computed as in (37) to a certain threshold is optimal for detecting this
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change, in a statistical sense [27]—in statistics, this procedure is known as the Page-Hinkley
Cumulative Sum test [6].

To summarize, mechanism (35-37) is good for deterministic buffer level monitoring and
possesses additional virtues regarding robustness with respect to uncertainties.

6.2 Clock Regeneration

The preservation of stream semantics is formalized by condition (8). To guarantee (8), state-
ment 3 of Property 1 essentially requires that the writer shall be slower than the reader—
what “slower” means is quantified precisely in the referred statement. Compensating for
the ever decreasing sampling period in cascade communications is performed by a clock
regeneration protocol, implemented on each computing unit C', see Figure 6. This protocol

r when 3"

w i i i
clock tf —Fp—t+—F—t+—F—1+—""74-

Figure 6: Illustrating clock regeneration Protocol 1. See Figure 5 for graphical conventions.
performs consistent downsampling of the input data read at rate x, for re-emission at a rate
(possibly downsampled from) « | 2. The function performed by this protocol is to discard
replicates, while properly emitting fresh data with no loss. This protocol is formalized next.

Protocol 1 (Clock Regeneration protocol) C possesses a quasi-periodic clock k and
hosts a reader r and a writer w. Reader r and writer w are driven by k and k", respectively.
Clock v is some clock downsampled from k|2, i.e., K C k|2, see (1), resulting from the
traffic shaping policy described later. Read flow r has value of the following type

Vn>0:r, € Dx{0,1}

meaning that, for every n, the nth value of flow r is marked by a bit, denoted by ().
Then, site C' prepares flow w for its output by selecting the fresh reads and discarding
repetitions, i.e., w is the output of 2-buffered CbS communication 7 >o k", where

7 = rwhen [5" # " o (Id — 1)]

Buffered CbS communication is defined in Section 3.3 and operator “ when ” is defined in
Section 2.1. The relevant information transmitted by our LTT network is captured by the
set of reads “r when 8" and writes “w”, attached to each site C'. Protocol 1 is illustrated
on Figure 7, obtained by “merging” Figures 5 and 6.
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ok rki—fp——+—F—

S
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rj when 37 i }\\\ }\\

cock #tj ——f——4—F—4—

Figure 7: Combining C; — C; communication with Clock Regeneration Protocol at C;.

clock k;
wy
rj

rj when 37
wj

clock k;

| ——— ——
|
|
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T

Figure 8: Combining C; — C; communication with Clock Regeneration Protocol at C;. A
situation where buffering is needed, compare with Figure 7. The problem is that two ticks
of k; | 2 occur between the first two ticks of ;| 2.

So far Figure 7 shows the favorable case, where stream semantics is preserved without
the need for a 2-buffer. However, Figure 8 shows that problems can occur if a 1-buffer only
is used, despite our technique of downsampling, when clock «; is slower than clock ;. In
this figure, the buffer gets filled at the second blue thin bar. It may never get empty, and
may eventually overflow later, thus violating the preservation of stream semantics.

To overcome this problem, we use predictive traffic shaping at the writer. The idea is that
the writer would implement some LTT based monitor detecting the risk of overwhelming
its corresponding reader—see below. When approaching a risky situation, the writer would
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then anticipate and decide to skip a clock cycle and delay its transmission to the next cycle.
This is formalized next.

6.3 Predictive traffic shaping

Predictive traffic shaping is implemented at site i in the following way. Assume for a while
the following regarding network G:

Assumption 2 For each direct link C; — C; of G, the reverse link C; — C;, also exists in

g.

. . . . . . . w w .
Using this reverse communication link, site ¢ can observe counters ¢ and ¢/, so it can
compare them by maintaining the counter

NI =g NS (38)

If transmission exhibits zero latency, then, at any instant ¢, ij yields the level of the input
buffer attached, at site j, to the communication link C; — C;. Note that there is no circular
definition in doing this, since traffic shaping will be performed in a predictive way, as we shall
see. (The more realistic case of non-zero latency is discussed in Section 6.6.) Maintaining
counter N on-line is performed by using the mechanism of Section 6.1.

For example, the situation depicted in Figure 8 occurs at the first instant ¢, where
N;? > 2 holds. More precisely, the second blue thin bar would occur at that instant.
Assume a 2-buffer is available at site j, as indicated in the figure. Then, the buffer gets
full at instant ¢, for the first time. If bounds exist for the relative drift and jitter between
the two clocks at sites 7 and j, then the buffer will not overflow immediately, but some safe
period exists, such that N;’ < 2 is guaranteed during this period. Now, two cases can occur:

e The buffer is emptied before the end of the safe period, thus bringing the communica-
tion link back to its safe mode, i.e., N;7 < 1.

e The end of the safe period is reached while the buffer is still full. Then, writer w;
decides to postpone sending its data to site j.

Since traffic shaping delays emissions, effective writes at site 7 are not according to nominal
clock k; | 2, but are indeed possibly downsampled, with clock s C x; | 2, see (1). This
predictive traffic shaping policy is formalized next. Recall the notation cf, = ¢ — cf, for
s <t.

Assumption 3

1. There exists K > 0 such that, ¥V s,t with s <t
max ( 1, min cg’ ) > K(t—s) (39)

Constant K is called o pessimistic rate for network G.
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2. There exists a safe period Tgare > 0 such that, for any two s and t such that 0 <t—s <
Tsafe

. kg
max (i} — ) < 2
YRR R

Condition 1 expresses that the rates of all clocks are uniformly bounded from below—i.e.,
no clock can be “possibly infinitely slow”.

Protocol 2 (Traffic shaping policy)

o As part of running link C; — Cj, site i maintains counter N/ defined in (38). Define
the safe mode of link C; — C; by the condition N;” < 1. Say that site i is in safe mode
if all its outgoing links C; — C; for each j # i are safe.

e When safe mode is left at site i (i.e., Ntij = 2 occurs for some j # i) a timer is started
by site i, with timeout value equal to Teate- This timer is killed as soon as the site
returns to its safe mode.

o Alternatively, if timeout occurs, then site i delays its next emission to all sites it
communicates with, until return to the safe mode occurs.

Note that chosing 74at¢ = 0 amounts to using no timer.

6.4 Semantics preserving properties
Theorem 1 Assumptions 2 and 3 are in force.

1. A sufficient condition ensuring stream preserving for each communication over network
G is that each link C; — C; comes equipped with Protocols 1 and 2.

2. In this case, we have, for each site i, and every pair (s,t) such that s < t:
max(l, cj}:) > K-

Comments: The first statement says that our architecture is a Kahn process network [18].
The second statement says that, although some slow down results from applying traffic
shaping, the overall network rate is at least K/2.

Proof of Theorem 1. The proof proceeds by a few lemmas.

Lemma 1 At any instant t, Ntij yields the level of the input buffer attached, at site j, to
the communication link C; — Cj.

Proof: Direct consequence of (38). o

Lemma 2 The network is stream preserving.
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Proof: For each site ¢, writes at this site occur according to clock ;. By Lemma 1, for
each link C; — (), counter Ntij yields the level of the input buffer for this link. Protocol 2
avoids the buffer to reach level 3.  Since a 2-buffer is used in Protocol 1, Protocols 1 and
2 together ensure that no input buffer will overflow. Since Protocol 2 delays emissions (but
doest not cancel them), the network preserves stream semantics. In other words, it behaves
as a Kahn process network [18]. o

So far we proved statement 1 of Theorem 1. This statement is not enough since stream
semantics might be satisfied at the price of uncontrolled slow down of the communication
pace of the network. Statement 2 addresses this. We prove this statement by using a
graphical analysis bearing similarities with the techniques of Network Calculus [23, 39].

A graphical analysis of Protocol 2. To prove Statement 2, we shall first develop a
graphical analysis of how Protocol 2 performs, for a pair (w, ) of writer and reader of read
type, meaning that reads are less frequent than writes. In this case Protocol 2 must be
applied by the writer, otherwise data will get lost.

The reader is referred to Figure 9-top for a graphical analysis of this situation. The
diagram of this figure displays counter level versus time. The horizontal grid depicts the
successive values 1,2, ..., for the counter. Let us first focus on the red straight line and
staircase. The red staircase depicts the increase of counter ¢” for a flow r that we interpret
as a reader. To simplify the drawing of this example, we have taken a strictly periodic event.
We can equally well recover this staircase by considering the red straight line that links the
points on this plane with coordinates (t7,n), for n = 1,2,... (if the flow r is not strictly
periodic, this yields a piecewise straight line). Shifting this red straight line to the top by 2
yields the red dashed line, which defines the boundary of the safe mode, for a writer. Call
safe zone the zone between these two lines.

Next, a writer w is shown in blue. Let us first focus on the small pattern on top left of
the diagram. This pattern shows the evolution of the counter ¢ for 4 successive events of
w, when this writer skips writing at ticks 2,3, and 4 of its clock. As a result, no writing
occurs at these instants and the final value for the counter is 1. This staircase is equally well
encoded by the piecewise straight line in blue. For our following discussion, we interpret this
piecewise straight line as a continuous time “clock” subject to resets consisting of decrements
by an amount of 1. These resets are indicated by the downgoing arrows.

How the writer’s counter ¢* behaves under Protocol 2 is depicted using the above in-
troduced continuous time clock (depicted by the piecewise straight line) sitting between the
two straight red lines. The duty of the protocol is to reset the continuous time clock so that
it stays within the safe zone. This is always possible provided that the vertical thickness of
the safe zone is at least two—whence the size two for the buffer we use in this protocol.

So far we have captured graphically the safe zone for a site not subject to downsampling
due to Protocol 2. What is the safe zone around w, for a new site willing to communicate
messages to w? This safe zone (in magenta) is shown in combination with the copy of the
blue clock sitting in the middle of the diagram. The two zones, for the reader r (in red)
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Figure 9: Top: Illustrating Protocol 2 for a fast writer w (in blue) and a slow reader r (in
red). Bottom: showing the safe zones for the pair (w,r) when r is slower than w.

and the writer w (in magenta) are jointly depicted, with their exact relative positions, in
Figure 9-bottom This figure shows that the floor of the magenta safe zone for w possesses
the following property: shifting this floor to the right by one tick of the magenta clock yields
a line that sits at a vertical distance strictly larger than 1 below the ceiling of the safe zone
for r. This graphical property reflects the fact that the buffer level, from w to r, will never
exceed 2.
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Study of Protocol 2 for a star shaped network of sites having a slowest center
site. Now, assume that we have a star-shaped network of sites C;, i € I with center C;, for
some i, € I. Each site C;,i # i, is in bi-directional communication with the center of the
network. In addition, there are additional direct bi-directional communications C; < C}, for
some pairs (4, j) such that 4, j # .. We assume that the center site has slowest clock, that is,
for each i # i,, w; >7;, has type read, i.e., communications C; — C;_ require traffic shaping,
whereas opposite communications don’t. We can attach to each CbS communication w;>7;,
two diagrams such as in Figures 9 (showing the exact controlled buffer level) and ?? (showing
the safe zones, for w; and r;,). Superimposing the different safe zones for each w;,i # i.
reveals the following:

1. For each link C; — C;_, traffic shaping must be applied.

2. For each reverse link C; «— C;_, traffic shaping is not needed. The reason is that the
level of the buffer associated to this communication will never exceed 1.

3. For each link C; — (), where i,j # i,, the two safe zones overlap by a vertical
amount strictly greater than 1. Consequently, no additional traffic shaping is required
by these lateral communications since their associated buffer, for each direction, will
never exceed level 2.

Study of Protocol 2 for a general network satisfying Assumption 2. It remains
to show Statement 2 without assuming that the network is star shaped with a slowest site
at its center. To this end, create an extra, dummy site i, not belonging to /. Equip site g
with a clock k;, satisfying (39) and making this site slower that all pre-existing sites—these
two conditions are not contradictory. Create a bi-directional link between iy and every i € I.
First, we can apply the above argument and prove Statement 2 for this augmented network.
And the proof is now complete if we observe that adding one more clock can only slow down,
not accelerate, the pre-existing clocks. This finishes the proof of the theorem. o

Applying repeatedly Theorem 1 shows that:

Corollary 2 LTT networks, when combined with nodes implementing Protocols 1 and 2,
preserve stream semantics.

6.5 Relaxing Assumption 2 on network topology

So far we assumed that, for each direct link C; — C; of G, the reverse link C; — Cj, also
exists in G. Assume now the following:

Assumption 4 Network G is strongly connected.

Site ¢ in general has no direct knowledge of clock % so it cannot compute counter N i
defined in (38). Let C; — Cj; be a link of G, and C; = Cj, — ... — C},, = C; be a path
of shortest length, from site j back to site :. The idea is that site ¢ will use 7, as an
estimate of x%". We claim that
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Theorem 2 The combination of Protocols 1 and 2 preserves stream semantics, provided
that o M -buffer is used instead of a 2-buffer in Protocol 1.

Proof: The theorem is a direct consequence of the following lemma:

Lemma 3 For 2 <m < M, and for any two s and t such that 0 <t — s < Tgate,

Kio Rim

Cs,t _Cs,t < m

Proof: The proof is easy, by induction over m. o

When G is not strongly connected, we apply Theorem 2 to each connected component.
The different connected components are partially ordered and form a cascade communica-
tion, for which it is enough to have clocks of decreasing nominal periods, adjusted to ensure
type write for communications between successive connected components.

6.6 Discussion

Taking latencies into account. So far our network model assumes zero-delay transmis-
sion. If we need to account for transmission delay, then the latter is simply absorbed by
subtracting, from the safe period 7yafe, a global upper bound of the transmission latency.
This of course assumes that the latter upper bound is small enough so that such a reduction
still leaves room for a non empty safe period.

Relaxing perfect real-time synchrony at each given site. Protocol 1 assumes that
both r and w are bound to the same clock. This requires perfect sampling for two different
signals. However, Theorem 1 can in fact tolerate a small bounded jitter between sampling
times, for reads and writes on the same site.

Handling Event Triggered applications. So far we have assumed that all communi-
cations are performed according to a single logical clock (provided by the successive ticks
of the effective writers clocks at each site). This, however, does not capture the case in
which some tasks are triggered by alarm signals and otherwise silent. A relaxed assumption
encompassing such cases is to consider that there exists an overall logical clock, from which
all logical communication clocks are derived by (possibly data dependent) logical downsam-
pling. Our architecture allows this by “stuffing” idle communication periods by one-bit fake
messages aimed at driving traffic shaping.

Traffic Shaping vs. Flow Control. Under Assumption 2, each site C; sends a message
also to its sources. In this case, our predictive traffic shaping protocol (PTSP) resembles flow
control algorithms (FCA). Typical FCA’s use an explicit handshaking protocol whereby the
receiver can slow down transmissions from the sender using special flow-control messages.
In contrast, the PTSP proposed in this paper, estimates (really measures) the level of the
receiver buffer by observing the effective clocks (writes) of both the sender and the receiver.
This approach is particularly effective in our systems: we can use any message written by
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the receiver and reaching the source, regardless of its content. The PTSP amounts to logical
clock synchronization, whereby the faster sites will skip clock cycles to realign with the
slower sites.

There are also FCA’s that rely on counting buffer levels, similarly to our PTSP, one such
example is the FCA in the PCI Express bus [30]. It is based on “credits”, that is:

1. at initialization, the receiver declares its credits limits (in our case the 2 buffer places
in Section 5).2

2. before transmitting, the sender checks a local counter (same as N*/). The transmission
is delayed if it would bring the counter beyond the declared credit limit.

3. the local counter is decremented when the receiver sends a "flow control update" (FCU)
frame back to the source on the same physical link.

Note that, in addition to counter decrements, the FCU frame can declare a new credit limit
when resources (buffers) are allocated dynamically on the receiver.

Practical use of LTT network. Stream semantics preserving is a questionable feature
for real-time systems. This assumes that emissions can be postponed, i.e., data can be
delayed. This also assumes that input data to the network are independent from network
pace. Of course, if input data are provided by polling sensors in real-time, then inputs
become timing dependent and the relevance of preserving input/output stream semantics
may be questionable. Still, this feature is important regarding discrete control for mode
changes and protection. Thus, in addition to providing Theorem 1, we feel it useful to
explain how our LTT network works in practice, when Protocols 1 and 2 are applied.

The different nodes i € I of the network are equipped with quasi-periodic clocks «; for
message reading, and with effective clocks ;" for message writing. Clocks «, are subject
to both relative jitter and drift. In contrast, the protocol-controlled effective clocks ki’ are
only subject to jitter and suffer from no drift. Writes at each site use the most recently
available input data to the overall system, as well as read messages sent by other sites from
a 2-buffer. This bounds the overall latency of the system. The bottom line is that LTTA
offers interesting features for distributed real-time computer controlled systems.

Are requirements met? The first sentence of this paper states: “All modern real-time
distributed architectures share the viewpoint that communications should be non blocking.”
So far our present LTTN does not satisfy this: if a site clock fails silently, then all sites to
which the faulty site sends messages, directly or indirectly, will be blocked. However, prior
knowledge of nominal bounds for the periods allows detecting and isolating the suspect.
Fault tolerance for LTTA is adressed in Section 9.

2PCIE supports different kinds of message traffic. The receiver has different credit limits associated to
each kind.
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7 Mapping LTTN on LTT busses

So far we have investigated single communication over an LTT bus and then LTT overlay
networks, by considering that the communication medium directly provides communication-
by-sampling services for point-to-point communication between sites. In this section we
investigate how to deploy an LTT overlay network over an LTT bus. Combining Corollary
1 and 2 yields:

Corollary 3 LTTN, when implemented over an LTT bus satisfying the conditions of Corol-
lary 1, and combined with nodes implementing Protocols 1 and 2, preserve stream semantics.

Suppose that clocks x; are equal to a same clock « for all i’s. One simple way of chosing the
bus b is to have its clock such that k = k; | 2. In this case, the clock of the writes (where
information is actually transmitted) is equal to x; | 4. This is exactly the oversampling
required by the robustifying protocol called “consolidation robuste”, proposed in [20, 21].
Our theorem allows for less oversampling.

Bus based LTTN: From the above analysis, the natural implementation of a bus based
LTTN can be roughly characterized as follows:

e Bus has quasi-periodic clock with “nominal” period J,. This means that phase can be
arbitrary and actual period can vary somewhere around dj.

e Sites have quasi-periodic clocks with “nominal” period 2§;, with the same interpreta-
tion.

e Read at each site is triggered by the site clock, whereas writes are at least twice as
slow, and subject to traffic shaping. Different operations at the same site need not be
bound to the same clock, strictly. Small jitter can be tolerated.

8 Multiple Access

So far we have assumed that a single LTT bus is dedicated to each LTT link. In this section,
we study the multiplexing of several communication trails

(w[k] > b[k) >r[k], for k=1,... K (40)

on the same bus. The flow b associated with the bus is then the multiplexing of the flows
blk],k =1,..., K associated with the different trails. This relation is written
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and the multiplexing operator & is characterized by the following equations regarding coun-
ters, dates, and values:

K
&= 30 (41)
k=1

K
T = T, k#j= T 0T =0 (42)
k=1
Vf _ Vf[k*(t)] (43)
where
blk
ki(t) = arg ke{l{{é?fK}lt[]

Formula (41) is self-explanatory; formula (42) expresses that the different trails interleave
on the bus; finally, (43) indicates that the bus carries, at a given instant, the value written
by the last trail that has written to the bus.

The implementation of the LTTA abstraction on selected bus platforms requires the
consideration of the bus scheduling policies, which define the sharing of the available bus
bandwidth. In this implementation stage, a quantitative analysis is necessary to check if
the provided bandwidth can be allocated by the medium access control policy so that the
delay and rate requirements can be guaranteed. Such a quantitative analysis makes use of
information resulting from the deployment onto the physical platform. Each flow b[k] needs
to be annotated with the amount of transmission time v[k] that it requires in the worst case,
for the communication of a writer-reader instance pair.

In the following, we outline the mapping process of the LTTA model into bus platforms
implementing Time Division, Priority-Based and Resource Reservation access mechanisms
for sharing the physical bus among several writer-reader pairs. Furthermore, we discuss the
mapping onto platforms capable of adaptive bandwidth allocation.

8.1 Time Division Multiple Access (TDMA)

TDMA is the method of choice for multi-user access in Time-Triggered architectures. The
LTTA abstraction can be mapped into a TDMA bus platform with a suitable choice of a
static scheduling policy that allocates transmission slots among the different flows 1,..., K.
Following the general principles of Platform Based Design, the scheduling policy must pro-
vide an implementation that guarantees the timing requirements of the LTTA Model. When
a single TDMA bus is used to implement the LTTA abstraction of a communication among
several writers-readers, the relevant timing characteristics of the TDMA access policy are:

e Bounds 6%, 6%, A, A" and buffer capacity M occurring in Property 2, where i ranges
over the set of writer-reader pairs.
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e Pessimistic rate K and safe period 7,5 occurring in Assumption 3.

The implementation of LTTA on a time division bus is an interesting exercise, but probably
of limited practical value. A time division bus requires a global clock synchronization scheme
that is typically used to enforce communication models with a more restrictive semantics
than the LTTA. However, understanding the conditions for an LTTA implementation may
still be useful in cases when the bus utilization is high and the application does not require
strict time determinism. In this case, LTTA can relax the slot allocation constraints and
alleviate the scheduling problem.

Examples of existing time-triggered platforms are the TTP protocol [19] and the FlexRay
standard for automotive communication [15].

8.2 Priority Based Multiple Access (PBMA)

PBMA policies are preferred for Event-Triggered mode of computation and communication
since they are more flexible. Event-Triggered communication is generally preferred for sparse
flows, where effective communication occurs only at a subset of the ticks of the writer
site’s clock, see the third item regarding Event Triggered application, in Discussion section
6.6. Accordingly, we assume that the mechanism described in that session is used: idle
communication periods are stuffed with one bit fake communications aimed at ensuring
Protocol 2 of traffic shaping. In contrast, communication of effective data occurs according
to a sparse, event driven, mode. Since stuffing bits require less bandwitdth than actual
data, we can consider that, in Protocol 2, postponing communication consists in delaying
the emission of actual data and replacing the emission of actual data by stuffing bits.

The mapping relation of a flow b[k| into a priority-based platform requires that the flow
is annotated with an additional parameter consisting of its priority n[k]. A priority-based
bus platform typically includes a scheduler that can guarantee a worst case latency to each
flow, defined in the communication model abstraction by its rate and the worst case time
required for each transmission.

The worst case latency, and the corresponding bounds 6° and A® are typically obtained
by applying worst case latency analysis, such as the one defined in [410] for the case of a CAN
bus platform [10], in which messages are scheduled by priority, according to their identifier.

The reader is referred to [14] for the complete discussion of a CAN-based implementation
of an LTTA model, including the determination of the remaining bounds §** and A", the
rate K, and the safe period Tgare.

8.3 Resource Reservation Multiple Access (RRMA)

Resource Reservation is a general class of scheduling policies that allows the definition of a
virtual channel allocated to each writer-reader pair. Each channel is guaranteed a transmis-
sion rate corresponding worst case delays to each periodic transmission instance. Resource
reservation schemes are also typically characterized by the possibility of guaranteeing tim-
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ing protection among the different message streams that share the bus, so that an excessive
bandwidth request from any one of them does not impact the timing properties of the others.

Resource Reservation access policies have been known for some time in the networking
community. Relevant examples are the Weighted Fair Queuing policies, or WFQ [13], and
their successor WFQ? [7]. In the processor scheduling domain, the possible policies are
the Generalized Processor Sharing [29], the Constant Bandwidth Server [1] and the PFair
schemes [5].

All of them are characterized by the following general property: each stream is assigned
to a virtual channel with a nominal share of the resource (bus or processor) bandwidth. The
implementation of the virtual channel and the sharing of the resource time by the scheduler
typically cannot provide a fluid allocation. Each channel is allowed to deviate from its
nominal share by the definition of worst case lead and lag times at which the actual assigned
bandwidth matches the ideal one.

/

T
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o) Maxdelay
< O i
& ot -
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& -

Service received by stream k (transm. time)

Figure 10: Allocation by resource reservation, nominal share, lead and lag times.

The share is often defined as a reservation for a transmission time +/[k] at each time
interval ¢'[k] for flow b[k]. The worst case lead and lag times can be respectively identified
by a[k] and G[k]. This means that, starting from time 0, at time nt'[k], the flow is assigned a
transmission time in the range [nv'[k] — B[k], ny'[k] + a[k]] (see Figure 10). These guarantees
can be transformed into the delay bounds 6° and A’ and the rate bounds that must be
applied to the verification of the LTTA conditions.

Resource reservation schemes can be implemented as native protocols, but also on top
of priority based policies (as is the case for the CBS policy, implemented on top of CAN in

[25].
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8.4 Bus Access with Adaptation (BAA)

One additional possibility is the use of a bus platform that allows on-line adaptation of the
flow relative rates b[k], subject to the capacity constraint of the bus (41).

Adaptation can be used to tune the rate of critical flows b[k] in order to adjust to the rate
of flow w[k]. Correspondingly, for other trails, identified as subject to best effort service,
the rate of their flow b[k] can be dynamically decreased.

A generic adaptive policy uses the mechanisms of Section 6.1. Assume that our LTT bus
is equipped with a buffer of capacity M. Thanks to Property 2, ensuring that trail £ has
enough bus bandwidth is formalized by enforcing Hypothesis Hs of Section 6.1, for the pair

(z,y) = (w[k], b[k]) (44)

As detailed in Section 6.1, this is achieved by: 1/ computing, on-line, the counter N*¥
associated via formula (37) to the pair (z,y) defined in (44), and 2/ guaranteing that

N*Y < M —1 (45)

always holds. Preventing from a violation of (45) is achieved by allocating a slot of the bus
to trail k¥ when its writer w[k| is asking for it. This is possible as long as the condition (41)
regarding total buffer capacity is satisfied.

If granting access to trail k leads to the violation of condition 45, then access to all
trails cannot be granted and conflict must be resolved. This is achieved by performing
traffic shaping on the effective communications of actual data performed by trail k. More
precisely, suppose writer w(k] is asking for access. Then, if granting access may lead to the
violation of condition 45 and some trail also asks for access, then access is refused to trail
k and the communication of the corresponding actual data is postponed. Instead, trail k
emits a stuffing bit.

Note that, in contrast to the traffic shaping of Protocol 2, this traffic shaping, aimed
at controlling multiple access, relates to the application layer. Therefore, performing this
application level traffic shaping requires that the application layer shall be adaptive, by
supporting smooth degradation.

9 Fault tolerance

Fault tolerance mechanisms are needed to address the following types of faults—note that
issues related to data are orthogonal to issues related to synchronization and clocks:

o Corrupted data arising from perturbations to the bus. Provision for error correcting
codes and associated due oversampling is a first classical means to handle this; this is
not specific to LTTA and thus we do not discuss it here. In contrast, bus redundancy
in LTTA deserves specific study.

e Querloading of the bus by a writer, due to a failure of this writer to obey the traffic
shaping protocol. This will be handled by means of a writer guardian described later.
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Note that the same problem arising to a reader raises no specific problem (unless the
writer of the same site is also affected).

e Network starvation due to the failure of a site to communicate properly with the other
sites. As we already said, the traffic shaping protocol causes slow down of the entire
network to the slowest clock; this blocks the entire system if some site fails silent.

In fact, the same generic technique can be used for the last two cases, therefore we examine
this first.

9.1 Counter based guardians

Counter based guardians are a generic mechanism that takes advantage of the time-triggered
nature of LTT architectures—very much the same way that strict TT architectures do—to
compensate for undesirable features of Kahn network types of architectures regarding fault
tolerance.

Bus overloading can be prevented by monitoring that the rate of writing does not exceed
a pre-specified level. Symmetrically, network starvation due to site failure can be prevented
from by monitoring that the clock rate of every site does not fall below a pre-specified
threshold. Thus both services are variations of the same generic mechanism we describe
now.

Consider a flow e for which the following prior bounds are available, where d and D are
two constants such that 0 < d < D < oc:

VE>0:d <tf—t , < D (46)

holds. We wish to detect when the period of e possibly deviates from these bounds. To this
end, we associate to e its upper/lower monitor u*, whose prior bounds are set as follows:

VE>0:D <t —t < D (47)
VE>0:d <t -t | <d (48)

In these formulas, d and D are as in (46), and the other constants are selected such that
D' > D, d < d, and the differences D’ — D and d — d’ are small in a way compatible with
technology costs and detection needs. Combining (46) and (47) shows that, for every ¢ > 0,

NEe <1 (49)
Similarly, Combining (46) and (48) shows that, for every ¢ > 0,
NPt <1 (50)

Thus we need to detect the first instant where one of the two conditions (49) or (50) gets
violated and then emit an alarm. Computing on-line these two counters is performed by
means of the mechanism of Section 6.1.
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Application to writer guardian. The above technique is applied to the writer w in
consideration, and the lower monitor p,, associated to flow w is considered. When an alarm
is emitted, this means that either the writer or its associated monitor is faulty. Protection
is ensured by shutting this writer down and disconnecting the associated site from the LTT
network. This site is then removed from graph G. If another site needs data from the
removed site, it simply reads a constant default value.

Application to network starvation. This is the symmetric case. The upper monitor
pl associated to flow w is considered. When an alarm is emitted, this means that either
the writer or its associated monitor is faulty. Protection is again ensured by shutting this
writer down and disconnecting the associated site from the LTT network. This site is then
removed from graph G. If another site needs data from the removed site, it simply reads a
constant default value.

9.2 Redundant buses

Redundancy can be given to the bus by providing a backup for it. This requires having a
voter to detect deviations between the two buses. For LTT buses, we need to account for
uncertainties in the timing of the successive rounds of the bus. Therefore, direct comparison
of transmitted data by the two buses cannot be used—this problem has been an important
focus of [20, 21]. The voter we propose here has two stages. In the first stage, clocks are
compared. If the two clocks agree, then the second stage is activated, which consists in
comparing the data transmitted by the two buses. It is possible to rely on the first stage
alone. We detail the two stages next.

Clock based voter. To maintain the clocks of the two buses by and by within prespecified
bounds, we need to compute the two counters N}2 =ger N*'" and N2' =qo¢ NP2, The
clock based voter follows, by using the same trick again and again.

Data based voter. The data based voter is activated as long as the clock based voter
does not emit an alarm. It consists in monitoring the difference

ty

ta
V’ﬂ

— U
for successive n € N, where ¢; = (w>b;) >, for i = 1,2, and comparing it to a prespecified
tolerance bound on values.

10 Conclusion

We presented a comprehensive design flow from functional requirements to implementation
on a distributed system consisting of multiple ECUs and interconnections that leverages
the concept of Loosely Time Triggered Architecture. To do so, we introduced a formal
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model of computation to capture the communication mechanisms typical of LTTA and an
intermediate layer of abstraction called Loosely Time Triggered Network. This layer of
abstraction can then be mapped onto a variety of implementation architectures. The design
process is guaranteed to preserve stream semantics if appropriate assumptions hold. The
implicit assumption we have made in this paper is that the functional requirements are
related to discrete control functions that include protection (fault tolerance, voting), mode
changes, and some event triggered side functions.

Open problems are the efficient application of the LTTA architecture to implement con-
tinuous and hybrid functions such as low level safety critical feedback control loops, whose
underlying design is performed based on continuous time models. Typical examples include
flight control of aircrafts or combustion control for engines.

Continuous control functions. For such functions, a natural LTTA implementation would
require that the sensor input data be periodically sampled and communicated to their asso-
ciated computer following LTT mode. The (distributed) computers implement the desired
Multi Input Multi Output control by communicating according to the LTT mode and send
their sampled control values to the actuators following the LTT mode. This is a fairly natu-
ral implementation where sampling is performed locally and independently, at the different
sites of the distributed architecture. Consistency of the whole is ensured by the underly-
ing continuous time feedback control and its built-in robustness with respect to sampling.
This approach is indeed supported by several experimental studies demonstrating that sam-
pling jitter can be accommodated, possibly by proper tuning of the control parameters, see,
e'g" [ 7 7 ]'

Still, it is unclear whether this implementation technique is actually mathematically and
provably supported by robust control design techniques. Classical studies regarding robust
control design are either performed in continuous time (which rules out any consideration
regarding sampling), or discrete time but with a unique perfectly periodic clock. The only
work that we are aware of regarding robust feedback control design with time-varying period
for sampling is that of O. Sename et al. [33, 34], where a single approximately periodic clock
is considered. Thus, to our knowledge, deploying continuous feedback control loops on LTTA
in an important issue that still requires research on robust control design.

It should be however acknowledged that, today, no safety critical low level continuous
control feedback loop is deployed on a distributed computing architecture. One control
loop is running on a single computer as a single task, by collecting distributed sensor data
and sending control values to distributed actuators. But, again, this is expected to change,
e.g., for future aircraft with higly distributed sensors and actuators having distributed local
intelligence; not to speak about flight formations.

Mized Continuous/Discrete control functions. So far LTTA and continuous feedback im-
plementation provide a satisfactory answer for continuous and discrete control functions,
considered separately. However it does not encompass their interaction. Of course, noth-
ing prevents us from using the above “logically synchronous” layer for deploying continuous
control as well. However, this is clearly a waste of energy since building this layer requires
protocols, as we have seen. In contrast, the direct implementation we have advocated for
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continuous control seems more effective, from practical and performance viewpoint. Thus a
comprehensive theory encompassing both continuous and discrete control, as well as their
interaction, would be welcome. While attempts are provided in [20] toward a comprehensive
theory of continuity for mixed continuous/discrete control systems, this has not resulted yet
in an effective set of results and design guidelines.
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