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Abstract—The ever-growing choice in diverse services is
making service orchestration variability an essential aspect of
a composite web service. Influence of this variation on the
Quality of Service (QoS) of a composite service is critical and
the focus of our work. In this paper, we present a methodology
to first model orchestration variability using a feature diagram
(FD). The FD specifies a product line of orchestrations repre-
sented as configurations of invoked/rejected atomic services.
Second, due to the potentially large set of configurations
we employ combinatorial testing techniques to automatically
generate configurations covering all valid pairwise interactions
between services. Third, we analyze QoS variation for each
configuration using probabilistic models of QoS. Using a crisis
management system case study we experimentally show that
pairwise generation covers all QoS outliers and eliminates
analysis of > 75% of all possible configurations. The QoS
analysis of the pairwise configurations reveals unsafe/ineffective
configurations, helps determine realistic Service Level Agree-
ments (SLAs), and provides valuable feedback to help remodel
an orchestration.

Keywords-Intelligent Web service languages; Quality con-
cepts; Model Validation and Analysis.

I. INTRODUCTION

Inherent choice in an ever-growing world of services is
making orchestration variability a significant aspect of a
composite web service. The different ways of orchestrating
atomic services can be seen as either multiple variants of
a composite service created offline or an online composite
service that reconfigures dynamically. In either case, we
expect to observe variation in Quality of Service (QoS)
across different orchestrations. This variation in QoS must
not only take into account service variability but also the
uncertainty/probabilistic nature of QoS itself.

It is important to consider orchestration variability and its
implications on composite service behavior. For instance, not
considering variability leads to misrepresentation of contrac-
tual agreements on QoS [1]. Contractual agreements such as
service level agreements (SLAs) [2] are the industry standard
to ensure QoS compliance between service providers and
customers. Usual deviations from SLAs are a result of
non-incorporation of QoS variability and in particular QoS
outliers in its specification. Therefore, we need systematic
analysis of variability in order to improve robustness of
contractual SLAs.

Modeling variability in web service orchestrations and
analyzing the consequent variation in QoS is the principal
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subject of this paper. We present a methodology to model
orchestration variability using feature diagrams (FDs). Fea-
ture diagrams [3] provide a graphical constraints-based
framework to specify a product-line of orchestrations. Each
orchestration in the product-line is represented as an autho-
rized configuration of invoked/rejected atomic services. In
most cases the FD specifies a very large set of configurations
making exhaustive sampling infeasible. Instead, we sample
the set of all possible configurations by systematically
analyzing configurations covering all valid pairwise service
interactions [4]. Finally, we use probabilistic models of QoS
[5] to analyze variants of orchestrations derived from all
valid configurations.

We use our methodology to investigate merits of systemat-
ically sampling the set of all configurations of web service
orchestrations. Random sampling of configurations, gener-
ally employed, is both ineffective and expensive because it
cannot be systematic and requires computing QoS values
for a large number of configurations. Moreover, random
sampling is not easy when FD constraints like mutual exclu-
sion/requirement need to be satisfied. This work focuses on
the adaptation of combinatorial interaction testing (CIT) [6]
to select a sample of configurations that covers all pairwise
interactions of services while satisfying all FD constraints.
We use the recently proposed scalable approach in [7] for
generating these configurations. CIT is based on the obser-
vation that most of the faults are triggered by interactions
between a small number of variables [8]. For example,
consider the output quality of printing web pages depending
on a hypothetical combination of parameters represented

in Table I. An exhaustive generation of combinations of
Parameters Options
Operating System | Windows, Linux, Macintosh
Browser IE, Firefox, Chrome, Opera

Printer Model
Printer Type

HP, Canon, Xerox, Epson
Ink-Jet, Laser

Orientation Portrait, Landscape
Size A3, A4, AS, A6
Color B/W, Multicolor

Table I
EXAMPLES OF PRINTING PARAMETERS REQUIRING COMPARISON.

these parameter options would entail 1536 cases with many
redundancies. Pairwise coverage of optional combinations
would require just 17 tests, resulting in a reduction of close
to 99%. The number of exhaustive tests will increase expo-
nentially with addition of more parameters/options requiring
an employment of efficient sampling strategies.

Pairwise coverage test generation has been used to detect
faults in software systems in prior work [4], [6]. However,



the application of these coverage-based techniques to sample
configurations in service orchestrations is yet to be exam-
ined. This work performs such an examination through a
series of experiments that aim at investigating several facets
of the question: is pairwise service interaction sampling
of orchestration configurations effective for overall QoS
analysis and the consequent definition of a global SLA?

All experiments are based on a crisis management system
(CMS) case study described comprehensively in [9]. This
paper reports on the following questions:

o Is it possible to automatically sample the orchestration
configurations space to select configurations that cover
all pairwise service interactions?

o What global QoS metrics can we infer from a pairwise
sample?

o How stable is the SLA computed from a pairwise
sample? This question is related to the fact that the
automatic generation of pairwise configurations is not
deterministic and thus the global contract might vary
depending on the generated sample.

o Is pairwise sampling more effective and efficient com-
pared to exhaustive sampling of the configuration
space?

From our experimentation, it is shown that analysis of
a family of configurations (and their corresponding QoS
values) can be accurately represented by a small set of
configurations satisfying pairwise interactions. Consistency
of various generated pairwise solutions are also demon-
strated through simulations. This comprehensive analysis
of variability helps the orchestrator understand the global
QoS extremities of the composite service before negotiating
a SLA agreement. Deterioration in service quality or non-
compliance of SLA standards during online deployment of
the service is thus prevented. Improvements in the orchestra-
tion model to eliminate some deviant configurations (causing
excessive deterioration of end-to-end QoS) or grouping a
family of configurations with similar QoS behavior are other
extensions of this technique.

This paper is organized as follows. Section II provide
foundations required for our methodology. These include
feature diagrams in II-A, Orc language for orchestration
in II-B, pairwise configuration generation in II-C and for-
mal description of QoS metrics in II-D. The methodology
followed in this paper is briefly presented in Section III.
In Section IV the crisis management system (CMS) is
described. Comprehensive analysis of the CMS case study
is done in Section V. Emphasis was placed on the proba-
bilistic distribution simulations in V-A and efficient pairwise
generation of configurations in V-B. Evaluation of these
schemes to generate families of QoS output was done in
V-C. Study of the robustness of pairwise interactions and its
comparison with exhaustive configurations was also done in
V-D. Related work in literature is presented in Section VI
followed by conclusions and perspectives in Section VIIL.

II. FOUNDATIONS
A. Modeling Variability in Composite Services

Variability in a composite service derives from choice

in several available online services. Each of these con-
figurations represents a set of invoked or rejected atomic

services. Selection of some services in a configuration may
compulsorily link the selection of other services, while mu-
tually excluding other services. In this paper, we model the
variability in service configurations using a feature diagram
(used interchangeably with feature model) often used to
model Software Product Lines (SPLs).

Feature Diagrams (FD) introduced by Kang et al. [3]
compactly represent all the products of a SPL (referred to
as configurations in this paper) in terms of features which
can be composed. Feature diagrams have been formalized to
perform SPL analysis [10]. In [10], Schobbens et al. propose
a generic formal definition of FD which subsumes many
existing FD dialects. We define a FD as follows:

o A FD consists of k features f1, fa, ..., f&

o A feature f; may be associated with a software asset
such as an atomic service.

« Features are organized in a parent-child relationship in
a tree 1. A feature with no further children is called a
leaf.

A parent-child relationship between features f,, and f.
are categorized as follows:

— Mandatory - child feature f. is required if f, is
selected.

— Optional - child feature f. may be selected if f,
is selected.

— OR - at least one of the child-features f.1,fc2,..,fc3
of f, must be selected.

— Alternative (XOR) - one of the child-features
fet,fe2s fer of fp must be selected.

« Cross tree relationships between two features f; and f;
in the tree 1" are categorized as follows:

— fi requires f; - The selection of f; in a product
implies the selection of f;.

— fi excludes f; - f; and f; cannot be part of the
same product and are mutually exclusive.

Using the FD we create and validate configurations (i.e a
selection of features in the FD) of atomic services invoca-
tions/rejections.

B. Service Orchestration using Orc

While the FD describes a set of services invoked/rejected,
it is crucial to formally describe the causal link between the
invoked atomic services using an orchestration. The busi-
ness process execution language (BPEL) [11], an industry
standard for describing orchestrations, has the disadvantages
of inherent complexity of the language and restrictions in
combinatorial service descriptions [12]. Orc [13] serves as
a simple yet powerful concurrent programming language
to describe web services orchestrations. Though the Orc
language is used for our study, the presented methodology
is sufficiently general to be applied to other languages like
BPEL.

The fundamental declaration used in the Orc language
is a site. When a site is made available to Orc, its type
is also made available to the Orc. The type of a site is
itself treated like a service - it is passed the types of
its arguments, and responds with a return type for those
arguments. An Orc expression represents an execution and
may call services to publish some number of values (possibly



zero). The parallel combinator F'|G, where F' and G are
Orc expressions, runs by executing F' and G concurrently.
The sequential combinator, written F' >x> G or F > G,
combines the expression F', which may publish some values,
with another expression G, which will use the values as
they are published; = transmits the values from F' to G.
The execution of the pruning combinator F' <x< G starts
by executing F’ and G in parallel. Whenever F' publishes a
value, that value is published by the entire execution. When
G publishes its first value, that value is bound to x in F', and
then the execution of GG is immediately terminated. In the
otherwise combinator, written F'; G first site F' is executed.
If F' completes and has not published any values, then G
executes. If F' did publish one or more values, then G is
ignored. In the fork-join combinator (F,G), two processes
F and G are invoked concurrently. The process waits until
a response is obtained from both atomic services. Further
examples of using these combinators can be seen in [13].

C. Configuration Generation from Feature Diagram

Combinatorial interaction testing (CIT) has been proposed
by Cohen et al. [6] to select a subset of all combinations of
variables that define the input domain of a program, while
still guaranteeing a certain level of coverage. This has led
to the definition of pairwise interaction testing, or 2-wise
testing. This samples the set of all combinations in such a
way that all possible pairs of variable values are included in
the set of test data. Pairwise testing has been generalized to
t-wise testing which samples the input domain to cover all
t-wise combinations.

Definition. 1. Covering Array - A covering array
CA(N;t, k,v) is a N x k array of data taken from an
alphabet of size v, with the property that every N X t sub-
array contains all ordered subsets of size t from v symbols
at least once.

In this definition, N is the number of experiments, the
strength ¢ of the array is the parameter that allows achieving
2-wise (pairwise), 3-wise or t-wise combinations. The &
columns on this array correspond to all the variables in the
input domain. For the generation of services configurations,
k is the number of services, and v is 2 since we have only
boolean variables (services may be present or absent in a
configuration). The problem of generating a minimal cov-
ering array for a set of variables is a complex optimization
problem that has been studied in extensive prior work for
example [6]. It is important to notice that there exist very few
studies that have tackled the automatic generation of CIT
in the presence of constraints between variables. In order
to include properties that forbid combinations of values,
CIT generation techniques have to allow the introduction of
constraints in the algorithms that generate covering arrays.
We have developed a solution to generate t-wise configura-
tions that satisfy all constraints modeled in a feature model
[7]. This solution is based on the Alloy analyzer and SAT
solving.

As the CIT removes redundant solutions, there are a
myriad of sets of configurations that satisfy all the pairwise
constraints. So, there are many sets of pairwise configuration
solutions (referred to as samples from now) that exist for a
particular feature diagram. The consistency of these samples

of solutions must be tested to determine the accuracy and
stability in selecting pairwise combinations.
D. QoS Aspects of the Orchestration

The use of hard contracts to regulate QoS parameters
such as response time, availability and so on has been
the norm for most SLAs. However these take into account
many outliers that are the result of some rare deviations in
QoS which generate pessimistic SLAs. Probabilistic analysis
of QoS parameters as shown in [5] [14] provides a more
realistic study of actual web services’ behavior.

The following QoS parameters have been chosen:

1) Latency/ Response Time (T') - Denotes the overall delay

due to the time taken by a web service to respond. It is
a discrete value that may be modeled as a long tailed
distribution incorporating some rare deviations.

2) Availability (o) - The probability that a service is active
and can respond to a service call. For a well managed
service, this value is generally quite high.

3) Cost (x) - Refers to the monetary cost associated with
each invocation of a particular atomic service.

4) Data Quality (£) - A subjective measure of trade off
to high Cost and Response times of web services. It
measures the “Quality” of the output of the web service
and the beneficial aspects of including a new atomic
service into the composite orchestration.

Extending these QoS parameters to an orchestration in-
volves the use of Orc combinators as described previously.
Taking two sites s; and s;, the QoS parameters may be
applied as shown in Table II depending on the Orc combi-
nators used. The cases of composing the service s;; using the
sequential and fork-join combinators have been considered.
The latency, cost and availability metrics for the composite
service s;; are derived as shown in [15] with Maxz(p, q)
representing the maxima of the values p and gq.

Expression Sij 25> B Sij 2 (54, 55)
Latency T(sij) =T (s:) +T(s;) | T(si5) = Max(T(s:),T(s;))
Cost x(sij) = x(s4) + x(s5) X(si5) = x(s:) + x(s5)

Availability | o(si;) = a(s;) X a(s;) a(sij) = a(si) X a(s;)

Table II
QOS METRICS DISCUSSED IN [15] EXTENDED TO ORC COMBINATORS.
III. METHODOLOGY
We present a methodology designed to examine: (a) A
superior technique for sampling the possible configurations
to ensure efficient portrayal of QoS behavior of a composite
service; (b) The need for probabilistic analysis of QoS in
variable service orchestrations. The following steps summa-
rize our methodology:
1) The inputs are: (a) Variability and constraints of a set
of configurations of services modeled in a FD; (b)
A composite service orchestration in Orc to specify
causality and service interactions. The modeling inputs
may be specified as a 3-tuple (S, F'D, O) where:

e S is the set of services that can be used. In a
configuration, subsets St, ..., Sy of these services
are used.

e F'D is the constraints for the services included in
a particular configuration.

e O is the set of orchestrations Oq,...,Op; in a
composite service. These orchestrations invoke the



services S1, ..., Sy according to the configuration
constraints specified by the F'D.

2) The CIT with pairwise constraints satisfied is then used
to sample a set of configurations from the FD. This
represents a subset of configurations that effectively
cover all the exhaustive configurations in the FD.

3) For each of the sampled configurations we analyze the
QoS for orchestrations invoking all atomic services in
the configuration. These include a set of parameters to
analyze tradeoff between atomic services’ inclusion /
deletion between configurations. Probabilistic models
of response time are used to provide an accurate por-
trayal of the services’ behavior along with comparison
with other QoS metrics.

4) Comparisons with randomly generated configurations
and consistency over multiple sample sets is included
to experimentally study the robustness of the proposed
pairwise analysis scheme.

For the rest of the paper, we explain in detail this method-
ology applied to the crisis management system case study.

IV. CRISIS MANAGEMENT SYSTEM CASE STUDY

Drawing from the comprehensive documentation in [9],
the chosen composite service models a typical crisis manage-
ment system (CMS). The need for such crisis management
systems has grown significantly over time with efficient
collaboration of various (distributed) parties responsible for
speedy assistance and recovery. These are examples of
emergency situations that are unpredictable and lead to
severe after-effects unless handled immediately. A CMS
facilitates this process by orchestrating the communication,
co-ordination and deployment between all parties involved
in handling the crisis. A thorough analysis of QoS aspects
of a CMS will not only ensure optimal performance of such
mission critical systems, but also ensure speedy and reliable
assistance to the parties in need of aid.

A. Feature Diagram of CMS

In Figure 1, we present the Crisis Management System
(CMS) FD [9]. The CMS FD contains several features that
are associated with software assets represented by atomic
services. For example, the Local Operator feature is repre-
sented by the GSMLocalOperator web service. Constraints
such as optional, requires and mutual exclusion (XOR)
are also incorporated. For example, the LocalOperator and
InternationalOperator features are mutually exclusive while
the HospitalAdmit feature requires the Ambulance feature.

B. Service Orchestrations in CMS

A host of web services used for the orchestration. These
have generic input-output descriptions that can be modified
according to requirements. For example, the Communica-
tionManager service selects the communication sub-services
to include, while the Ambulance service contacts and waits
for a response from nearby ambulance agencies.

The FD (Fig. 1) and the orchestration (Fig. 2) cover two
dimensions that are complementary to each other. While
the FD represents the variability in the configurations, the
orchestration specifies the order in which the services are
called. Making use of the terminology in [10], primitive
features are ‘“features” that are of interest and that will

Legend

Mandatory

—( optional
<{ XOR

o

E

Loc: International
Operator Operator
GSMintiOperator ‘

Fire Station Ambulance

Hospital
Admit
12

ol }

Figure 1. Feature Diagram / Model of the Crisis Management System
with associated real-world service assets.
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Composite Web Service Orchestration of the CMS.

be incorporated in real-world services. On the contrary,
decomposable features are just intermediate nodes used for
decomposition. It is up to the modeler to determine such
classification of features in the FD. We extend the semantics
given in [10] to ensure compatibility of an orchestration with
the feature model as follows:

o The set of available services S are the primitive nodes
of the FD D;

o For each orchestration, the set of corresponding ser-
vices invoked (denoted N);

« N C S in a configuration;

o A model of D is a subset of its (primitive and decom-
posable) nodes;

 There must exist a model of D ([[D]]) such that [[D]]N
S = N (a model of a FD is a subtree that is valid w.r.t.
the operators and the dependence relation).

Drawing from the real-world services and the constraints
shown in Fig. 1, the composite service may be developed
by an orchestrator. Automatic compositions of composite
services from feature model constraints (with additional
attributes to describe orchestration interactions), is out of
the scope of this paper and will be investigated in future
work.

The composite service orchestration is represented suc-



CrisisOrchestration (call,type) 4 CommunicationManager(call)
> CrisisManager(type)

CommunicationManager(call) £ (Lin) >
(LocalOperator(in),IntlOperator(in), GPSLocation())
GPSLocation() £ (x,y)

GSMLocalOperator(l) S let(query(l) | Timer(l))
GSMIntlOperator(in) £ let(query(in) | Timer(in))
CrisisManager(type) L (fa,h,p,s) >
(Fire(f),Ambulance(a),Hospital(h), Police(p),Surveillance(s))
Fire(f) L let(query(f) | Timer(f))

Ambulance(a) £ let(query(a) | Timer(a))

Hospital(h) 2 let(query(h) | Timer(h))

Police(p) £ let(query(p) | Timer(p))

Surveillance(s) S let(query(s) | Timer(s))

Table III
ORC REPRESENTATION OF THE CMS ORCHESTRATION.

cinctly in Fig. 2 and the Orc representation is presented in
Table III. Calling the CrisisOrchestration service invokes
the CommunicationManager and CrisisManager operations
in sequence. The CommunicationManager service calls the
GPSLocation and either one of the GSMLocalOperator and
the GSMIntlOperator services that are mutually exclusive
(Mux). The outputs are synchronized and merged (Merge)
before dynamically invoking the optional services through
the CrisisManager. The varying timer values are used to
invoke / discard the Fire, Ambulance, Hospital, Police and
Surveillance services. The outputs of these services are
merged and synchronized. In the Orc model presented in
Table III, the generic service query() is used to represent
the invocation of a particular web service. The setting
of timer values (7imer()) results in the various associated
configurations in the system and is an example of defining
orchestration parameters. Another level of control is the
global timeout value associated with the composite service.
This has to be associated with the overall SLA of the
composite service to provide optimal durations for response.
V. EXPERIMENTS

We perform experiments using the methodology described
in Section III for the CMS case study. This involved simulat-
ing probabilistic QoS of atomic services, pairwise generation
of configurations and finally, analysis of composite services’
probabilistic QoS behavior for the variable configurations.

A. Simulation of QoS Distributions

The first step is simulating the probabilistic response time
distributions of each atomic web service as done in [5]. For
this, we make use of the #-location distribution fitting feature
in MATLAB as shown in Fig. 3. By varying the degrees of
freedom v and non-centrality parameter § in the dfittool
of MATLAB, it is possible to generate various heavy tailed
distributions that mimic the response times of web services.
These are used to simulate the response times of actually
invoked atomic services. This t-distribution fitting was used
to generate various distributions of services’ response times
with varying parameters.

B. Generating a sample of configurations for CMS

We transform the CMS FD to constraint satisfaction
problem model in the language Alloy as described in [7].
All pairwise interactions between features are transformed
to Alloy predicates. The goal of solving the Alloy model
is to find the minimal set of configurations that cover
conjunctions of all valid pairwise predicates. The first step

—— Actual response time 4
—e—t—distribution fit

Number of Hits

Time (seconds)

Figure 3.
invocation.

Distribution fitting of actual response times of a web service

involves detection of all valid pairs that conform to the FD.
In the second step, we construct conjunctions of pairwise
predicates and solve them via incrementally increasing the
scope of the solution size. The result is a minimal set of
configurations that cover conjunctions of all valid pairs.

A set of 15 configurations, C1 to C15, were deemed suf-
ficient by the pairwise generation methodology to represent
the configuration sample space. These are shown in Table
IV with a x representing service invocation. Guidelines
for setting experimental parameters in order to efficiently
generate solutions may be found in [7].

While this view makes use of static invocation of an
orchestration (based on the FD configurations), another view
is also possible: dynamic invocation of the configurations
in a FD by a self-reconfiguring composite service. This
would create orchestrations dynamically and link them to
a particular FD configuration. However, due to the added
control of systematic configuration generation from FDs, we
resort to static invocation of orchestrations.

C. Evaluating QoS of a Composite Service

The efficacy of the QoS analysis procedure was tested
experimentally. The web services of the CMS were assigned
random response times from a range of heterogeneous t-
distributions. The range of parameter values for these dis-
tributions in MATLAB included degrees of freedom (v)
varying from 3 to 6 and non-centrality (§) varying from 5
to 10 seconds.

For an invoked service, the individual timeout value was
set sufficiently high (95 percentile of the response time dis-
tribution). The global timeout value was also set sufficiently
high (300 seconds) to allow capture of outliers in the distri-
bution. For each chosen configuration, 10, 000 Monte-Carlo
runs on the chosen services in the orchestration (representing
a partial order of the composite service) was performed. The
response time of the orchestration was collected during each
run to generate an associated distribution.

As seen in Fig. 4, the pairwise generated configurations
cover a range of response time distributions. The three worst
performing configurations (C4, C8, C12) are compared as
an example. The median and 90 percentile changes between
these configurations are shown. This demonstrates the use
of a few configurations to test significant changes in QoS
parameters in a composite service.

In Fig. 4, the three worst performing configurations have
a significant contribution to the percentile deviations of the
response time distribution. This is further seen in the box-
plot representation in Fig. 5. On each box, the red central
mark is the median, the horizontal edges of the box are the



Web Service Cl C2 C3 €4 C5 C6 C7 C8 (C9 Ci0 Ci1 C12 C13 Ci4 Ci15
CrisisOrchestration X X X X X X X X X X X X X X X
CommunicationManager X X X X X X X X X X X X X X X
CrisisManager X X X X X X X X X X X X X X X
GPSLocation X X X X X X X X X X X X X X X
GSMLocalOperator X X X X X X X
GSMIntlOperator X X X X X X X X

Fire X X X X X X X
Ambulance X X X X X X X X X

Hospital X X X X X X X X X

Police X X X X X X X X X

Surveillance X X X X X X

Table IV

WEB SERVICES IN THE ORCHESTRATION AND THE VARIABLE CONFIGURATIONS (C1 TO C15) WITH X REPRESENTING A SERVICE INVOCATION.

25th and 75th percentiles, the whiskers extend to the most
extreme data points (not considered outliers) and outliers
plotted individually. The boxplot captures the minima, 25,
50, 75 and 95 percentile values of a configuration’s response
time distribution. The three worst performing configurations
(C4, C8, C12), in terms of response times’ values, are
once again compared in the box-plot (horizontal dotted lines
passing through the medians).
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Figure 4. Response times of the pairwise configurations with emphasis
on comparing the three configurations with highest response times.
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Figure 5. Box-plot representation of the pairwise configurations with the
median values marked for the extreme cases.

Additional parameters such as availability of a service,
the cost entailed in calling atomic services and output data

quality is also studied in tandem. Using the combinators
described in Table II, the QoS parameters were analyzed for
each configuration generated by the pairwise interactions.
Setting atomic service availability to 0.95 (representing
service availability in 95% of invocations) the composite
availability each configuration is shown in Table V. The
output data quality £ is related to the cost x by the constant
K given by £ = x/k (assuming linear increase in data quality
with each atomic service invocation). For example, setting
the x = 5 units for each invoked atomic service, the cost of
each configuration is shown in Table V. Furthermore, setting
k = 20, the output data quality of the configurations may
also be derived. A higher availability and data quality with
lower costs and response times are desirable. For example,
comparing C3 and C4, calling additional services entails
lower availability and higher costs to the orchestrator, albeit
with additional output data quality. Though simplistic in
outlook (due to subjectivity of cost and data quality of
atomic services), this trade-off of parameters must be taken
into account. These myriad of QoS parameters accurately
quantify run-time behavior of the composite service.

From these results, the orchestrator can have a global
overview of the performance of the composite service. The
possibilities include:

1) Setting the SLA keeping into account the worst per-
forming configuration. This will prevent contract devi-
ation during actual deployment of the service.

2) Setting a family of SLAs for a set of configurations
taking into account trade-offs between QoS metrics
and the output quality of configurations. This leads to
a product line of composite services with extensively
analyzed SLAs. For example, the configurations C2,
C8 and C13 with very similar characteristics can be
grouped as a separate line of services.

3) Eliminating certain deviating configurations to improve
the overall performance. This may be done by adding
further constraints in the orchestration/feature models.
For example, consider the services C4 and C12. Elim-
inating these configurations (by addition of constraints)
reduces the output data quality by 0.25 units as seen
Table V. However, it improves the 90, 50, 75 and 25
percentiles of the overall response time distributions
by 11.53, 10.3, 9.3 and 8.87 seconds respectively.
These are significant durations if the orchestrator of
a composite service is vying to compete with other
companies offering lower response time durations for
similar quality services.

Using the pairwise analysis scheme, these imperative qual-
itative results are obtained with quantitative efficiency even



Metric C1 C2 C3 C4 C5 Cé Cc7 C8 Cc9 C10 C11 C12 C13 C14 C15

Availability (o) 0.6634 0.6302 0.6983 0.5987 0.7738 0.6983 0.7351 0.6302 0.6983 0.6634 0.6983 0.5987 0.6302 0.6634 0.7738

Cost (x) 40 45 35 50 25 35 30 45 35 40 35 50 45 40 25

Data Quality (€) 2.0000 2.2500 1.7500 2.5000 1.2500 1.7500 1.5000 2.2500 1.7500 2.0000 1.7500 2.5000 2.2500 2.0000 1.2500
Table V

AVAILABILITY, DATA QUALITY AND COST OF THE PAIRWISE CONFIGURATIONS.

when the number of services are considerably large.

D. Evaluating the Pairwise Sampling Technique

To experimentally test the efficacy of combinatorial test-
ing the 15 pairwise configurations (Table IV) were com-
pared with all the 64 exhaustive independent configurations
of the CMS orchestration. As shown in Fig. 6, the com-
parison is made using the 25, 50, 75 and 90 percentiles of
response time distributions for 10,000 Monte-Carlo runs in
MATLAB. These families of exhaustive configurations (with
few millisecond redundant deviations) are represented by
one pairwise configuration. The pairwise configurations are
able to capture the extreme values representing greater than
55 seconds of quantile deviation. This represents greater
than 75% decrease in the number of exhaustive tests, which
will increase in an exponential fashion with introduction of
new services.

The accuracy of the pairwise sampling scheme is further
demonstrated in Table VI where the mean and maximum
deviations of the pairwise values from the nearest exhaustive
values are provided. These are expressed as a percentage of
the mean inter-family response time difference. The inter-
family response time difference is the average difference
between percentile values of two adjacent pairwise samples
(8.96 seconds). Compared to this difference, the deviation
in accuracy between the pairwise and exhaustive samples
can be ignored for practical purposes. Thus, for such or-
chestrations with numerous configurations, using pairwise
interactions is a sufficient choice in order to examine the
entire sample space.

To evaluate the efficacy of each sample solution, the QoS
behavior was computed on the various generated configura-
tions present in a sample. This was done in order to evaluate
the stability of pairwise interaction coverage as a sampling
heuristic to estimate the global QoS for an orchestration. A
collection of 40 samples that satisfy the pairwise interaction
testing were generated for the CMS. The statistics of the
worst performing configuration (with highest response time)
in each sample was collected through 10,000 Monte-Carlo
runs and is shown in Fig. 7. For example, the highest
response time in Fig. 6 has the 25, 50, 75 and 90 percentile
values as 73, 81, 91.5 and 104 seconds, respectively. The
objective of studying this variance is to check whether the
entire range of QoS values: minima (representing no op-
tional services) to maxima (representing all or most optional
services) are present in each pairwise sample. In Fig. 7, the
percentile values show only a few milli-seconds of deviance.
The highest variance of 0.8 seconds seen in the 90 percentile
value may be attributed to outliers included in the extreme
configurations.

Variance study over a range of samples display the need to
analyze many percentiles to accurately estimate the deviation
of particular configurations. Use of more than one sample
should improve robustness of the offline analysis framework
as certain extreme configurations may not occur always.
Use of domain specific information may also be required
to further ensure robustness of samples. As QoS metrics
are modeled as random variables, performing more than one
analysis study (combination of more than one sample and
various percentile levels) should yield more robust results

Percentile values 25 50 75 90 .
Mean 1.1326% _ 1.3471% _ 1.3438% _ 1.5471% for SLA computation.
Maximum 9.0075% _ 72147% _ 7.1243% __ 5.2030%
Table VI

DEVIATIONS OF THE PAIRWISE AND EXHAUSTIVE ANALYSIS VALUES.
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Figure 6. Comparison of pairwise and exhaustive generation of con-
figurations with 25, 50, 75 and 90 percentile values of response time
distributions.

Given one orchestration, there can be many different sets

of configurations that cover all pairwise services interactions.
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Figure 7. Percentile values of most deviant scenarios generated by pairwise
interactions for the CMS orchestration.

VI. RELATED WORK

The combinatorial testing framework described by Cohen
et al. [6] has been applied extensively to efficient testing
for fault detection. In the work of Cohen et al. [17], this
technique is extended to software product lines with highly
configurable systems. Modeling variability in SPLs using
feature models is the work of Jaring and Boschet [16]
where they show that the robustness of a SPL architecture is



related to the type of variability. To ensure that constraints
in the FD are incorporated in the efficient sampling of t-
wise tests, the solver proposed by Perrouin et al. [7] is used.
In [18], variability in software as a service applications are
modeled using the orthogonal variability model to study the
customization choices in such workflows.

Pre-deployment testing of SLAs has been studied by Di
Penta et al. [19], where they make use of genetic algorithms
to generate test data causing SLA violations. Analysis of
white and black box approaches are provided in the paper.
In [20], Bruno et al. make use of regression testing to
ensure that an evolving service maintains the functional and
QoS assumptions. The service consistency verification due
to evolution is done by executing test suites contained in a
XML encoded facet attached to the service.

The use of probabilistic QoS and soft contracts was
introduced by Rosario et. al [5] and Bistarelli et al. [21].
Instead of using fixed hard bound values for parameters
such as response time, the authors proposed a soft contract
monitoring approach to model the QoS measurement. The
composite service QoS was modeled using probabilistic
processes by Hwang et al. [14] where the authors combine
orchestration constructs to derive global probability distri-
butions.

In our paper, we extend these two notions to analyze the
QoS of a composite orchestration under various configu-
rations. The hard contract notions of end-to-end QoS are
replaced by the probability quantile based approach. This
provides the service provider the technique for estimating
composite service QoS distributions and estimating the
global soft contract SLA. Though formal analysis of end-to-
end QoS has been studied in Cardoso et al. [15], there are no
practical testing tools available for the service provider. The
pairwise testing procedure has been shown to outperform
other testing techniques in [6]. We extend this testing tool
to develop a generic testing methodology to query end-to-
end QoS of a web service.

Related empirical studies of optimal QoS compositions
make use of genetic programming in Canfora et al. [22] and
linear programming in Zeng et al. [23]. These are dynamic
techniques to choose the best possible atomic services and
configurations keeping QoS in mind. This differs from our
work as they assume that there are choices in the best
possible atomic web services. The goal in our paper is to
analyze the variable configurations that may result due to
invocation or non-invocation of particular web services.

VII. CONCLUSION AND PERSPECTIVES

Accurate offline analysis of a composite web service
before its deployment is essential to ensure non-repudiation
of a SLA contract. This is necessary to maintain optimal
QoS behavior of mission-critical services such as crisis
management. In order to do this, the service provider must
keep in mind the probabilistic aspect of QoS parameters
and the variable configurations in a composite service.
In this paper, we study an analysis framework to test
the QoS of an orchestration before deployment. Further,
the notion of systematic pairwise sampling procedure has
also been demonstrated, which provides a more efficient
sampling of the configuration space than exhaustive trails

while still maintaining sufficient coverage. Larger FD and
orchestration models can be analyzed using the divide-and-
compose approaches [7] to handle this scalability issue.
This should provide a simple, systematic and stochastically
correct methodology for pre-deployment QoS analysis of a
composite service.

While this paper concentrates on a particular composition
of fixed atomic services, a future area of interest would
be optimal compositions. The use of configurations and
scenarios modeled by a FD leads to a family of composite
services. These, in turn, may be used to generate many
versions of the orchestrations. This will prove useful for
both obtaining realistic QoS bounds and product generation

of families of services.
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