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Nonstationary consistency of subspace methods
Albert Benveniste,Fellow, IEEE,and Laurent Mevel

Abstract— In this paper we study “nonstationary consistency”
of subspace methods for eigenstructure identification,i.e., the
ability of subspace algorithms to converge to the true eigenstruc-
ture despite nonstationarities in the excitation and measurement
noises. Note that such nonstationarities may result in having
time-varying zeros for the underlying system, so the problem
is nontrivial. In particular, likelihood and prediction er ror
related methods do not ensure consistency under such situation,
because estimation of poles and estimation of zeros are tightly
coupled. We show in turn that subspace methods ensure such
consistency. Our study carefully separates statistical from non-
statistical arguments, therefore enlightening the role ofstatistical
assumptions in this story.

Index Terms— Subspace methods, non stationary excitation,
consistency

I. I NTRODUCTION

In this paper we study “nonstationary consistency” of sub-
space methods for eigenstructure identification,i.e., the ability
of subspace algorithms to converge to the true eigenstructure
despite nonstationarities in the excitation and measurement
noises. Note that such nonstationarities may result in having
time-varying zeros for the underlying system, so the problem is
nontrivial. In particular, likelihood and prediction error related
methods do not ensure consistency under such situation,
because estimation of poles and estimation of zeros are tightly
coupled.

In 1985, Benveniste and Fuchs [6] proved that the Instru-
mental Variable method and what was called the Balanced Re-
alization method for linear system eigenstructure identification
are consistent for the class of nonstationary systems we discuss
here. Since this paper, the family of subspace algorithms has
been invented [16], [22], [25]–[27] and has expanded rapidly.
Therefore, we felt it was timely revisiting the results of [6] and
generalizing them to subspace methods. To this end, [6] had
first to be restructured to show up an important intermediate
result, which had not been noticed explicitly in the original
paper but was clearly there. Still, the generalization we present
here is far less trivial than expected and required introducing
new techniques for the proof.

There are a number of convergence studies on subspace
methods in a stationary context in the literature, see [2]–
[4], [10], [11], [13] to mention just a few of them. These
papers provide deep and technically difficult results including
convergence rates. They typically address the problem of
identifying the system matrices or the transfer matrix,i.e.,
both the pole and zero parts of the system. In contrast, the
nonstationaryconsistency property that we study here holds
for the estimation of the eigenstructure (the pole part) only and
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does not apply to the zero part, at least as far as the transfer
from unobserved inputs to output measurements is concerned.
It is definitely different from the problem considered in [24].

The paper is organized as follows. The problem of nonsta-
tionary consistency is stated in Section II, where a generic
form of subspace algorithm is also stated. Section III collects
the key steps of our analysis; Section III-A collects the non-
probabilistic arguments of the consistency proof; probabilistic
arguments of the proof are collected in Section III-B; and
our assumptions are discussed in Section III-C. Finally, in
Section IV, by using the so developed toolbox of theorems
and lemmas, we prove nonstationary consistency of some
representative subspace algorithms.

II. PROBLEM SETTING, A GENERIC SUBSPACE ALGORITHM

a) Problem setting:Consider the following linear system
{

xk = Axk−1 + Buk + vk

yk = Cxk−1 + Duk + wk
(1)

wherek ∈ Z, x is the R
n-valued state,u is the R

m-valued
observed input,v and w are unobserved input disturbances,
andy is theR

q-valued observed output.
The key point of this work is that the unobserved input

disturbances can benonstationary. For instance, they can
be white noises having unknown time-varying covariance
matrices. For this case, we should rather reformulate system
(1) in the following form, which enlightens thatyk itself is
nonstationary in a nontrivial way:

{
xk = Axk−1 + Buk + K(k)νk

yk = Cxk−1 + Duk + L(k)νk
(2)

where [
K(k)
L(k)

] [
KT (k) LT (k)

]

is the time-varying covariance matrix of the excitation noise
in (1), andνk is a stationary standard white noise. Note that
the zero part of the transferνk 7→ yk is time-varying in this
case, so that consistency makes sense only w.r.t. the pole part.

The problem we consider is theidentification of the pair
(C, A) up to a change of basis in the state space of system(2).
Equivalently, we identify the pairs(λ, Cϕλ), whereλ ranges
over the set of eigenvalues ofA (the poles of system (2)) and
ϕλ are a corresponding set of eigenvectors. Said in words, we
consider the problem ofeigenstructure identification.1

Our objective is to show that subspace methods pro-
vide consistent estimators of the eigenstructure, also for
nonstationary cases as above. Of course, none of the ma-
trices A, B, C, D, K(k), and L(k), are known. Matrices

1This problem and the situation described in (2) naturally occur for example
in the modal analysis of mechanical structures subject to vibration under both
controlled and/or natural and turbulent excitation [1].
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B, D, K(k), andL(k), are regarded as nuisance and are not
for identification in this paper.

We now introduce the generic subspace algorithm we shall
analyze throughout this paper. This generic algorithm willbe
subsequently specialized to cover the various algorithms used
in practice.

b) A generic subspace algorithm:Consider an observ-
able pair(C, A) of matrices, whereC is q×n andA is n×n.
Throughout this paper,p denotes an integer large enough such
that

rank(Op) = n, where Op
∆
=




C
CA
...

CAp−1


 (3)

Our generic algorithm assumes a finite familyRi(N) of q×r-
matrices, wherer ≥ n, i = 1, . . . , p andN > 0. It returns a
pair (C(N), A(N)). We describe it next. Consider the matrix
Hp(N) defined by

Hp(N)
∆
=




R1(N)
R2(N)
...

Rp(N)


 (4)

and SVD-decompose it as:

Hp(N) =

min(pq,r)∑

i=1

σiuiv
T
i

=

n∑

i=1

σiuiv
T
i +

min(pq,r)∑

i=n+1

σiuiv
T
i

= U diag(σ1, . . . , σn) V
T +

min(pq,r)∑

i=n+1

σiuiv
T
i

= U S V
T +

min(pq,r)∑

i=n+1

σiuiv
T
i . (5)

Partition thepq×n matrixU defined in (5) into itsp successive
q-block rowsU1, . . . ,Up and set

U
↑ ∆

=




U2

...
Up


 and U

↓ ∆
=




U1

...
Up−1




Using these notations, set

C(N)
∆
= U1 (6)

A(N)
∆
= least-squares solution ofU↑ = U

↓A (7)

Formulas (4–7) constitute our generic subspace algorithm.The
remainder of the paper consists in analyzing this algorithmand
specializations thereof. The sentence

“ Ri(N) provides consistent estimators for(C, A)”

that we use throughout this paper means that, when provided
with the sequenceRi(N), this generic algorithm yields con-
sistent estimators(C(N), A(N)) for the pair (C, A) in the
sense made precise in Theorem 1 below.

III. B ASIC THEOREMS FOR NONSTATIONARY

CONSISTENCY

Throughout this paper, fortN a nondecreasing sequence
of positive real numbers,o(tN ) generically denotes a
matrix-valued sequenceMN , of fixed dimensions,such that
MN/tN → 0 whenN tends to infinity.

Also, throughout this paper, we distinguishConditionsfrom
Assumptions.Assumptions will refer to hypothesized proper-
ties of the system or its inputs; Assumptions may or may not
hold. In contrast, Conditions can be satisfied by proper design
of the algorithm; enforcing these Conditions will be typically
part of the process of designing the subspace algorithms.

Our analysis proceeds in two steps. The first step collects
the arguments that do not involve probability, whereas only
the second step makes use of statistical arguments.

A. Non probabilistic analysis

In this subsection, we collect all arguments of the analysis
that make no use of probability at all. Therefore, “conver-
gence” is meant here in the usual, non probabilistic, sense.

1) From Hankel matrices to eigenstructure:For i =
1, . . . , p and N > 0, consider a familyRi(N) of q × r-
matrices, satisfying the following condition:

Condition 1: The matricesRi(N), N > 0, decompose as

Ri(N) = CAi−1G(N) + o(1). (8)

Furthermore, the sequence ofn × r-matricesG(N), N > 0,
satisfies the following condition:

lim inf
N→∞

σn (G(N)) > 0 , (9)

whereσn(M) denotes then-th largest singular value of matrix
M .

Theorem 1 (consistent estimator [6]):Under Condition 1,
(C(N), A(N)) defined by (4–7) is aconsistent estimatorof
(C, A) in the following sense:

there exists a sequence of matricesT (N), with
T (N) and T−1(N) uniformly bounded w.r.t.N ,
such that

lim
N→∞

T−1(N)A(N)T (N) → A , and

lim
N→∞

C(N)T (N) → C .

Proof: It is found in [6], second part of Section III-C,
dealing with the Balanced Realization algorithm. Besides the
fact that reference [6] speaks(H, F, G) and not(A, B, C),
the only slight change is that matrixG(N) in (8) replaces
the controllability matrixC(F, GS) of [6], where S is the
sample length. ⋄

In the following we shall relate our matricesRi(N) to
empirical covariances of data. For this we need some more
notations.
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2) Notations: For X and Y two matrices of compatible
dimensions, define:

〈X, Y 〉
∆
= XY T

‖X‖2 ∆
= Tr 〈X, X〉

E(X | Y )
∆
= 〈X, Y 〉〈Y, Y 〉†Y

E(X | Y ⊥)
∆
= X − E(X | Y ) ,

(10)

where Tr denotes the trace and superscript† denotes the
pseudo inverse. For(yk)k∈Z a R

q-valued data sequence and
N > 0 a window length, define

Yi(N)
∆
=

[
yi+N−1 . . . yi+1 yi

]

and write simplyYi if no confusion can result. For(xk)k∈Z

and (zk)k∈Z two data sequences of compatible dimensions,
we write:

〈Xi, Zj〉N
∆
= 〈Xi(N), Zj(N)〉 , and

EN(Xi | Zj)
∆
= E(Xi(N) | Zj(N)) .

Finally, we shall make use of the following data Hankel
matrices:

Y+
i,M (N)

∆
=




Yi+M

...
Yi+2

Yi+1


 , Y−

i,M (N)
∆
=




Yi

Yi−1

...
Yi−M


 , and

Yi,M (N)
∆
=




Y+

i,M

Y−
i,M





The above notations are introduced because, depending
on the considered algorithms, the data set is indexed
as yN , . . . , y1 (when only “future” data are needed), or
yN , . . . , y1, y0, . . . , y−N (when data are split into future and
past). Many authors use rathery1, . . . , yN , yN+1, . . . , y2N , or
variants thereof. Clearly, the difference is only notational.
Also, we have taken identical indexM in Y+

i,M andY−
i,M when

buildingYi,M . Of course, we could take different indicesM+

andM− without impairing the validity of what follows.
Finally in order to refer to the different algorithms in a

systematic way in the sequel, we shall superscript the referred
Ri(N) with the index of the corresponding equation. For
example,

R
(16)
i (N) denotesRi(N) as specified by (16). (11)

The same convention will be used when we wish to refer to
algorithms in terms of theirH matrix.

3) Instruments:In this section, we revisit the old concept
of “instrument” and use it in our context. Unlike in Section II
where our problem was stated, we do not distinguish here
between observed and unobserved inputs. In the following
system, vectorξ collects all inputs of the system considered
throughout this section:

{
xk = Axk−1 + B′ξk

yk = Cxk−1 + D′ξk
(12)

In (12), k ∈ Z, x is the R
n-valued state,ξ is theR

m-valued
input, andy is theR

q-valued observed output. Fix a window

lengthN . With the notations of Section III-A.2, system (12)
rewrites as follows, fori = 1, . . . , p:

{
Xi = AXi−1 + B′Ξi

Yi = CXi−1 + D′Ξi
(13)

In the following lemma we introduceinstrumentsas the key
tool in our analysis:

Lemma 1 (instruments):Let (zk)k∈Z be anR
M -valued data

sequence and(sN )N>0 an R+-valued sequence such that

for j ∈ {1, . . . , i} : 〈Ξj , Z0〉N = o(sN ) (14)

lim inf
N→∞

σn

(
1

sN
〈X0, Z0〉N

)
> 0 (15)

Then,

Ri(N)
∆
=

1

sN
〈Yi, Z0〉N (16)

satisfies Condition 1. In the sequel, we callinstrumenta signal
(zk) satisfying (14) and (15) for some sequencesN .

Proof: The following decompositions hold, fori > 0:

yk+i = CAi−1xk +

i−1∑

j=1

CAi−1−jB′ξk+j + D′ξk+i,

with the convention that
∑0

1 = 0, and:

N−1∑

k=0

yk+iz
T
k (17)

= CAi−1
N−1∑

k=0

xkzT
k +

i−1∑

j=1

CAi−1−j
N−1∑

k=0

B′ξk+jz
T
k +

+

N−1∑

k=0

D′ξk+iz
T
k

Equation (17) rewrites as follows:

〈Yi, Z0〉N (18)

= CAi−1〈X0, Z0〉N +

i−1∑

j=1

CAi−1−jB′〈Ξj , Z0〉N

+ D′〈Ξi, Z0〉N ,

which proves thatR(16)(N) satisfies Condition 1, thanks to
(14) and (15). ⋄

Lemma 1 and Theorem 1 together ensure thatR(16)(N)
provides consistent estimators for the pair(C, A)—see (11)
for the notational convention used here.

Applying Lemma 1 to system (1) with its combined ob-
served and unobserved inputs can be (tentatively) performed
via the following substitutions:

[
B′

D′

]
ξk =

[
B
D

]
uk +

[
vk

wk

]
(19)

Of course, if input ξk is observed,i.e., vk = wk = 0
in (19), then one can chose instrumentzk in such a way
that 〈Ξj , Z0〉N = 0 exactly. This is no longer feasible if
unobserved inputs exist, sinceΞj is no longer observed in
this case. Therefore, additional work is needed for analyzing
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system (1) with its combined observed/unobserved inputs.
Section III-B on probabilistic analysis will address this missing
point.

4) Weighting and Squaring:(This section may be ignored
for a first reading.)

As perfectly analyzed in the book [23], there are many
different subspace algorithms, and, in addition, each of these
possesses a number of variants. Such variants depend on
whether the algorithm uses raw data or frequency domain
spectra, or time domain covariance matrices as inputs; they
also depend on which type of “weighting” is being used. In
this section we shall develop a toolbox of lemmas to show that,
once one of these variants is shown to be consistent, then so
are all related variants. Our toolbox involves the following two
tools: weightingandsquaring.

a) Weighting: Weighting is generally used as part of
subspace algorithms and plays an important role in algorithm
conditioning and convergence rates. In our case, weighting
will be in addition a key tool for the analysis of algorithms,
should they be weighted or not. In particular, some subspace
algorithms take as input matricesRi(N) whose dimensions
are not fixed but vary with the lengthN of the data set.
Consequently, the apparatus of Section II does not apply
directly to such matricesRi(N). Weighting will be used as a
preliminary step in analyzing such algorithms.

We distinguish pre-weighting, indicated by the symbolλ
in sub- or superscript, and post-weighting, indicated by the
symbolρ in sub- or superscript. Symbolsλ andρ are reminis-
cent of “left” and “right”, respectively. Pre-weighting consists
in pre-multiplying the matrixHp defined in (4) by a square
and invertible matrixWλ. Post-weighting consists in post-
multiplying Hp by a rectangular matrixWT

ρ , of dimensions
possibly varying with the lengthN of the record. In this
discussion we omit indexN when no ambiguity can result.

In what follows, superscriptw attached toRi or Hp

announces that corresponding matrices cannot be handled
directly by the apparatus of Section II, and thus weighting
will be used in analyzing the corresponding algorithm.

Let rN be a sequence of positive integers (indexed by the
lengthN of the data set). We are given:

– a familyRw
i (N) of q× rN -matrices, wherei = 1, . . . , p;

– a sequenceWλ(N) of pre-weighting matrices of dimen-
sionspq × pq;

– a sequenceWT
ρ (N) of post-weighting matrices of dimen-

sionsrN × r.

Let Hw
p (N) be the matrix obtained by stacking the

matrices Rw
i (N) as in (4). Then, set Hp(N) =

Wλ(N)Hw
p (N)WT

ρ (N). Partitioning Hp(N) as in (4)
defines a familyRi(N) of matrices. Now, SVD-decomposing
Hp(N) yields:

Hp(N) = Udiag(σ1, . . . , σn)VT +

min(pq,r)∑

i=n+1

σiuivi
T (20)

For given N , let (C(N), A(N)) be the pair obtained by
applying formulas (6) and (7) to the matrixU. On the other

hand, SVD-decomposeHw
p (N) as

Hw
p (N) = Uw diag(σw

1 , . . . , σw
n )VT

w+

+

min(pq,r)∑

i=n+1

σw
i u

w
i v

w
i

T (21)

and setU′ = WλUw . Then, let(Cw(N), Aw(N)) be the pair
obtained by applying formulas (6) and (7) to the matrixU

′.
Note that the familyRi(N) possess constant dimensions

and is therefore amenable to a direct application of Theorem
1. In contrast, the familyRw

i (N) cannot satisfy Condition 1
since its dimensions areq × rN and thus may vary withN .
Therefore the consistency of(Cw(N), Aw(N)) cannot follow
from a direct application of Theorem 1.

Lemma 2 below overcomes this difficulty by making
it possible to transfer consistency, from(C(N), A(N)) to
(Cw(N), Aw(N)).

To this end, note that pre- and post-multiplying (21) by
Wλ(N) andWT

ρ (N) yields

Hp(N) = Wλ(N)Uw diag(σw
1 , . . . , σw

n )VT
wWT

ρ (N)

+Wλ(N)




min(pq,r)∑

i=n+1

σw
i u

w
i v

w
i

T



WT
ρ (N)

(22)

Lemma 2 (weighting):Assume that the sequenceHp(N) is
bounded w.r.t.N and that the following condition holds:

lim sup
N→∞

Wλ(N)




min(pq,r)∑

i=n+1

σw
i u

w
i v

w
i

T



 WT
ρ (N) = 0 (23)

Then, the pair(Cw(N), Aw(N)) is consistent iff the pair
(C(N), A(N)) is consistent.

Proof: See Appendix . ⋄
b) Squaring: Squaring is a particular case of post-

weighting, where the weighting matrix is just the transposeof
the original one. Squaring is an instrumental tool in analyzing
projection based algorithms.

Corollary 1 (squaring):With the same notations as before,
assume thatHp(N) and Hw

p (N) are related byHp(N) =

Hw
p (N)Hw

p (N)
T .

1) If Hp(N) satisfies Condition 1, then the pair
(Cw(N), Aw(N)) is consistent.

2) Vice-versa, ifHw
p (N) satisfies Condition 1, then the pair

(C(N), A(N)) is consistent.
Proof: See Appendix . ⋄

B. Probabilistic analysis

So far probabilities were never invoked. In this subsection
we collect the arguments involving probability and assump-
tions of probabilistic nature.

Let us discuss the key conditions allowing us to apply
Lemma 1 and Theorem 1 to system (1), taking the unobserved
inputsv andw into account.

Suppose first that there is no unobserved input disturbance,
i.e., v = w = 0 in (1). Then, theξk ’s introduced in (12) are
observed and thus can be explicitly used to satisfy a stronger
condition than (14) in Lemma 1, namely〈Ξj , Z0〉N = 0. Note
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that no assumption of stochastic nature is required for this
reasoning.

Next, consider the opposite case in which there is no
observed input,i.e., B = D = 0 in (1). Since input
disturbances are not observed, the actual values ofΞj are
unknown when applying Lemma 1 and therefore cannot be
used while constructing the instrumentzk.

This problem, however, can be solved by usingstochastic
knowledge about unobserved input disturbances. To this end,
we now introduce the needed probabilistic setting, and, prior
to this, the martingale argument we shall use.

1) A martingale argument:
Lemma 3: Let(vk)k≥0 and (zk)k≥0 be two sequences of

square integrable vector valued random variables defined
over some probability space(Ω,G, P) and let (Gk)k≥0 be an
increasing family of sub-σ-algebras ofG such that:

sup
k≥0

E‖vk‖
2 ≤ C < ∞ , and

(24)

lim
N→∞

N∑

k=0

‖zk‖
2 = +∞ w.p.1

vk and zk are Gk-measurable, andE(vk | Gk−1) = 0 .

Then, for anyj > 0, the following holds:

lim
N→∞

MN(j)
∑N

k=0 ‖zk‖2
= 0 w.p. 1, (25)

whereMN(j)
∆
=

N∑

k=j

vkzT
k−j .

Nota: In formula (25), the conditional expectation
E(. | Gk−1) should not be confused with our matrix projection
operatorE(. | .) in (10).

Proof: It is a mild variation of the argument of [6],
Section III-A. We repeat it here for the sake of completeness.
Since we can reason on each entry of matrixMN separately,
we can, without loss of generality, assume thatvk and zk

are both scalar signals. By the second condition of (25), we
know that (Mk)k≥0 is a square integrable scalar martingale
w.r.t. (Gk)k≥0. By (25), we haveE((Mk −Mk−1)

2 | Gk−1) =
E(v2

k | Gk−1)z
2
k−j = E(v2

k)z2
k−j ≤ Cz2

k−j . The proof is then
completed by using Theorem 2 below, which can be found in
[15], [20]. ⋄

The real-valued stochastic process(Mk)k≥0 is called a
locally square integrable martingalew.r.t. (Gk)k≥0 if, for
every k, E(Mk | Gk−1) = 0, and, for every K < ∞,
supk≤K EM2

k < ∞.
Theorem 2 ( [15], [20]): Let (Mk)k≥0 be a locally square

integrable martingale w.r.t.(Gk)k≥0, such thatM0 = 0. Set

[M, M ]k =
k∑

l=1

E((Ml − Ml−1)
2 | Gl−1) .

Then,

Mk

[M, M ]k
→ 0 w.p. 1

on the set wherelimk→∞ [M, M ]k = +∞ holds. On the other
hand,

lim
k→∞

Mk exists and is finite w.p.1

on the set wherelimk→∞ [M, M ]k < +∞ holds.
2) Analyzing the generic subspace algorithm:In this sec-

tion we combine the results from Sections III-A.3 and III-B.1
to handle system (1) with its combined observed/unobserved
inputs. We repeat again system (1) for convenience:

{
xk = Axk−1 + Buk + vk

yk = Cxk−1 + Duk + wk
(26)

wherek ∈ Z, y is the R
q-valued observed output,x is the

R
n-valued state,u is theR

m-valued observed input,(v, w) is
an unobserved input disturbance.

To be able to use stochastic information on the unobserved
inputsv, w we assume that all variables arising in system (26)
are defined over some probability space(Ω,F , P).

Available information is captured by the followingσ-
algebras:

Fk
∆
= σ (uj : j ∈ Z)︸ ︷︷ ︸

Fu

∨ σ (yl, vl, wl : l ≤ k)︸ ︷︷ ︸
F

y,v,w

k

Fo
k

∆
= σ (uj : j ∈ Z)︸ ︷︷ ︸

Fu

∨ σ (yl : l ≤ k)︸ ︷︷ ︸
F

y

k

whereF∨F ′ denotes the smallestσ-algebra containingF and
F ′. In these formulas,σ-algebraFu is the information pro-
vided by the entire observed input sample;σ-algebraFy,v,w

k

is the information provided by the unobserved inputsv and
w and the outputy up to time k; finally, σ-algebraFy

k is
the information provided by the only outputy up to timek.
Regarding inputs, we assume the following:

Assumption 1 (regarding inputs):Stochastic inputsv and
w satisfy the following conditions:

sup
k≥0

E
(
‖vk‖

2 + ‖wk‖
2
)

< ∞,

∀j > 0, ∀k ≥ 0 : E (vk+j | Fk) = 0 andE (wk+j | Fk) = 0 .
Note that these conditions do not request any kind of stationar-
ity. Assumption 1 involves the joint distribution ofvk, wk, and
uk. It is in particular satisfied when observed and unobserved
inputs are independent. Besides Assumption 1, no condition
is required on the statistics of the observed inputuk. Consider
the following conditions regarding instruments:

Condition 2 (regarding instruments):Instrument (zk) sat-
isfies the following conditions:

zk is Fo
k -measurable (27)

lim
N→∞

sN = ∞, wheresN
∆
=

N−1∑

k=−M

‖zk‖
2 (28)

〈[
B
D

]
Uj , Z0

〉

N

= o(sN ) for j > 0 (29)

lim inf
N→∞

σn

(
1

sN
〈X0, Z0〉N

)
> 0 (30)

Property (27) guarantees that instrumentzk depends only on
observed quantities. IntegerM ≥ 0 in (28) is a constant
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selected according to each particular instance of the family
Ri(N). Property (28) expresses that instrument(zk) possesses
sustained energy.

a) Covariance based subspace:The following theorem
is our first main result. It provides the analysis of algorithms
of the form (16),i.e., covariance based ones.

Theorem 3 (covariance based subspace):Assume that As-
sumption 1 regarding unobserved inputs, and Condition 2
regarding instruments, are in force. Then,R

(16)
i (N) satisfies

Condition 1, with probability1.
In other words, the set of trajectories of the system for which
Condition 1 is satisfied has probability1. Pick any trajectory
in this set, we can apply Theorem 1, which shows that, for this
trajectory, our generic algorithm provides consistent estimators
in the sense of Theorem 1. This shows that our generic
algorithm provides consistent estimators in the statistical sense
(convergence w.p.1 to the true value for the parameters to be
estimated).

Proof: Using the notations of Section III-A.2, system (26)
writes as follows, fori = 1, . . . , p:

{
Xi = AXi−1 + BUi + Vi

Yi = CXi−1 + DUi + Wi
(31)

On the other hand, system (26) yields the following decom-
position foryk+i, i > 0 (we use the convention that

∑0
1 = 0):

yk+i = CAi−1xk +
i−1∑

j=1

CAi−1−j v̂k+j + ŵk+i

wherev̂k
∆
= Buk+vk andŵk

∆
= Duk+wk. Using the notations

of Section III-A.3, this decomposition rewrites as follows, for
i > 0:

Yi = CAi−1X0 +

i−1∑

j=1

CAi−1−j V̂j + Ŵi (32)

whereV̂i
∆
= BUi + Vi andŴi

∆
= DUi + Wi. Note that

〈Vj , Z0〉N =

N−1∑

k=0

vk+jz
T
k , (33)

and a similar formula holds withWj instead ofVj . By (27) and
(28) of Condition 2, instrument(zk) satisfies (25) in Lemma 3.
By Assumption 1, noisesvk andwk satisfy (25) in Lemma 3,
with Fk substituted forGk. Therefore Lemma 3 can be applied
with Fk substituted forGk, which yields, with probability1:

∀j ∈ {1, . . . , p} :

〈[
Vj

Wj

]
, Z0

〉

N

= o(sN ) (34)

Set

ξk
∆
=

[
B
D

]
uk +

[
vk

wk

]

B′ ∆
= [ In 0q ]

D′ ∆
= [ 0n Iq ]

where the subscriptsn and q indicate the dimensions of the
corresponding matrices. Using this change of notation allows
us to rewrite system (26) in the form (12) used in Lemma 1.

Consider now Condition 2. Combining (34) with (29) shows
that system (12) satisfies (14) in Lemma 1. On the other hand
(15) in Lemma 1 is ensured by Property (30) of Condition
2. Therefore, by Lemma 1 we conclude that Condition 1 is
satisfied, with probability1. ⋄

Remark: In fact our method could accomodate as well
additional “small” perturbations in system (26),i.e.,additional
inputs µk and νk in state and observation equations respec-
tively, such that

1

sN

N−1∑

k=−M

‖µk‖
2 + ‖νk‖

2 = o(1) .

Transient terms or leakage effects such as considered in [8],
[9] are covered by these additional terms, and therefore do not
impair nonstationary consistency.

b) Projection based subspace:Projection based subspace
methods,i.e., methods of the form

Ri(N)
∆
=

1

sN
EN (Yi | Z0) (35)

are in fact more popular than covariance based ones, see
[23]. They are often referred to as “data based” subspace
methods. Unfortunately, these methods cannot be handled
directly by Theorem 3. In fact, Theorem 1 itself does not
apply. The reason for this is simple:R

(35)
i (N) has dimensions

q×dim(Z0(N)). So its dimensions vary withN and therefore
Theorem 1 cannot apply. Fortunately, the weighting technique
of Section III-A.4 can be used to overcome this difficulty as
we shall see now.

Corollary 1 of Section III-A.4 can be used to relate covari-
ance based methods,i.e., of the form:

R′
i(N) =

1

sN
〈Yi, Z0〉N

to projections based ones:

Ri(N) =
1

sN
EN(Yi | Z0). (36)

The former are handled by Theorem 3 but the latter are not.
To establish this relation, stack the matricesRi(N) as usual
and consider

Hp(N) = EN(Y+
0,n | Z0). (37)

Note that this Hankel matrix has its second dimension that
varies with the lengthN of the data sample and thus cannot
be handled by Theorem 3. To study this algorithm, we shall
therefore use a “squaring” method based on Corollary 1.
Consider

Kp(N) = Hp(N) Hp(N)T

= 〈Y+
0,p, Z0〉N 〈Z0, Z0〉

†
N 〈Z0,Y

+
0,p〉N

By point 1 of Corollary 1 it is enough to guarantee thatKp(N)
satisfies Condition 1. To this end, renormalize instrumentZ0:

Ẑ0 = 〈Z0, Z0〉
− 1

2

N Z0(N), (38)

where superscript−1/2 denotes the square root of the pseudo-
inverse. Note that (38) amounts to whitening instrumentzk.
Then,Kp(N) rewrites:

Kp(N) = 〈Y+
0,p, Ẑ0〉N 〈Ẑ0,Y

+
0,p〉N (39)
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By point 2 of Corollary 1 it is enough to guarantee that the
square root matrix〈Y+

0,p, Ẑ0〉N satisfies Condition 1. Note
that instrumentẐ0 satisfies the measurability property (27)
of Condition 2. Our second main result therefore states as
follows:

Theorem 4 (projection based subspace):Assume that As-
sumption 1 is in force, as well as properties (27–30) of
Condition 2, for instrument (38). Then,R(36)

i (N) satisfies
Condition 1, with probability1.
Consequently,R(36)

i (N) yields a consistent subspace algo-
rithm, in the statistical sense.

C. Discussing Assumptions and Conditions

Here we collect remarks concerning our Assumptions and
Conditions.

What if matrix A is unstable?: Strictly speaking, it is
nowhere required that matrixA shall be stable. However, ifA
is has some unstable eigenvalues and some stable ones, then
property (30) of Condition 2 can hardly be satisfied.

What can the observed inputsu be?: Property (29)
of Condition 2 relates instrumentzk to input uk; but the
latter condition should rather be seen as a condition on the
instrument, not as a condition on the input. The only important
requirement onu is Assumption 1. This assumption is, in par-
ticular, satisfied if future unobserved inputsvk+j , wk+j , j > 0
are independent from inputsul, l ∈ Z. For example, if(v, w) is
white noise, Assumption 1 is satisfied ifuk does not depend on
future outputs2. On the other hand, there is no requirement per
se thatu should be stationary. In some sense, the probability
distribution ofu does not matter and we regardu as stochastic
in Section III-B.2 only for mathematical convenience.

What is really allowed regarding unobserved input noise
(v, w)? Can it be colored?:First, the time-varying matrices
K(k) and L(k) in (2) may be random. This must, however,
occur in a way that Assumption 1 shall not be invalidated. For
example, referring to (2), it is possible thatK(k) andL(k) are
stochastic processes that are independent from both underlying
white noiseνk and observed inputuk.

Can (v, w) be colored in (1)? Yes in part. In fact, moving
average measurement noise is allowed:

wk =
J∑

j=0

Ljνk−j ,

whereν is a possibly nonstationary white noise. To see this,
rewrite (1) as follows, withξT

k
∆
= [νT

k , . . . , νT
k−J+1]:






xk = Axk−1 + Buk + vk

ξk = Sξk−1 + + Tνk

yk = CL

[
xk−1

ξk−1

]
+ Duk + L0νk

(40)

where CL =
[

C L
]
, S is the nilpotent matrix having

1’s on the lower diagonal entries and0’s elsewhere,T =
[I 0 . . . 0]T , and L = [L1 . . . LJ ]. Applying the generic

2Note that the latter condition is not compatible with closedloop identifi-
cation.

algorithm with (16) to system (40) yields the eigenstructure
of the pair ([

C L
]

,

[
A 0
0 S

])

where we recall thatS has0 as unique (multiple) eigenvalue.
When A does not have0 as an eigenvalue, this immediately
yields the desired eigenstructure of the pair(C, A).

IV. A NALYSIS OF SOME SUBSPACE ALGORITHMS

In this section we apply our toolbox of theorems and
lemmas to sample subspace methods. To avoid annoying
notational adjustments, we keep our notational conventions
and will therefore sometimes deviate from the original pre-
sentations in this respect.

Key conditions ensuring nonstationary consistency are As-
sumption 1 and Condition 2. Assumption 1 involves the un-
observed inputs, we assume it to hold throughout this section
and will not discuss it any further. In contrast, Condition 2is
a design constraint on the selection of the instruments: this is
the key condition to be verified or enforced when analyzing
specific algorithms.

Regarding the details of Condition 2, we shall pay great
attention to verifying that (27) and (29) are satisfied, as these
conditions drive the choice of the instruments. Condition (30)
amounts to requiring that the instrument is well correlated
to the state. In contrast, we shall not discuss the satisfaction
of condition (28); this condition just translates, for each
particular algorithm, into corresponding conditions for the
original system (26).

Finally, checking for consistency requires that proper nor-
malization is applied. This is the very role of the scaling
factor sN . In practice the algorithms are applied with given
sample lengthN , and then, scaling is just an irrelevant issue.
Therefore, we shall ignore scaling in this section.

A. Output-only (OO) subspace algorithms

By definition, these algorithms assumeB = D = 0 in (26).
Therefore (29) in Condition 2 is trivially satisfied for such
algorithms.

Basic OO subspace algorithm:This is the simplest
algorithm to analyze. Introduce the instrument

zk
∆
=




yk

...
yk−M


 , or equivalently Z0 =




Y0

...
Y−M


(41)

and take

Ri(N) = 〈Yi, Z0〉N . (42)

Instrument (41) satisfies (27) in Condition 2. Points (27) and
(29) are the key points of Condition 2. Regarding the other
points, note that

〈X0, Z0〉N =
[

F (N) AF (N) . . . AMF (N)
]
,

where F (N) = 〈X0, Y0〉N ; hence, (30) in Condition 2 can
be interpreted asyk being “uniformly of ordern”. Finally,
(28) in Condition 2 is a mild condition related to excitation
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persistency. These two remaining points will not be discussed
any further in the sequel and we shall therefore focus on (27)
and (29).

In conclusion, Theorem 3 applies and proves consistency of
R

(42)
i (N).

Covariance driven OO subspace algorithm [1], [6], [14],
[21]: This algorithm is a variation of the previous algorithm,
it was however proposed earlier. It consists in computing, for
i = 1, . . . , p:

Ri(N) =
[

r̂i(N) r̂i+1(N) · · · r̂i+M (N)
]

wherer̂j(N) = 〈Yj , Y0〉N
(43)

With instrumentzk as in (41), we have

R
(43)
i (N) − 〈Yi, Z0〉N =

[
δ〈Yi, Y0〉 . . . δ〈Yi, Y−M 〉

]

whereδ〈Yi, Y−k〉
∆
= 〈Yi, Y−k〉N − 〈Yi+k, Y0〉N is such that

‖δ〈Yi, Y−k〉‖ ≤ 2 s∗M,N ,

where

s∗M,N
∆
= sup

−M≤j≤N−M

j+M∑

l=j

‖yl‖
2 .

This implies

‖R
(43)
i (N) − 〈Yi, Z0〉N‖ = o(sN ) , (44)

provided that the following assumption holds:
Assumption 2: ForM fixed,s∗M,N = o(sN ).

Under the above additional assumption, (44) holds and there-
fore, instrumentzk defined in (41) satisfies Condition 2.
Therefore, by Theorem 3, we derive thatR

(43)
i (N) yields a

consistent subspace algorithm.
c) Data driven OO subspace algorithms [23]:This al-

gorithm is found in [23]–Theorem 8, Chapter 3. It consists in
computing

Hp(N) = EN (Y+
0,p | Y−

0,M ). (45)

To study this algorithm, we shall use Theorem 4 about
projection based methods. To this end, set

Ẑ0 =
(
〈Y−

0,M ,Y−
0,M 〉N

)− 1
2

Y−
0,M (N), (46)

which amounts to whitening the instrument (41). Instrument
(46) satisfies the measurability condition (27) of Condition
2. Assuming that (28) and (30) are satisfied, this yields
consistency, by Theorem 4.

B. Input-output (IO) subspace algorithms

Many variants have been considered. We review some
representative ones.

Covariance driven subspace algorithm using projected
past inputs and outputs as instruments [28]:Those methods
encompass the methods also known as IVM, CVA, PO-
MOESP and N4SID in their covariance form [28]. In this
paper, we will focus on the unweighted IV related toHp

defined as

Hp = 〈Y+
0,p,L

−
0,M 〉N , (47)

whereL−
0,M is obtained, with the notations of Section III-A.2,

by stacking, fori = −M, . . . , 0

Li
∆
= EN

(
Wi

∣∣∣∣
(
U+

0,M

)⊥
)

where Wi
∆
=

[
Ui

Yi

]
(48)

In our general setting, this amounts to starting from matrices

Ri = 〈Yi,L
−
0,M 〉N (49)

The parallel with algorithmR(42) can be stated as follows:Li

in (48) corresponds toYi in (41). The associated instrumentzk

is therefore the sequence of the successive columns of matrix
L−

0,M . Note thatzk is Fo
k -measurable, which proves point (27)

of Condition 2. The rest of the analysis is the same as for
R(42).

We can parallel the variantR(43) of R(42): just take

Z0(N)
∆
= EN

(
Y0

∣∣∣∣
(
U+

0,M

)⊥
)

,

and

r̂i(N) = 〈Yi, Z0〉N .

Thus

Ri(N) =
[

r̂i(N) . . . r̂i+M (N)
]

(50)

Algorithm R(50) relates toR(49) in the very same way that
R(43) relates toR(42).

Covariance driven IO subspace algorithms with projec-
tion on the orthogonal of the input [14]:This algorithm
consists in computing, fori = 1, . . . , p (cf. notations (10)):

r̂i(N) = 〈Yi, Z0〉N , whereZ0(N)
∆
= EN

(
Y0

∣∣U⊥
0,M

)

Ri(N) =
[

r̂i(N) r̂i+1(N) . . . r̂i+M (N)
]

(51)

This algorithm relates toR(50) by simply changing the
instrument. Only point (27) of Condition 2 regarding mea-
surability needs to be checked, which is immediate.

d) Data driven IO subspace algorithm with projection on
the orthogonal of the input [23]:This algorithm is known as
the Projection algorithm in [23] – Chapter 2.3.2. It consists
in computingHp = EN (Y+

0,p | Z−
0,M ), whereZi is as in (51).

We conclude as forH(45)
p (N).
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e) Data driven subspace algorithm using projected inputs
as instruments [10], [25], [26]: This algorithm was first
proposed in [25], [26] under the name of PI-MOESP. It was
studied recently in [10], [11]; a detailed presentation is found
in [11]. It consists in computing a (left) weighted version of

Hp = EN (Y+
0,p | L−

0,M ), (52)

whereL−
0,M is obtained, with the notations of Section III-A.2,

by stacking

Li
∆
= EN

(
Ui

∣∣∣∣
(
U+

0,M

)⊥
)

, for i = −M, . . . , 0. (53)

Introduce the following instrument:

Z0 =
(
〈L−

0,M ,L−
0,M 〉N

)− 1
2

L−
0,M (N). (54)

The squaring argument already used in analyzing (45) can
be used here too. Once more, instrument (54) satisfies the
measurability property (27) in Condition 2, and we conclude
as forH(45)

p (N). Note that, to get this measurability condition,
it was essential that the observationσ-algebraFo

k contains
both past and future of the observed inputu.

Remark: Note that the same analysis would work if the
following substitution was made in (53):

Ui is replaced by

[
Ui

Yi

]
(55)

while keeping(U+
0,M )⊥ unchanged.

f) Data driven subspace identification using oblique pro-
jections [22], [23]: This category includes popular subspace
algorithms such as N4SID and MOESP [22], [23] as well as
any variation of them by using weights, including the CVA
method [23]. We focus on N4SID and MOESP.

The popular N4SID algorithm of [22] and [23] – Section
4.3.1, consists in computing the so-calledoblique projection

of Y+
0,p on

»

U
−

0,M

Y
−

0,M

–

alongU+
0,M ,

Hp(N) = Y+
0,p

/

U
+

0,M

[
U−

0,M

Y−
0,M

]
. (56)

Formula (56) rewrites as follows (see Section 4.3.1 of [23]):

Hp(N) = Hw
p (N)

〈
L−

0,M ,L−
0,M

〉†

N
W−

0,M (57)

where

Hw
p (N)

∆
= 〈Y+

0,p,L
−
0,M 〉N (58)

and W−
0,M and L−

0,M are obtained, with the notations of
Section III-A.2, by stacking, fori = −M, . . . , 0, the vectors
Wi andLi defined in (48). Introduce (compare with (57)):

H′
p(N)

∆
= Hw

p (N)
〈
L−

0,M ,L−
0,M

〉†

N

〈
W−

0,M ,W−
0,M

〉1/2

N
(59)

SetK(N) = Hp(N)Hp(N)T andK′(N) = H′
p(N)H′

p(N)T .
Note thatK(N) = K′(N). By using repeatedly the squaring
argument of Corollary 1, we deduce that, ifH′

p(N) satisfies
Condition 1, thenHp(N) provides consistent estimators for
(C, A). Next, notice thatHw

p (N) in (58) coincides with (47),

so we already know that it satisfies Condition 1. Finally,
according Lemma 2, the pair of matrices(C(N), A(N))
corresponding toH′

p(N) will be consistent provided that (23)
holds, withWλ(N) = I.

The following remark can be stated about (30) and (23).
These conditions are fragile if the post-weighting in (59) is
close to having rank less thanp, which happens when the
futureU+

0,M of input u is almost parallel toW−
0,M . The latter

fact is indeed known from the practice about N4SID and is
also analyzed in [12].

The same analysis also applies to the MOESP algorithm
described in [23] – Section 4.3.2, [25], [26], and [3]. This
algorithm consists in computing

Ri(N) = R
(56)
i (N) Π

(U+
0,M)

⊥ ,

where Π
(U+

0,M)
⊥ denotes the (orthogonal) projection on

(
U+

0,M

)⊥

. Thus, MOESP amounts to computing

Hp(N) = Hw
p (N)

〈
L−

0,M ,L−
0,M

〉†

N
L−

0,M (60)

Following the same lines as for N4SID, MOESP yields
consistent estimates. The same remark as for N4SID applies,
regarding the conditioning of the post-weighting and its impact
on the behavior of the algorithm. The class of subspace
methods described in [23], including CVA, is analyzed along
the same lines.

C. Time– vs. frequency–domain

For (yk)k∈Z an R
q-valued data sequence andN > 0 a

window length, the DFT ofYi(N), denoted bŷYi(N), is equal
to

Ŷi(N) = Yi(N)∆q
N , (61)

where (in (62),⊗ denotes the Kronecker product):

∆q
N

∆
=

1

N q/2




e−2jπ 0
N . . . e−2jπ 0N

N

e−2jπ 1
N . . . e−2jπ 1N

N

...
...

...

e−2jπ N−1
N . . . e−2jπ (N−1)N

N



⊗ Iq (62)

Since matrix∆q
N is orthogonal, then

〈X̂, Ŷ 〉N = 〈X, Y 〉N ,

and

EN (X̂ | Ŷ ) = EN (X | Y )∆q
N .

Hence, Condition 2 can be considered equivalently in the
time domain or in the frequency domain. Therefore, frequency
domain subspace algorithms corresponding to [17], [18]
behave exactly the same way as their time domain counterparts
regarding nonstationary consistency.
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V. CONCLUSION

We have revisited eigenstructure identification via subspace
methods. This problem is clearly easier than full system matrix
identification. On the other hand, consistency of eigenstructure
identification still holds for nonstationary inputs (in fact, for
“nonstationary zero part”).

For this study, we have adapted the original method of [6].
We believe that our presentation enlightens the reasons for
subspace methods to converge, and therefore can serve as a
guideline for further new designs. Our analysis shows that the
old fashioned “instruments” are still a useful concept in this
respect.

Martingale techniques were used to deal with unobserved
inputs—for unobserved inputs, “deterministic” projections
based on observed data cannot be used; they can be replaced
by “stochastic” projections via conditional expectations. This
technique requires a probabilistic setting for the unobserved
inputs, and the white noise assumption provides a situation
in which finding instruments is easy. This suggests that our
martingale approach could possibly be replaced by any other
method providing orthogonality conditions without the need
for observing data.

Not surprisingly, transient and leakage effects are not an is-
sue for nonstationary consistency. And the results equivalently
apply to both time- and frequency-domain methods.

Finally, we have only studied nonstationary consistency, not
nonstationary convergence rates. The latter subject is definitely
much harder. The only results we are aware of in this direction
are found in [19].

g) ACKNOWLEDGEMENT: Michèle Basseville is grate-
fully acknowledged for corrections and useful suggestionson
an earlier version of the manuscript. Also, one of the reviewers
has significantly helped improving the final version.

APPENDIX

Missing proofs of Section III-A.4

a) Proof of Lemma 2.:The proof relies on the Lemma 2
in Appendix C of [6], which we repeat here for completeness:

Lemma 4 ( [6]): Let K(N) andK′(N) be two sequences
of matrices of fixed dimensions, satisfying the following
conditions:

(i) The sequenceK(N) is bounded andK(N)−K′(N) → 0
whenN → ∞.

(ii) For every N , the SVD of matrixK(N) is K(N) =
U diag(σ1, . . . , σn)VT , andlim infN→∞ σn > 0 holds.

By a SVD-decomposition, rewriteK′(N) as K′(N) =
U

′ diag(σ′
1, . . . , σ

′
n)V′T + higher order terms.Then, there

exists a sequence ofp × p-matricesT (N), bounded with
bounded inverse, such thatU

′(N) − U(N)T (N) → 0 when
N → ∞.
Return to the proof of Lemma 2. SetK′(N) = Hp(N) and

K(N) = Wλ(N) Uw diag(σw
1 , . . . , σw

n ) V
T
w WT

ρ (N).

By (22) and (23), we haveK(N) − K′(N) → 0. On the
other hand, it is assumed for Lemma 2 thatK′(N) = Hp(N)
is bounded. Therefore, Lemma 4 applies. SinceK(N) has

rank exactlyp, the left most factor in the SVD ofK(N)
is obtained fromWλ(N)Uw by a post-multiplication by
an invertible matrix. On the other hand, the left factorU

′

associated toK′(N) = Hp(N) by Lemma 4 coincides with
U in formula (20). Hence,Wλ(N)Uw andU are related via
the post-multiplication by an invertible matrix. From this, the
conclusion of Lemma 2 follows.

b) Proof of Corollary 1:ForA a matrix andn an integer,
denote by[A]≤n the matrix obtained by zeroing all singular
values of rank> n in the SVD ofA, and set[A]>n = A −
[A]≤n. We successively prove points 1 and 2.

Consider first point 1. SinceHp(N) satisfies Condition 1,
then

[
Hw

p (N)Hw
p (N)

T
]

>n
= [Hp(N)]>n → 0 (63)

holds. By the orthogonality property of the SVD, we have
[
Hw

p (N)
]
>n

Hw
p (N)

T
=

[
Hw

p (N)Hw
p (N)

T
]

>n
,

whence
[
Hw

p (N)
]
>n

Hw
p (N)

T
→ 0. (64)

MatricesHp(N) andHw
p (N) are related as in Lemma 2 with

Wλ(N) = I and Wρ(N) = Hw
p (N). With this choice for

the weights, (64) is exactly (23). On the other hand, since
Hp(N) satisfies Condition 1, then, by Theorem 3, the pair
(C(N), A(N)) is consistent. Thus, Lemma 2 applies and
yields the consistency of(Cw(N), Aw(N)).

Consider now point 2. SinceHw
p (N) satisfies Condition 1,

it follows that
[
Hw

p (N)
]
>n

→ 0, which implies (63), and
thus also (64). SinceHw

p (N) satisfies Condition 1, then, by
Theorem 3, the pair(Cw(N), Aw(N)) is consistent. And we
conclude again, by a reverse use of Lemma 2.
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