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Abstract—Hybrid systems modeling languages that mix dis-
crete and continuous time signals and systems are widely used to
develop Cyber-Physical systems where control software interacts
with physical devices. Compilers play a central role, statically
checking source models, generating intermediate representations
for testing and verification, and producing sequential code for
simulation and execution on target platforms.

This paper presents a novel approach to the design and im-
plementation of a hybrid systems language, built on synchronous
language principles and their proven compilation techniques.
The result is a hybrid systems modeling language in which syn-
chronous programming constructs can be mixed with Ordinary
Differential Equations (ODEs) and zero-crossing events, and a
runtime that delegates their approximation to an off-the-shelf
numerical solver.

We propose an ideal semantics based on non standard analysis,
which defines the execution of a hybrid model as an infinite
sequence of infinitesimally small time steps. It is used to specify
and prove correct three essential compilation steps: (1) a type
system that guarantees that a continuous-time signal is never used
where a discrete-time one is expected and conversely; (2) a type
system that ensures the absence of combinatorial loops; (3) the
generation of statically scheduled code for efficient execution.

Our approach has been evaluated in two implementations: the
academic language Zélus, which extends a language reminiscent
of Lustre with ODEs and zero-crossing events, and the industrial
prototype Scade Hybrid, a conservative extension of Scade 6.

I. INTRODUCTION

Hybrid systems modeling tools [1] like Simulink1 are
widely used in the development of embedded systems. They
have evolved progressively from interfaces to numeric solvers
aimed solely at simulation to fully fledged languages for
programming executable models of dynamical systems that
comprise control software and models of its physical envi-
ronment [2]. Models are not only simulated; they are tested,
debugged, and verified, from the early stages of the design, and
right along the development chain, until the automatic gener-
ation of embedded target code. In state-of-the-art methodolo-
gies, compilers statically check source models, produce inter-
mediate representations used by testing and verification tools,
and generate sequential code for either efficient simulation or
execution on target platforms. The various compilation steps
can be tricky to design and implement. How can we ensure

1https://www.mathworks.com/products/simulink.html

that they are semantics preserving, that there is no need to
program and verify things twice [3]?

In this paper, we focus on the design, semantics, and
implementation of such languages, following the viewpoint
that “hybrid modeling languages are programming languages
that happen to have a hybrid systems semantics” [4]. We focus
on modeling with Ordinary Differential Equations (ODEs) and
do not consider Differential Algebraic Equations (DAEs).

A Programming Language view of Hybrid Systems Modeling

Hybrid systems modeling languages present several new dif-
ficulties compared to general purpose programming languages.

The first difficulty is that correctness cannot be defined as
the perfect match of an implementation with a specification
when part of a model represents a physical device or system
rather than a software component. Approximations are gener-
ally unavoidable. They result from a lack of exact knowledge
of the physical system or from the need to consider simpli-
fied models. The science of physics and control engineering
treats the important question about the fidelity of a model
with respect to the real world [5]. We address solely here
programming language issues.

While approximations are unavoidable, they should not
arise from artifacts of the modeling tool. It is essential
that the simulations of a given model be reproducible both
within a single tool and across different tools. Modeling
should therefore rely on a modeling language equipped with a
mathematical semantics, i.e., an unambiguous and preferably
simple definition of what a given model means, and when
its semantics is defined. It must be possible to check model
executions against their semantics.

The second difficulty is the gap between an ideal math-
ematical semantics and the numerical behavior of a model.
This gap is due to approximation schemes for differential
equations and state events and cannot be avoided in general.
One solution is to incorporate details of the simulation engine,
and even particular solvers, into the semantics of models [6].
The integration scheme and simulation machinery can be
hardwired into the hybrid model to give a purely discrete
model [7], possibly through a synchronous encoding [8]. It
is also possible to generate a synchronous program, replacing
differential equations by difference equations and state events
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by edge detection. But these approaches burden the semantics
with low-level details and make it more complex. It becomes
difficult to distinguish the properties of the model itself, which
should be independent of a particular solver or integration
scheme. Furthermore, solvers require certain invariants in
order to give reliable results. For example, the function to be
integrated must be continuous and the function for state event
detection must be continuously differentiable—both properties
that are easily broken (e.g., by importing a function containing
a conditional, modulo operator, or side effect). A concrete
semantics complements but does not replace an ideal one,
that is independent of a given solver. An ideal semantics
is enough for proving that compilation steps are semantics
preserving and for statically ensuring certain invariants, e.g.,
that functions to be integrated are continuous and free of side
effects.

One final difficulty of hybrid systems modeling languages
is the multiplicity of language constructs. These languages
offer the expressiveness, and thus the complexity of a general
purpose language to which it adds parallelism and the mix of
discrete and continuous-time signals together with a numerical
solver for their simulation: models mix stream equations,
ODEs, zero-crossing events, hierarchical automata, and also
side effects, loops, different forms of modular composition,
for instance subsystem blocks, and calls to external functions
produced by other tools. Moreover, all of these features can
be composed in parallel.

While this expressiveness is unquestionably useful for
writing real applications, the undisciplined composition of
language constructs leads to fragile and ‘unsafe’ models [9]
that are difficult to understand modularly and debug because
the behavior of a block can change dramatically when other
unconnected blocks are added in parallel. Problems can arise,
for instance, in the intricate interactions between discrete
and continuous-time: when a continuous-time signal is used
where a discrete-time signal is expected and vice versa [10];
when a block explicitly refers to the internal time steps of
the solver—the so-called major steps of Simulink solvers;
when a call is made during integration to a function that
unexpectedly performs a side effect or is discontinuous; or
when two parallel blocks write to the same shared variable.
Some of these situations are detected statically by tools and
trigger errors or warnings, but not all of them. The static
detection is not imposed as a type discipline: some unsafe
models pass the static check while some safe ones do not.
The bottom line is that the complexity of actual hybrid systems
modeling languages makes the definition of a comprehensive
formal static and dynamic semantics difficult to achieve.

Far from being abstract philosophical concerns, these dif-
ficulties have practical consequences. System design teams
in industry do not like being confronted with unsafe mod-
els. They often adopt restrictive programming disciplines by
which some operators or certain of their combinations are
prohibited [11], [12], [13]. Ensuring that such programming
disciplines guarantee the absence of problems is not easy.
More importantly, this approach may be more restrictive than
a mathematically sound acceptance or rejection discipline.

For the above reasons, we chose the following approach:

1) To identify a minimal language kernel of orthogonal
programming constructs that is expressive enough to
write realistic hybrid models;

2) to define a detailed static and dynamic semantics of the
language and its compilation steps.

A Synchronous Approach to Hybrid Systems Modeling

Synchronous languages [14] partly address the preceding
questions but focus solely on discrete-time dynamical systems.
The synchronous abstraction is to consider that computations
and communication occur instantaneously. This allows the
mathematical definition of an ideal and simple semantics:
signals are modeled as stream, that is, infinite sequences of val-
ues, that advance synchronously, and systems are modeled as
functions over streams. Fidelity with respect to real-time con-
straints is checked a posteriori by verifying that the worst case
execution time of the generated code is less than the period
of execution or the minimum inter-arrival time of triggering
inputs. The expressiveness of synchronous languages has been
purposefully tuned to ensure important safety properties. Their
static semantics — the set of verifications performed by the
compiler to characterize correct models — and their dynamic
semantics — what is defined by the model — have been
mathematically specified. In particular, compilers statically
reject programs that are not proven to be deterministic and
free of deadlocks, and generate sequential code that executes
in bounded time and space. Such features contribute to the
fact that SCADE [15],2 an industrial synchronous language
implementation, is now the reference for critical software
development in civil avionics.

Nevertheless, synchronous languages do not adequately
model or efficiently simulate systems that mix discrete- and
continuous-time signals. This causes a break in the develop-
ment chain, with one language for initial hybrid modeling
and another for modeling control software, with the risk of
mismatches and task duplications.

To address some of the above issues, we experimented
with a new approach to the design, semantics, and imple-
mentation of a hybrid systems modeling language that reuses
and extends the principles and compilation techniques devel-
oped for synchronous languages. As a basic language, we
took a synchronous and purely functional language, in the
style of LUSTRE, and conservatively extended it with ODEs
and zero-crossing events [16], and later adding hierarchical
automata [17]. It allows modeling discrete- and continuous-
time systems, and expressing their complex interactions. We
introduced an ideal semantics based on nonstandard anal-
ysis [10] that models executions as infinite sequences of
infinitesimally short reactions. Programs must respect a strict
typing discipline that forbids using a discrete-time signal
where a continuous-time one is expected and vice versa, and
also explicitly referring to the major steps of the solver; every
side-effect and state change must be aligned with a zero-
crossing [18]. Algebraic loops, which may lead to systems
with zero or many solutions, are statically rejected [18].
Finally, programs are compiled into statically scheduled code

2http://www.esterel-technologies.com/products/scade-suite/
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that is paired with an off-the-shelf numerical ODE solver [19],
namely SUNDIALS CVODE [20]. These results form the
foundation of ZÉLUS [21]3 and the industrial prototype SCADE
HYBRID [19] based on SCADE 6 [15]. In the latter, it was
possible to reuse all the existing infrastructure like static
checking, intermediate languages, and optimisations, with little
modification. The extensions for hybrid features require only
5% additional lines of code. Moreover, the proposed language
extension is conservative in that classical synchronous features
are compiled as before—the same synchronous code is used
for both simulation and execution on target platforms.

The resulting language can be used at the specification and
implementation stages, both to write a high level hybrid model
of the whole system or to focus on a software component only
whose embedded code will be automatically generated by the
compiler. It can be used as a classical synchronous language,
to write only discrete-time programs, without even knowing
its hybrid features, and symetrically, as a simple interface
language to write ODEs, without even knowing its syn-
chronous features. More interestingly, software components
can be programmed in a synchronous language and tested
with a programmed model of the physical environment.It is
also possible to start from an entirely continuous-time model,
and to progressively replace some continuous-time systems
by discrete-time ones or vice versa, within a single language
and programming model. This combination allows for using
continuous-time models (or discrete-time ones) where best
suited, to write higher-level executable specifications, and to
detect design bugs earlier.

The resulting language is not the composition of two distinct
languages and compilers nor does it aggregate several models
of computations, as Ptolemy [22] does, for instance. The pro-
gramming constructs are those of a synchronous dataflow lan-
guage, namely function definition and application, hierarchical
automata, and data-flow equations. These constructs are ex-
tended to support continuous-time systems. Static verifications
like typing, causality analysis, and initialization analysis have
been adapted and extended to apply to the whole language.
Finally, the generation of executable code is defined as a small
extension to an existing synchronous language compiler.

Organization of the Paper

Section II presents fundamental issues in the design of
languages that mix discrete and continuous time with a focus
on semantic models. Section III treats an extended example:
a Newton’s cradle with two colliding pendulums. Section IV
treats causality and scheduling. Section V develops the dis-
tinction between discrete- and continuous-time signals and
systems through a static type discipline. Section VI describes
the run-time system, which delegates the simulation of con-
tinuous dynamics to an off-the-shelf numerical ODE solver.
Section VII describes the architecture of the ZÉLUS language
and its compiler and reports on the experimental extension
of SCADE 6 called SCADE HYBRID. We conclude with a
discussion in Section VIII.

3http://zelus.di.ens.fr

This paper follows a tutorial style. Technical details are
found in the papers [10], [16], [17], [18], [19], [21], [23].

II. DESIGNING CPS MODELING LANGUAGES

In this section we review and discuss some difficulties that
arise as consequences of making hybrid systems modeling
tools overly flexible and permissive. The main difficulties
relate to the coexistence of continuous and discrete time in
models. We develop our discussion using a minimal core of a
hybrid systems modeling language, which includes data-flow
equations over infinite sequences or streams, ODEs, a switch
construct, and the possibility to hierarchically compose such
elements in parallel to build libraries of predefined subsystems.
Models of this core language are written in the concrete syntax
of ZÉLUS (so the reader can experiment on their own) but they
can easily be written in other languages, like, e.g., PTOLEMY
or Simulink. We illustrate issues using several small examples,
but the goal is to accurately identify problems in larger, more
complicated models.

Details related to the material of this section are found
in [16], [18].

A. Mixing Discrete and Continuous Time

Let us begin with purely discrete-time or purely continuous-
time systems. Following the tagged-signal model [24], a signal
x is a function from a time domain T—a totally ordered set—
to a set of values. A deterministic system is a function from
a set of input signals to a set of output signals. In a block
diagram language, such functions can be defined by writing
equations on signals: an equation (x = e), where x is a
variable name and e is an expression, is an invariant (x = e)(t)
that must hold at every time t ∈ T, that is, ∀t ∈ T, x(t) = e(t),
where x(t) is the value of signal x at time t and e(t) is the
value of expression e at time t. In expressions, external n-ary
operations (e.g., arithmetic or boolean operations that apply
pointwise), that is, (op(e1, . . . , en))(t) = op(e1(t), . . . , en(t)).
When E1 and E2 are two homogeneous equations, i.e., when
they are defined on the same time domain T, the parallel
composition E1 and E2 means

∀t ∈ T, (E1 and E2)(t) = E1(t) ∧ E2(t). (1)

The above definitions hold for any time domain T, like, for
instance, the integers N = {0, 1, 2, . . . } or the non-negative
reals R≥0. We illustrate it with two examples.

Discrete-time: Consider a linear filter defined as the com-
position of two equations over signals:

let node filter(x) = y where
rec y = 0.2 *. x +. s
and s = 0.8 *. (0.0 fby y)

The keyword node declares that filter is a discrete-time
function. This node takes an input stream x and produces
an output stream y—by stream, we mean a discrete time
signal defined over time index N. The output is defined by a
recurrence equation; the keyword rec, for ‘recursive’, means
that the y on the left and right sides of the equations refers
to the same stream. The expression 0.0 fby y denotes the
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unit delay applied to the stream y. If x = (xn)n∈N and
y = (yn)n∈N are two streams:

∀n ∈ N>0, (x fby y)n = yn−1 and (x fby y)0 = x0. (2)

The +. and ∗. stand for addition and multiplication of floating-
point numbers. They apply pointwise to all stream elements.
The meaning of the two equations that define y and s is
simply:

∀n ∈ N, yn = (0.2 ∗ x+ s)n = 0.2 ∗ xn + sn
sn = (0.8 ∗ (0.0 fby y))n

= 0.8 ∗ (0.0 fby y)n
= 0.8 ∗ yn−1 if n > 0
= 0.8 ∗ 0.0 = 0.0 if n = 0

Up to syntactic details, the linear filter can be written the
very same way in LUSTRE [25], [26] or SCADE 6 [15].4

Continuous-time: The second example models a ball falling
with initial height y0 and velocity v0 as two continuous-time
equations composed in parallel.

let hybrid falling(y0, v0) = y where
rec der v = -9.81 init v0
and der y = v init y0

This declaration defines the function falling with two
inputs y0 and v0, and an output y. The keyword hybrid
indicates that the function relates continuous-time signals. This
function is readily expressed in any hybrid systems modeling
language, e.g., Simulink 5 or PTOLEMY [27].6 Its semantics,
taking R≥0 as the time domain, is:

∀t ∈ R≥0, v(t) = v0(0) +
∫ t

0
−9.81 dt = −9.81 t

∀t ∈ R≥0, y(t) = y0(0) +
∫ t

0
v(t) dt = y0(0)− 9.81

∫ t

0
t dt

Even though a numerical solver would compute a discrete
approximation, i.e., two sequences (yn)n≤max and (vn)n≤max

on increasing instants tn ∈ R, with tn < tn+1 up to some
horizon tmax, its exact solution is defined by an ideal solver
semantics [28]. Besides the problem of relating the ideal se-
mantics to a numerical approximation, these two homogeneous
models, whether in discrete- or continuous-time, do not pose
any particular difficulties.

Mixing discrete- and continuous-time: In contrast, consider
now the two following hybrid models that blend discrete- and
continuous-time domains:

der time = 1.0 init 0.0
and cpt = 0.0 fby (cpt +. time) (3)

and;

cpt = 0.0 fby (cpt +. 1.0)
and der y = cpt init 0.0 (4)

The definition (1) for parallel composition and the application
of n-ary operators no longer apply: in the first example, time
is a continuous-time signal (its domain is R≥0) but cpt is
expected to be a stream (its domain is N) because the unit

4The fby is a primitive operator of SCADE. In LUSTRE, it can be replaced
by the initialization operator -> and uninitialized delay pre with the property
that x fby y =def x-> pre y.

5der y = e init v0 stands for y = 1
s
(e) inititialized to v0 in Simulink.

6http://ptolemy.eecs.berkeley.edu/ptolemyII/

delay fby expects two streams. In the second, cpt is a stream
but y is a continuous-time signal and cpt should also be
continuous-time. Nothing in the model indicates how to relate
the (logical) discrete-time domain of cpt with the (metric)
continuous-time domain of time and y. It is wrongly typed:
it combines signals defined on incomparable time domains.

There is, however, a situation where the composition of
a stream and a continuous-time signal makes perfect sense.
Consider a continuous-time signal z that is true on a sequence
of increasing instants tn ∈ R, n ∈ N with 0 ≤ t0 and
tn < tn+1 and false everywhere else. Call such a z a discrete
clock.7

Call zero-crossing a clock that is true at ti if and
only if some continuous signal x crosses zero from
below: x(ti−h) < 0 for all h such that −ε < h < 0
and x(ti + h) > 0 for all h such that 0 < h < ε,
where ε is a small enough positive number.

(5)

A signal is deemed discrete if its changes are activated on a
discrete clock, defined as follows [16, §2]:

A clock is termed discrete if it has been declared so,
or if it is a sub-sampling of a discrete clock, or if it is
a zero-crossing. Otherwise, it is termed continuous.

(6)

A periodic timer, e.g., that ticks every 0.1 seconds, is an
example of a discrete clock. It can be defined, albeit sub-
optimally, by a sawtooth signal with slope one, initialized to
−0.1, and reset every time it crosses zero. We are now ready
to write a corrected version of model (3) where the signal cpt
is piecewise constant and changes only when z is true.

let hybrid continuous_with_discrete(z) = cpt
where
rec der time = 1.0 init 0.0
and cpt =

present z -> 1.0 fby (cpt +. time)
init 0.0

The function continuous_with_discrete takes as input
a discrete clock z and returns the signal cpt. The parallel
composition of the two equations is perfectly valid: the stream
1.0 fby (cpt+ .time) is aligned with the sequence of instants
where z is true. The construct present...init returns a piece-
wise constant signal, initialized with 0.0 which changes at
every occurrence of z.

cpt(t) = 0 0 ≤ t < t0
cpt(t0 + h) = 1 0 ≤ h < t1 − t0

and, for 0 ≤ h < tn+1 − tn,

cpt(tn + h) = (cpt+ time)(tn−1)
= cpt(tn−1) + time(tn−1)

The above function illustrates the typical situation of a soft-
ware controller activated periodically on a discrete clock z and
composed in parallel with a continuous-time model of a plant,
as in the following.

let hybrid model(z) = o where

7Models may be Zeno, i.e., tn may not tend to infinity with n. This problem
cannot, in general, be detected at compile time and it leads to problems at
run-time, e.g., simulations that run very slowly or that go beyond the Zeno
point due to floating-point errors. This is a known and unavoidable problem.
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rec der x = plant(x, u) init x0
and y = f(x, u)
and o = present z -> command(y) init u0

where command is a synchronous stream function whose
logical steps are aligned on z.

A discrete clock like z can be used to specify different mode
changes, e.g., to reset the value of an integrator. For example,
a sawtooth signal with slope 1.0 and reset to 0.0 every time
z is true, is written:

der time = 1.0 init 0.0 reset z -> 0.0

The signal z can be defined with a zero-crossing function. In
ZÉLUS, the expression up(x) defines a discrete clock that is
true when the signal x crosses zero from a strictly negative
value to a strictly positive one.

Yet, using R as a time domain means that we cannot
describe a zero-crossing which would be the instantaneous
consequence of a previous one (also called a cascade where
events appear in sequence but in zero time). We will see later
that the previous example can still be justified in this more
general setting.

Up to syntactic details, the two preceding models can be
written almost as is, in any hybrid systems modeling language,
e.g., Simulink8 or PTOLEMY.

Unsafe mixing of discrete- and continuous time: What
if an ill-defined combination of discrete- and continuous-
time signals is written as in (3) and (4)? It is tempting to
perform implicit conversions between streams and continuous-
time signals. But taking cpt(t) = cptbtc, where btc is the
integer fraction of t, would not make any more sense than
cpt(t) = cpti(t), with i : R 7→ N being any monotone
surjective function. The following example, in Simulink this
time, illustrates the consequences of such a liberal approach.

✶

❈�✁s✂✄✁✂

✶
s

■✁✂t☎r✄✂�r
❆✆✆

❯✁✝✂ ✥t❧✄✞

❙✟�♣t

✠✡☛❡

❝☞✠

(a) Basic model
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time
cpt

(b) Simulation of basic model

Figure 1. Composition of models that mix discrete- and continuous-time
blocks in Simulink (R2016b).

8For Simulink, replace present/init by a sub-system block triggered on
z and fby by the unit delay of the discrete-time library. The ODE with reset
can be implemented directly using the integrator block of Simulink.

We consider example (3) again, reprogramming it as in
Figure 1a, where the fby is replaced by Simulink’s delay
operator which “holds and delays its input by one iteration”.9

This operator is applied here to a continuous-time signal,
though nothing explicitly specifies its discrete-time steps, that
is, when “iterations” occur. The constant 1 is connected to
the input port of an integrator that is fed directly into a
feedback loop involving a unit delay with inherited sampling
time. Simulation results are shown in Figure 1b. While the
value of time is adequately approximated, it is not at all
clear what the output signal cpt should be. In Simulink, cpt
is an interpolation of the cumulative “time” computed at so
called major steps which depend on when the solver decides to
stop.10 For this model, the compiler infers the discrete steps of
the unit delay to be the major steps of the simulation algorithm.
The model’s meaning thus depends critically on the mechanics
of the simulation engine. Consequently, if solver parameters,
for instance, the minimum step size or the error tolerance, are
changed, the value computed for cpt may change significantly.
Furthermore, the solver chooses major step sizes for the entire
model and not just for individual fragments, which works
contrary to the ideal of a component-based approach. In
particular, adding an unrelated component in parallel changes
the behavior of the original component significantly.

In the above example, we could have equivalently used the
“memory block” mem(x)11 instead of the unit delay. If x is a
signal, mem(x) is a piecewise constant signal which holds the
value of x from the previous major step. If those steps are
taken at increasing instants ti ∈ R, mem(x)(t0) = x0 where
t0 = 0 and x0 an initial value and mem(x)(ti + h) = x(ti−1)
for i > 0, 0 ≤ h < ti+1− ti. Formally, a memory block takes
a discrete clock z and an input value x such that:

let hybrid memory(z, x) =
present z -> (0.0 fby x) init 0.0

Thus, if major_step is a discrete clock that denotes the
instants where major steps occur, mem(x) is an abbreviation for
memory(major_step, x), exhibiting the fact that its value does
not depend solely on z. Moreover, major_step is not just the
disjunction of all explicit zero-crossings in a model; it is also
true at some intermediate instants where the numerical solver
stops for other reasons. With variable step numerical solvers,
it is difficult to predict the actual value of major_step.
Thus, having a block in a model that explicitly refers to the
major step make the whole model sensitive to low-level solver
choices. Several other operators in the Simulink standard
library explicitly refer to major steps, including the memory,12

9See https://www.mathworks.com/help/simulink/slref/unitdelay.html.
10A Simulink simulation is structured as a pair of nested loops [29, p. 1-10].

The outer loop calculates the values of a model’s signals and states at a single
instant of simulation time. Its successive iterations generate the successive
instants of a simulation. They are termed major steps. The inner loop both
integrates continuous states for use in the next iteration of the outer loop and
locates zero-crossings. Its successive iterations are termed minor steps. The
values they calculate are provisional; the solver may require multiple iterations
to determine an appropriate approximation.

11See https://www.mathworks.com/help/simulink/slref/memory.html.
12See https://www.mathworks.com/help/simulink/slref/memory.html.

https://www.mathworks.com/help/simulink/slref/unitdelay.html
https://www.mathworks.com/help/simulink/slref/memory.html
https://www.mathworks.com/help/simulink/slref/memory.html
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derivative,13 time/transport delay,14 rate limiter,15 and backlash
blocks.16

There are understandable reasons to allow operators that
implicitly refer to major steps, as Simulink does. Programmers
can explicitly exploit the low-level cycles of the simulation
algorithm and features like function-call subsystems; even
to the point of implementing solvers within a model [30].
This approach can also reduce the number of zero-crossing
events and thus give faster simulations. Blocks that explicitly
rely on the major steps are definitely useful. However, their
use is constrained by rules and guidelines. For instance, the
documentation for the memory block advises to “avoid using
the Memory block when both these conditions are true: Your
model uses the variable-step solver ode15s or ode113. The
input to the block changes during simulation”.

Conclusions: The preceding analysis leads first to a ques-
tion. Is it possible to replace some of “unsafe” blocks de-
scribed above with safer constructs that have a similar—
if not necessarily identical—meaning? And second, to the
requirement for a compile-time analysis to reject unsafe com-
binations of discrete- and continuous-time equations and, in
turn, the possibility to guarantee certain properties of accepted
programs. This may seem easy for small models, but it is far
from trivial for real-size system models. It requires a careful
consideration of the mathematical semantics of hybrid models,
which we develop in the following sections.

B. Background: Ideal Solver Semantics and Superdense Time

The semantic model of a programming language is supposed
to be faithfully implemented by interpreters and compilers,
but numerical approximations are unavoidable for simulating
models with non-trivial continuous-time dynamics. Must we
give up on precision altogether? Must we incorporate the
details of numerical solvers into the language semantics as
in [31]? An alternative approach, the Ideal Solver Semantics,
was advocated by Liu and Lee [28], and later further developed
by Lee [32]. We briefly present it next.

ODE solvers such as SUNDIALS CVODE [20] compute
approximate solutions to the problem of finding a solution to
an ODE until some specified stopping event less than a given
tmax ∈ R. Formally, for t0, t1 ∈ R, t0 < t1 ≤ tmax, a signal
x(t) is defined over [t0, t1] and beyond if there exists s1 > t1
such that x(t) is defined over [t0, s1). For I a non-empty open
interval of R and h : I 7→ R, h possesses a zero-crossing at
t ∈ I if there exists an open interval J ⊆ I containing t and
such that, inside J , h(s) < 0 before t and h(s) > 0 after t.
ODE solvers address the following problem:

Problem 1. Given t0 ∈ R, f : Rm×R 7→ Rm, x0 ∈ Rm, and
gi : Rm × R 7→ R for i = 1, . . . , k, find an instant t1 > t0
and an Rm-valued signal x(t) defined over [t0, t1] such that:

1) x satisfies the ODE x′(t) = f(x(t), t) with initial
condition x(t0) = x0; and

13See https://www.mathworks.com/help/simulink/slref/derivative.html
14See https://www.mathworks.com/help/simulink/slref/transportdelay.html
15See https://www.mathworks.com/help/simulink/slref/ratelimiter.html
16See https://www.mathworks.com/help/simulink/slref/backlash.html

2) t1 is the smallest instant at which at least one of the
functions t 7→ gi(x(t), t) possesses a zero-crossing.

If found, the instant t1 is called the event of zero-crossing.

Variable step solvers adapt their time steps to varying
stiffness of f and the detection of the zero-crossings of g.
For the solver to work properly, it is therefore advisable that
both f and g be smooth enough, at least f continuous and g
continuously differentiable.

So far Problem 1 specifies exit conditions from continuous
modes. In addition, we must describe how the system state
x is reset after time t1 for the next phase of the dynamics.
It has been identified by previous authors [33], [28], [32],
[4] that the transition from one continuous mode to the next
one may require several steps of a discrete time automaton. A
simple example illustrating this need is the Newton’s Cradle
with three balls or more. The transfer of inertia from the first
to the last ball occurs via a cascade of successive transfers,
from each ball to the next one.

With reference to the above discussion, the Ideal Solver
Semantics of a model consists of:

1) an oracle returning an exact solution to Problem 1,
completed by

2) the specification, for each event, of the discrete time
automaton specifying the reset conditions for the state,
together with its exit conditions.

Resetting may take several successive computation steps, for
which extra instants are required. To unambiguously represent
this, Lee and Zheng [4] use superdense time [33]:

Tsd =def R≥0 × N

with the lexicographic order defined by (s,m) < (t, n) if
s < t, or s = t and m < n. A signal is a function Tsd → D,
where D is the value domain. At each real time t, a signal
takes a totally ordered sequence of values indexed by N.

This time base is used to represent signals whose dynamics
alternate between smooth trajectories of positive duration and
sequences of events where the signal takes a finite but arbitrary
number of successive values in zero time, the last of which
gives an initial value for the next continuous phase. The
representation of a signal in superdense time is defined [32]:17

x : Tsd → D is a partial function with
domain {(t, n) | 0 ≤ n ≤ Nx(t)}, where
Nx : R≥0 → N is the timeline of signal x.

(7)

For all t ∈ R≥0, x(t, n) is defined for all 0 ≤ n ≤ Nx(t) and
undefined otherwise. If Nx(t) is the constant zero, then (7)
defines a signal indexed by R≥0 × {0}, which is isomorphic
to R≥0. This defines an embedding of ordinary continuous
time signals in superdense time signals.

We say that x has an event at t ∈ R≥0 if Nx(t) > 0,
and that x is chattering free if the set of t such that x has an
event at t is a finite or diverging sequence [32]. We are mainly
interested in chattering-free systems here, as they capture the

17[32] defines signals as total functions x : Tsd → D ∪ {ε} whose value
is frozen beyond the timeline and possibly absent at some instant. Here, we
only consider non-absent signals for which the two definitions are equivalent.

https://www.mathworks.com/help/simulink/slref/derivative.html
https://www.mathworks.com/help/simulink/slref/transportdelay.html
https://www.mathworks.com/help/simulink/slref/ratelimiter.html
https://www.mathworks.com/help/simulink/slref/backlash.html
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situations where successive modes, in which the continuous-
time dynamics are smooth, are traversed in a non-Zeno way.
This is illustrated in Figure 2. In particular, an event occurs

t1 t2

(t1, 0)

(t1, 1)

(t2, 0)

(t1, 2)

(t2, 1)

Figure 2. A chattering-free signal x(t, n) in superdense time. The vertical axis
is the domain R of values for x and the horizontal axis is the set of instants
R≥0. The trajectory is the solid curve augmented with black bullets at events
t1 and t2. The ordering of discrete instants at the two events is indicated by
dashed arrows. The self-loops indicate “freezing” when the height is reached.

at t2 where x has a jump typical of the resetting of an ODE.
At this event, the bullet x(t2, 0) represents the left-limit of x
at t2, whereas x(t2, 1) represents the actual value of x at t2,
after which x remains constant. An event also occurs at time
t1, followed by two others.

C. Synchronous Models in Nonstandard Time

The ideal solver semantics is adequate to describe the
execution of a hybrid system model. In our development,
we had a different objective, however, expecting from the
semantics:
• to support the study of the parallel composition of pro-

grams, and to be modular — meaning that the semantics
of complex programs is derived by simple constructions
from the semantics of the primitives of the language;

• to provide a mathematical justification of all the compi-
lation steps, from the model to the sequential code paired
with the numerical solver, and to make sure those steps
can be defined modularly;

• to define a set of static constraints that ensure certain
safety invariants for programs that are accepted by the
compiler.

The semantic developments of synchronous languages had the
same objectives. Hence, not surprisingly, our answer borrows
ideas from synchronous languages. It relies on the notion
of nonstandard semantics, a technique that essentially treats
continuous time as if it were discrete. Let us first recall the
essence of synchronous models.

1) Synchronous Models: In this model, input, output and
local signals are sequences of values or streams that advance
synchronously; systems are synchronous stream functions de-
fined by a set of mutually recursive equations over streams. It
is very clear here that time is logical [3]: there is no hypothesis
on the physical duration between two successive values nor a
way to express it internally by composing stream functions.

an equation x = a, where a is an expression, means that
xn = an, for all n ∈ N. The parallel composition of two
equations is synchronous, that is, x = a and y = b, where a
and b are expressions, means (xn = an) ∧ (yn = bn) for
all n ∈ N. Operations are implicitly lifted to stream. E.g., if
x = (xn)n∈N and y = (yn)n∈N, then x + y = (xn + yn)n∈N
and a constant like 1 stands for an infinite constant stream.

As an example, consider the forward Euler integration
function for the ODE y′ = u with y(0) = i0 parameterized
by a step size h:

let node forward_euler(h)(i, u) = y where
rec y = i fby (y +. (h *. u)) (8)

In this example, h is a static parameter, which can only be
instantiated by an expression whose value is computable at
compile time (otherwise the program does not type check).
The function forward_euler(h) takes two input streams, i
and u, and returns an output stream y such that:

∀n ∈ N, yn = (i fby (y + (h ∗ u)))n
= i0 if n = 0
= yn−1 + (h ∗ un−1) otherwise

The following function is the forward Euler with reset.

let node forward_euler_r(h)(i0, i, r, u)
= (sy, y)
where rec sy = i0 fby (y +. (h *. u))

and y = if r then i else sy (9)

It returns a pair of streams (sy, y), where sy is y except at
instants when r is true, where it takes the value of i.

For a given stream function, the compiler generates a
statically scheduled, loop-free function, which computes a step
of the system—we call it the step function. Given the current
inputs in, un and a current internal state, this step function
returns the current output yn and a new state (in practice, the
state is modified in place). This compilation is possible when
the function have no instantaneous feedback, i.e., the value of
yn does not depend on itself. In contrast, writing the following
function leads to a compile-time error:

let node forward_euler(h)(i, u) = y where
rec y = y +. (h *. u)

^^^^^^^^^^^^^^^^^
Causality error: this expression depends
instantaneously on itself.

Here, y(n) depends instantaneously on itself. Rejecting in-
stantaneous feedback loops is a sufficient condition to ensure
that fix-point equations have a unique solution. Moreover, it
ensures that statically scheduled code can be generated. For
every function definition, the causality analysis of ZÉLUS
computes a type signature that expresses the dependencies
between inputs and outputs. This signature is then used
everywhere the function is called. If the causality analysis fails,
the compilation stops.

2) Synchronous Models in Continuous-Time: Let us attempt
to directly extend our previous reasoning to a model defining
continuous-time signals, e.g., made of ODEs and equations.
For example, consider the model of the temperature in a tank
that is heated or not.

let hybrid heater(i, heat) = tp where
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rec der tp = v init i
and v = if heat then k1 *. (k2 -. temp)

else k3 *. (k4 -. temp)

The function heater takes two inputs i, heat and returns
one output tp. Suppose that k1, k2, k3 and k4 are constants.
The body defines the signals tp and v such that:

tp′ = k1(k2 − tp)+ if heat is true
tp′ = k3(k4 − tp) if heat is false

t(0) = i0

(10)

Forgetting the derivative definition gives a causality error:

let hybrid heater(i, heat) = tp where
rec tp = v
and v = if heat then k1 *. (k2 -. temp)

else k3 *. (k4 -. temp)

Causality error: here is an example of a cycle
v < tp, tp < v

There is an intuitive justification for this: because the defined
set of mutually recursive equations is cyclic, it is not possible
to compute a statically scheduled function that returns the
current value of the derivative of tp as a function of tp. For
the first version, the compiler produces a statically scheduled
function which computes the current derivative, from the
current value of i, heat and tp. When given to a numerical
solver [34], this solver returns a sequence of approximations
tp(tn) for increasing values of time tn ∈ R+ and n ∈ N. Thus,
for continuous-time signals, an integrator breaks causality
loops just as unit delays do for discrete-time signals. Yet, this
intuitive justification is not satisfactory as it builds on details
about how an ODE solver functions, and it says nothing bout
the more general situation when discrete and continuous-time
computations depend on each other. In particular, are we sure
that the signal heat is constant during integration? Solver-
agnostic reasoning would be preferable.

We would like to justify that the above function is causal and
compute a causality signature prior to code generation in the
same way we do when writting synchronous stream functions.
Could we not simply reuse the straightforward justification we
had for data-flow equations in discrete-time? It turns out that
nonstandard analysis makes this possible.

3) Nonstandard Analysis: Nonstandard analysis [35], [36]
extends the set R of real numbers into a superset ?R of hy-
perreals (also called nonstandard reals) with an infinite set of
infinitely large numbers and infinitely small numbers. The key
properties of hyperreals that we need are the following [36]:
• There exist infinitesimals, which are hyperreals that are

smaller in absolute value than any real number: An
infinitesimal ∂ ∈ ?R is such that |∂| < a for any positive
a ∈ R. For x and y, two hyperreals, write x ≈ y if x− y
is an infinitesimal.

• All relations, operators, and propositional formulas valid
over R are also valid over ?R. For example, ?R is a totally
ordered set. The arithmetic operations +, ×, etc. can be
lifted to ?R; and so on. A hyperreal x is finite if there is a
standard finite positive real number a such that |x| < a.

• Every finite hyperreal x ∈ ?R possesses a unique standard
real number st(x) ∈ R such that st(x) ≈ x; we call st(x)
the standard part of x.

• Let t 7→ x(t), t ∈ R be an R-valued (standard) signal.
Then:18

x is continuous at instant t ∈ R if and only if,
for any infinitesimal ∂ ∈ ?R, x(t+∂) ≈ x(t); (11)

x is differentiable at instant t ∈ R if and
only if there exists a ∈ R such that, for any
infinitesimal ∂ ∈ ?R, x(t+∂)−x(t)

∂ ≈ a. In this
case, a = x′(t).

(12)

We can consider the following set of instants:

T ⊆ ?R T = 0, ∂, 2∂, 3∂, · · · = {n∂ | n ∈ ?N} (13)

where ?N denotes the set of hyperintegers, consisting of all
integers augmented with additional infinite numbers called
nonstandard. The important point here is that, on one hand,
any finite real time t∈R has an element of T that is infinitesi-
mally close to it (informally, T covers R), and, on the other, T
is discrete in that every instant n∂ has a predecessor (n−1)∂
and a successor (n+1)∂.

4) Nonstandard Semantics: Using T as a time base amounts
to indexing signals with the discrete index n ∈ ?N defined in
(13). Following Suenaga, Sekine, and Hasuo [37], we call the
signals indexed by T hyperstreams—the mention of “stream”
emphasizes their discrete-time nature. Whenever needed for
clarity, we will indicate hyperstreams with the star-prefix
notation “ ?x ”.

Consider, for example, the forward Euler scheme, imple-
mented by the function forward_euler defined in ZÉLUS
in (8). Interpret the stream equation for y with time base T
defined in (13) and an infinitesimal time step h = ∂, as the
hyperstream satisfying the recurrence equation:

?yn+1 = ?yn + ∂ × ?un , ?y0 = ?i0 (14)

Since ∂ is infinitesimal, it turns out by (12) that,

for any t ∈ R and any n∂ ∈ T such that n∂ ≈ t,
1
∂ (

?yn+1 − ?yn) ≈ y′(t) holds, (15)

which means that (14) approximates the solution of the ODE:

y′ = u y(0) = i(0) (16)

up to an infinitesimal error. Since such an error is smaller
than any positive error, it can be ignored and the stream
equation (14) can be seen as a perfect semantics for the ODE.
By (11) and (12), the above analysis holds regardless of the
particular choice for ∂ provided that it is infinitesimal. All of
this legitimates that we call (14) the nonstandard semantics of
the ODE (16):

let hybrid int(i, u) = y where
rec der y = u init i

As another example, consider the integration with possible
reset, written:

18In (11) and (12), we abuse the notation slightly by invoking the value of
signal x at nonstandard instants; see [36] for a formalization.
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let hybrid int_with_reset(r, i, u) = y where
rec der y = u init i reset r -> i

Its nonstandard semantics is:
?y0 = i0

?yn+1 =

{
in+1 if ?rn+1 occurs
?yn+∂×?un otherwise

(17)

We can express this nonstandard semantics using (9), that is,
forward_eulerr(h)(i, i, r, u) with h = ∂, the infinitesimal
basic time step.

To summarize, for a hybrid function, we have replayed the
simple semantics for expressions, equations and parallel com-
position that we gave for a stream function in Section II-C1,
replacing N by ?N and considering that every step is of
infinitesimal length ∂.

The different constructions proposed for the extension ?R
amount to invoking the axiom of choice [36], [10]. Hence,
not surprisingly, nonstandard analysis is not effective. No
computer exists that can compute with hyperreals. So what do
we gain by considering nonstandard semantics? As we have
turned differential equations into difference equations, some
symbolic reasoning and transformations or static analyses like
the detection of instantaneous loops can be easily justified and
extended to the whole language. This discrete-time interpre-
tation of a hybrid model is also helpful to prove important
properties of hybrid system models, see Section V-B and the
properties (1) and (2) therein.

5) From Nonstandard Semantics to Superdense Time Se-
mantics: Once the required program analyses and transforma-
tions have been performed, it remains to establish a bridge
between:
• the nonstandard semantics of the program that supported

our analyses and compilation steps, and
• a standard semantics that formally specifies what should

be executed in practice; we chose the Ideal Solver Se-
mantics for this.

This bridge is formalized as the standardization of the non-
standard semantics. Its justification is provided in [10], [23],
we describe the intuition below.

Consider first the case of the ODE with reset (17). Stan-
dardizing the tuple of signals (?y, ?u, ?r) consists in finding
a standard domain and a tuple (y, u, r) over it such that
?y ≈ y, ?u ≈ u, ?r ≈ r.
• Outside the occurrences of the event ?r, ?x satisfies the

forward-Euler scheme which we know standardizes to the
ODE x′ = u—so much for continuous-time dynamical
systems of timebase R≥0.

• How should we standardize the dynamics (17) at an
occurrence of event ?r? Simply by mapping them to the
two successive values ?yn,

?yn+1 occurring in sequence
within an infinitesimal amount of time, which itself
standardizes as zero time. We thus eventually recover
the handling of events performed by the superdense time
approach [4], [32].

The standardization of the nonstandard semantics of (17) is
illustrated in Figure 3. If several events occur consecutively,
the standardization of of a nonstandard signal is a signal in

i0

?r ?r + ∂

i0

r

Figure 3. Nonstandard semantics (top) of (17) and the superdense time
semantics (bottom) resulting from the standardization of the former. The
nonstandard semantics is dashed to indicate that it is discrete time.

superdense time,and it is defined as follows [18], [23]. For
t ∈ R and T ⊆ T, define the halo of t as

Tt =def {t′ ∈ T | t′ ≈ t}

i.e., the set of nonstandard instants belonging to T and
infinitely close to t. For ?x a nonstandard signal, its standard-
ization x is defined as follows:

1) For t ∈ R≥0, define the standard signal st(?x) by
st(?x)(t) =def {st(?x(t′) | t′ ∈ Tt}. That is, for every
real standard time t, we take the set of all standard parts
of ?x(t′) when t′ ranges over the halo of t.

2) The standardization of ?x is the superdense time signal x
defined as follows:
• If st(?x)(t) = {v} is a singleton; then Nx(t) = 0 and
x(t, 0) = v;

• If st(?x)(t) is not a singleton, let T ′t ⊆ Tt be the set
of nonstandard instants t′ ∈ Tt at which ?x has a non
infinitesimal change, that is, ?x(t′) 6≈ ?x(t′−∂). In the
considered case, T ′t is not empty and two cases occur:
– Either T ′t = {t′1, . . . , t′m} is finite; we then define

the timeline of x as Nx(t) = m and set

x(t, n) =


st(?x(t′1 − ∂)) for n = 0

st(?x(t′n)) for n = 1, . . . , Nx(t)

undefined for n > Nx(t)

– Or T ′t = {t′1, . . . } is infinite, which corresponds to
a Zeno behavior; then Nx(t) is undefined and so is
x(t, n), n ∈ N and x(t′, n) for any t′ > t.

In [10], [18], [23], any chattering free hybrid system has a
nonstandard semantics that can be standardized to a model
defined everywhere in superdense time, i.e., the last case does
not occur. This final model corresponds to the definition given
by the ideal solver semantics.

The important point about standardization is that it is
performed as a final step on the global program. In particular,
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neither the causality analysis nor the discrete/continuous typ-
ing that we develop in Section V rely on superdense semantics
for their soundness.

The two semantic domains — nonstandard time and super-
dense time — complement each other: the former is useful
to design and justify modular compile time checking and
symbolic transformations, while the latter justifies the final
simulation loop in which the resolution of ODEs is delegated
to a solver.

III. THE NEWTON’S CRADLE EXAMPLE

Our subsequent developments are illustrated by a running
example, sketched in Figures 4 and 5.

θ

ω

l

g

Figure 4. Pendulum in polar coordinates.

θ1

l

l ω2

ω1θ2

g

g

Figure 5. Newton’s Cradle with two colliding pendulums.

Consider a pendulum of length l as shown in Figure 4.
It is defined in polar coordinates, where θ is the angle of
the pendulum relative to the vertical axis, ω is the angular
velocity, and g is an acceleration parallel to the vertical axis.
The dynamics of the pendulum are defined by the following
system of ODEs:{

θ′ = ω
ω′ = a sin θ where a = g/l

(18)

We consider next a Newton’s Cradle consisting of two pen-
dulums of equal mass, depicted in Figure 5. Outside collision
events, each pendulum is governed by an instance of model
(18) and we index the two instances with the subscripts 1
and 2. When the pendulums collide, it is assumed that the
interaction between the two balls is elastic, meaning that the
energy of the system is invariant. A collision occurs whenever
the pendulums are in contact (θ1 ≥ θ2) and their relative

velocity is negative (ω1 > ω2). Since the balls have equal
masses, a collision results in an exchange of angular velocities:{

ω+
1 = ω−2
ω+
2 = ω−1

(19)

This is a physically meaningful illustrative example of small
scale. It does not blend plant and control but it combines
continuous dynamics and mode changes with event handling,
the central difficulty. It does not exhibit the complexity issues
of large CPS systems but it is sufficient to illustrate in detail
some semantic issues. Prior to presenting our approach, we
first review some difficulties in modeling this system using
the reference tool Simulink. This will illustrate that, despite
its small size, this example already exhibits some interesting
and representative difficulties.
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Figure 6. Simulink model of the pendulum
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Figure 7. Simulink model of the collision detector
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Figure 8. Simulink model of the Newton’s Cradle with two pendulums
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Figure 9. Simulink model of the pendulum with state port
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Figure 10. Simulink model of the Newton’s Cradle with state ports
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Figure 11. Incorrect behavior of the model with state ports. Trajectory of
variable θ1 (resp. θ2) is shown in red (resp. blue).

A. Difficulties and Pitfalls

The Simulink model of the single pendulum of Figure 4 and
model (18) is given in Figure 6. Modeling the Newton’s Cradle
seems to be an easy task in Simulink by interconnecting two
instances of the pendulum model with the collision detector
corresponding to formulas (19) and specified in Simulink as
shown in Figure 7. The whole model is shown in Figure 8.
However, the simulation of this Simulink model fails at the in-
stant of the first collision, with a “Block diagram ‘pendulums’

-9.81

a
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0.75

theta02

Memory1

Memory2
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omega2
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CollisionDetector
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Pendulum1
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omega0
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omega_2b

omega_1b

z

omega_1

omega_2

Figure 12. Simulink model of the Newton’s Cradle with memory blocks

t z omega_1 omega_1b
0.080212582126707 0 0.7842526 0.1569379
0.306505169555583 0 2.9055798 0.7842526
0.560709471482921 0 4.2594777 2.9055798
0.560709471482928 1 -2.2754531 4.2594777
0.560709471482935 0 -2.2754531 -2.2754531
0.839389940219895 0 -1.2708350 -2.2754531

Figure 13. Data logged from the Newton’s Cradle with memory blocks
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Figure 14. Behavior of the model with memory blocks. Red (resp. blue)
pendulum 1 (resp. 2).

contains 1 algebraic loop(s)” error message. The reason is that
at the instant of reinitialization of the ω1 and ω2 integrators,
the reset values of the integrators depend on one another. The
error message even contains a hint of how this issue can be
solved : “Use integrator state port to avoid algebraic loops”.
Indeed, the help pages give the following definition of the state
port : “The output of the state port is the same as the output
of the block’s standard output port except for the following
case. If the block is reset in the current time step, the output
of the state port is the value that would have appeared at the
block’s standard output if the block had not been reset.”. In
other words the value of the state port is the left-limit of the
integrator’s output.

The corrected model, using state ports, is shown Figures 9
and 10. This model simulates without reporting an error.
However, the trajectory of the system is incorrect, as shown
in Figure 11. This is the consequence of a miscompilation,
explained in detail in [18]. In a nutshell, the reinitialization of
the integrators are scheduled sequentially, without temporarily
storing the state of the first integrator to be reinitialized so
that it can be used later to reinitialize the second one. The
consequence is that the new velocity of one of the pendulums
is not set to be the left limit of the velocity of the other
pendulum, but rather, its new velocity. This explains why the
pendulums have identical trajectories after the first collision.

This problem can be avoided in Simulink by using two
memory blocks mem(x) that introduce a small delay in the
angular velocity variables ω1 and ω2; see Figure 12. When a
collision occurs, the memory blocks break the algebraic loop
and the values of the output ports of the memory blocks are
numerically close (but not exactly equal) to the left-limits of
the angular velocities. Figure 13 shows the values of ω1 and
ω1b = mem(ω1) at every major step. z is true at the instant
of the contact (line with z = 1 in Figure 13). Note that
right after this instant (line below), Simulink takes an extra
step that is very close in time to the previous one.19 It is
at this instant that the speeds ω1 and ω2 are exchanged, not
at the instant where the contact is detected. This extra delay
makes the simulation imprecise from a numerical point of view
and possibly unpredictable. Yet, for this simple example, the

19This extra step can serve to detect that a zero-crossing signal goes from
zero to a strictly positive (or negative) value.
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simulation results, given in Figure 14, match the expected
behavior. The need to use the memory block to break an
algebraic loop means that the written model diverges from
the intended mathematical model; it becomes polluted by
implementation details.

Two lessons can be drawn from this example. First, the
problem with the incorrect reinitialization of the integrators
reveals that the scheduling of the successive actions in re-
sponse to mode change events requires some care. We believe
it is best to establish a solid mathematical basis for the
compilation steps that schedule reinitialization actions at mode
change events. Second, we should remember the discussion
of Section II-A where we gave strong arguments for not
providing solver-related primitives that rely on major steps.
The trouble we had using the memory block in the Newton’s
Cradle supports this position.

B. The Newton’s Cradle in ZÉLUS

The mem(y) operator is unsafe in the general case as its
definition does not depend solely on y but on the whole system
in which it is used. There is nonetheless a situation where the
memory block is useful and still safe: the model only refers
to the previous integration step during a discrete step. This
situation is very common: it occurs, for example, in a system
with two continuous modes M1 and M2 producing a signal x,
where each mode starts with a value computed previously by
the solver and changes between states are aligned on a discrete
clock. mem(x) is used to pass values between the two modes.
This actually occurs in the Newton’s Cradle example.

Instead of using the operator mem(x), we propose to replace
it by a more constrained one that we call last(x). At instants
when x is left continuous, it stands for the left limit of x.
The compiler will nonetheless restrict its use through compile-
time checks to avoid the pitfalls of the memory block. It will
statically reject situations where the value of last(x) may
change during integration.

let g = -9.81
let l = 1.0

let hybrid pend(a, omega0, theta0, r) =
(last omega, theta)

where
rec der theta = omega init theta0
and der omega = a *. (sin theta)

init 0.0 reset r -> omega0

let hybrid newtons_cradle() = (theta1, theta2)
where
rec (omega1, theta1) =

pend(g *. l, omega2, -1.5, contact)
and (omega2, theta2) =

pend(g *. l, omega1, 1.1, contact)
and contact =

(up(-. theta1 +. theta2))
on (omega1 -. omega2 < 0.0)

Figure 15. The Newton’s Cradle model written in ZÉLUS.

Figure 15 shows the Newton’s Cradle model written in
ZÉLUS. In this model, g is the acceleration and l is the
length of the pendulum. The function pend has four ar-
guments: a, omega0, theta0, and r. It returns a pair

(last omega, theta), where last omega is the left limit
of omega. The function contains two ODEs and omega is
reset to the current value of omega0 whenever the r event
occurs. Finally, the main function newtons_cradle takes no
arguments and returns the pair (theta1, theta2) of signals.
The body is made of three equations, one for each pendulum
and one that defines the signal contact as a state event that
is true when the zero-crossing up(−. theta1 + . theta2)
occurs, that is, when theta2 >= theta1 becomes true and
(omega1 − . omega2 < 0.0) is true.

The memory block is replaced by the operator last(.). Note
that its value is only used at a discrete clock — precisely when
up(−. theta1 + . theta2) is true — and this is checked
statically. More generally, ZÉLUS will forbid writing blocks
that explicitly refer to the major steps of the solver. Examples
are the memory block, the unit delay, the time and transport
delay, the rate limiter and backlash that must all be computed
on a discrete clock.

In the next section, we develop the nonstandard semantics
of the ZÉLUS program of Figure 15 for the Newton’s Cradle.

C. Nonstandard Semantics of the Newton’s Cradle

Throughout this section, whenever convenient, we use greek
symbols ω, θ to refer to the variables with extended names
omega, theta.

We define ?pend to be the nonstandard semantics of the
function pend defined in Figure 15, which, given a, ω0 (we
write ω0 to avoid a double subscript), and θ0 returns the
hyperstreams (?last(ω), ?θ) such that:20

?θn+1 = ?θn + ∂ ?ωn
?θ0 = θ0
?ωn+1 = if ?rn+1 then

?ω0
n+1 else

?ωn + ∂ (a sin(?θn))
?ω0 = 0

(20)
and the semantics of last(omega) is simply:

?last(ω)n+1 = ?ωn
?last(ω)0 = 0

(21)

Hence last(omega) breaks an instantaneous dependence:
its output does not depend instantaneously on omega. The
nonstandard semantics ?newtons_cradle is a function with
no inputs that returns ?θ1,

?θ2—the following are equations on
streams, and ?x = ?y means that, for all n ∈ ?N, ?xn = ?yn.

?(ω1, θ1) =
?pend(g ∗ l, ?ω2,−1.5, ?c)

?(ω2, θ2) =
?pend(g ∗ l, ?ω1, 1.1,

?c)
?c = (?up(−?θ1 +

?θ2))
?on (?ω1 − ?ω2 < 0.0)

(22)

The operations ?up and ?on are defined as follows. The boolean
signal ?up(x) is true when x crosses zero, from a negative to
a positive value, in a finite number of infinitesimal steps:
?up(x)0 = false
?up(x)n+1 = ∃m∈N (xn−m < 0)

∧ (xn−m+1 = 0) ∧ . . .
∧ (xn = 0) ∧ (xn+1 > 0)

(23)

20To simplify the notation, we consider a and the initial conditions constant.
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If c is a discrete clock and d a boolean, c on d defines a sub-
clock of c: it is true when c occurs, that is, c is true and the
boolean condition d is true:

(c ?on d)n = ?cn ∧ ?dn (24)

The nonstandard semantics of the Newton’s Cradle is given
by (20)–(24).

The nonstandard interpretation pend and newtons_cradle
corresponds to the definition of the discrete-time functions
disc_pend and disc_newtons_cradle parameterized by h,
and defining up by an edge front detection.
let node disc_pend(h)(a, omega0, theta0, r) =

(last_omega, theta)
where

rec theta = forward_euler(h)(theta0, omega)
and (last_omega, omega) =

forward_euler_r(h)(0.0, r, omega0,
a *. (sin theta))

let node disc_newtons_cradle(h) = (theta1, theta2)
where
rec (omega1, theta1) =

disc_pend(h)(g *. l, omega2, -1.5, contact)
and (omega2, theta2) =

disc_pend(h)(g *. l, omega1, 1.1, contact)
and contact = (up(-. theta1 +. theta2))

on (omega1 -. omega2 < 0.0) (25)

Of course, disc_newtons_cradle(∂) is not effective since
computers can calculate with infinitesimals. On the other
hand, the model disc_newtons_cradle(h) with h small
(and standard) is not the nonstandard semantics. Also, it is
not the way newtons_cradle should be implemented and
this is not the way it is implemented by ZÉLUS. It would
yield poor simulations, particularly at the zero-crossing events
causing mode changes. The nonstandard semantics is not
meant to be an operational semantics for execution, but rather
a mathematical semantics supporting symbolic analyses and
compilation steps. We illustrate this in the next section with
the causality analysis and scheduling of ZÉLUS models.

IV. CAUSALITY ANALYSIS AND SCHEDULING

Causality or algebraic loops [38] (2-34) appear in models
when the current value of a signal depend instantaneously on
itself. They are not bad in essense but they pose problems
of well-definedness (existence, unicity) and compilation. They
prevent the simulation from statically ensuring the existence of
fix-points, and compilers from generating statically scheduled
code. For ZÉLUS, we decided to statically reject those loops.
For that, we designed a type system that expresses causality
relations between signals and check for the absence of instan-
taneous cycles [23].

The nonstandard semantics allow to directly adapt the
causality analysis and scheduling compilation steps from data-
flow synchronous languages like LUSTRE. It interprets a
hybrid program as a discrete-time one where time progresses
by infinitesimal steps. The nonstandard semantics of an ODE
is its forward Euler scheme, albeit with an infinitesimal time
step. We introduce a special operator last, whose nonstandard
semantics is the unit-delay in the T-time base—the intent is
to capture the left limit of a signal, whenever it exists. Hence,

causality can be defined in a uniform manner and is interpreted
here in its weakest form as a dependence relation: all the
computations involved in a reaction must be acyclic.

The nonstandard semantics of a hybrid model provides a
simple but rigorous criterion for rejecting or accepting ZÉLUS
models, based on causality arguments. As an example, con-
sider the following two definitions of a discrete-time integrator
followed by the continuous time integrator with reset:

let node backward_euler(h, x0, xprime) = x
where
rec x = x0 -> pre(x) +. h *. xprime

let node forward_euler(h, x0, xprime) = x
where
rec x = x0 -> pre(x +. h *. xprime)

let hybrid int(x0, z, xprime) = x
where
rec der x = xprime init x0 reset z -> x0

The compiler computes two causality type signatures that
express the dependence relation between inputs and outputs.

val euler_backward : {}. ’a * ’a * ’a -> ’a
val euler_forward :

{’a < ’b}. ’b * ’a * ’b -> ’a
val int : {’a < ’b}. ’a * ’a * ’b -> ’a

For that, every expression is associated to a time tag and the
relation between those tag must be a partial order. The first
signature means that for any time tag ′a, all inputs and output
can be computed all together. The second one express that for
any time tags ′a and ′b, if input h and xprime have tag ′b and
x0 have tag ′a, the result is also on tag ′a. The relation between
tags ′a <′ b means that with all computations done on tag ′a
are scheduled before those with tag ′b. The causality type
signature indeed express that the output x does not depend on
h nor xprime but only on x0. The last type signature expresses
that the output x does not depend on xprime.

The ZÉLUS models pend and newtons_cradle of Fig-
ure 15 are both accepted since all their dependency cycles
are broken by a unit delay in the nonstandard semantics.

In contrast, consider the ZÉLUS programs below,
cyclic_pend and cyclic_newtons_cradle(), which are
minor variations of pend and cyclic_newtons_cradle().
The causality analysis finds a cyclic dependency involving
omega1 and omega2 and cyclic_newtons_cradle() is thus
rejected.
The causality analysis of hybrid system models is thus directly
inherited from the synchronous languages, thanks to the help
of the nonstandard semantics.

Remark 1. For its soundness in the nonstandard semantics,
the causality analysis uses the fact that hyperstreams progress
by discrete steps. Mathematically speaking, this relies on the
fix-point theory for recursive equations over hyperstreams,
see [39], [40], [10], [23]. According to this theory, the desired
fix-point is obtained as the limit of an iteration producing
overlapping partial executions of increasing length, and the
causality criteria guarantee that the length of these partial
executions actually grows until the entire time line is covered.
This technique applies to time lines more general than discrete
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let hybrid cyclic_pend
(a, omega0, theta0, res) = (omega, theta)

where
rec der theta = omega init theta0
and der omega = a *. (sin theta)

init 0.0 reset res -> omega0

let hybrid cyclic_newtons_cradle() = (theta1, theta2)
where
rec (omega1, theta1) =

cyclic_pend(g *. l, omega2, -1.5, contact)
and (omega2, theta2) =

cyclic_pend(g *. l, omega1, 1.1, contact)
and contact =

(up(-. theta1 +. theta2))
on (omega1 -. omega2 < 0.0)

Figure 16. The model cyclic_newtons_cradle().

time in N [39], [40]. Unfortunately, it does not apply to
continuous time lines such as R≥0 or Tsd, see [40, pages
54–55] and the discussion about ODEs therein. The problem
is that, for an instant t ∈ R, there is no next instant.
Our nonstandard semantics, therefore, offers new features not
provided by the Ideal Solver Semantics.

V. DISCRETE- VS. CONTINUOUS-TIME

The examples discussed in Section II-A conflate the discrete
time expected by operators like the unit delay, and the dis-
cretization time steps chosen by the simulation engine. In our
approach, we carefully distinguish the two time bases with the
objectives of (1) excluding the operational details of numeric
solvers from the semantic model; (2) facilitating compositional
reasoning on models; and (3) reducing the effect of solver
parameters and choices on simulation results obtained for
discrete signals. Our approach consists in developing a static
type system that classes expressions as being discrete or
continuous time. Details are given in [16], [18], [23].

A. Analysis of Examples

Our first design choice in defining ZÉLUS is to forbid,
within ZÉLUS programs, any access to operational details of
numeric solvers. No statement in ZÉLUS uses the major step
of the solver—in contrast to the mem() operator of Simulink.
In particular, the model of Figure 12 with its two memory
blocks cannot be written in ZÉLUS. The ZÉLUS programmer
is expressly prevented from writing such models.

Our second concern is to prevent the undisciplined mixing
of discrete and continuous time bases. Distinguishing the two
time bases requires inferring, from the program text, which
computations are performed in continuous-time and which are
performed in discrete-time. The time base of discrete-time
computations must be defined unambiguously, based on local
and visible program features and not on global and hidden
properties of the execution engine. We achieve this in the
ZÉLUS prototype by:

1) reusing, in ZÉLUS, the constructs of LUSTRE (more
precisely, of its descendent LUCID SYNCHRONE [41]) for
the description of discrete-time dynamics; and

2) introducing a type system to statically separate the con-
tinuous parts of a program, which must be exercised by

the numerical solver, from the discrete parts, which must
not act during integration.

Recall that a signal is deemed discrete if its changes are acti-
vated on a discrete clock, see (6). In practice, this means that
all discrete changes in a ZÉLUS program are synchronized with
a zero-crossing event. The Simulink example from Figure 1a
is expressed in ZÉLUS as follows:

let hybrid wrong() = cpt where
rec der time = 1.0 init 0.0
and cpt = 0.0 fby (cpt +. time)

In this example, the ODE defining time is composed in
parallel with a stream equation. The compiler rejects it with
the following error message:

> der time = 1.0 init 0.0
and cpt = 0.0 fby (cpt +. time)

> ^^^^^^^^^^^^^^^^^^^^^
Type error: this is a discrete expression
and is expected to be continuous.

If the stream equation is activated on the discrete clock, the
program is accepted with the infered type printed below:

let hybrid continuous_with_discrete(z) = cpt
where
rec der time = 1.0 init 0.0
and cpt = present z -> 1.0 fby (cpt +. time)

init 0.0

val continuous_with_discrete : zero -C-> float

In the following section, we provide a sketch of the static
typing we use to systematically accept or reject programs at
compile time, with explanations in case of rejection. Then,
we briefly explain how this technique extends to higher level
constructs such as mode machines.

B. Static Typing: Simple Programs

Checking whether a signal is discrete-time (meaning that
its instants of change are supported by a discrete-time clock)
is undecidable. We thus take a more pragmatic point of view:
by convention, a signal is typed discrete if it is activated on a
zero-crossing event, and otherwise it is typed continuous.

The intuition behind the type system is to give a type of
the form t1

k→ t2 to a function f where k is a kind with
three possible values. If k = C, f can only be used in a block
activated on a continuous clock. If k = D, f must be activated
by a discrete clock. If k = A, then f can be used in expressions
of any kind, that is, f is a combinatorial function. Kinds can
be compared such that for all k, k ⊆ k and A ⊆ k. The type
language is:

σ ::= ∀β1, ..., βn.t
k→ t

t ::= t× t | β | bt
k ::= D | C | A
bt ::= float | int | bool | zero

where σ defines types schemes and β1, ..., βn are type vari-
ables. A type t can be a pair (t× t), a type variable (β) or a
base type (bt), and zero stands for the type of a zero-crossing
condition whose only value constructor is up(.).
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Typing must keep track of both the types of defined nodes
(signal functions) and local signals. A global environment
G assigns type schemes (σ) to global identifiers and an
environment H assigns types to variables.

G ::= [f1 : σ1; . . . ; fn : σn]

H ::= [ ] | H,x : t

If H1 and H2 are two environments, H1 +H2 is the union of
the two, provided their domains are disjoint.

Typing is defined by asserting judgments like these two:
(TYP-EXP)
G,H `k e : t

(TYP-ENV)
G,H `k E : H ′

The predicate (TYP-EXP) states that under the global environ-
ment G and the local environment of signals H , expression e
has type t and kind k. The predicate (TYP-ENV) states that
equation E produces the type environment H ′ and has kind k.

Programs are typed under an initial global environment
G0 containing, in particular, the type signature for imported
primitives. As an example, we give the signature of addition,
equality, and the conditional. They are all of kind A since they
can be executed on either a discrete clock or a continuous
clock. The unit delay has kind D. The zero-crossing function
up(e) must be activated on a continuous clock, and hence its
kind is C.

(+) : int× int
A→ int

(=) : ∀β.β × β A→ bool

if : ∀β.bool× β × β A→ β

pre . : ∀β.β D→ β

. fby . : ∀β.β × β D→ β

up(.) : float
C→ zero

The integer addition operator maps a pair of integers to an
integer and can be used in any context. Other arithmetic and
logical operators have the same kind and similar types, only
varying in whether the arguments and results are of type int,
float, or bool. The synchronous primitives for uninitial-
ized delay (pre ·), initialized delay (· fby ·), and initialization
(·-> ·) are of kind D since they contain internal discrete state
variables. Their type signatures are polymorphic [42], [43]:
each involves the quantified type variable β since they can
be applied to values of any primitive type. The operator for
zero-crossing detection (up(·)) has kind C since it can only be
used on a continuous clock. We introduce the type zero to
represent zero-crossing events.

The less-than-or-equal-to operator (<=), like the other
relational operators, takes two arguments of the same primitive
type and returns a boolean value. Perhaps surprisingly, such
operators have kind D even though they have no internal
state. This ensures that boolean signals never change during
integration, and thus that the active branch of if and other
branching constructs never change during integration.

The complete set of typing rules is presented elsewhere [16,
§3.2] and we only describe a few typical rules here. As a first
example, consider the rule for ODEs with no reset:

(ODE)
G,H `C e1 : float G,H `D e2 : float

G,H `C derx = e1 init e2 : [x : float]

The typing assumptions are given to the left of the ‘`’ symbol.
They comprise the global environment G described above,
and a local environment H mapping variables to their types.
The ‘`’ is annotated with the context in which a rule applies.
The predicate over equations below the line is conditional
on the two predicates over expressions above the line. All
together, the rule says that an equation derx = e1 init e2
is well typed when defined on a continuous clock if (1) the
derivative expression e1 yields a floating-point value on a
continuous clock, (2) the initialization expression e2 yields a
floating-point value on a discrete clock. In ZÉLUS, the general
form of an ODE with reset handler is written:

derx = e init ei reset z0 -> e0 | . . . zn -> en

The handler is a (possibly empty) list of pairs zi -> ei where
zi is an event and ei an expression which gives the initial
value of x when zi is true. E.g.:

der x = 1.0 init 0.0
reset z1 -> 1.0 | z2 -> 2.0

The signal x has derivative 1.0. It is reset to value 1.0 when
z1 is true and to value 2.0 when z2 is true. The typing rule
is extended to account for the reset handler:

(ODE-RESET)
G,H `C e : float G,H `D e : float
∀i ∈ I.G,H `C zi : zero G,H `D ei : float

G,H `C derx = e init ei reset zi -> ei | i∈I : [x : float]

Compared to the previous definition, the event expressions
zi must be of type zero which is the type for events. The
expressions ei must be of type float and are evaluated only
when the event zi occurs, thus at a discrete-time instant, hence
the kind D. The use of a discrete context for initialization
expressions is coherent with the principles laid out above,
since the language ensures that all variable initializations
and reinitializations occur at precise instants that are aligned
with zero-crossings. In any case, variables cannot be directly
assigned during numerical integration. The typing rules for
equations successively construct a new local environment that
is later required to be consistent with the assumed one (H).
The der construct can only be used on a continuous clock
since no rules are given for combinatorial or discrete clocks.

As a second example, consider the following rule for the
parallel composition of sets of equations:

(AND)
G,H `k E1 : H1 G,H `k E2 : H2

G,H `k E1 and E2 : H1 +H2

This rule applies for any context k but requires that the sets of
equations being composed are well typed in the same context.
In fact, it is this rule that is violated in the first ZÉLUS
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reimplementation of Figure 1a. The resulting environment,
H1 +H2, is the (disjoint) composition of H1 and H2.

Applying type systems as sketched in this section gives a
precise and unambiguous specification of the set of hybrid
models that are valid in a given language (subject to other
analyses). The rules permit formal reasoning and guide the
implementation of the compiler typing pass.

Kinds also play an important role during compilation,
as will be seen in Section VI. An expression has kind D

when it must be compiled with an internal discrete state and
activated on a discrete clock, C when it must be compiled for
activation by a solver on a continuous clock, and A when it is
combinatorial and can be activated on any clock.

Finally, models that have passed the type checking and are
causally correct verify the following safety properties:

Theorem 1 ([18], [23]).
1) Discrete state variables do not change between successive

events;
2) If, in addition, no primitive statement hides a discon-

tinuity, then all variables have continuous trajectories
between two successive events;

3) Under this additional assumption, signal expressions la-
beled discrete and continuous are updated at disjoint
instants, respectively.

The Newton’s Cradle example of Figure 15 is shown to be
correctly typed in the sense of this section.

C. Static Typing: Hierarchical Automata

It turns out that the very same type system just natu-
rally supports hierarchical automata describing nested multiple
modes [17]. Consider for example, a function sum that com-
putes the stream of natural numbers and bounce which models
a bouncing ball.

let g = 9.81

let node sum() = o where rec o = (0 fby o) + 1

let hybrid bounce(yi, yi’) = (y, y’, z) where
rec der y’ = -. g init yi’

reset z -> -0.8 *. last y’
and der y = y’ init yi
and z = up(-. y)

let hybrid count_bounces_and_stop
(epsilon, yi, yi’) = (y, s) where

rec automaton
| Bounce ->

(* z and y’ are local to the state *)
local z, y’ in
do (y, y’, z) = bounce(yi, yi’)
and s = present z -> sum() init 0
until z on (y’ < epsilon) then Stop

| Stop ->
(* s is unchanged, i.e., *)
(* implicitly, s = last s *)
do y = 0.0 done

end

Figure 17. The program count_bounces_and_stop.

The function count_bounces_and_stop of Figure 17 is
defined by a two state automaton: in the initial state Bounce, it
counts the number of bounces until z on (y′ < epsilon), that
is, when there is both a contact and the speed of the ball is less
than epsilon. When this event occurs, the next state is Stop
in which the position y remains constant at 0.0. The absence
of an explicit definition for s in this state means that its value
remains constant. This program is valid because the discrete-
time function sum in equation present z − > sum() init 0

is computed at zero-crossing instants and defines a (piece-
wise constant) hyperstream. Removing the present construct
would result in a typing error based on the rule: when declaring
a function of kind k, for example, node or hybrid, all
computations must be of the same kind.

The typing rules for automata [17] follow the same pattern
described above, but their formalization is technically more
involved since automata themselves are syntactically more
complicated than basic equations. It turns out that six rules
suffice to treat both discrete and hybrid automata. These
rules precisely encode the sort of informally stated guidelines
typically given in the documentation of hybrid modelers. The
Stateflow User’s Manual, for instance, includes a section enti-
tled “Design Considerations for Continuous-Time Modeling in
Stateflow Charts” [44, 19-22], the goal of which is to ensure
that a model does not depend critically on “side effects” of the
numerical simulation algorithm. Informal rules like “Compute
derivatives only in during actions” and “Update local data only
in transition, entry, and exit actions” are readily and precisely
encoded in terms of syntax-based A/D/C rules.

VI. THE SIMULATION LOOP

CD

restartinit

event detection

event handling

CD

nonstandard semantics
simulation code

restartinit

event detection

event handling
delegated to
the solver

Figure 18. From the nonstandard semantics (top) to the actual simulation
code (bottom).

Now, for a given ZÉLUS model, assume we have at hand (1)
its nonstandard semantics and associated causality analysis and
(2) its D/C (discrete/continuous) static typing. Assume also that
the model is correct, both causally and for continuous/discrete
typing. Since the model is causally correct, we can statically
schedule all the computation actions involved in the step func-
tion of this model. By statement 3 of Theorem 1, expressions
typed as D and C must be evaluated at disjoint instants. We
can thus collect them, respectively, in the D and C states of a
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two-state automaton. This automaton is depicted at the top of
Fig. 18. It is discrete time and the time step is infinitesimal.

We know that the actual system satisfies the two properties 1
and 2 of Theorem 1. This justifies the architecture of the actual
simulation code shown at the bottom of Fig. 18. The structure
is the same as for the semantics except for two changes which
correspond to performing standardization:
• The nonstandard discrete-time self-loop in mode C at the

top of Fig. 18 is replaced by a dashed transition depicting
the delegation of this self-loop to a numerical solver
to solve the ODEs and detect zero-crossings. The latter
operates until the next event is detected.

• The nonstandard discrete-time self-loop in mode D at
the top of Fig. 18 is mapped to the same self-loop with
identical scheduling, albeit acting in the N-component
of superdense time.The scheduling of the reset or restart
actions at instants of mode change comes directly from
the scheduling of the nonstandard semantics.

By doing so, the invocation of a solver implementing some
numerical approximation scheme occurs only at the last step
of compilation. Besides the very final code generation phase,
compilation steps are unpolluted by approximations. Details
regarding this section are found in [19].

A. Principles

We now describe the practical architecture of the simulation
loop of ZÉLUS. The first choice to make in implementing a
hybrid system is how to solve ODEs. Creating an efficient
and numerically accurate numerical solver is a daunting and
specialist task. Reusing an existing solver is more practical,
with two possible choices: either (a) generate a Functional
Mock-Up Unit (FMU) using the standardized Functional
Mock-Up Interface (FMI) and rely on an existing simulation
infrastructure [45], [46]; or (b) use an off-the-shelf numerical
solver like CVODE [20] and program the main simulation
loop. The latter corresponds to the co-simulation variant (CS)
of FMI [47], where each FMU embeds its own solver.

The simulation loop of a hybrid system is the same no
matter which option is chosen. It can be defined formally as
a synchronous function that defines four streams t(n), lx (n),
y(n), and z(n), where: n ∈ N; t(n) ∈ R is the increasing
sequence of instants at which the solver stops (the major
steps of Simulink); lx (n) is the value at time t(n) of the
continuous state variables, that is, of all variables defined by
their derivatives in the original model; y(n) is the value at
time t(n) of the discrete state; and z(n) indicates any zero-
crossings at instant t(n) on signals monitored by the solver,
that is, any signals that become equal to or pass through zero.

The synchronous function has two modes: the discrete mode
D contains all computations that may change the discrete state
or that have side effects. The continuous mode C is where
ODEs are solved. The two modes alternate according to the
execution scheme summarized in Figure 18.

The Continuous Mode C: In this mode, the solver
computes an approximation of the solution of the ODEs and
monitors a set of expressions for zero-crossings. Code gener-
ation is independent of the actual solver implementation. We

abstract it by introducing a function solve(f)(g) parameterized
by f and g where:
• x′(τ) = f(y(n), τ, x(τ)) defines the derivatives of con-

tinuous state variables x at instant τ ∈ R;
• upz(τ) = g(y(n), τ, x(τ)) defines the current values

of a set of zero-crossing signals upz, indexed by
i ∈ {1, . . . , k}.

The continuous mode C computes

(lx , z, t, s)(n+ 1) = solve(f)(g)(s, y, lx , t, step)(n)

where:
s(n) is the internal state of the solver at instant t(n) ∈ R.

Calling solve(f)(g) updates the state to s(n+ 1);

x is an approximation of a solution of the ODE,

x′(τ) = f(y(n), τ, x(τ)) , t(n) ≤ τ < t(n+ 1)

It is parameterized by the current discrete state y(n)
and initialized at instant t(n) with the value of lx (n),
that is, x(t(n)) = lx (n);

lx (n+1) is the value of x at t(n+ 1), that is:

lx (n+ 1) = x(t(n+ 1))

lx is a discrete-time signal updated at the instants
t(n) whereas x is a continuous-time signal;

t(n+ 1) is bounded by the horizon t(n) + step(n) that the
solver has been asked to reach, that is:

t(n) ≤ t(n+ 1) ≤ t(n) + step(n)

z(n+1) signals any zero-crossings detected at time t(n+ 1).
An event occurs with a transition to the discrete
mode D when horizon t(n)+ step(n) is reached, or
when at least one of the zero-crossing signals upz(i),
for i ∈ {1, . . . , k} crosses zero,21 which is indicated
by a true value for the corresponding boolean output
z(n+ 1)(i):

event = z(n+ 1)(0) ∨ · · · ∨ z(n+ 1)(k)∨
(t(n+ 1) = t(n) + step(n))

If the solver raises an error, e.g., division by zero or failure to
converge, we consider that the simulation fails.

The Discrete Mode D: All discrete changes occur in this
mode. It is entered when an event is raised during integration.
During a discrete phase, the function next defines y, lx , step,
encore, z, and t:

(y, lx , step, encore)(n+ 1) = next(y, lx , z, t)(n)

z(n+ 1) = false

t(n+ 1) = t(n)

21The function solve(f)(g) abstracts from the actual implementation of
zero-crossing detection. To account for a possible zero-crossing at the horizon
t(n) + step(n), the solver may integrate over a strictly larger interval
[t(n), t(n) + step(n) +margin], where margin is a solver parameter.

z(n+ 1)(i) =

 (∀τ ∈ [t(n), t(n+ 1)[ . upz(τ)(i) < 0)
∧ ∃m ≤ margin .

(∀τ ∈ [t(n+ 1), t(n+ 1) +m] . upz(τ)(i) ≥ 0)

This definition assumes that the solver also stops whenever a zero-crossing
expression passes through zero from positive to negative.
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where
y(n+ 1) is the new discrete state; outside of mode D,

y(n+ 1) = y(n);

lx (n+ 1) is the new continuous state, which may be
changed directly in the discrete mode;

step(n+ 1) is the new step size;

encore(n+1) is true if an additional discrete step must be
performed. Function next can decide to trigger
instantaneously another discrete event causing
an event cascade [10];

t(n) the simulation time, is frozen in discrete phases.
The initial values for y(0), lx (0) and s(0) are given by an
initialization function init. Finally, solve(f)(g) may decide
to reset its internal state if the continuous state changes. If
init_solve(lx (n), s(n)) initializes the solver state, we have:

reinit = (lx (n+ 1) 6= lx (n))

s(n+ 1) = if reinit then init_solve(lx (n+ 1), s(n))

else s(n)

Writing solve(f)(g) abstracts from the actual choice of inte-
gration method and zero-crossing detection algorithm. A more
detailed description of solve(f)(g) would be possible — e.g.,
an automaton with two states: one that integrates, and one
that detects zero-crossings — but with no influence on the
code generation problem which must be independent of such
simulation details.

Given a program written in a high-level language, we must
produce the functions init , f , g, and next . In practice, they
are implemented in an imperative language like C. Code
generation for hybrid models has thus much in common with
code generation for synchronous languages.

B. Implementation

The operation of the continuous mode is fairly standard.
In our implementation, we used the SUNDIALS CVODE
solver [20], [48], which imposes particular but typical con-
straints on the runtime and generated code. We also imple-
mented the Bogacki-Shampine and Dormand-Prince explicit
Runge-Kutta schemes [49] using Butcher tableau, and they act
as “drop in” replacements for the four main solver functions
(for creation, reinitialization, stepping, and interpolation).

The transition into the continuous mode must reinitialize the
solver if the continuous state values were changed directly, or
if the dynamics that govern them were modified by a change
to the discrete state. Otherwise, the solver may reuse the
previous interpolant or calculated state value to continue. Such
reinitializations are best avoided, however, since they reduce
the efficiency of the solver and since they are not needed if an
event only triggered an update of a visualization or log file.

VII. THE COMPILATION SUITE

In this section we present a brief description of our two
experimental developments based on the principles presented
in this article: ZÉLUS and its industrial sister SCADE Hybrid.
Technical details can be found elsewhere [19].

A. ZÉLUS

The compiler architecture for hybrid programs is based
on those of existing compilers for data-flow synchronous
languages like SCADE 6 and Lucid Synchrone, as described for
instance in [50]. After initial checks, it consists in successive
rewritings of the source program into intermediate languages,
and ending with sequential code in a target language, typically
C. The different passes are shown in Figure 19:

1) Parsing transforms code in the source language into an
abstract syntax tree;

2) typing checks programs according to the system of [16].
In the language extended with ODEs, this system dis-
tinguishes continuous and discrete blocks to ensure the
correct separation of continuous and discrete behaviors;

3) causality analysis verifies the absence of causality
loops [18];

4) control structures like hierarchical state machines are
rewritten into data-flow equations, following the method
presented in [51]. A small modification accounts for the
fact that transitions are executed in a discrete context
whereas the bodies of states are continuous;

5) traditional optimizations, like dead-code removal and
common sub-expression elimination, are performed, after
which the generation of sequential code begins;

6) scheduling orders equations based on data dependencies;
7) programs are translated into an intermediate sequential

object language (named SOL in the case of SCADE) [50].
This language has been extended to to deal with the new
constructs for ODEs and zero-crossings;

8) slicing specializes the sequential function generated for
each node into three functions: f , which defines the
derivatives, g, which defines the zero-crossing signals,
and next , which defines the function that implements
discontinuous changes.

9) dead-code removal eliminates useless code from each
function. For instance, derivatives need not be computed
by the next function and zero-crossing values are always
false during integration;

10) finally, the sequential code is translated to imperative
code. For ZÉLUS, the target language is OCaml. For
SCADE HYBRID, the target language is C.

The compiler passes in gray in Figure 19 are those which must
be modified in, or added to (dashed borders), a traditional
synchronous language compiler. For SCADE HYBRID, the
modifications were relatively minor w.r.t SCADE — around
10% of each pass—and do not require major changes to
the existing architecture. Together with the new passes, they
amount to 5% of the total code size of the compiler. ZÉLUS,
on the contrary, was written from scratch but has the same
basic structure.

B. SCADE 6

From SCADE 6 to SCADE HYBRID: SCADE Suite is an
integrated design environment for critical applications includ-
ing model-based design, simulation, verification and qualifi-
able/certified code generation. SCADE Suite has been used
for more than twenty years to design critical software, such
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Figure 19. Compiler architecture (modified passes are gray; new ones are also dashed)

as flight control and engine control systems, automatic pilots,
power and fuel management systems, rail interlocking systems
and signaling, emergency braking systems, overspeed protec-
tion, nuclear power plant controls, ADAS in cars, and many
other aerospace, railway, energy, automotive, and industrial
applications.

Applications are implemented using the formally defined
SCADE 6 language which is a synchronous data-flow language
combining dataflow constructs as in LUSTRE with control-
flow structures like hierarchical state machines. The SCADE
Suite KCG code generator generates C or Ada code from a
SCADE model. The code generation and the sanity checks are
qualified/certified for various safety standards (DO-178C/DO-
330 at TQL-1, IEC 61508 at SIL 3, EN 50128 at SIL 3/4,
and ISO 26262 software up to ASIL D). In a qualification
context, SCADE models replace detailed textual requirements.
KCG certification allows eliminating verification activities at
code level and unit testing: the generated code is guaranteed
to implement the behavior specified by the input model.

SCADE HYBRID is an extension of SCADE 6 supporting
hybrid systems combining continuous- and discrete-time dy-
namics. It is based on the ideas presented in this paper.
The KCG Hybrid code generator is based on KCG, and
reuses as much as possible of the existing (discrete) SCADE 6
language and compiler architecture The goal was to validate
the approach — designing SCADE HYBRID as a minimal
extension of SCADE— on an industrial compiler and at a
bigger scale (around 50kloc of OCaml), and with additional
constraints, including full traceability from the input model to
the generated code.

The conclusions were positive: in KCG Hybrid, the fraction
of the source code that has been modified or added with
reference to KCG, is approximately 5%. The architecture of
the code generator remains the same and the static checks were
readily extended to the hybrid context.

Description: KCG Hybrid generates C code with bounded
memory. In particular, the discrete parts of a model are
compiled as in KCG. This guarantees that the code used for
simulation is the same as that executed on target platforms.

The code generated by KCG Hybrid can be paired with a
runtime to target one of the following backends:
• a model-exchange “Functional Mockup Unit” (FMU) that

respects the FMI for Model Exchange 1.0 [45] or 2.0 [46]
standards. Such FMUs describe a mix of ODEs and
discrete events. They are simulated, with or without other
components, by an external numerical solver provided by
a host. The execution model of FMI [45, Section 2.9]
resembles the scheme described in the previous section.
A small generic runtime implements the FMI API by

calling KCG generated code.
• a co-simulation FMU that respects the FMI for Co-

Simulation 1.0 [47] or 2.0 [46] standard. Such FMU
embeds its own solver, which is CVODE in our case.

• a standalone executable.
The code generated by KCG is independent of the backend.
It is paired with a target-specific runtime. The traceability
information generated by KCG Hybrid is used to generate
model-specific “glue” code and XML descriptions for FMUs.

It is also possible to import FMUs (version 1.0 or 2.0) into
a SCADE Hybrid model:
• a model-exchange FMU is considered as an imported
hybrid operator. Note that importing a model-exchange
FMU generated from another SCADE Hybrid model is
equivalent to calling that operator directly.

• a co-simulation FMU is considered as an imported node.
This allows SCADE Hybrid to be used as a tool to orchestrate
FMUs, where the behavior of each FMU and their combination
is well defined.

Scade Hybrid in a certified context: Although the quali-
fication of KCG allows to reduce activities on the generated
code, it is still necessary to perform verification and validation
activities at the specification level.To perform these activities,
one needs to be able to provide a test environment which
is powerful enough to describe the environment but also
deterministic to be able to replay the test sessions with the
same results. This is very important in the certification domain
as the applicant must be able to present evidence of all
activities performed during the development process.

Being able to mix continuous and discrete parts with deter-
ministic semantics and reproducible simulations is a marked
improvement on current practice. By extending SCADE with
continuous capabilities it is possible to perform tests and
simulations that combine continuous and discrete parts, with a
well-defined semantics for their interactions. This guarantees
the correctness of the simulation and expected behaviors can
be assessed in advance. The goal of SCADE Hybrid is to
increase the level of confidence in such mixed models.

Furthermore, the increasing need for on-line monitoring
and failure detection and isolation calls for including, in the
monitoring software, parts of the physical system model. That
model is used to generate measurement predictions, under the
hypothesis that the system behaves as the model predicts.
These predictions can be compared to actual measurements
for failure detection and isolation. Having a hybrid system
modeling tool with a well defined mathematical semantics and
integrated with a certified embedded code generator is a first
step towards embedded code involving physical models.
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VIII. DISCUSSION, PERSPECTIVES, AND CONCLUSION

In this concluding section we first discuss issues, limitations,
extensions, and perspectives, directly related to this work.
In a second part, we widen the perspective by discussing
other issues not addressed here, but important for modeling
languages and tools for Cyber-Physical System (CPS).

A. Our work: modeling is programming

In this work, we consider hybrid systems from a pro-
gramming language perspective, thus following the approach
advocated by Lee and Zheng [4].

We aimed to make ZÉLUS as simple as LUSTRE and a con-
servative extension of it. We reused and adapted synchronous
language principles and techniques as much as possible and
followed the same philosophy of rejecting unsafe models at
compile time. In a sense, ZÉLUS is equipped with the weakest
modeling discipline guaranteeing that accepted models are
safe.

In order to achieve this, our modeling discipline had to be
formally sound. This required the development of an ideal
modular semantics as a reference for the design of static
analyses and compilation steps, but orthogonal to numerical
aspects related to ODE discretization schemes. The semantics
had to support both the continuous-time dynamics within
different modes, and the reset or restart actions performed
at events of mode change. We found nonstandard analysis
to be instrumental for defining a mathematical and mod-
ular semantics of hybrid models. Its aim is not to serve
as an operational semantics providing reference executions
but rather as a support for the analyses that identify unsafe
models and statically reject them, for proving certain invariants
for accepted models, and for providing adequate execution
schemes for the reset or restart actions performed at events
of mode change.

All of this is a reuse of techniques developed for syn-
chronous languages and adapted to the nonstandard semantics.
Not everything can be inherited, however. There are two
specific issues, namely the clean separation between discrete-
and continuous-time dynamics, and the run-time architecture
in which the execution of continuous modes is delegated to an
off-the-shelf ODE solver. The background from synchronous
languages still provided good guidance for how to proceed
with these novel issues.

For ZÉLUS, our heritage is still limited to LUSTRE and
some programming constructs and compilation techniques
borrowed from LUCID SYNCHRONE [52]. More elaborated
semantic studies were developed for the synchronous lan-
guages ESTEREL and SIGNAL, with an emphasis on so called
constructive semantics [53]. Because ZÉLUS extends LUSTRE,
no sophisticated causality analysis as in ESTEREL [54], [55]
appeared necessary to write complicated models. Neither we
really needed the SIGNAL “clock calculus” [56]. Regarding
the discrete/continuous typing system, types are attached to
functions and expressions. We could have considered instead a
type system of finer granularity for signals. Our design choice
favored simplicity. So far, our type system seems accurate
enough for not rejecting too many practically meaningful

programs. Several other analyses — either static, dynamic,
or a combination of both — would be useful. One is the
analysis that detects situations where cascades of events are
bounded; another is to ensure the absence of critical races
between events.

Other tools and languages, like PTOLEMY [27], have
adopted a different approach where checks on models are
performed at run time. It is possible to dynamically check
that a model has no instantaneous loops or that a signal
expected to be continuous does no jumps during integration
(up to some threshold). We have taken the opposite standpoint
by favoring the detection of unsafe models at compile time.
The consequence is that we do reject good models because
the type systems we developed are not expressive enough.
An experimental study, for example writting a comprehensive
library of discrete/continuous/hybrid blocks, will help deciding
whether the type systems are overly constraining or not. A pre-
liminary experiment is reported in [57]. Finally, the discovery
of numerical difficulties related to stiffness remains run time—
and rules out the need for overly restrictive programming
disciplines in industrial contexts. Performing rich analyses at
compile time, while constraining the users, may detect errors
in models early; it also allows form removing run-time checks
and to statically schedule the computation of the step function
and the reset actions, which leads to more efficient code.

B. A wider perspective

Besides the observations directly related to the presented
material, there are other issues that are important for CPS
modeling tools in general.

Using nonstandard analysis to prove properties: Besides
providing the semantic foundations for compilation, the non-
standard semantics also supports symbolic manipulations and
possibly the formal proofs of properties on models. This aspect
has not yet been considered.

Surviving too many events: In ZÉLUS, and all other
existing modeling languages for hybrid systems, runs alternate
continuous-time phases and events of mode change, possibly
in (finite) cascades. There are, however, situations in which
events become too frequent. A typical example is the bouncing
ball in which jumps occur more and more frequently, thus
exhibiting a Zeno behavior—the bouncing ball is, for this
reason, considered a difficult benchmark for hybrid systems
modeling tools. Many other examples exist. An ideal diode
with no leakage is modeled by the equations i ≥ 0, v ≥ 0,
and iv = 0. In a context where the status of the diode
oscillates between passing or not passing, events become
too frequent for the solver to stop at each of them. The
same issue arises in multibody mechanics with contact, where
the modeling of contact events is in itself an issue. For all
these cases, zero-crossing events are not appropriate. So-called
nonsmooth systems solvers [58] are to be preferred, as they
use time-stepping discretization schemes that do not stop at
events. Nonsmooth systems solvers are particularly effective
for multibody mechanics or electronic circuits with ideal
semiconductors [59], where they prove to behave much better
than classical schemes. The class of discontinuities they handle
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are the complementarity conditions, of which the above perfect
diode model is the simplest instance. Today, nonsmooth system
solvers are available through dedicated tools like Siconos,22

and cannot easily be called from existing modeling languages.
Offering such features is certainly a useful objective. As
these special solvers are good in particular situations but
not everywhere, they cannot replace mainstream solvers but
rather complement them. The best way of achieving such
combinations remains an issue.

Dealing with large sparse models: Huge CPS models
such as smart grids or smart buildings are typically sparse.
This means that they are composed of a great number of
local subsystems interacting only locally.23 Sparsity is a
structural property, related to the topology of the system
block-diagram. Being symbolic in nature, sparsity should be
preferably handled at compile time. Existing hybrid systems
modeling tools do not take advantage of the model’s sparsity.
A striking illustration is that discretization time steps are
adapted in time but uniform in space. For example, opening
a window in a single room in the thermodynamical model
of a large building will impact the simulation in the whole
building, whereas the physical effect is clearly local. It is
thus tempting to investigate alternative discretization methods
such as Quantized State Solvers (QSS), in which variables are
quantized in their value domain, and time progresses locally
for each variable until the current value quantum must be
exited [60], [61], [62], [63]. QSS solvers implement discrete
event approximations of continuous-time systems. Alternative
approaches exist such as multi-rate simulation [63] in which
multiple variable time steps are managed locally in space.
More generally, advances made in the High Performance
Computing community regarding solvers for very large sparse
ODE systems [62] remain to be applied in the context of CPS.

From ODEs to DAEs: In this work we restricted ourselves
to ODE-based modeling of hybrid systems, commonly speci-
fied by means of dataflow block-diagrams. Block diagrams,
however, suffer from limits in expressivity as is illustrated
in Figure 20. This figure shows two models of the same

Figure 20. DAE (left) vs. ODE (right) based modeling.

system comprising a simple model of an electrical motor and
of the rotational inertia of the motor. On the left-hand side a
Modelica component diagram of the system is shown that con-
nects physical components through non-directed interactions
resulting from the first principles of physics. On the right-hand

22http://siconos.gforge.inria.fr/4.1.0/html/index.html
23We do not consider here the issue of dynamic instantiation and removal

of subsystems, which is the core difficulty of Systems of Systems.

side, the same model is shown as a block diagram in which in-
put/output oriented blocks are connected with a directed wiring
manually specified by the designer. Adding one more physical
components is straightforward in the first diagram, whereas
it may necessitate a complete redesign of the second one.
Physical component diagrams are mathematically described by
DAEs of the form f(x′, x, u) = 0, where u and x are vectors
of variables, and f is a vector of functions. Note that there
is no notion of input versus output. Multi-mode DAE-based
models constitute the basis for component-oriented languages
for physical modeling like the open standards Modelica24

and VHDL-AMS25 or proprietary languages like Simscape.26

DAE-based modeling is a considerable progress but it raises
a number of difficulties, related to both the mathematics of
DAEs and multi-mode DAEs, the algorithms for compilation
of such models, and the underlying languages, particularly for
the definition and handling of events. An extensive literature
can be found at https://www.modelica.org/publications.

Nonstandard semantics can be used to give a precise se-
mantics for multi-mode DAEs and particularly their mode
changes [64]. The extension to DAE-based modeling of the
causality analysis performed in ZÉLUS, however, is drasti-
cally different and definitely more involved—it is known as
structural analysis in the context of DAE-based modeling
languages. Structural analysis involves the notion of differen-
tiation index, irrelevant in our context. The reader interested
in the reuse of the ideas from synchronous languages in this
subject is referred to [65], [64].
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