
Form Methods Syst Des
DOI 10.1007/s10703-013-0191-7

QoS-aware management of monotonic service
orchestrations

Albert Benveniste · Claude Jard · Ajay Kattepur ·
Sidney Rosario · John A. Thywissen

© Springer Science+Business Media New York 2013

Abstract We study QoS-aware management of service orchestrations, specifically for or-
chestrations having a data-dependent workflow. Our study supports multi-dimensional QoS.
To capture uncertainty in performance and QoS, we provide support for probabilistic QoS.
Under the above assumptions, orchestrations may be non-monotonic with respect to QoS,
meaning that strictly improving the QoS of a service may strictly decrease the end-to-end
QoS of the orchestration, an embarrassing feature for QoS-aware management. We study
monotonicity and provide sufficient conditions for it. We then propose a comprehensive
theory and methodology for monotonic orchestrations. Generic QoS composition rules are
developed via a QoS Calculus, also capturing best service binding—service discovery, how-
ever, is not within the scope of this work.

Monotonicity provides the rationale for a contract-based approach to QoS-aware man-
agement. Although function and QoS cannot be separated in the design of complex or-
chestrations, we show that our framework supports separation of concerns by allowing the

This work started when S. Rosario was with U.T. Austin.

A. Benveniste (B) · A. Kattepur
DistribCom team at INRIA Rennes, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
e-mail: Albert.Benveniste@inria.fr

A. Kattepur
e-mail: Ajay.Kattepur@inria.fr

C. Jard
Department of Computer Science, Université de Nantes, LINA-Atlanstic rue de la Houssinière,
44322 Nantes Cedex 3, France
e-mail: Claude.Jard@univ-nantes.fr

S. Rosario
e-mail: sidney.rosario@gmail.com

J.A. Thywissen
Department of Computer Science, The University of Texas at Austin, 1 University Station, Austin,
TX 78712, USA
e-mail: jthywiss@cs.utexas.edu

mailto:Albert.Benveniste@inria.fr
mailto:Ajay.Kattepur@inria.fr
mailto:Claude.Jard@univ-nantes.fr
mailto:sidney.rosario@gmail.com
mailto:jthywiss@cs.utexas.edu

Form Methods Syst Des

development of function and QoS separately and then “weaving” them together to derive the
QoS-enhanced orchestration. Our approach is implemented on top of the Orc script language
for specifying service orchestrations.

Keywords Web services · QoS · Algebra · Probabilistic models

1 Introduction

Service Oriented Computing is a paradigm suited to wide area computing, where services
can be dynamically selected and combined to offer a new service [16]. To enable service
selection and binding, services expose both functional and Quality of Service (QoS) proper-
ties. Service selection can thus occur on the basis of both types of properties. In particular,
service selection among a pool of functionally substitutable services can be performed based
on QoS. Therefore, models of composite services should involve policies for QoS-based ser-
vice selection [16].

Quite often, several dimensions for QoS must be handled (e.g., timing performance,
availability, cost), leading to the consideration of multi-dimensional QoS. Consequently,
QoS domains should be partially, not totally ordered. For simple policies, QoS guarantees
exposed by the service or expected by the user are typically stated as fixed bounds. QoS is,
however, generally subject to uncertainties, due to the numerous hidden sources of nonde-
terminism (servers, OS, queues, and network infrastructure). Therefore, a number of authors
have agreed that QoS should be characterized in probabilistic terms [25, 39, 40, 53].

To illustrate the issues behind the QoS aware management of composite services, con-
sider the following toy example, for which we first present a simple form and then develop
some variations. Figure 1(a) depicts a simple orchestration for a travel agent. The user en-
ters the location of a place to visit. Two Airline services are invoked in parallel with the one
offering “best” cost being selected. Next, two Hotel reservation services are invoked and se-
lection occurs on the basis of cost and category, seen both as QoS dimensions. The selection
on cost/category may be done through lexicographic or weighted ordering. The results are
presented as an invoice. This orchestration exhibits a control flow that is independent from
the circulated data. It has a two-dimensional QoS, with the two dimensions being cost and
hotel category. Observe that the two QoS dimensions in this example are correlated.

This diagram is reformulated into that of Fig. 1(b), to be interpreted as a Petri net, where
rectangles represent transitions and rounded rectangles represent places. Each query to the
orchestration is modeled by a token traversing the input transition. Upon entering the first
place, the transition to traverse must be chosen. This choice is based on best cost among
offers by airline companies. Subsequently, the token enters the second place, where choice
among different hotel booking services (shown as transitions) occurs based on both cost and
category. This alternative Petri net description is a formalization of the previous description.
We shall follow this Petri net modeling style hereinafter.

Figure 2 shows a variation of Fig. 1(b) with a control flow dependent on both returned
data and QoS values. A loop is introduced in the decision process that checks if the total
Cost is within the budget and can ask the user to specify preferences again. The presentment
of the Invoice is guarded by a timer. The choice at the place labeled with “best(response
time)” depends on which subsequent transition fires first. Thus, if the Invoice is ready before
Timeout occurs, then it is emitted, otherwise a “timeout” message is returned. This timeout
mechanism ensures that the loop terminates within a pre-specified time bound, possibly with
a failure. This orchestration has a three-dimensional QoS, with the dimensions being cost,
hotel category, and response time (due to timers). We now review some important issues in
Service Oriented Computing.

Form Methods Syst Des

Fig. 1 TravelAgent1: Simple
travel agent; (a) informal
diagram, and (b) Petri net form,
where rectangles figure
transitions and rounded
rectangles figure places. This
orchestration has a
data-independent workflow

Fig. 2 TravelAgent2:
A variation of TravelAgent1
having a data-dependent
workflow

Form Methods Syst Des

Fig. 3 TravelAgent3:
A variation of TravelAgent2
lacking monotonicity

Monotonicity and consequences for management A basic assumption underpinning the
management of composite services is that QoS improvements in component services can
only be better for the composite service. For example, once service selection in QoS-based
design has been performed, a selected service is not expected to get deselected if it improves
its QoS performance. Similarly, once services have been selected on the basis of QoS perfor-
mance, reconfiguration will not occur unless some requested service’s performance degrades
or some non-selected service’s performance improves. Finally, QoS monitoring consists of
checking components for possible degradations in QoS. It is commonly understood that the
term “Quality of Service” presupposes that “better QoS is indeed better overall”. In other
words, the better the involved services1 perform, the better the composite service performs.
This general property is important, so we give it a name—monotonicity. If a composite
service fails to be monotonic, the common understanding of QoS is no longer valid and ne-
gotiations between the service provider and service requester regarding QoS issues become
nearly unmanageable. We see monotonicity as a highly desirable feature, so we make it a
central topic of this work.

Monotonicity always holds for orchestrations having a data-independent workflow—the
orchestration shown in Fig. 1 is an example. A careful inspection shows that the orchestra-
tion of Fig. 2, which possesses a data-dependent workflow, is also monotonic.

However, monotonicity is not always satisfied. Consider the example in Fig. 3. This
orchestration performs late binding of service by deciding on-line and based on the cost of
the airline ticket, which company to select. The two companies then propose different sets
of hotels, shown by the two steps HotelBookingA/B. Let c1 and c2 be the cost of ticket for
Companies 1 and 2, and h(c) be the optimum cost of the hotel booking if company c was
selected. Suppose c1 < c2 and h(c1) < h(c2) both hold. Then, the left branch is preferred and
yields a total cost QoS for the orchestration equal to c1 + h(c1). Now, suppose Company 2
improves its offer beyond Company 1: c2 < c1. Then, the right branch will be selected and
total cost c2 + h(c2) will result. Now, it may very well be that c2 + h(c2) > c1 + h(c1) still

1Involved services include all services that can potentially be requested by the composite service. For exam-
ple, if the composite service involves an if-then-else branch, only one branch will actually be executed, but
both are involved in the composite service.

Form Methods Syst Des

holds, meaning that the improvement in QoS of Company 2 has resulted in a degradation of
total QoS. The orchestration of Fig. 3 is thus non-monotonic, despite it being a quite minor
modification of TravelAgent2. Differences in “local” versus “global” optimization due to
lack of monotonicity were identified in [7, 10, 51]—“monotonicity” was not mentioned in
the referred works but the concept was identified.

Examples such as TravelAgent3 can be easily specified using the standard language BPEL
for orchestrations and business processes. To summarize, this issue of monotonicity is essen-
tial. However, it seems underestimated in the literature on Web services, with the exception
of [7, 10, 51], as our discussion of related work will show.

Assume that monotonicity is addressed, either by enforcing it, or by dealing with the lack
of it. Then, new avenues for composite service management can be considered, by taking
advantage of monotonicity:

(a) A called service that strictly improves its QoS cannot strictly worsen the QoS of the
orchestration. Therefore, it is enough for the orchestration to monitor QoS degradations
for each called service. Negotiations and penalties occur on the basis of understandable
rules. If suitable, relations between the orchestration and its called services can rely on
QoS contracts. It is then the duty of the orchestration (or of some third party) to monitor
such contracts for possible violation.

(b) Since we build on a contract-based philosophy, the orchestration itself must be able to
offer QoS contracts to its customers. This necessitates relating the contracts the orches-
tration has with its involved services to the overall contract it can offer to its customers.
We refer to this as contract composition.

(c) Thanks to monotonicity, it is possible to perform QoS-based late binding of services by
selecting, at run time, the best offer among a pool of compliant candidates—by “com-
pliant” we mean candidates satisfying some given functional property.

Handling probabilistic QoS To handle uncertainty in QoS, probabilistic frameworks have
been favored by a number of authors [17, 24, 25, 32, 39, 40, 44, 50–53]. When the workflow
of the orchestration is statically defined regardless of data, rules for composing QoS prob-
ability distributions of the called services have been proposed for various QoS domains [5,
7–10, 18, 49]. Optimal service selection among different options has been solved by efficient
optimization methods, by using, for example, Markov models [5, 17].

For orchestrations exhibiting data-dependent workflow or QoS values, however, such
methods do not apply. The QoS-aware model of the orchestration combines probability
and non-determinism—non-determinism arises from the data-dependent selection among
alternatives. Markov models do not apply, and Markov Decision Process models must be
considered instead. The successive data-dependent choices performed are referred to as the
scheduler of the MDP. Optimization can then be stated in two different ways. In most ap-
proaches [17, 24, 25, 32, 44, 53], the scheduler itself is also randomized, thus resulting in
a larger Markov model (assuming that sources of randomness are all independent). Alter-
natively, a max-min optimization can be performed, where the min is computed among the
different service alternatives for a given fixed scheduler, and then the max over schedulers is
computed. These methods have been widely used for off-line orchestration design. Optimal
on-line service selection or binding is much more demanding. Mathematically speaking, this
activity amounts to solving a stochastic control problem [6], in which, at each decision step,
the expected remaining overall QoS is optimized and best decision is taken. Stochastic con-
trol is computationally demanding unless the considered orchestration is very small—this
approach has not been considered in the literature.

Form Methods Syst Des

In the previous paragraph, we have advocated the importance of monotonicity and have
discussed its (good) consequences for QoS-aware management of composite services. Can
we lift these considerations to probabilistic QoS? To compare random variables, stochastic
ordering has been proposed in various forms and extensively used in the area of economics
and operations research [34, 35, 46]. Using this concept, monotonicity was lifted to the prob-
abilistic setting for the particular case of response time in [14]. Assuming that monotonicity
can be lifted to the probabilistic setting for general QoS, the approach outlined in (a), (b),
and (c) above becomes applicable and simple techniques can be developed for QoS aware
service management based on contracts. This agenda was developed by a subgroup of au-
thors of this paper in [14, 39, 40], for the restricted case of response time.

Our contribution In this paper we extend our previous work on response time-aware man-
agement of composite services to generic, possibly multi-dimensional, QoS. In particular,
QoS domains are no longer totally but only partially ordered, which causes significant in-
crease in difficulty. Also, we take advantage of our formal approach to QoS management
in developing a technique of weaving QoS aspects in the functional specification of a com-
posite service. Our approach proceeds through the three steps (a), (b), and (c). Overall, we
see our main contribution as being a comprehensive and mathematically sound framework
for contract-based QoS-aware management of composite services, relying on monotonicity.
This framework consists of the following.

An abstract algebraic framework for QoS composition As QoS composition is the primary
building block of QoS-aware management, it is of interest to develop abstract algebraic com-
position rules. We propose such an abstract algebraic framework encompassing key proper-
ties of QoS domains and capturing how the QoS of the orchestration follows from combining
QoS contributions by each requested service. This algebraic framework relies on an abstract
dioid2 (D,max,⊕), where D is the (possibly multi-dimensional) QoS domain. The abstract
addition of the dioid identifies with the “max” operation associated with the partial order
of the QoS domain; it captures both the preference among services in competition and the
cost of synchronizing the return of several services requested in parallel. The increment in
QoS caused by the different service calls is captured by the abstract multiplication of the
dioid, here denoted by ⊕. A dioid framework for QoS was already proposed in [11–13, 15,
16, 48]. With comparison to the above references, we propose in addition a new competition
operator that must be considered when performing late binding; this competition operator
captures the additional cost of the on-line comparison of the QoS within a pool of competing
services. We show how our abstract algebraic framework can be specialized to encompass
known QoS domains.

A careful handling of monotonicity We then study monotonicity in this generic QoS con-
text, by proposing conditions enforcing it for both non-probabilistic and probabilistic QoS
frameworks. Guidelines for how to enforce monotonicity are derived and ways are proposed
to circumvent a lack of monotonicity. The mathematical justification of the extension re-
quired to deal with probabilistic QoS domains that are only partially, not totally ordered, is
non-trivial.

2A dioid is a semi-ring with idempotent addition.

Form Methods Syst Des

Support for separation of concerns QoS-aware management of composite services re-
quires developing a QoS-aware model of a service orchestration, which can be cumbersome.
It is thus desirable to offer means to develop function and QoS in most possible orthogonal
ways. We have developed an implementation of our mathematical approach in which QoS-
aware orchestration models are automatically generated, from a specification of the function
only, augmented with the declaration of the QoS domains and their algebra. This model can
be executed to analyze the orchestration and perform QoS contract composition. We have
implemented this technique on top of the Orc language for orchestrations [30, 33].3

Managing QoS by contracts By building on top of monotonicity, we advocate the use of
contract-based QoS-aware management of composite services, in which the considered or-
chestration establishes QoS contracts with both its users and its requested services. Contract-
based design amounts to performing QoS contract composition [40], which is the activity of
estimating the tightest end-to-end QoS contract an orchestration can offer to its customer,
from knowing the contract with each requested service. QoS composition is developed in
Sect. 3.2. Late service selection or binding is performed on the basis of run-time QoS obser-
vations, by simply selecting, among different candidates, the one offering best QoS. Mono-
tonicity ensures that this greedy policy will not lead to a loss in overall QoS performance
of the orchestration. Best service binding is a built-in mechanism in our model, see Proce-
dure 1 in Sect. 3.2. To ensure satisfaction of the QoS contract with its users, it is enough
to monitor the conformance of each requested service with respect to its contract, since a
requested service improving its QoS can only improve the overall QoS of the orchestration.
This was developed in [40] for the case of response time and the techniques developed in
this reference extend to multi-dimensional QoS. To account for uncertainty in QoS, soft
probabilistic QoS contracts were proposed in [39, 40] for the case of response time and are
extended in this paper to multi-dimensional QoS. Such contracts consist of the specification
of a probability distribution for the QoS dimensions. Performing this requires formalizing
what it means, for a service, to perform better than its contract. We rely for this on the no-
tion of stochastic ordering [34, 35, 46] for random variables, a concept that is widely used
in econometrics. All our results regarding monotonicity extend to the case in which ordering
of QoS values is replaced by stochastic ordering. We can thus apply statistical testing [40]
to detect at run time the violation of contracts in this context. To illustrate our approach, we
use this tool in performing contract composition for the example TravelAgent2.

The paper is organized as follows. Our QoS calculus is developed in Sect. 2; it provides
the generic basis for QoS composition. Section 3 develops our theory of QoS for services
orchestrations. Algebraic rules for QoS composition and best service binding are developed.
Monotonicity is studied. Support for probabilistic QoS is presented. In Sect. 4 we present
the implementation of our approach on top of the Orc language. Evaluation of this imple-
mentation on the TravelAgent2/3 is discussed in Sect. 5. Related work is discussed in Sect. 6.

2 QoS calculus

In this section we develop our QoS calculus as a basis for QoS composition. A toy example
is used to motivate our abstract algebra. Then we illustrate how this algebra can encompass
concrete QoS domains. Finally the algebra itself is formalized in a way similar to [11, 15,
16, 37].

3http://orc.csres.utexas.edu/.

http://orc.csres.utexas.edu/

Form Methods Syst Des

Fig. 4 A simple example. Only
QoS values are mentioned—with
no data. Each place comes
labeled with a QoS value q

which is the q-color of the token
if it reaches that place

2.1 An informal introduction

In dealing with multi-dimensional QoS, several approaches can be taken. First, one can see
QoS as only partially, not totally ordered. In this case QoS outcomes q and q ′ satisfy q ≤ q ′
if and only if q(i) ≤ q ′(i) holds for all dimensions i = 1 . . . n of the QoS. Alternatively,
one could prioritize dimensions and then take the lexicographic (total) order q < q ′ iff there
exists some i such that q(j) = q ′(j) for j < i and q(i) < q ′(i). Finally, different dimensions
could be weighted by considering

∑
i wiq(i) with its total order, where the wi ’s are weights

to be selected, e.g., by using AHP (Analytical Hierarchy Process) [47]. Finally, recall that
dealing with uncertainty is by regarding QoS outcomes as random variables.

We use colored Petri nets to model the executions of a service orchestration. Queries
are represented by tokens that circulate throughout the net and service calls are represented
by transitions. To represent QoS measures and how they evolve while the query is being
processed by the orchestration, we equip the tokens with a color, consisting of a pair

(v, q) = (data, QoS value). (1)

Figure 4 shows such a net. Each query is represented by a token entering the net at the
top place. The marking shown figures the reception of such a query by the net: it results
in the launching of three sub-queries in parallel. The first two sub-queries re-synchronize
when calling t2. The third sub-query branches toward either calling t ′1 or calling t ′′1 and
then confluences. The processing of the query ends when the token reaches the exit place.
With reference to this figure, the different operators needed to compute the evolution of
QoS measures are introduced next. In the following discussion, we only consider choices
governed by QoS (data-driven choices play no role in QoS evaluation).

We begin by giving the basic abstract operators for use in QoS management. The ob-
jective is to capture, via generic operators, how QoS measures get modified when calling a
service (traversing a transition), when synchronizing the responses of services (figured by
several tokens consumed by a same transition), or when different services compete against
each other (such as t ′1 and t ′′1 in Fig. 4).

Form Methods Syst Des

Incrementing QoS When traversing a transition, each token gets its QoS value incre-
mented, which is captured by operator ⊕. For example, the token in the left most place has
initial QoS value q0, which gets incremented as q1 = q0 ⊕ δq1 when traversing transition t1.

Synchronizing tokens A transition t is enabled when all places in its preset have tokens.
For the transition to fire, these tokens must synchronize, which results in the “worst” QoS
value, denoted by the supremum ∨ associated to a given order ≤, where smaller means
better. For example, when the two input tokens of t2 get synchronized, the resulting pair of
tokens has QoS q ′′

0 ∨ q1. This is depicted in Fig. 4 by the shaded area.

QoS policy Focus on the conflict following place q ′
0. The QoS alters the usual semantics

of the conflict by using a QoS policy that is reminiscent of the classical race policy [31].
The competition between the two conflicting transitions in the post-set is solved by using
order ≤ also used for token synchronization: test whether q ′

o ⊕ δq ′
1 ≤ q ′

o ⊕ δq ′′
1 holds, or the

converse. The smallest of the two wins the competition—nondeterministic choice occurs if
equality holds.

However, comparing q ′
o ⊕ δq ′

1 and q ′
o ⊕ δq ′′

1 generally requires knowing the two alter-
natives, which in general can affect the QoS of the winner. This is taken into account by
introducing a special operator “�”: If two transitions t and t ′ are in competition and would
yield tokens with respective QoS values q and q ′ in their post-sets, the cost of compar-
ing them to set the competition alters the QoS value of the winner in that—assuming the
first wins—q is modified and becomes q � q ′, where � denotes a new operator called the
competition function. For the case of the figure, we get

if (q ′
o ⊕ δq ′

1) ≤ (q ′
o ⊕ δq ′′

1)

then t ′1 fires and q ′
1 = (q ′

o ⊕ δq ′
1)� (q ′

o ⊕ δq ′′
1),

if (q ′
o ⊕ δq ′

1) ≥ (q ′
o ⊕ δq ′′

1)

then t ′′1 fires and q ′′
1 = (q ′

o ⊕ δq ′′
1)� (q ′

o ⊕ δq ′
1).

(2)

2.2 Some examples of QoS domains

We now instantiate our generic framework by reviewing some examples of QoS domains,
with their associated relations and operators ⊕,≤, and �.

Response time QoS value of a token gives the accumulated response time d , or “age” of
the token since it was created when querying the orchestration. Corresponding QoS domain
is R+, equipped with ⊕d = +, and ≤d = the usual order on R+. Regarding operator �d , for
the case of response time with race policy [31], comparing two dates via d1 ≤d d2 does not
impact the QoS of the winner: answer to this predicate is known as soon as the first event is
seen, i.e., at time min(d1, d2). Hence, for this case, we take d1 �d d2 = d1, i.e., d2 does not
affect d1. This is the basic example of QoS measure, which was studied in [14].

Security level QoS value s of a token belongs to ({high, low}, ≤s), with high ≤s low. Each
transition has a security level encoded in the same way, and we take ⊕s = ∨s , reflecting
that a low security service processing a high security data yields a low security response.
Regarding operator �s , again, comparing two values via s1 ≤s s2 does not impact the QoS
of the winner: QoS values are strictly “owned” by the tokens, and therefore do not interfere

Form Methods Syst Des

when comparing them. Hence, we take again s1 �s s2 = s1, i.e., s2 does not affect s1. More
complex partially ordered security domains can be handled similarly.

We do not claim that this solves security in orchestrations. It only serves a more modest
but nevertheless useful purpose, namely to propagate and combine security levels of the
requested services to derive the security level of the orchestration. How security levels of
the requested services is established is a separate issue, e.g., by relying on reputation or
through the negotiation of security contracts.

Reliability Reliability is captured similarly as follows. The QoS attribute of a token takes
its value in the ordered set ({in_operation, failed}, ≤r), with in_operation ≤r failed. Other
operators follow as for the case of Security level. By equipping this QoS domain with prob-
ability distributions we capture reliability in our setting.

Cost QoS value c captures the total cost of building a product by assembling its parts.
Referring to Fig. 4, costs are accumulated when tokens get synchronized. When a to-
ken traverses a transition, its cost is incremented according to the cost of the action be-
ing performed. A natural definition for the corresponding QoS domain would thus be
(Dc,≤c,⊕c) = (R,≤,+) or (Z,≤,+). Unfortunately, when taking this definition, synchro-
nizing tokens using ∨c amounts to taking the worst cost, which is not what we need. We
need instead the sum of the costs of incoming tokens, an operation different from ∨c .

The right idea is to encode the cost by using multi-sets. The overall cost held by a token
is obtained by adding the costs of the constituting parts plus the costs of successive assembly
actions. Parts and actions are then handled as “quanta of cost” and the token collects them
while traversing the orchestration. This leads to defining the QoS domain as a multi-set of
cost types: Dc = Q �→ N, where Q is a set of cost types equipped with a cost labeling func-
tion λ : Q �→ R+. Each q ∈ Q corresponds to either a part or an assembly action and has a
unique identifier. Domain Dc is equipped with the partial order of functions and ∨c follows
as the corresponding least upper bound. Recall that operator ∨c is used to synchronize to-
kens, see Fig. 4. In this context, it makes sense to assume that cost types held by the tokens
for synchronization are different. For this case, ∨c coincides with the addition of multi-sets
and costs get added as wished. Traversing a transition amounts to adding the correspond-
ing quantum in the set, hence, identifying singletons with the corresponding element, ⊕c

is again the addition of multi-sets. Finally, (Dc,≤c,⊕c) = (Q �→ N,⊆,+). As before, the
competition function is c1 �c c2 = c1 when c1≤c c2, i.e., c2 does not affect c1.

Composite QoS, first example We may also consider a composite QoS measure consisting
of the pair (s, r), where s is as above and r is some Quality of Response with domain Dr ,
equipped with ≤r and �r . Since the two components s and r are similar in nature, we simply
take ≤ = ≤s × ≤r and � = (�s , �r).

Composite QoS, second example So far the special operator � did not play any role. We
will need it, however, for the coming case, in which we consider a composite QoS measure
(s, d), where s and d are as above. We want to give priority to security s, and thus we now
take ≤ to be the lexicographic order obtained from the pair (≤s ,≤d) by giving priority to s.

Focus on operator �. Consider the marking resulting after firing t1 and t ′1 in Fig. 4,
enabling t2 and t ′2, which are in conflict. Let the QoS value of the token in postset of t2,
i.e. q2 = (low, d2). (Recall that q2 = (q ′′

o ∨ q1) ⊕ δq2.) Similarly, let q ′
2 = (low, d ′

2) where
d ′

2 >d d2. From the competition rule, transition t2 wins the conflict and the outgoing token
has QoS value q2 = (low, d2). However, the decision to select t2 can only be made when

Form Methods Syst Des

q ′
2 is known, that is, at time d ′

2. The reason for this is that, since at time d2 a token with
security level low is seen at place following t2, it might be that a token with security level
high later enters place following t ′2. The latter would win the conflict according to our QoS
policy—security level prevails. Observing that the right most token indeed has priority level
low can only be seen at time d ′

2. Thus it makes little sense assigning q2 = (low, d2) to the
outgoing token; it should rather be q2 = (low, d ′

2). This is why a non-trivial operator � is
needed, namely, writing ≤ for short instead of ≤d :

(s, d)� (s ′, d ′) = if d ≤ d ′ and s = low then (s, d ′) else (s, d). (3)

2.3 The QoS calculus

In this section we formalize the discussion of Sect. 2.1. We introduce algebraic QoS do-
mains. Our framework is a mild modification of the one proposed by [11, 15, 16, 37], based
on semi-rings. Besides some minor adaptations, the main difference lies in the consideration
of the “competition function”.

Definition 1 (QoS domain) A QoS domain is a tuple Q= (D,≤,⊕,�) where:

– (D,≤) is a partial order that is a complete upper lattice, meaning that every subset S ⊆D

has a least upper bound denoted by
∨

S. For any S ⊆ D, min(S) denotes the set of all
q ∈ S such that no q ′ ∈ S exists such that q ′ < q , with a symmetric definition for max(S).

– Operator ⊕ : D × D → D is a commutative semi-group with neutral element 0 and such
that:

monotonicity:
q1 ≤ q ′

1

q2 ≤ q ′
2

}

=⇒ (q1 ⊕ q2) ≤ (q ′
1 ⊕ q ′

2), (4)

∀q, q ′ ∈D, ∃q ′′ ∈D =⇒ q ≤ q ′ ⊕ q ′′. (5)

– The competition function � :D× 2D → D satisfies:

q � ε = q where ε denotes the empty set, (6)

q ≤ q ′

q1 ≤ q ′
1

...

qn ≤ q ′
n

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=⇒ q � {q1 . . . qn} ≤ q ′ � {q ′
1 . . . q ′

n}, (7)

q0 < q1 =⇒ q0 � {q1, q2 . . . qn} ≤ q1 � {q0, q2 . . . qn}, (8)

∀i = 1 . . . n : qi ≤ q =⇒ q � {q1 . . . qn} = q. (9)

Referring to our motivating discussion: D is the set in which QoS takes its values; q ≤ q ′
is interpreted as “q is better than (or preferred to) q ′”; partial order ≤ gives raise to the
least upper bound ∨, interpreted as the worst QoS; operator ⊕ is used to accumulate QoS
quanta from causally related events; its condition (5) will play an important role in the study
of monotonicity. The competition function � accounts for the additional cost of comparing
the QoS of competing events, additional cost induced on the winning event. The special
monotonicity conditions (8) and (9) for the competition function ensure that taking into

Form Methods Syst Des

account the cost of comparing will not revert the QoS-based ordering of the events under
comparison. The actual size of the second component of � depends on the considered event,
this is why the domain of � is D×2D. Examples were given in Sect. 2.1. It is easily checked
that axioms are met by these examples.

If some QoS measure q of the orchestration is irrelevant to a service it involves, we take
the convention that this service acts on tokens with a 0 increment on the value of q . With
this convention we can safely assume that the orchestration, all its requested services, and
all its tokens use the same QoS domain. This assumption will be in force in the sequel.

3 A QoS framework for composite services

This section collects the technical material in support of our theory and developments.
We first recall the needed background on Petri nets as a supporting framework for service
orchestrations—to simplify our presentation we restrict ourselves to safe free choice nets,
see below. On top of this framework, we define priority rules for QoS based selection of
competing services and we develop OrchNets as a model of QoS-sensitive composite ser-
vices. We then study monotonicity. The above material is subsequently lifted to probabilistic
QoS. We conclude by some methodological discussion.

3.1 Petri nets, occurrence nets, orchestration nets

A Petri net [36] is a tuple N = (P,T ,F,M0), where: P is a set of places, T is a set of
transitions such that P∩T = ∅, F ⊆ (P × T) ∪ (T ×P) is the flow relation. For x ∈ P∪T ,
we call •x = {y | (y, x) ∈ F} the preset of x and x• = {y | (x, y) ∈ F} the postset of x.
A marking is a map M : P → N; in the tuple defining N , M0 is the initial marking. Firing
transition t at marking M requires M(p) > 0 for every p ∈ •t and yields the new marking
M ′ such that M ′(p) = M(p) − 1 for p ∈ •t \ t•, M ′(p) = M(p) + 1 for p ∈ t• \ •t , and
M ′(p) = M(p) otherwise.

For a net N = (P,T ,F,R,M0) the causality relation � is the transitive and reflexive
closure of F and we set ≺ = � ∩ �=. For a node x ∈ P ∪ T , the set of causes of x is
�x� = {y ∈ P ∪ T | y � x}. Say that two transitions t, t ′ are in conflict, written t#t ′, if •t ∩
•t ′ �= ∅ or t and t ′ possess some causes that are in conflict. Say that net N is free choice if
the relation {(t, t ′) | •t ∩ •t ′ �= ∅} forms a partition of T . If N is free choice, a cluster [36] is
a minimal set c of places and transitions of N such that

∀t ∈ c =⇒ •t ⊆ c,

∀p ∈ c =⇒ p• ⊆ c.
(10)

Any two distinct transitions of a same cluster are in conflict and clusters form a partition of
the set of all nodes of a free choice net.

Occurrence nets A Petri net is safe if all its reachable markings M satisfy M(P) ⊆ {0,1}.
A safe net N = (P,T ,F,M0) is an occurrence net (O-net) iff

1. � is a partial order and �t� is finite for any t ∈ T ;
2. for each place p ∈ P , |•p| ≤ 1;
3. for each t ∈ T , ¬#�t� holds;
4. M0 = {p ∈ P|•p = ∅} holds.

Form Methods Syst Des

A configuration of N is a subnet κ of nodes of N such that: (1) κ is causally closed, i.e,
if x � x ′ and x ′ ∈ κ then x ∈ κ ; and, (2) κ is conflict-free. For convenience, we require
that the maximal nodes in a configuration are places. A configuration κ2 is said to extend
configuration κ1 (written as κ1 � κ2) if κ1 ⊆ κ2 and �t ∈ κ2 \ κ1, t

′ ∈ κ1 such that t ↗ t ′.
Two configurations κ and κ ′ are said to be compatible if (1) κ ∪ κ ′ is a configuration, and
(2) κ � κ ∪ κ ′ and κ ′ � κ ∪ κ ′. Node x is called compatible with configuration κ if �x� and
κ are compatible. Transition t is enabled by κ if t �∈ κ and κ ∪ {t} ∪ t• is a configuration.
For κ a configuration, its future Nκ is defined as

Nκ = maxPlaces(κ)

∪ {x ∈ P ∪ T | x �∈ κ and x is compatible with κ} (11)

where maxPlaces(κ) is the set of maximal nodes of κ (which are all places). Two nodes x

and y are said to be concurrent if they are neither in conflict nor causally related.

Unfoldings and orchestration nets The executions of a safe Petri net N can be represented
by its unfolding UN , which is an occurrence net collecting all executions of N in such a way
that common prefixes are represented once. For example, Fig. 4 shows a net, the unfolding
of which is obtained by removing the maximal (exit) place and attaching a different copy
of this exit place to each exit transition. Formally, unfolding UN is derived from N [22] in
the following way. For N = (P,T ,F,R,M0) and N ′ = (P ′,T ′,F ′,R′,M ′

0) two safe Petri
nets, a morphism ϕ : N → N ′ is a function from P ∪ T to P ′ ∪ T ′, mapping P to P ′ and T
to T ′, preserving the initial marking: ϕ(M0) = M ′

0, and preserving the flow relation: ϕ(•t) =
•ϕ(t) and ϕ(t•) = ϕ(t)•. If N ′ is another occurrence net and ψ ′ : N ′ → N is a morphism,
then there exists a third morphism ψ : N ′ → UN such that ψ ′ factorizes as ψ ′ = ϕ ◦ ψ ,
where ◦ is the composition of functions. This property characterizes the unfolding UN . If
net N is free choice, then so is its unfolding UN .

Definition 2 (Orchestration net) Call Orchestration net any free choice safe Petri net pos-
sessing a finite unfolding.

We insist that Petri nets with loops can still possess a finite unfolding. An example of
this is the Petri net modeling the examples TravelAgent of Fig. 2 and Fig. 3, which involve
successive retries guarded by a timeout. Hereafter, we only consider Petri nets that are or-
chestration nets. Examples of Orchestration nets are the loop-free and 1-safe WorkFlow nets
(WFnets). WF-nets were proposed by van der Aalst [1, 3, 4] and are Petri nets with a special
initial place (where the initial tokens are provided) and a special final place (from which
tokens exit the net).

3.2 OrchNets

The OrchNets we propose as a model to capture QoS in composite services are a special
form of colored occurrence nets (CO-nets). Executions of Workflow Nets [1, 2] are also
CO-nets. The reader can compare our approach with the graph-based approach of [48].

Throughout this section we assume a QoS domain (D,≤,⊕,�). OrchNets formalize the
notion of an orchestration with its QoS. The mathematical semantics of OrchNets formalizes
QoS contract composition, i.e., the process of deriving end-to-end QoS of the orchestration
from the QoS of its involved services.

Form Methods Syst Des

Definition 3 (OrchNet) An OrchNet is a tuple N = (N,V,Q,Qinit) consisting of

– A finite free choice occurrence net N with token attributes

c = (v, q) = (data, QoS value).

– A family V = (νt)t∈T of value functions, mapping the data values of the transition’s input
tokens to the data value of the transition’s output token.

– A family Q = (ξt)t∈T of QoS functions, mapping the data values of the transition’s input
tokens to a QoS increment.

– A family Qinit = (ξp)p∈min(P) of initial QoS functions for the minimal places of N .

Value and QoS functions can be nondeterministic.

The nondeterminism of a function can be resolved by introducing an explicit daemon ω

making choices explicit. As a result, νt (ω), ξt (ω), and ξp(ω) are all deterministic functions
of their respective inputs. We denote by Ω the set of all daemons.4

We now explain how the presence of QoS values attached to tokens affects the semantics
of OrchNets. Any place p of occurrence net N has a pair (vp, qp) = (data, QoS value)
assigned to it, which is the color held by a token reaching that place. In the following QoS
policy, the role of data in the semantics has been abstracted—taking it into account would
only increase the notational burden without introducing changes worth the study.

Procedure 1 (QoS aware semantics) Let ω ∈ Ω be any value for the daemon. The contin-
uation of any finite configuration κ(ω) is constructed by performing the following steps,
where we omit the explicit dependency of κ(ω), νt (ω), and ξt (ω), with respect to ω:

1. Choose non deterministically a �-minimal cluster c in the future of κ .
2. For every t ∈ c, compute:

qt =
(∨

p′∈•t
qp′

)

⊕ ξt (vp′ | p′ ∈ •t). (12)

3. Competition step: select non deterministically a minimal transition t∗ of c such that no
other minimal transition t of c exists with qt < qt∗ . The set Ω of daemons is extended to
resolve this additional nondeterminism.

4. Augment κ to κ ′ = κ ∪ {t∗} ∪ t•∗ , and assign, to every p ∈ t•∗ , the pair (v, q), where

v = νt (vp′ | p′ ∈ •t),

q = qt∗ � {qt | t ∈ c, t �= t∗}.
(13)

Competition step 3 formalizes on-line service binding based on best QoS. Step 4 of QoS
policy simplifies for all examples of Sect. 2.1 by not needing the second formula of (13),
except for the last one, see formula (3). Observe that the augmented configuration κ ′ as well
as the pair (v, q) depend on ω. We are now ready to formalize what the set Ω of all daemons
should be for Procedure 1.

4The schedulers introduced for probabilistic automata by Lynch and Segala [45] are a special case of daemon.

Form Methods Syst Des

Defining the set Ω of all daemons The nondeterminism of a function mapping X to Y can
be resolved by introducing an explicit daemon making choices explicit. For X and Y two
sets, call (X,Y)-daemon (or simply daemon if no confusion can result) any total function

ω : X×2Y → Y. (14)

The set of all (X,Y)-daemons is denoted by ΩXY or simply Ω . Determinizing a nondeter-
ministic function χ : X→2Y consists in selecting a daemon ω ∈ Ω , which fixes the (deter-
ministic) function

χω(x) =def ω
(
x,χ(x)

)
.

This construction is implicitly invoked each time a daemon is mentioned. To explicit what
the set Ω of all daemons should be, for Procedure 1, we first identify the different sources
of nondeterminism arising in this procedure. First of all, the nondeterminism in the choice
of the minimal cluster c in Step 1 does not need to get resolved since it yields a confluent
evaluation of the end-to-end QoS of configurations, because all minimal clusters are con-
current and ⊕ is commutative and associative. Consequently, sources of nondeterminism for
consideration are (1) the νt and ξt for every t ∈ T (the set of transitions of N), and (2) the
nondeterministic selection of the optimal transition in Step 3. Denoting by C the set of all
clusters of N , we apply construction (14) with

X′ = T and Y ′ = D ×D which yields Ω ′,

X′′ = C and Y ′′ = T which yields Ω ′′

where D is the domain of data, and set

Ω =def Ω ′ × Ω ′′. (15)

Component ω′ resolves the nondeterminism of νt and ξt , whereas component ω′′ resolves
the nondeterminism in selecting the optimal transition in Step 3.

Since occurrence net N is finite, the QoS policy terminates in finitely many steps when
Nκ(ω) = ∅. The total execution thus proceeds by a finite chain of nested configurations: ∅ =
κ0(ω) ≺ κ1(ω) · · · ≺ κn(ω). Hence, κn(ω) is a maximal configuration of N that can actually
occur according to the QoS policy, for a given ω ∈ Ω . We generically denote this maximal
configuration by

κ(N ,ω). (16)

For the example of response time, our QoS policy boils down to the classical race pol-
icy [31]. In general, our QoS policy bears some similarity with the “pre-selection policies”
of [31], except that the continuation is selected based on QoS values in our case, not on
random selection. We will also need to compute the QoS for any configuration of N , even if
it is not a winner of the competition policy. We do this by modifying Procedure 1 as follows:

Procedure 2 (QoS of an arbitrary configuration) Let κmax be any maximal configuration of
N and κ � κmax a prefix of it. With reference to Procedure 1, perform: step 1 with c any
�-minimal cluster in κmax \ κ , step 2 with no change, and then step 4 for any t as in step 2.
Performing this repeatedly yields the pair (vp, qp) for each place p of κmax.

We are now ready to define what the QoS value of an OrchNet is:

Form Methods Syst Des

Definition 4 (End-to-end QoS) For κ any configuration of occurrence net N , and ω any
value for the daemon, the end-to-end QoS of κ is defined as

Eω(κ,N) =
∨

p∈maxPlaces(κ)

qp(ω). (17)

The end-to-end QoS Eω(N) and pessimistic end-to-end QoS Fω(N) of OrchNet N are
respectively given by

Eω(N) = Eω

(
κ(N ,ω),N

)
, (18)

Fω(N) = max
{
Eω(κ,N) | κ ∈ V(N)

}
(19)

where function max picks one of the maximal values in a partially ordered set, κ(N ,ω) is
defined in (16), and V(N) is the set of all maximal configurations of net N .

Observe that Eω(N) ≤ Fω(N) holds and Eω(N) is indeed observed when the orches-
tration is executed. The reason for considering in addition Fω(N) will be made clear in the
next section on monotonicity.

So far formulas (18) and (19) provide the composition rules for deriving the end-to-end
QoS for each individual call to the orchestration. Monte-Carlo simulation techniques can
then be used on top of (18) and (19) to derive the end-to-end probabilistic QoS contract
from the contracts negotiated with the requested services [39, 40]. See also [26] for fast
Monte-Carlo simulation techniques.

3.3 Monotonicity

The monotonicity of an orchestration with respect to QoS is studied in this section, for
the non-probabilistic setting. Extension to the probabilistic setting is discussed in Sect. 3.4.
We provide sufficient and structurally necessary conditions for monotonicity, when QoS
is measured in terms of tight end-to-end QoS—missing proofs are deferred to Appendix A.
When these conditions fail to hold, then pessimistic end-to-end QoS can be considered when
dealing with contracts, as monotonicity is always guaranteed when using it. Monotonicity is
assumed in the rest of the paper. Also, to simplify the presentation, the following assumption
will be in force:

Assumption 1 QoS functions ξt can be increased at will within their respective domain of
values, independently for each transition t .

This is only a technical assumption. This assumption rules out cases in which one re-
quires, e.g., that QoS functions ξt and ξt ′ can be modified at will, but subject to the constraint
ξt = ξt ′ . The general case yields the same results, at the price of more complex notations.
The reader interested in the general case is referred to [41].

For two families Q and Q′ of QoS functions, write Q′ ≥ Q and Q′
init ≥ Qinit to mean:

∀ω ∈ Ω, ∀t ∈ T ⇒ ξ ′
t (ω) ≥ ξt (ω),

respectively ∀t ∈ T ⇒ Qinit(t) ≥ Qinit(t).
(20)

For N ′ = (N,V,Q′,Q′
init) (observe that N and V are unchanged), write

(i) N ′ ≥ N ; (ii) E(N ′) ≥ E(N); (iii) F(N ′) ≥ F(N)

Form Methods Syst Des

to mean, respectively:

(i) Q′ ≥ Q and Q′
init ≥ Qinit both hold;

(ii) ∀ω ∈ Ω , Eω(N ′) ≥ Eω(N) holds;
(iii) ∀ω ∈ Ω, Fω(N ′) ≥ Fω(N) holds.

Definition 5 Call OrchNet N monotonic if

∀N ′ : N ′ ≥ N =⇒ E
(
N ′) ≥ E(N).

Call OrchNet N pessimistically monotonic if

∀N ′ : N ′ ≥ N =⇒ F
(
N ′) ≥ F(N).

The following immediate result justifies considering also the pessimistic end-to-end QoS:

Theorem 1 Any OrchNet is pessimistically monotonic.

Consequently, it is always sound to base contract composition and contract monitor-
ing [40] on pessimistic end-to-end QoS. This, however, has a price, since pessimistic end-
to-end QoS is pessimistic compared to (actual) end-to-end QoS. The next theorem gives
conditions enforcing monotonicity:

Theorem 2 OrchNet N = (N,V,Q,Qinit) is monotonic if and only if:

∀ω ∈ Ω, ∀κ ∈ V(N) =⇒ Eω(κ,N) ≥ Eω

(
κ(N ,ω),N

)
(21)

where V(N) is the set of all maximal configurations of net N and κ(N ,ω) is defined in (16).

Condition (21) expresses that Procedure 1 implements globally optimal service selection.
It is costly to verify and may not even be decidable in general.

Thus, we develop a structural condition for monotonicity for Orchestration nets N (Def-
inition 2). Orchestration net N induces an OrchNet NN = (UN, νN,QN,Qinit) by attaching,
to each transition t of the unfolding UN of N , the value and QoS inherited from N through
the unfolding N �→ UN .

Theorem 3 A sufficient condition for the OrchNet NN = (UN, νN,QN,Qinit) to be mono-
tonic is that every cluster c of N satisfies the following condition:

∀t1, t2 ∈ c, t1 �= t2 =⇒ t•1 = t•2 . (22)

If, in addition, every transition of N is reachable and partial order (D,≤) is such that for
every q ∈D, there exists q ′ ∈D such that q ′ > q , then (22) is also necessary.

In words, a sufficient condition for monotonicity is that, each time branching has oc-
curred in net N , a join occurs right after. The additional condition ensuring necessity is a
reinforcement of condition (5).

Form Methods Syst Des

3.4 Probabilistic monotonicity

To account for uncertainties in QoS performance, soft probabilistic contracts were proposed
in [39], with associated composition and monitoring procedures, for the particular case of
response time. In [40, 42] the above approach was extended to more general QoS. In this
section, we describe the corresponding model of probabilistic OrchNets, an extension of
OrchNets supporting probabilistic behavior of QoS measures. Details are found in [41].

In probabilistic OrchNets, the nondeterministic QoS functions ξt are now random, and so
are the non-deterministic selections of minima in competition step of Procedure 1. Equiva-
lently, the set Ω for the values of the daemon is equipped with some probability P. To define
monotonicity, we need to give a meaning to (20) when ξt is random. This is achieved by con-
sidering the stochastic partial order [46] induced by partial order ≤ defined on D. We briefly
recall this notion next. Consider ideals of D, i.e., subsets I of D that are downward closed:
x ∈ I and y ≤ x =⇒ y ∈ I . Examples of ideals are: for R+, the intervals, [0, x] for all x;
for R+ ×R+ equipped with the product order, arbitrary unions of rectangles [0, x] × [0, y].
Now, if ξ has values in D, we define its distribution function by F(I) = P(ξ ∈ I), for I

ranging over the set of all ideals of D. For ξ and ξ ′ two random variables with values in D,
with respective distribution functions F and F ′, define

ξ ≥s ξ ′ iff for any ideal I of D, F(I) ≤ F ′(I) holds. (23)

With this new interpretation of the order, we will now show that Theorems 1–3 remain valid.
We first define probabilistic OrchNets, which are OrchNets in which the QoS of the different
services are randomized.

Definition 6 (Probabilistic OrchNet) A probabilistic OrchNet is a pair (N ,P) consisting
of an OrchNet N following Definition 3 and a probability distribution P over the set Ω of
daemons of N equipped with its Borel σ -algebra.

We further assume that the random variables νt (ω), ξt (ω), where t ranges over the set
T of all transitions of the OrchNet, and the different random selections of an optimum in
Step 3 of Procedure 1 are all mutually independent.

How can we lift monotonicity to this probabilistic setting? We first make precise what
the set Ω of all daemons is. For t a generic transition, let (Ωt ,Pt) be the set of possible
experiments together with associated probability, for random response time ξt ; and similarly
for (Ωc,Pc), where c ranges over the set C of all clusters of N . Thanks to the assumption
stated at the end of Definition 6, setting

Ω =
(∏

t∈T
Ωt

)

×
(∏

c∈C

Ωc

)

and P =
(∏

t∈T
Pt

)

×
(∏

c∈C

Pc

)

(24)

yields the probabilistic part of Definition 6. In the nondeterministic framework of Sect. 3.3,
we said that

ξ ≥ ξ ′ if ξ(ω) ≥ ξ ′(ω) holds ∀ω ∈ Ω. (25)

Clearly, if two random latencies ξ and ξ ′ satisfy condition (25), then they also satisfy con-
dition (23). That is, ordering (25) is stronger than stochastic ordering (23). Unfortunately,
the converse is not true in general. For example, condition (23) may hold while ξ and ξ ′ are
two independent random variables, which prevents (25) from being satisfied. Nonetheless,
the following result holds [46], which will allow us to proceed:

Form Methods Syst Des

Theorem 4 Assume condition (23) holds for the two distribution functions F and F ′. Then,
there exists a probability space Ω , a probability P over Ω , and two real valued random
variables ξ̂ and ξ̂ ′ over Ω , such that:

1. ξ̂ and ξ̂ ′ possess F and F ′ as respective distribution functions, and
2. condition (25) is satisfied by the pair (ξ̂ , ξ̂ ′) with probability 1.

The proof of this result is immediate if (D,≤) is a total order. It is, however, highly
nontrivial if ≤ is only a partial order. This theorem is indeed part of theorem 1 of [46].5

Theorem 4 allows to reduce the stochastic comparison of random variables to their ordinary
comparison as functions defined over the same set of experiments endowed with a same
probability. This applies in particular to each random QoS function and each random initial
QoS function, when considered in isolation. Thus, when performing construction (24) for
two OrchNets N and N ′, we can take the same pair (Ωt ,Pt) to represent both ξt and ξ ′

t , and
similarly for ξp and ξ ′

p . Applying (24) implies that both N and N ′ are represented using the
same pair (Ω,P). This leads naturally to Definition 6.

In addition, applying Theorem 4 to each transition t and each minimal place p yields that
stochastic ordering N ≥s N ′ reduces to ordinary ordering N ≥ N ′. Observe that this trick
does not apply to the overall QoS E(N) and E(N ′) of the two OrchNets; the reason for this
is that the space of experiments for these two random variables is already fixed (it is Ω) and
cannot further be played with as Theorem 4 requires. Thus we can reformulate probabilistic
monotonicity as follows—compare with Definition 5:

Definition 7 Probabilistic OrchNet(N ,P) is called probabilistically monotonic if, for any
probabilistic OrchNetN ′ such that N ≥ N ′, we have E(N) ≥s E(N ′).

Note the careful use of ≥ and ≥s . The following two results establish a relation between
probabilistic monotonicity and monotonicity.

Theorem 5 If OrchNet N is monotonic, then, probabilistic OrchNet (N ,P) is probabilis-
tically monotonic for any probability P over the set Ω . Vice-versa, if probabilistic OrchNet
(N ,P) is probabilistically monotonic, then N is monotonic with P-probability 1.

As a consequence, Theorem 3 enforcing monotonicity extends to the probabilistic setting.

3.5 Enforcing monotonicity

Theorem 3 in Sect. 3.3 provides guidelines regarding how to enforce monotonicity. Consider
again the workflow of Fig. 4 and the two alternative branches beginning at the place labeled
with QoS q ′

0 and ending at the place labeled with the QoS q ′
2. This pattern is a source

of non-monotonicity as we have seen. One way of enforcing monotonicity is by invoking
Theorem 3. Aggregate the two successive transitions in each branch and regard the result as
a single transition (t ′12 for the left branch and t ′′12 for the right branch). The QoS increments
of t ′12 and t ′′12 are equal to δq ′

12 = δq ′
1 ⊕ δq ′

2 and δq ′′
12 = δq ′′

1 ⊕ δq ′′
2 , respectively. The resulting

Orchestration net satisfies the condition of Theorem 3 and thus is monotonic. This process
of aggregation is illustrated on Fig. 5, mid diagram.

5Thanks are due to Bernard Delyon who pointed this reference to us.

Form Methods Syst Des

Fig. 5 Enforcing monotonicity through service aggregation, mid diagram, with δq ′
12 = δq ′

1 ⊕ δq ′
2 and

δq ′′
12 = δq ′′

1 ⊕ δq ′′
2 . Pessimistic QoS evaluation, right diagram, with δq12 = δq ′

12 ∨ δq ′′
12

An alternative to the above procedure consists in not modifying the orchestration but
rather changing the QoS evaluation procedure. Referring again to Fig. 4, isolate the part of
the workflow that is a source of non-monotonicity, namely the subnet shown on Fig. 5, left.
For this subnet, use pessimistic formula (19) to get a pessimistic but monotonic bound for
the QoS of this subnet. For this example, the pessimistic bound is equal to δq12 = δq ′

12 ∨
δq ′′

12. We then plug the result in the evaluation of the QoS of the overall orchestration, by
aggregating the isolated subnet into a single transition t12, with QoS increment δq12. This is
illustrated on Fig. 5, right diagram.

The above two procedures yield different results. By aggregating service calls performed
in sequence, the first procedure delays the selection of the best branch. The second procedure
does not suffer from this drawback. In turn, it results in a pessimistic evaluation of the end-
to-end QoS. Both approaches restore monotonicity.

4 Implementing our approach in Orc

We have implemented our approach on top of the Orc orchestration language and we now
present two aspects of this implementation: we explain how our approach supports separa-
tion of concerns in QoS-aware orchestration modeling; we also illustrate contract compo-
sition as a method for QoS-based design of composite services. Before presenting this, we
briefly summarize how the technical developments of Sect. 3 contribute to our approach to
contract based QoS aware management of composite services. For this, the reader is referred
to the overview, in the introduction, of our approach to QoS management using contracts.

4.1 Practical use of the QoS framework

Our framework of Probabilistic OrchNets developed in Sect. 3.4 supports soft probabilis-
tic QoS contracts expressed as probability distributions over (possibly multi-dimensional)
QoS metrics. Probability distributions can be specified either as a parameterized family of
distributions, or as a finite set of quantiles. Such contracts are part of SLA (Service Level
Agreement) declaration. They can either be agreed as part of negotiation or estimated by
remotely observing how a service responds in terms of QoS performance. See [39, 40] for
details. The theory developed in Sects. 3.3–3.5 provides the needed foundations for han-
dling monotonicity properly. Criteria ensuring monotonicity are provided. Techniques to
overcome the lack of monotonicity were developed, thus providing support for managing

Form Methods Syst Des

arbitrary orchestrations. QoS aware design of composite services requires relating the QoS
sub-contracts between the orchestration and its called services, and the end-to-end QoS con-
tract between the orchestration and its clients. This task is not within the scope of this paper
and the reader is referred to our previous work [39, 40], where statistical on-line detection
of the violation of a probabilistic contract is also developed. On-line dynamic service se-
lection based on QoS is a central task in QoS aware management of composite services.
Procedure 1 specifying the semantics of an OrchNet offers dynamic service selection as a
built-in feature.

How should we adapt an orchestration language so that it naturally supports the above
concepts and techniques? This orchestration language should be enhanced with features al-
lowing: (1) To take the proper decision based on QoS regarding competing events, actions,
or service calls while executing an orchestration; key here is to identify which events, ac-
tions, or service calls are in competition when making this decision. (2) To compute the
end-to-end QoS of a given execution of an orchestration by composing the QoS of the dif-
ferent services.

To perform the above, we only need to support the following four tasks:

Causality Tracking: Since the QoS algebra relies on the knowledge of causality relations
between events, actions, or service calls, we need to keep track of causal dependencies
while executing the orchestration.

Competition Tracking: We must identify which events or service calls are in competition
at each stage of a given execution of the orchestration.

QoS Tracking: We need to implement the QoS algebra with its relations and operators

– ⊕ (incrementing QoS),
– ≤ (comparing QoS), and
– � (resolving competition based on QoS).

End-to-End QoS: Then, we need to be able to compute the end-to-end QoS of an execution
of the orchestration, following Sects. 2.3 and 3.2.

Once these four tasks are supported, QoS aware management follows as a byproduct. This
provides the foundations for a separation of concerns and opens the way to an orthogonal
development of QoS and functional aspects of an orchestration. This important contribution
is detailed next.

4.2 Weaving QoS in orchestrations

Separation of concerns has been advocated as a recommended design discipline in the de-
velopment of complex software systems. The consideration of QoS in composite services is
a source of significant increase in complexity. Tight interaction between QoS and the func-
tion performed makes QoS a crosscutting concern. Aspect Oriented Programming (AOP)
has been advocated as a solution to support separation of crosscutting concerns in software
development [28, 29]. In AOP, the different aspects are developed separately by the pro-
grammer. Their weaving is performed using joinpoints and pointcuts, and by having advice
refining original pointcuts. In this section we develop a compile-time weaving of QoS as-
pects in composite services. Observe first that our formal model of OrchNets offers by itself
support for separation of concerns in QoS management. Once the involved QoS domains
have been specified with their algebraic operations, the execution policy of OrchNets (Pro-
cedure 1) entirely determines how QoS interferes with the execution of the orchestration,
see the discussion of the example of Fig. 4 in Sect. 2.1.

Form Methods Syst Des

Fig. 6 Separation of concerns in
QoS-aware specification. The
functional specification is
depicted last in boldface,
whereas the QoS part is shown in
italics on top in the form of
a rich SLA specification

<SLA>
<SLAParameter name = "ResponseTime"
type = "float" unit = "milliseconds">

<Metric>ResponseTime</Metric>
<Function>

<Metric>ResponseTimeOplus</Metric>
<Metric>ReponseTimeCompare</Metric>
<Metric>ReponseTimeCompete</Metric>

</Function>
</SLAParameter>
<SLAParameter name = "Cost"
type = "integer" unit = "euro">

<Metric>Cost</Metric>
<Function>

<Metric>CostOplus</Metric>
<Metric>CostCompare</Metric>
<Metric>CostCompete</Metric>

</Function>
</SLAParameter>
<ServiceDefinition name="orch">
<MetricURI http://orch.com/getMetric
?ResponseTime />

<MetricURI http://orch.com/getMetric?Cost />
</ServiceDefinition>
<ServiceDefinition name="service1">
<MetricURI http://service1.com/getMetric
?ResponseTime />

</ServiceDefinition>
<ServiceDefinition name="service2">
<MetricURI http://service2.com/getMetric
?ResponseTime />

<MetricURI http://service2.com/getMetric?Cost/>
</ServiceDefinition>

</SLA>

<process>
<sequence>

<invoke name = "service1(-)" ... />
<receive name = "service1(-)" ... />
<invoke name = "service2(-)" ... />
<receive name = "service2(-)" ... />

</sequence>
</process>

Van der Aalst’s WF-nets (WFnets) [1, 3, 4] are a Petri net formalism and are thus closely
related to the functional part of our OrchNets. The compile-time weaving of QoS into WF-
nets is best illustrated by the example of Fig. 6, where the XML-like specification explains
how a functional description of a composite service can be complemented with its QoS
specification. The original functional specification is BPEL-compliant and is written in
boldface. Add-ons for QoS are written in italics and consist of the WSLA [27] spec-
ification of the Interface, playing the role of a rich SLA specification. Two QoS domains are
declared: RTime (for ResponseTime) and Cost. These domains come up with the declara-
tion of their associated operators following Sect. 2.2, namely Cost.leq, Cost.oplus,
Cost.vee, Cost.compet and similarly for RTime—this is not shown on the figure
since such QoS domains should be predefined and available from a library. The Interface
also contains, for each called service, the declaration of the QoS measures that are relevant
to it—service1 knows only RTime whereas service2 knows the two. The functional

Form Methods Syst Des

Fig. 7 Initialization step <assign>
<$orch.RTime = 0 />
<$orch.Cost = 0 />

</assign>

Fig. 8 Rewriting rule for
weaving response time

<sequence>
<invoke name = "service(-)" />
...
<receive name = "service(-)" />
</sequence>

rewrites as:

<sequence>

<flow>
<invoke name = "service(-)" />
<sequence>

<invoke "clock()"/>
<receive "clock()"
outputVariable = "clock"/>

<assign>
<$service.clock.store = $clock />

</assign>
</sequence>

</flow>
...
<flow>

<receive name = "service(-)" />
<sequence>

<invoke "clock()"/>
<receive "clock()"
outputVariable = "clock"/>

<assign>
<$service.RTime =
$clock - $service.clock.store />

<$orch.RTime =
$orch.RTime + $service.RTime />

</assign>
</sequence>

</flow>
</sequence>

part of this specification (shown in boldface) collects four service calls or returns, each of
which constitutes a pointcut.

The QoS-enhanced orchestration is automatically generated from the specification shown
in Fig. 6—to save space, we do not show it but we only discuss the steps performed in gen-
erating it. The added code is written in roman. The first step is to initialize the metrics
relevant to the orchestration, see Fig. 7. The sequence begins with the initialization of
the response time carried by the token using the <assign> declaration. Concurrent in-
vocation of the service(-) and clock = service.clock.store follow, using the
<flow></flow> declaration. Once the service(-) returns, the difference between the
current clock and service.clock.store is assigned to service.RTime. Result-
ing weaving is obtained by applying the generic rewriting rule shown on Fig. 8. The same
mechanism is used for the response time of service2 and the end-to-end response time of

Form Methods Syst Des

Fig. 9 Rewriting rule for
weaving cost

<sequence>
<invoke name = "service(-)"/>
<receive name = "service(-)"/>
</sequence>

rewrites as:

<sequence>
<invoke name = "service(-)" />
<receive name = "service(-)"
outputVariable = "service.Cost" />

<assign>
<$orch.Cost =
$orch.Cost + $service.Cost />

</assign>
</sequence>

the orchestration follows by adding the above two. Each pointcut shown in boldface in this
figure is refined by the corresponding advice (in roman) following it.

The end-to-end evaluation of Cost for the orchestration is computed in a different way,
because this kind of QoS is individually carried by the tokens representing the queries while
being processed by the orchestration. Since Cost is relevant to service2 by interface
declaration in Fig. 6, the call to service2 is augmented with the return of the cost of calling
service2. This weaving is obtained by applying the generic rewriting rule of Fig. 9. Here,
the invoke pointcut is not refined, only the receive is refined, by the advice code (in
roman) following it.

The automatic generation of the augmented program from the original specification is a
direct coding of the Procedure 1. Rules for other constructions such as the firing of a transi-
tion with several input places and the competition when a token exits a place with possible
choices, are derived similarly, following Procedure 1. For general WFnets, we must keep
track of the different tokens and attach QoS values to them. This amounts to keeping track
of causalities between service calls that result from the WFnet. To support the weaving,
pointcuts need not be explicitly declared by the programmer. They are instead obtained by
pattern matching searching for keywords invoke and receive in the functional specifi-
cation.

Instead of developing a tool implementing the above technique for WFnets, we have
performed a prototype implementation on top of the Orc orchestration language. This is
explained in the next section and subsequently illustrated using the TravelAgent2 example
of Fig. 2.

4.3 Enhancing Orc for QoS

Background on Orc Orc [21] is a general purpose language aimed to encode concurrent
and distributed computations, particularly workflows and Web service orchestrations. An
orchestration described in Orc is essentially an Orc expression. An Orc expression is either
a site or is built recursively using any of the four Orc combinators. A site models any generic
service which the Orc expression orchestrates. A site can be called with a list of parameters,
and all these parameters’ values have to be defined before the call can occur. A call to a
site returns (or publishes) at most one value; it may also halt without returning a value. The
identity site, which publishes the value x it receives as a parameter, is denoted by x (the name
of its parameter). Orc allows composing service calls or actions by using a predefined small
set of combinators that we describe next. In the parallel composition f | g, expressions f

Form Methods Syst Des

and g run in parallel. There is no direct interaction between parts of f and g and the returned
values are merged by interleaving them. The sequential composition f > x > g starts by
running f . For every value v published by f , a new instance of g is run in parallel, with the
value of x bound to v in that instance. As a particular case, f �g performs f and then g, in
sequence. The pruning composition f < x < g runs f and g in parallel. When g publishes
its first value v, the computation of g is terminated, and occurrences of x in f are replaced
by v. Since f is run in parallel with g, site calls in f that have x as a parameter are blocked
until g publishes a value. Finally, the otherwise combinator f ;g runs f first. If f publishes
a value, g is entirely ignored. However if the computation of f halts without returning any
values, then g is run. Orc also has built in sites to track passage of time (Rtime, Rwait),
deal with data structures (tuples, lists, records), handle concurrency (semaphores, channels)
and define new sites (class). An interested reader is referred to the Orc documentation6 for
details.

Enhancing Orc We now describe how we integrate our QoS framework into the Orc lan-
guage. In particular, we explain how we perform the four tasks listed at the end of Sect. 4.1
within Orc.

The Causality Tracking task consists in tracking the causal relations between execution
events in the Orc interpreter. This was straightforward for WFnets, since causality is revealed
by the graph structure of the net. It is not immediate for Orc programs, however. The event
structure semantics of Orc [43] served as a formal specification for this. It turns out that
causality can be cast into our generic algebraic framework for QoS developed in Sect. 2.3.
Causalities are represented as pairs x = (e,C), where e is the considered event and C =
{x1, . . . , xk} is the set of its direct causes, recursively encoded as pairs of the same kind. The
QoS domain encoding causalities is defined similarly to the QoS domain “Cost” of Sect. 2.2.
Consequently, the generic technique developed to weave QoS into an Orc program can be
instantiated to generate causalities. Details will be reported elsewhere. As a small illustration
example, consider the computation of causalities for the following Orc program:

((2 � x) <x< (1 � 3)) � print(4).

We apply our generic weaving method by seeing causality as a QoS domain. We make use of
two data structures in Orc : tuples, such as (f, g) and finite lists, such as [f,g]. The causal
history is stored as a list of lists with the tuple (publication, causal past) published in the
transformed program. The weaving yields the following causality-enhanced Orc program:

(

(

(2, []) >t> (x >(x0,_)> (x0,union([x], [t])))) <x<

((1, []) >t> (3, [t]))
) >t> (("print", [t]) >x0> (print(4), [x0]))

)

The first event has an empty causal past (represented by []). Through pattern matching, this
is propagated to the next event with causal history accumulated. The output of its execution
yields the partial order of causes of the publication of print(4):

4(signal, [(print, [(3, [(3, [(1, [])]), (2, [])])])])

6http://orc.csres.utexas.edu/documentation.shtml.

http://orc.csres.utexas.edu/documentation.shtml

Form Methods Syst Des

Focus now on the Competition Tracking task. In its basic form, Orc does offer a way to
select one publication among several candidate ones, namely by using the pruning operator.
Indeed, in the Orc expression

f <x< (E1 | E2 | · · · | En) (26)

the first publication by E1, E2, . . . , or En, preempts any future publication of the parallel
composition g�E1 | E2 | · · · | En. Since only one publication of g is picked, all possible
publications of g are in mutual conflict when in the context of (26). One can regard (26)
as implementing the Competition Tracking task for the particular case when the conflict
is resolved on the basis of the time of occurrence of the conflicting publications, seen as a
QoS measure—only the earliest one survives. We propose to lift the Orc pruning operator
by resolving the conflict on the basis of an arbitrary QoS measure q given as a parameter of
the generalized pruning:

f <x<q (E1 | E2 | · · · | En) (27)

which is, for its definition, macro-expanded in core Orc as follows:

f <x< bestq(E1 | E2 | · · · | En). (28)

In (28), expression bestq(E1 | E2 | · · · | En):

1. stores, as a stream S, all publications of E1 | E2 | · · · | En upon termination;
2. finds a maximal x in S according to the partial order defined by QoS measure q;7

3. returns x �q (S \ {x}).
For the special case where QoS measure q is just the response time d , then (27) is equivalent
to (26), the original pruning operator.

At this point, we must explain how Procedure 1 is implemented. Focus first on step 1
of that procedure, where a cluster is selected. In free choice nets, clusters localize conflicts.
In core Orc, conflicts are localized in the pruning operator (26). In our extension of Orc,
conflicts are localized in the QoS-based pruning operator (27). Thus, step 1 of Procedure 1
consists in selecting one among all enabled expressions of the form (27). Next, expression
(27) itself is better explained with reference to Fig. 1. Figure 1(a) is a direct illustration of
(27), whereas its equivalent form Fig. 1(b) yields step 3 of Procedure 1 (the competition
step). This discussion shows that the new feature (27) enhances Orc with a feature that is as
powerful as the QoS-based conflict of our OrchNets and it explains how Procedure 1 is im-
plemented. How this approach is implemented is presented in Appendix B.1. We could have
considered a more general feature f <x<q g, where g is an arbitrary Orc expression with its
several induced threads, not necessarily a parallel composition. Our current implementation
does not provide this more general feature, however.

The QoS Tracking task of implementing the QoS algebra is handled as in the QoS decla-
rations of Sect. 4.2. This is extended with QoS Weaving to enhance the functional declared
code with a QoS enhanced output. In Appendix B we provide examples and develop the
TravelAgent2 Examples in Orc by using the above methodology.

Finally, the End-to-End QoS task is much less obvious than for WFnets. The reason
is that Orc does not handle explicitly states, transitions, and causality. Rewriting rules are

7Since QoS values may be partially ordered, this choice could be non-deterministic.

Form Methods Syst Des

needed that automatically transform functional Orc code by enhancing it for QoS, struc-
turally. This resembles what we briefly presented regarding causality. Details will be pre-
sented elsewhere.

5 Evaluation of our approach

In this section, we make use of our implementation for performing contract composition,
that is, estimating the end-to-end QoS of the TravelAgent2 and TravelAgent3 examples. The
former is monotonic whereas the latter is not. Our study illustrates the effect of monotonicity
and substantiates the need for the rich theory developed in this paper.

5.1 The experiments

Each orchestration is specified as a QoS weaved specification such as explained in Ap-
pendix B.2. For each trial, QoS values for each called service are drawn according to their
specified contracts and then our automatic QoS evaluation procedure applies—we will ac-
tually use both the normal QoS evaluation from (18) and the “pessimistic” QoS evaluation
from (19) and compare them. Drawing 20,000 successive trials yields, using Monte-Carlo
estimation, an estimate of the end-to-end contract in the form of a probability distribution.
QoS dimensions considered here are response time, cost, and category. When choices are
performed according to two dimensions or more (e.g., cost and category), we make use of a
weighing technique following AHP [47].

Figure 10 displays the results of two experiments, corresponding to two different sets
of contracts exposed by the called services, shown on diagrams (a) for response time, and
(c) for cost. In order to evaluate the end-to-end QoS of the TravelAgent2 orchestrations in a
realistic setting, the AirlineCompany and HotelBooking services are modeled as distributed
applications hosted on a GlassFish 3.1 server on the Inria local area network—each call
to AirlineCompany or HotelBooking results in a parallel call to one of the above mentioned
GlassFish applications and the corresponding response time is recorded and used for end-
to-end QoS evaluation. Other services are assumed to react much quicker and are drawn
from a Student-t distribution, not shown in the figures. Costs, on the other hand, are drawn
from some Gaussian distributions (with small variance/mean ratio); note that we could as
well have costs deterministic, this would not change our method.

Figure 10 displays the estimated end-to-end QoS in diagrams (b) for response time and
(d) for cost. The results are shown for both the normal QoS evaluation from (18) and
the “pessimistic” QoS evaluation from (19). Not surprisingly, pessimistic evaluation yields
larger end-to-end QoS estimates.

Now, recall that TravelAgent2 is monotonic, whereas TravelAgent3 is not. What are the
consequences of this? In Fig. 10-right, the cost for AirlineCompany2 has been reduced as
compared to Fig. 10-left. For the monotonic orchestration TravelAgent2, this reduction re-
sults in a reduction of the overall cost. For the non-monotonic orchestration TravelAgent3,
however, this reduction gives raise to an increase in overall cost. On the other hand, pes-
simistic QoS evaluations are always monotonic, see Theorem 1; the results shown conform
to this theorem.

Once these end-to-end measurements are taken, the negotiation of contracts and their
monitoring may be done as in [39, 40]. This follows the Monte-Carlo procedure explained
in [39, 40] and is thus omitted.

Form Methods Syst Des

Fig. 10 We show results from two experiments (top and bottom). For each experiment we display cumulative
densities of: (a) Measured response time of invoked services. (b) End-to-end response time for TravelAgent2
orchestrations through two evaluation schemes. (c) Measured cost of invoked services. (d) Returned cost
invoice of TravelAgent2 orchestrations

5.2 Discussion

When dealing with monotonic orchestrations, our contract composition procedure performs
at once, both QoS evaluation and optimization. Competing alternatives are captured by the

Form Methods Syst Des

different choices occurring in the orchestration. According to Procedure 1, choice among
competing alternatives is by local optimization, which implements global optimization since
the orchestration is monotonic. Despite the use of Monte-Carlo simulations, this simple pol-
icy is cheaper than global optimization, even if analytic techniques are used for composing
probabilistic QoS. Furthermore, when applied at run time, Procedure 1 implements late
binding of services with optimal selection in a very cheap way.

Of course, there is no free lunch. If the considered orchestration is not monotonic, the
above approach does not work as such, as already pointed out in [7, 10, 51], see Sect. 6. The
bypasses developed in Sect. 3.5 must be used. The aggregation procedure results in aggre-
gating services that are called in sequence, which increases granularity of the orchestration.
When applied in the context of late binding, the decision is delayed until alternatives have
all been explored—thus, it is hard to claim that late binding has been achieved by doing so.
If pessimistic evaluation is followed, then immediate choices can be applied but, as we said,
the end-to-end QoS evaluation that results is pessimistic in that the evaluation accumulates
worst QoS among alternatives. So, none of the above techniques is fully satisfactory for
non-monotonic orchestrations. In turn, global optimization always applies and implements
best service selection—however, we question the meaning of QoS aware management when
orchestrations are non-monotonic.

6 Related work

We restrict ourselves to papers dealing with QoS-aware management of composite services
and addressing QoS-based design, on-line service selection, monitoring and adaptation/re-
configuration. We focus on specific papers dealing with issues relevant to our work:

– QoS Algebraic Formulation: While QoS composition has been studied in a variety of
techniques, we are interested in mathematically sound models for QoS. We pay attention
to the handling of probabilistic and multi-dimensional QoS.

– Monotonicity: In case of data dependent workflows, the analysis of monotonicity in design
becomes crucial. We restrict our discussion to papers that have either considered this
implicitly or make use of other techniques to ensure this.

– Contracts: Once QoS models have been specified, contractual agreements between clients
and orchestrations (or similarly, between orchestrations and sub-contracted services) will
need to be specified. We review some approaches that utilize the probabilistic nature of
QoS to ensure mathematically sound contractual agreements.

We review the literature collected in Tables 1 and 2, where issues of monotonicity are
relevant.

We begin with the work of Yu and Bouguettaya [48]. Built-in monotonicity is still en-
sured, due to proper restrictions on the control flow of the considered orchestrations. We
nevertheless discuss it because specific issues of interest are studied. A Service Query Al-
gebra is proposed in which composite services are seen as graphs. They can be further com-
posed. QoS composition is one aspect of this service composition. QoS is treated in a fully
algebraic style, very much like our present approach. Probabilistic aspects are not exten-
sively developed, however. Buscemi and Montanari [15, 16], De Nicola et al. [37] is a series
of paper developing algebraic modeling of QoS in a way very similar to ours. By build-
ing on the seminal work of Baccelli et al. [23] on max/+-algebra, these authors develop a
commutative semi-ring algebra to model QoS domains; this is almost identical to our model-
ing, except for our consideration of the “competition” operator used in late service binding.

Form Methods Syst Des

Table 1 Literature survey: Papers dealing with orchestrations allowing for a data-dependent workflow (thus
exhibiting a risk of non-monotonicity). The issue of monotonicity is ignored, except in the work of the authors
of this paper and in Ardagna et al. [10], Alrifai & Risse [7] and Zeng et al. [51], cited in Table 2, where it is
identified through the discussion on global versus local optimization

Paper QoS framework Algorithms

Yu and
Bouguettaya [48]

QoS parameters can be defined as “the
probability of something”, composition
rules are proposed

Extensive study of QoS algebra;
optimization of service selection by
Dynamic Programming applied to the
orchestration modeled as a directed
graph

Bistarelli and
Santini [11–13]

Probabilistic QoS supported; analytic
techniques for composing component QoS
to get overall service QoS

Formal language based on semirings
used to aggregate QoS; however,
composition rules for QoS are not
detailed

Buscemi and
Montanari [15,
16]; De Nicola
et al. [37]

Generic QoS is supported through a
commutative semi-ring algebra; The cc-pi
calculus is developed to model dynamic
service binding with QoS-based selection
and its expressiveness is studied; SLA is
declared as a system of named constraints

Cardoso et al.
[19, 20]

Probabilistic QoS is supported but with
little details; the composition of QoS
values is explained but the composition of
QoS distributions is not explained

Generic formulae presented with rules
for composing workflows’ QoS and
tested on a genome based workflow.

Hwang et al. [24,
25]

Probabilistic QoS is supported, with
analytic techniques for QoS composition

Efficient approximations for the
analytic evaluation of Probabilistic
QoS composition are proposed

Menascé et al.
[32]

Probabilistic QoS is supported, with
analytic techniques for QoS composition,
mathematical details are provided

Optimal service selection is precisely
formulated and solved with an efficient
heuristic

Then, the authors develop the cc-pi calculus to capture dynamic service binding way beyond
our present study. Probabilistic frameworks are not considered, however.

The work by Bistarelli and Santini [12, 13] is discussed here because it explicitly refers
to monotonicity in its title. This is, however, misleading in that this term is used in the totally
different setting of “belief revision”, a kind of logic in which facts can get falsified (thus the
world is not monotonic in this sense).

For the next group of papers, the authors seem unaware of the issue of monotonicity for
the type of orchestration they consider (we do not repeat this fact for the different papers).
Cardoso et al. [19, 20] propose a predictive QoS model that allows to compute the QoS
of workflows from the QoS of their atomic parts. Individual QoS measures are estimated
for their minimum, maximum, and averaged values based on measurements. Rules to com-
pute QoS composition incrementally are used (the SWR rules published in the first author’s
PhD), with a special attention paid to fault-tolerant systems. Probabilistic QoS is possibly
supported, with, however, little technical details. The work by Hwang et al. [24, 25] is very
interesting in its study of probabilistic QoS composition via analytic techniques. To avoid
the computational cost resulting from state explosion in composite services, heuristic ap-
proximations are proposed. The work by Menascé et al. [32] gives a mathematically precise
development of optimal service selection with cost and response time as QoS dimensions.
The BPEL constructs are supported, including the “switch”, which is a source of possible
lack of monotonicity; alternative branches of the switch are assigned a probability. A very

Form Methods Syst Des

Table 2 Literature survey, continued

Paper QoS framework Algorithms

Calinescu et al.
[17]

Probabilistic QoS is supported, with
analytic techniques for QoS composition
(Markov models, DMC, CMC, MDP)

QoS is formally specified by using
probabilistic temporal logic; extensive
toolkit and model checkers are used to
implement QoS-based design and
reconfiguration but little detail is given
about algorithms

Zeng et al.
[50–52]

Probabilistic QoS is supported (restricted to
Gaussian distributions); analytic techniques
for QoS composition are provided

Using an integer programming
formulation, global and local
optimization are studied in dynamic
environments and the issue of
monotonicity is implicitly pinpointed

Ardagna et al.
[10]; Alrifai &
Risse [7]

Probabilistic QoS is not supported QoS-aware service selection is solved
via Mixed Integer Linear
Programming/Multi-dimension
Multi-choice 0-1 Knapsack Problem
(MMKP); the issue of monotonicity is
pinpointed through the comparison of
local vs. global QoS guarantees

Rosario et al. [14,
39, 40]

Probabilistic QoS is supported through Soft
Probabilistic contracts; Monte-Carlo
simulation is proposed for QoS
composition; the whole study is restricted
to response time

An in-depth study of monotonicity is
performed; contract composition,
optimal service binding, and statistical
QoS contract monitoring are
developed

Rosario et al. [41,
42]

Probabilistic multi-dimensional QoS is
supported, with soft Probabilistic contracts
involving Monte-Carlo simulation for QoS
composition

Probabilistic monotonicity is studied; a
preliminary version of this paper

interesting heuristic is provided to perform near-to-optimal selection at a reasonable com-
putational cost. The long and rich paper by Calinescu et al. [17] presents a methodology
and extensive toolkit for performing QoS-based design and reconfiguration. Markov types
of models are used in this toolkit, ranging from discrete and continuous Markov chains
to Markov Decision Processes to deal with non-deterministic choices or data-dependent
branching. QoS analyses are supported thanks to a formulation using probabilistic tempo-
ral logic and associated model checkers. The methodology and toolkit reuses existing tools
and did not need the development of any new engine. The paper lacks mathematical details,
however, regarding the models and algorithms used.

The issue of monotonicity is identified in only three papers from our list, albeit under
a different wording than ours. Ardagna et al. [10] discuss local versus global QoS guaran-
tees and explain why optimizing QoS guarantees of local execution paths may not lead to
the satisfaction of global QoS guarantees. Alrifai & Risse [7] propose a similar approach
using MMKP for computationally efficient selection over global and local constraints. In
Zeng et al. [51], a thorough comparison is made between local versus global optimization
in service selection. It is argued that performing local optimization may not lead to opti-
mal selection; indeed, the beginning of Sect. 3.2 in this paper explains exactly our example
of Fig. 3. The paper explains that global optimization always provides a relevant selection,
which is certainly correct. We have, however, explained in our introduction why we believe
that not having monotonicity leads to a strange understanding of QoS management. Now, re-

Form Methods Syst Des

ferring to our taxonomy, in monotonic orchestrations, local optimization is enough to ensure
global optimality. Other major features of this paper are summarized in the table.

To conclude on this bibliographical study, we notice that the issue of monotonicity is
mostly ignored in the literature on composite Web services, whereas it is known in the area of
performance studies for general computer architectures. Our work focuses on monotonicity,
its conditions, and its consequences for QoS-aware management of composite Web services.

7 Conclusion

We have studied the QoS aware management of composite services, with emphasis on QoS-
based design and QoS-based on-line service selection. We have advocated the importance of
monotonicity—a composite service is monotonic if a called service improving its QoS can-
not decrease the end-to-end QoS of the composite service. Monotonicity goes hand-in-hand
with QoS, as we think. For monotonic orchestrations, “local” and “global” optimization turn
out to be equivalent. This allowed us to propose simple answers to the above tasks. Corre-
sponding techniques are valid for both deterministic and probabilistic frameworks for QoS.
We have proposed techniques to deal with the lack of monotonicity. We have observed that
the issue of monotonicity has been underestimated in the literature.

To establish our approach on firm bases, we have proposed an abstract QoS calculus,
whose algebra encompasses most known QoS domains so far. How QoS based design and
on-line service selection are performed in our approach is formalized by the model of Orch-
Nets. Our framework of QoS calculus and OrchNets supports multi-dimensional QoS mea-
sures, possibly handled as partial orders. To account for high uncertainties and variability in
the performance of Web services, we support probabilistic QoS.

QoS and function interfere; still, the designer expects support for separation of concerns.
We provide such a support by allowing for separate QoS declaration and functional speci-
fication, followed by weaving to generate QoS-enhanced orchestrations. Our weaving tech-
niques significantly clarifies the specification. Finally, we have proposed a mild extension
of the Orc orchestration language to support the above approach—the principles of our ex-
tension could apply to BPEL [38] as well.

We believe that our approach opens new possibilities in handling orchestrations with rich
QoS characteristics.

Acknowledgements The authors would like to thank Jayadev Misra and William R. Cook for fruitful
discussions regarding Orc. Further thanks to the two anonymous referees for providing us with construc-
tive comments and suggestions that have been incorporated in the revised version. This work was partially
funded by the INRIA Associated Team grant FOSSA, the ANR national research program DocFlow (ANR-
06-MDCA-005) and the project CREATE ActivDoc.

Appendix A: Proofs

A.1 Proof of Theorem 2

Throughout the proof, we fix an arbitrary value ω for the daemon. We first prove the suffi-
ciency of condition (21). Let N ′ be such that N ′ ≥ N . Since operators ⊕ and � are both
monotonic, see Definition 1, we have, by Procedure 2 and formulas (17) and (18):

Eω

(
κ
(
N ′,ω

)
,N ′) ≥ Eω

(
κ
(
N ′,ω

)
,N

)
.

Form Methods Syst Des

By (21) applied with κ = κ(N ′,ω), we get that

Eω

(
κ
(
N ′,ω

)
,N

) ≥ Eω

(
κ(N ,ω),N

)

holds. This proves the sufficiency of condition (21).
We prove necessity by contradiction. Let (N ,ω, κ†) be a triple violating condition (21),

in that

κ† cannot get selected by Procedure 1, but

Eω

(
κ†,N

) ≥ Eω

(
κ(N ,ω),N

)
does not hold.

Now consider the OrchNet net N ′ = (N,V,Q′,Qinit) where the family Q′ is such that,
∀t ∈ κ†, ξ ′

t (ω) = ξt (ω) holds, and ∀t /∈ κ†, using (5) together with the assumption that (D,≤)

is an upper lattice, we can inductively select ξ ′
t (ω) such that the following two inequalities

hold:

∨

t∈κ†

qt ≤
(∨

p′∈•t
qp′

)

⊕ ξ ′
t (ω), (29)

ξt (ω) ≤ ξ ′
t (ω). (30)

Condition (30) expresses that N ′ ≥ N . By Procedure 1 defining QoS policy, (29) implies
that configuration κ† can win all competitions arising in step 3 of QoS policy, κ(N ′,ω) = κ†

holds, and thus

Eω

(
κ
(
N ′,ω

)
,N ′) = Eω

(
κ†,N ′) = Eω

(
κ†,N

)
.

However, Eω(κ†,N) ≥ Eω(κ(N ,ω),N) does not hold, which violates monotonicity.

A.2 Proof of Theorem 3, sufficiency

Let ϕN be the net morphism mapping UN onto N and let N be any OrchNet built on UN .
We prove that condition (21) of Theorem 2 holds for N by induction on the number of
transitions in the maximal configuration κ(N ,ω) that actually occurs. The base case is when
it has only one transition. Clearly this transition has minimal QoS increment and any other
maximal configuration has a greater end-to-end QoS value.

Induction hypothesis Condition (21) of Theorem 2 holds for any maximal occurring con-
figuration with m−1 transitions (m > 1). Formally, for an OrchNet N ,∀ω ∈ Ω,∀κ ∈ V(N),

Eω(κ,N) ≥ Eω

(
κ(N ,ω),N

)
(31)

must hold if |{t ∈ κ(N ,ω)}| ≤ m − 1.

Induction argument Consider the OrchNet N , where the actually occurring configuration
κ(N ,ω) has m transitions and let

∅ = κ0(ω) ≺ κ1(ω)(= κ) ≺ · · · ≺ κM(ω)(ω) = κ(N ,ω)

be the increasing chain of configurations leading to κ(N ,ω) under QoS policy, see (3.2)—
to shorten the notations, we write simply κ instead of κ1(ω) subsequently in the proof. We
assume that M(ω) ≤ m. Let t be the unique transition such that t ∈ κ1(ω) and set t̂ = {t}∪ t•.
Let κ ′ be any other maximal configuration of N . Then two cases can occur.

Form Methods Syst Des

– t ∈ κ ′: In this case, comparing the end-to-end QoS of κ(N ,ω) and κ ′ reduces to compar-
ing

Eω

(
κ(N ,ω) \ t̂ ,N κ

)
and Eω

(
κ ′ \ t̂ ,N κ

)

where N κ is the future of κ in N = (N,V,A,Q,Qinit), obtained by replacing N by Nκ ,
restricting V , A, and Q to Nκ , and replacing Qinit by Eω(κ,N), the QoS cost of executing
configuration κ .

Since κ(N ,ω) \ t̂ is the actually occurring configuration in the future N κ of transition
t , using our induction hypothesis, then

Eω

(
κ ′ \ t̂ ,N κ

) ≥ Eω

(
κ(N ,ω) \ t̂ ,N κ

)

holds, which implies

Eω

(
κ ′,N

) ≥ Eω

(
κ(N ,ω),N

)
.

– t /∈ κ ′: Then there must exist a transition t ′ ∈ κ ′ such that t and t ′ differ and belong
to the same cluster c. Hence, ϕN(t)• = ϕN(t ′)• follows from the structural condition of
Theorem 3. The futures N κ and N κ ′

thus are isomorphic: they only differ in the initial
colors of their places. If Qinit and Q′

init are the initial QoS values for the futures N κ and
N κ ′

, then Qinit ≤ Q′
init holds (since ξt ≤ ξt ′ , t• has QoS lesser than t ′• by monotonicity

of ⊕). On the other hand,

Eω

(
κ(N ,ω),N

) = Eω

(
κ(N ,ω) \ t̂ ,N κ

)
(32)

and

Eω

(
κ ′,N

) = Eω

(
κ ′ \ t̂ ′,N κ ′)

.

Now, since N κ ′
and N κ possess identical underlying nets and N κ ′ ≥ N κ , then we get

Eω

(
κ ′ \ t̂ ′,N κ ′) ≥ Eω

(
κ ′ \ t̂ ′,N κ

)
. (33)

Finally, applying the induction hypothesis to (32) and using (33) yields Eω(κ ′,N) ≥
Eω(κ(N ,ω),N).

This proves that condition (21) of Theorem 2 holds and finishes the proof of the theorem.

A.3 Proof of Theorem 3, necessity

We will show that when the structural condition of Theorem 3 is not satisfied by N , Orchnet
NN can violate condition (21) of Theorem 2, the necessary condition for monotonicity.

Let c be any cluster in UN that violates the structural condition of Theorem 3. Since N

is sound, all transitions in c are reachable from the initial place and so there are transitions
t1, t2 ∈ c such that •t1 ∩ •t2 �= ∅, •ϕ(t1) ∩ •ϕ(t2) �= ∅ and ϕ(t1)

• �= ϕ(t2)
•.

Define [t] = �t� \ t̂ and κ = [t1] ∪ [t2]. κ is a configuration. Since t•1 �= t•2 , without loss
of generality, we assume that there is a place p ∈ t•1 such that p /∈ t•2 . Let t∗ be a transition
in N κ such that t∗ ∈ p•. Such a transition must exist since p can not be a maximal place:
ϕ(p) can not be a maximal place in N which has a unique maximal place. Now, consider
the Orchnet N ′ > N obtained as follows: using repeatedly condition (5) for operator ⊕ in
Definition 1, ξ ′

t1
(ω) = ξt1(ω), ξ ′

t2
(ω) ≥ ξt1(ω), and, for all other t ∈ c, ξ ′

t (ω) ≥ ξ ′
t2
(ω). For all

Form Methods Syst Des

remaining transitions of N ′, with the exception of t∗, the QoS increments are the same as
that in N and thus are finite for ω. Finally, select ξ ′

t∗(ω) such that

ξt1(ω) ⊕ ξ ′
t∗(ω) > Q∗(ω) (34)

where Q∗(ω) ∈ D will be chosen later—here we used the additional condition of Theorem 3
regarding D, together with condition (5) for operator ⊕ in Definition 1. Transition t1 has a
minimal QoS increment among all transitions in cluster c. It can therefore win the competi-
tion, thus giving raise to an actually occurring configuration κ(N ′,ω). Select Q∗(ω) equal
to the maximal value of the end-to-end QoS of the set K of all maximal configurations κ that
do not include t1 (e.g., when t2 fires instead of t1). By (34), since t∗ is in the future of t1, we
thus have Eω(κ(N ′,ω),N ′) ≥ ξt1(ω) ⊕ ξ ′

t∗(ω) > Q∗(ω) ≥ Eω(κ,N ′) for any configuration
κ and, therefore, N ′ violates the condition (21) of Theorem 2.

A.4 Proof of Theorem 5

The proof is by contradiction. Assume that

there exists a pair (N ,N ′) of OrchNets such that

N ≥ N ′ and P
{
ω ∈ Ω | Eω(N) < Eω(N ′)

}
> 0. (35)

To prove the theorem it is enough to prove that (35) implies:

there exists No,N ′
o such that No ≥ N ′

o,

but E(No) ≥s E(N ′
o) does not hold (36)

To this end, set No = N and define N ′
o as follows, where Ωo denotes the set {ω ∈ Ω |

Eω(N) < Eω(N ′)}:
N ′

o(ω) = if ω ∈ Ωo then N ′(ω) else N (ω).

Note that No ≥ N ′
o ≥ N ′ by construction. On the other hand, we have Eω(No) < Eω(N ′

o)

for ω ∈ Ωo, and Eω(No) = Eω(N ′
o) for ω �∈ Ωo. By (35), we have P(Ωo) > 0. Consequently,

we get:

[∀ω ∈ Ω ⇒ Eω(No) ≤ Eω

(
N ′

o

)]
and

[
P
{
ω ∈ Ω | Eω(No) < Eω

(
N ′

o

)}
> 0

]

which implies that E(No) ≥s E(N ′
o) does not hold.

Appendix B: Implementation in Orc

An implementation of a QoS management facility is a large undertaking, involving the cre-
ation of mechanisms for service identification, QoS criteria definition, SLA negotiation,
QoS measurement, alerts, reports, QoS-based reconfiguration, and so forth. In this section,
we narrow our focus to several aspects of these mechanisms that are impacted by this paper’s
view of QoS for service orchestrations.

Form Methods Syst Des

In particular, we illustrate some aspects of our implementation in Orc. We first explain
how Orc is upgraded to offer the QoS-based pruning operator (27) in the form of a new
bestQ operator. Then, we exhibit the implementation of several QoS domains with their
QoS operators. Finally, we illustrate how the QoS weaving is performed for the TravelAgent2
orchestration from Sect. 1.

B.1 Enhancing Orc with bestQ functions

Recall that the Orc pruning combinator g <x< f selects the first publication from an ex-
pression f , and terminates further execution of that expression. In this case, first is in the
sense of the real time ordering of publications. However, this mechanism can be extended to
various QoS domains. For example, in our exemplar security level with values “high” and
“low”, security-pruning selects the first “high” publication; or if the expression halts after
publishing only “low” publications, then security-pruning selects the first one. This selection
process may impact other QoS values, such as response time or cost, since several values
are considered before the “winner” is selected.

This QoS-aware selection process is performed by a bestQ function, for various do-
mains Q. The bestQ function implements Step 3 of Procedure 1.

The simplest cases for the competition function are domains where evaluation of “looser”
alternatives does not affect the resultant QoS. Security level (without considering cost or
response time) is an example of such a domain. In these cases, the competition function is
trivial:

x �X = x for any pair (x,X) (37)

and bestQ is simply max.
Figure 11 shows an Orc implementation of the competition operator and bestSLandRT

for a more complex domain: a compound security level–response time QoS domain. In this
domain, the QoS values are represented as pairs of (security level, response time), following
Eq. (3).

The competition operator compete unzips the list of considered-but-not-selected values’
pairs into a pair of lists, takes the second of these lists (the list of response times), and
performs a response time domain join on that list with the “winner” value’s response time
prepended. The response time domain join is the maximum of the response times of all
values considered, which is used to set the response time of the QoS value resulting from
the compete.

def compete((slx,rtx), ys) =
unzip(ys) >(_,rtys)> (slx, responseTimeDomain.join(rtx:rtys))

def bestSLandRT(thunk) =
val lows = Ref([])
def trackLow(("low", x)) = lows := x:lows?

b <("high",_) as b< (thunk() >x> (x | trackLow(x)))
;
("low", responseTimeDomain.join(lows?))

Fig. 11 Competition operator and bestSLandRT for composite (security level, response time) QoS domain

Form Methods Syst Des

The bestSLandRT function immediately publishes the first “high” security level value
it receives, if any. In this case, the response time component of the result is that of the first
“high” value received, under the assumption that bestSLandRT is receiving values in order
of increasing response time. If bestSLandRT receives only “low” security level values,
then it returns the pair containing “low” and the response time domain join of all received
values (maximum response time), since bestSLandRT had to wait for all responses to
determine that there was no “high” security response.

In other domains, the competition operator and bestQ function would involve a different
set of considered values, according to the specifics of the particular criteria for “best”, as
determined by the application.

B.2 QoS weaving

QoS weaving consists of the steps needed to enhance functional Orc specifications with
QoS.

1. Orchestration Definition: Starting from the specification of the orchestration, we con-
struct a conventional Orc program. At this point, the program corresponds only to the
functional requirements of the specification, and does not include any explicit QoS
awareness.

2. QoS Declaration: Based on the QoS requirements of the specification, appropriate QoS
domains are selected. For each QoS domain, the operators leq , min, max, oPlus,
join, and compete, are defined, along with the zero constant for the QoS domain.

Refer to Fig. 12 for an example of QoS operator definitions for the Response time and
Cost QoS domains, and the composite Cost and response time domain. These definitions
make use of Orc library functions,8 such as cfold which is a normal list fold operation
for a commutative operator. The Response time domain’s underlying set is non-negative
integers. The Cost domain uses integers as its underlying set. Note that in Sect. 2.2, the
Cost domain needed multisets to preserve the lattice semantics used in the development
of the theory. The Orc implementation can bypass this obligation by defining a join
operation that is different from a pure order-theoretical

∨
operator dictated by the partial

order.
3. Site Enhancement with QoS: Services, called “sites” in Orc, which are involved in the

QoS of the orchestration are enhanced to be QoS-aware. QoS parameters are passed and
returned by QoS-aware site calls. For some domains, generic QoS measurement logic
can be instantiated. For example, call–return response time can be measured and the re-
sultant QoS parameters computed appropriately in a site-independent manner. However,
for other QoS domains, such as cost, the site’s participation is required to compute the
QoS parameters for a call.

4. QoS Weaving: QoS-awareness is “woven” into the orchestration by program transfor-
mations. This is a mechanical process that can be automated. A basic sketch of a few
representative transformations are presented here. Program values corresponding to the
OrchNet tokens are augmented into (value, QoS) pairs, as discussed in Sect. 3.2. QoS-
aware Orc site calls are rewritten to join the QoS parameters carried by their arguments,
and to increment the QoS parameters of their returns. Program operations that select one
QoS value from a set are rewritten to use bestQ and competition operators as appropriate.

The transformed program’s publications carry QoS parameters indicating the end-to-
end QoS for each value published from the orchestration.

8Described in the documentation at URL: http://orc.csres.utexas.edu/.

http://orc.csres.utexas.edu/

Form Methods Syst Des

-- Response time

def class ResponseTimeDomainClass() =
def leq(x, y) = x <= y
def min(xs) = cfold(lambda(x, y) = if leq(x, y) then x else y, xs)
def max(xs) = cfold(lambda(x, y) = if leq(y, x) then x else y, xs)
def oPlus(x, y) = x + y
def zero() = 0
def join(xs) = max(xs)
def compete(x, ys) = x
stop

val responseTimeDomain = ResponseTimeDomainClass() -- Singleton

-- Cost

def class CostDomainClass() =
def leq(x, y) = x <= y
def min(xs) = cfold(lambda(x, y) = if leq(x, y) then x else y, xs)
def max(xs) = cfold(lambda(x, y) = if leq(y, x) then x else y, xs)
def oPlus(x, y) = x + y
def zero() = 0
def join(xs) = cfold(oPlus, xs)
def compete(x, ys) = x
stop

val costDomain = CostDomainClass() -- Singleton

-- Cost and response time

def class CostAndRTDomainClass() =
def leq((c1, rt1), (c2, rt2)) = if c1 /= c2 then costDomain.leq(c1,

c2) else responseTimeDomain.leq(rt1, rt2)
def min(xs) = cfold(lambda(x, y) = if leq(x, y) then x else y, xs)
def max(xs) = cfold(lambda(x, y) = if leq(y, x) then x else y, xs)
def oPlus((c1, rt1), (c2, rt2)) = (costDomain.oPlus(c1, c2),

responseTimeDomain.oPlus(rt1, rt2))
def zero() = (costDomain.zero(), responseTimeDomain.zero())
def join(xs) = unzip(xs) >(cs,rts)> (costDomain.join(cs),

responseTimeDomain.join(rts))
def compete((cx,rtx), ys) = unzip(ys) >(_,rtys)> (cx,

responseTimeDomain.join(rtx:rtys))
stop

val costAndRTDomain = CostAndRTDomainClass() -- Singleton

Fig. 12 QoS declaration for the TravelAgent2 example

These are the essential steps to constructing a QoS-aware Orc program. There are many
enhancements suggested by engineering concerns, such as:

Form Methods Syst Des

include "QoS.inc"

-- Air travel quote service

def randomPrice() = Random(50)
def simulateDelay() = Random(150) >d> Rwait(d) >> d

def class Airline(name) =
def quoteAvailPrice(order, qosParms) =
randomPrice() >p>
simulateDelay() >d>

%
({. supplier = name, price = p .}

, costAndRTDomain.oPlus(qosParms, (p,d)))
stop

-- Hotel accommodation quote service

type RoomCategory = Deluxe() | Standard()
def randomRoomCat() = if Random(2) = 0 then Deluxe() else Standard()

def class Hotel(name) =
def quoteAvailPrice(order,qosParms) =
randomPrice() >p>
randomRoomCat() >r>
simulateDelay() >d>

%
({. supplier = name, roomCat = r, price = p .}

, costAndRTDomain.oPlus(qosParms, (p,d)))
stop

-- Travel Agency orchestration

{- QoS-based comparisons -}

def bestPrice((vx, qx), (vy, qy)) = if vx.price <= vy.price then (vx
, costAndRTDomain.compete(qx,[qy])) else (vy
, costAndRTDomain.compete(qy,[qx]))

def bestCategoryPrice((vx, qx), (vy, qy)) if (vx.roomCat
= vy.roomCat) = if vx.price <= vy.price then (vx

, costAndRTDomain.compete(qx,[qy])) else (vy
, costAndRTDomain.compete(qy,[qx]))

def bestCategoryPrice((vx, qx), (vy, qy)) if (vx.roomCat = Deluxe())
= (vx, costAndRTDomain.compete(qx,[qy]))

def bestCategoryPrice((vx, qx), (vy, qy)) if (vy.roomCat = Deluxe())
= (vy, costAndRTDomain.compete(qy,[qx]))

Fig. 13 Weaved TravelAgent2 orchestration (part 1 of 2). Highlighted code is added by QoS weaving

– Automation of the weaving process described above.
– Accommodation of additional QoS domains, and more complex QoS values. For example,

adding an error bound domain or accommodating multiple units of cost.

Form Methods Syst Des

{- Service instances -}

val airline1 = Airline("Airline 1")
val airline2 = Airline("Airline 2")
val hotelA = Hotel("Hotel A")
val hotelB = Hotel("Hotel B")

{- The TravelAgent2 workflow -}

{- Wait for up to ’t’ milliseconds for the first value from x, then
halt -}

def timeout(t, x) = Let(Some(x) | Rwait(t) >> None()) >Some(y)> y

def class TravelAgent2() =
def acceptOrder(order, budget) =
timeout(325,
{. order = order .} >invoice>
costAndRTDomain.zero() >qosParms>
bestPrice(airline1.quoteAvailPrice(order,qosParms),

airline2.quoteAvailPrice(order, qosParms)) >(air,qosParms)>
(invoice + {. airSegment = air .}) >invoice>
bestCategoryPrice(hotelA.quoteAvailPrice(order, qosParms),

hotelB.quoteAvailPrice(order, qosParms)) >(hotel,qosParms)>
(invoice + {. hotelSegment = hotel .}) >invoice>
(invoice + {. totalPrice = invoice.airSegment.price +

invoice.hotelSegment.price .}, qosParms)
)
>(invoice, qosParms)>

(if invoice.totalPrice <= budget
then (invoice, qosParms)
else acceptOrder(order, budget))

stop

-- Simulate some orders

{- Simulation parameters -}
val numSimulatedOrders = 10
val budget = 40
val delayBetweenOrders = 200

def simulateOrders(_, 0) = stop
def simulateOrders(number, max) =

TravelAgent2().acceptOrder(number, budget)
| Rwait(delayBetweenOrders) >> simulateOrders(number + 1, max - 1)

simulateOrders(0, numSimulatedOrders)

Fig. 14 Weaved TravelAgent2 orchestration (part 2 of 2). Highlighted code is added by QoS weaving

– Some QoS domain-independence for certain sites. For example, joining multiple QoS
parameters without depending on the specific types of the parameters.

These are implemented by straightforward applications of object-oriented software engi-
neering. Implementations of these enhancements are omitted here as unnecessary to demon-
strate the contributions of the current work.

Form Methods Syst Des

B.3 TravelAgent2 example

In Figs. 13 and 14, the QoS-weaved output of the TravelAgent2 orchestration from Sect. 1 is
provided with the original orchestration implementation in normal text and the QoS-weaving
added code highlighted. Increments to the compound QoS domain Cost and ResponseTime
are accumulated as the orchestration progresses. The QoS-weaved code is available on the
Orc site at URL: http://orc.csres.utexas.edu/papers/qos-aware.shtml, from where it can be
run.

References

1. van der Aalst WMP (1997) Verification of workflow nets. In: ICATPN, pp 407–426
2. van der Aalst WMP (1998) The application of Petri nets to workflow management. J Circuits Syst Com-

put 8(1):21–66. citeseer.ist.psu.edu/vanderaalst98application.html
3. van der Aalst WMP, van Hee KM (2002) Workflow management: models, methods, and systems. MIT

Press, Cambridge
4. van der Aalst WMP, ter Hofstede AHM, Kiepuszewski B, Barros AP (2003) Workflow patterns. Distrib

Parallel Databases 14(1):5–51. doi:10.1023/A:1022883727209
5. Abundo M, Cardellini V, Presti FL (2011) Optimal admission control for a QoS-aware service-oriented

system. In: ServiceWave, pp 179–190
6. Bensoussan A (1992) Stochastic control of partially observable systems. Cambridge University Press,

Cambridge
7. Alrifai M, Risse T (2009) Combining global optimization with local selection for efficient QoS-aware

service composition. In: WWW, pp 881–890
8. Ardagna D, Ghezzi C, Mirandola R (2008) Model driven QoS analyses of composed web services. In:

Mähönen P, Pohl K, Priol T (eds) ServiceWave. Lecture notes in computer science, vol 5377. Springer,
Berlin, pp 299–311

9. Ardagna D, Giunta G, Ingraffia N, Mirandola R, Pernici B (2006) QoS-driven web services selection in
autonomic grid environments. In: Meersman R, Tari Z (eds) OTM conferences. Lecture notes in com-
puter science, vol 4276. Springer, Berlin, pp 1273–1289

10. Ardagna D, Pernici B (2005) Global and local QoS guarantee in web service selection. In: Bussler C,
Haller A (eds) Business process management workshops, vol 3812, pp 32–46

11. Bistarelli S, Montanari U, Rossi F, Santini F (2010) Unicast and multicast QoS routing with soft-
constraint logic programming. ACM Trans Comput Log 12(1):5:1–5:48

12. Bistarelli S, Santini F (2009) A nonmonotonic soft concurrent constraint language for SLA negotiation.
Electron Notes Theor Comput Sci 236:147–162

13. Bistarelli S, Santini F (2009) Soft constraints for quality aspects in service oriented architectures. In:
Young researchers workshop on service-oriented computing, pp 51–65

14. Bouillard A, Rosario S, Benveniste A, Haar S (2009) Monotonicity in service orchestrations. In: Frances-
chinis G, Wolf K (eds) Petri nets. Lecture notes in computer science, vol 5606. Springer, Berlin, pp 263–
282

15. Buscemi MG, Montanari U (2007) CC-Pi: a constraint-based language for specifying service level agree-
ments. In: Proceedings of the 16th European conference on programming, ESOP’07. Springer, Berlin,
pp 18–32. http://dl.acm.org/citation.cfm?id=1762174.1762179

16. Buscemi MG, Montanari U (2011) QoS negotiation in service composition. J Log Algebr Program
80(1):13–24

17. Calinescu R, Grunske L, Kwiatkowska M, Mirandola R, Tamburrelli G (2011) Dynamic QoS manage-
ment and optimization in service-based systems. IEEE Trans Softw Eng 37(3):387–409

18. Cardellini V, Casalicchio E, Grassi V, Presti FL (2010) Adaptive management of composite services
under percentile-based service level agreements. In: ICSOC 2010. Lecture notes in computer science,
vol 6470, pp 381–395

19. Cardoso J, Sheth AP, Miller JA (2002) Workflow quality of service. In: Kosanke K, Jochem R, Nell JG,
Bas AO (eds) ICEIMT, IFIP conference proceedings, vol 236. Kluwer, Dordrecht, pp 303–311

20. Cardoso J, Sheth AP, Miller JA, Arnold J, Kochut K (2004) Quality of service for workflows and web
service processes. J Web Semant 1(3):281–308

21. Cook WR, Patwardhan S, Misra J (2006) Workflow patterns in Orc. In: Coordination, pp 82–96
22. Esparza J, Römer S, Vogler W (2002) An improvement of McMillan’s unfolding algorithm. Form Meth-

ods Syst Des 20(3):285–310

http://orc.csres.utexas.edu/papers/qos-aware.shtml
http://citeseer.ist.psu.edu/vanderaalst98application.html
http://dx.doi.org/10.1023/A:1022883727209
http://dl.acm.org/citation.cfm?id=1762174.1762179

Form Methods Syst Des

23. Baccelli F, Cohen G, Olsder GJ, Quadrat J-P (1992) Synchronization and linearity. Wiley series in prob-
ability and mathematical statistics. Wiley, New York

24. Hwang SY, Wang H, Srivastava J, Paul RA (2004) A probabilistic QoS model and computation frame-
work for web services-based workflows. In: ER, pp 596–609

25. Hwang SY, Wang H, Tang J, Srivastava J (2007) A probabilistic approach to modeling and estimating
the QoS of web-services-based workflows. Inf Sci 177(23):5484–5503

26. Kattepur A (2011) Importance sampling of probabilistic contracts in web services. In: Kappel G, Maamar
Z, Motahari-Nezhad HR (eds) ICSOC. Lecture notes in computer science, vol 7084. Springer, Berlin,
pp 557–565

27. Keller A, Ludwig H (2003) The WSLA framework: specifying and monitoring service level agreements
for web services. J Netw Syst Manag 11(1)

28. Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier MJ, Irwin J (1997) Aspect-oriented
programming. In: ECOOP. Springer, Berlin

29. Kiselev I (2002) Aspect-oriented programming with AspectJ. Sams, Indianapolis
30. Kitchin D, Cook WR, Misra J (2006) A language for task orchestration and its semantic properties. In:

Proceedings of the international conference on concurrency theory (CONCUR)
31. Marsan MA, Balbo G, Bobbio A, Chiola G, Conte G, Cumani A (1989) The effect of execution policies

on the semantics and analysis of stochastic Petri nets. IEEE Trans Softw Eng 15(7):832–846
32. Menascé DA, Casalicchio E, Dubey VK (2008) A heuristic approach to optimal service selection in

service oriented architectures. In: Avritzer A, Weyuker EJ, Woodside CM (eds) WOSP. ACM, New
York, pp 13–24

33. Misra J, Cook WR (2006) Computation orchestration: a basis for wide-area computing. Softw Syst
Model. doi:10.1007/s10270-006-0012-1

34. Shaked M, Shanthikumar JG (1994) Stochastic orders and their applications. Academic Press, New York
35. Shaked M, Shanthikumar JG (2007) Stochastic orders. Springer, Berlin
36. Murata T (1989) Petri nets: properties, analysis and applications. In: Proceedings of the IEEE, vol 77,

pp 541–580
37. Nicola R, Ferrari G, Montanari U, Pugliese R, Tuosto E (2005) A process calculus for QoS-aware appli-

cations. In: Jacquet JM, Picco GP (eds) Coordination models and languages. Lecture notes in computer
science, vol 3454. Springer, Berlin, pp 33–48. doi:10.1007/11417019_3

38. OASIS (2007) Web services business process execution language version 2.0. http://docs.oasisopen.org/
wsbpel/2.0/wsbpel-v2.0.pdf

39. Rosario S, Benveniste A, Haar S, Jard C (2007) Probabilistic QoS and soft contracts for transaction based
web services. In: ICWS. IEEE Computer Society, Los Alamitos, pp 126–133

40. Rosario S, Benveniste A, Haar S, Jard C (2008) Probabilistic QoS and soft contracts for transaction based
web services orchestrations. IEEE Trans Service Comput 1(4)

41. Rosario S, Benveniste, A, Jard, C (2009) A theory of QoS for web service orchestrations. Research report
RR-6951, INRIA. Available from http://hal.inria.fr/inria-00391592/PDF/RR-6951.pdf

42. Rosario S, Benveniste A, Jard C (2009) Flexible probabilistic QoS management of transaction based
web services orchestrations. In: ICWS. IEEE, New York, pp 107–114

43. Rosario S, Kitchin D, Benveniste A, Cook WR, Haar S, Jard C (2007) Event structure semantics of orc.
In: Dumas M, Heckel R (eds) WS-FM. Lecture notes in computer science, vol. 4937. Springer, Berlin,
pp 154–168

44. Sato N, Trivedi KS (2007) Stochastic modeling of composite web services for closed-form analysis
of their performance and reliability bottlenecks. In: Krämer BJ, Lin KJ, Narasimhan P (eds) ICSOC.
Lecture notes in computer science, vol 4749. Springer, Berlin, pp 107–118

45. Segala R, Lynch NA (1994) Probabilistic simulations for probabilistic processes. In: Jonsson B, Parrow J
(eds) CONCUR. Lecture notes in computer science, vol 836. Springer, Berlin, pp 481–496

46. Kamae T, Krengel U, O’Brien GL (1977) Stochastic inequalities on partially ordered spaces. Ann Probab
5(6):899–912

47. Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(2):9–26
48. Yu Q, Bouguettaya A (2008) Framework for web service query algebra and optimization. ACM Trans

Web 2(1)
49. Yu T, Lin KJ (2005) Service selection algorithms for composing complex services with multiple QoS

constraints. In: Benatallah B, Casati F, Traverso P (eds) ICSOC. Lecture notes in computer science,
vol 3826. Springer, Berlin, pp 130–143

50. Zeng L, Benatallah B, Dumas M, Kalagnanam J, Sheng QZ (2003) Quality driven web services compo-
sition. In: WWW, pp 411–421

51. Zeng L, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J, Chang H (2004) QoS-aware middleware
for web services composition. IEEE Trans Softw Eng 30(5):311–327

http://dx.doi.org/10.1007/s10270-006-0012-1
http://dx.doi.org/10.1007/11417019_3
http://docs.oasisopen.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasisopen.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://hal.inria.fr/inria-00391592/PDF/RR-6951.pdf

Form Methods Syst Des

52. Zeng L, Ngu AHH, Benatallah B, Podorozhny RM, Lei H (2008) Dynamic composition and optimization
of web services. Distrib Parallel Databases 24(1–3):45–72

53. Zheng H, Yang J, Zhao W, Bouguettaya A (2011) QoS analysis for web service compositions based
on probabilistic QoS. In: Kappel G, Maamar Z, Motahari-Nezhad H (eds) Service-oriented computing,
Lecture notes in computer science, vol 7084. Springer, Berlin, pp 47–61

	QoS-aware management of monotonic service orchestrations
	Abstract
	Introduction
	Monotonicity and consequences for management
	Handling probabilistic QoS
	Our contribution
	An abstract algebraic framework for QoS composition
	A careful handling of monotonicity
	Support for separation of concerns
	Managing QoS by contracts

	QoS calculus
	An informal introduction
	Incrementing QoS
	Synchronizing tokens
	QoS policy

	Some examples of QoS domains
	Response time
	Security level
	Reliability
	Cost
	Composite QoS, ﬁrst example
	Composite QoS, second example

	The QoS calculus

	A QoS framework for composite services
	Petri nets, occurrence nets, orchestration nets
	Occurrence nets
	Unfoldings and orchestration nets

	OrchNets
	Deﬁning the set Omega of all daemons

	Monotonicity
	Probabilistic monotonicity
	Enforcing monotonicity

	Implementing our approach in Orc
	Practical use of the QoS framework
	Weaving QoS in orchestrations
	Enhancing Orc for QoS
	Background on Orc
	Enhancing Orc

	Evaluation of our approach
	The experiments
	Discussion

	Related work
	Conclusion
	Acknowledgements
	Appendix A: Proofs
	Proof of Theorem 2
	Proof of Theorem 3, sufﬁciency
	Induction hypothesis
	Induction argument

	Proof of Theorem 3, necessity
	Proof of Theorem 5

	Appendix B: Implementation in Orc
	Enhancing Orc with bestQ functions
	QoS weaving
	TravelAgent2 example

	References

