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Diagnostic de systèmes à événements discrets

asynchrones, une approche par dépliages de réseaux

Résumé : Dans cet article nous étudions le problème du diagnostic pour des systèmes
asynchrones. Ce problème est formulé comme un problème de reconstruction de trajactoire
d’état à partir des alarmes observées. Nous adoptons un point de vue dit de la “concurrence
vraie”, ce qui signifie que nous ne manipulons jamais d’états globaux, et que nous utilisons
un temps qui a la structure d’un ordre partiel. Notre outil principal est le concept de dépliage
de réseau de Petri. Nous étudions un certain nombre de variantes de ce problème. Cette
étude est motivée par le cas de la corrélation d’alarmes en gestion de réseaux.

Mots clés : Diagnostic asynchrone, systèmes discrets, réseaux de Petri, dépliage, corrélation
d’alarmes.
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4 A. Benveniste, E. Fabre, C. Jard, S. Haar

1 Introduction

In this paper we study the diagnosis of truly asynchronous systems. Typical examples are
networked systems, such as shown in Fig. 1. In this figure, the sensor system is distributed,
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e

Figure 1: Supervision of a networked system.

it involves several local sensors, attached to some nodes of the network (shown in black).
Each sensor has only a partial view of the overall system. The different sensors possess
their own local time, but they are not synchronized. Alarms are reported to the global
supervisor (depicted in grey) asynchronously, and this supervisor performs diagnosis. This
is the typical architecture in telecommunications network management systems today, our
motivating application1. Events may be correctly ordered by each individual sensor, but
communicating alarm events via the network causes a loss of synchronization, and results in
a nondeterministic and possibly unbounded interleaving at the supervisor. Hence, the right
picture, for what the supervisor collects, is not a sequence of alarms, but rather a partially
ordered set of alarms.

Fault diagnosis in discrete event systems has attracted a significant attention, see the
work of Lafortune and co-authors [33][9] for an overview of the literature and introduction to
the subject. Decentralized diagnosis is analyzed in [9], including both algorithms and their
diagnosability properties; the solution is formulated in terms of a precomputed decentralized
diagnoser, consisting of a set of communicating machines that have their states labeled by
sets of faults and react to alarm observations and communications; the language oriented
framework of Wonham and Ramadge (see [8]) is used, and the systems architecture is that
of communicating automata, with a synchronous communication based on a global time, as
revealed by the assumption “A6” in [9]. The work [9] has been extended by the same authors
in [10] toward considering the effect of (bounded) communication delays in decentralized
diagnosis. Difficulties resulting from communications in diagnosis are also investigated by
Sengupta in [34]. Finally, the recent work of Tripakis [35] discusses issues of undecidability
for a certain type of decentralized observability, this issue has again some relation with
asynchrony. Baroni et al. [3] propose a different approach, more in the form of a simulation

1See [26] and the url http://magda.elibel.tm.fr/ for a presentation of the magda project on fault man-
agement in telecommunications networks.
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Asynchronous diagnosis 5

guided by the observed alarms, for a model of communicating automata. The solution
proposed offers a first attempt to handle the problem of state explosion which results from
the interleaving of events involving different components.

Diagnosis in the framework of Petri net models has also been investigated by some
authors. Hadjicostis and Verghese [20] consider faults in Petri nets in the form of losses or
duplications of tokens; this is different from using Petri nets as an asynchronous machine
model, for diagnosis. Valette and co-authors [32] use Petri nets to model the normal behavior
of systems, and consider as faults the occurrence of events that do not match firing conditions
properly. The work closest to ours is that of Giua and co-authors [21][22], it considers the
estimation of the current marking from observations.

Event correlation in network management is the subject of a considerable literature, and
a number of commercial products are available. We refer the reader to Gardner [19] for a
survey. There are two main frameworks for most methods developed in this area. The first
one relates to rule-based or case-based reasoning, an approach very different from the one
we study here. The second one uses a causal model, in which the relation between faulty
states and alarm events is modelled. The articles by Bouloutas et al. [6][7][25] belong to
this family, as well as Rozé and Cordier [30] which relies on the diagnoser approach of [33].
The case of event correlation in network management also motivated the series of papers by
Fabre et al. [5][1][2], on which the present paper relies.

As said before, our present approach was motivated by the problem of fault management
in telecommunications networks, so it is worth discussing how this context motivated some
of our choices. As seen from our bibliographical discussion, two classes of approaches were
available, to handle the diagnosis of asynchronous systems.

A possible approach would consist in constructing a diagnoser in the form of a Petri
net, having certain places labeled by faults, and transitions labeled by alarms. Received
alarms trigger the net, and visiting a faulty place would indicate that some fault occurred in
the original net for monitoring. Another approach would consist in estimating the current
marking of the Petri net for monitoring, as in [21][22].

For our application, we needed to support distributed faults and event propagation and
distributed sensor setups, from which wrong interleaving can result. Hence we feel it im-
portant, that robustness against a wrong interleaving should be addressed. However, the
available approaches typically assume that alarms are received in sequence and that this se-
quence is an actual firing sequence of the net, an assumption not acceptable in our context.

Also, for our application in fault management in telecommunications networks (where
faults are typically transient), providing explanations in the form of scenarios, not just
snapshots, was essential. Finally, returning all scenarios compatible with the observations,
was the requirement from operators in network management. They did not ask for a more
elaborated information such as fault identification, or isolation.

In this paper, we propose an approach to handle unbounded asynchrony in discrete event
systems diagnosis by using net unfoldings, originally proposed by M. Nielsen, G. Plotkin, and
G. Winskel [28]. Unfoldings were used by Mc Millan [27] for model checking in verification.
They were subsequently developed by Engelfriet [12], Rozenberg and Engelfriet [31], Esparza,

PI n˚1456



6 A. Benveniste, E. Fabre, C. Jard, S. Haar

and Römer [13][14][15]. Net unfoldings are branching structures suitable to represent the
set of executions of a Petri net using an asynchronous semantics with local states and
partially ordered time. In this structure, common prefixes of executions are shared, and
executions differing only in the interleaving of their transition firings are represented only
once. Our motivation, for using Petri nets and their unfoldings, is to have an elegant
model of asynchronous finite state machines, therefore we restrict ourselves to safe Petri
nets throughout this paper. Net unfoldings are not well-known in the control community,
they have been however used for supervisory control in [23][24].

The paper is organized as follows. Section 2 is devoted to the problem setting. Subsection
2.1 collects the needed background material on Petri nets and their unfoldings. Subsection
2.2 introduces our first example. And our problem setting for asynchronous diagnosis is
formalized in subsection 2.3, which constitutes per se our first contribution.

In asynchronous diagnosis, some recorded alarm sequences differ only via the interleaving
of concurrent alarms, hence it is desirable not to distinguish such alarm sequences. Similarly,
it is desirable not to distinguish diagnoses which only differ in the interleaving of concurrent
faults. Diagnosis nets are introduced to this end in section 3, they express the solution of
asynchronous diagnosis by using suitable unfoldings, and constitute the main contribution
of this paper. Corresponding algorithms are given in section 4. These algorithms have the
form of pattern matching rules and apply asynchronously.

2 Asynchronous diagnosis: problem setting

In this section we first introduce the background we need on Petri nets and their unfold-
ings. Then we introduce informally asynchronous diagnosis on an example. And finally we
formally define asynchronous diagnosis.

2.1 Background notions on Petri nets and their unfoldings

Basic references are [29][8][11]. Homomorphisms, conflict, concurrency, and unfoldings, are
the essential concepts on which a true concurrency and fully asynchronous view of Petri
nets is based. In order to introduce these notions, it will be convenient to consider general
“nets” in the sequel.

Nets and homomorphisms. A net is a triple P = (P, T,→), where P and T are disjoint
sets of places and transitions, and → ⊂ (P ×T )∪ (T ×P ) is the flow relation. The reflexive
transitive closure of the flow relation→ is denoted by �, and its irreflexive transitive closure
is denoted by ≺. Places and transitions are called nodes, generically denoted by x. For
x ∈ P ∪T , we denote by •x = {y : y → x} the preset of node x, and by x• = {y : x→ y} its
postset. For X ⊂ P ∪ T , we write •X =

⋃

x∈X
•x and X• =

⋃

x∈X x•. An homomorphism
from a net P to a net P ′ is a map ϕ : P ∪T 7−→ P ′∪T ′ such that: 1/ ϕ(P ) ⊆ P ′, ϕ(T ) ⊆ T ′,
and 2/ for every node x of P , the restriction of ϕ to •x is a bijection between •x and •ϕ(x),
and the restriction of ϕ to x• is a bijection between x• and ϕ(x)

•
.

Irisa



Asynchronous diagnosis 7

Occurrence nets. Two nodes x, x′ of a net P are in conflict, written x#x′, if there exist
distinct transitions t, t′ ∈ T , such that •t ∩ •t′ 6= ∅ and t � x, t′ � x′. A node x is in
self-conflict if x#x. An occurrence net is a net O = (B,E,→), satisfying the following
additional properties:

∀x ∈ B ∪E : ¬[x#x] no node is in self-conflict

∀x ∈ B ∪ E : ¬[x ≺ x] � is a partial order

∀x ∈ B ∪E : |{y : y ≺ x}| <∞ � is well founded

∀b ∈ B : |•b| ≤ 1
each place has at most
one input transition

We will assume that the set of minimal nodes of O is contained in B, and we denote by
min(B) or min(O) this minimal set. Specific terms are used to distinguish occurrence nets
from general nets. B is the set of conditions, E is the set of events, ≺ is the causality
relation.

Nodes x and x′ are concurrent, written x⊥⊥x′, if neither x � x′, nor x � x′, nor x#x′

hold. A co-set is a set X of concurrent conditions. A maximal (for set inclusion) co-set is
called a cut. A configuration κ is a sub-net of O, which is conflict-free (no two nodes are in
conflict), and causally closed (if x′ � x and x ∈ κ, then x′ ∈ κ).

Occurrence nets are useful to represent executions of Petri nets. They are a subclass of
nets, in which essential properties are visible via the topological structure of the bipartite
graph.

Petri nets. For P a net, a marking of P is a multiset M of places, i.e., a map M : P 7−→
{0, 1, 2, . . .}. A Petri net is a pair P = (P ,M0), where P is a net having finite sets of places
and transitions, and M0 is an initial marking. A transition t ∈ T is enabled at marking
M if M(p) > 0 for every p ∈ •t. Such a transition can fire, leading to a new marking
M ′ = M − •t + t•, we denote this by M [t〉M ′. The set of reachable markings of P is the
smallest (w.r.t. set inclusion) set M0[〉 containing M0 and such that M ∈M0[〉 and M [t〉M ′

together imply M ′ ∈M0[〉. Petri net P is safe if M(P ) ⊆ {0, 1} for every reachable marking
M . Throughout this paper, we consider only safe Petri nets, hence marking M can be
regarded as a subset of places. A finite occurence net B can be regarded as a Petri net,
where the initial marking is M0 = min(B).

Branching processes and unfoldings. A branching process of Petri net P is a pair
B = (O, ϕ), where O is an occurrence net, and ϕ is an homomorphism from O to P regarded
as nets, such that: 1/ the restriction of ϕ to min(O) is a bijection between min(O) and M0

(the set of initially marked places), and 2/ for all e, e′ ∈ E, •e = •e′ and ϕ(e) = ϕ(e′)
together imply e = e′. By abuse of notation, we shall sometimes write min(B) instead of
min(O).

The set of all branching processes of Petri net P is uniquely defined, up to an isomorphism
(i.e., a renaming of the conditions and events), and we shall not distinguish isomorphic

PI n˚1456



8 A. Benveniste, E. Fabre, C. Jard, S. Haar

branching processes. For B,B′ two branching processes, B′ is a prefix of B, written B′ v B,
if there exists an injective homomorphism ψ from B′ into B, such that ψ(min(B′)) = min(B),
and the composition ϕ ◦ψ coincides with ϕ′, where ◦ denotes the composition of maps.
By theorem 23 of [12], there exists (up to an isomorphism) a unique maximum branching
process according to v, we call it the unfolding of P , and denote it by UP . The unfolding
of P possesses the following universal property: for every occurrence net O, and every
homomorphism φ : O 7→ P , there exists an injective homomorphism ι : O 7→ UP , such that:

φ = ϕ ◦ ι, (1)

where ϕ denotes the homomorphism associated to UP . Decomposition (1) expresses that
UP “maximally unfolds” P . If P is itself an occurrence net and M0 = min(P) holds, then
UP identifies with P .

As announced, configurations are adequate representations of firing sequences of Petri
net P . Let M0,M1,M2, . . . be a maximal firing sequence of P , and let Mk−1[tk〉Mk be
the associated sequence of fired transitions. Then there exists a unique maximal (for set
inclusion) configuration κ of P having the following properties: κ is the union of a sequence
e1, e2, . . . of events and a sequence c0, c1, c2, . . . of cuts, such that, for each k > 0, ϕ(ck) =
Mk, ϕ(ek) = tk, and ck−1 ⊇ •ek, e

•
k ⊆ ck. Conversely, each maximal configuration of P

defines a maximal firing sequence, which is unique up to the interleaving of structurally
concurrent transitions—transitions t and t′ are structurally concurrent iff •t′ ∩ (•t∪ t•) = ∅
and •t ∩ (•t′ ∪ t′•) = ∅.

Example 1. Fig. 2 shows the example we will use throughout this paper. A Petri net P
is shown on the left. Its places are 1, 2, 3, 4, 5, 6, 7, and its transitions are i, ii, iii, iv, v, vi.
Places constituting the initial marking are encircled in thick.

A branching process B = (O, ϕ) of P is shown on the right. Its conditions are depicted
by circles, and its events are figured by boxes. Each condition b of B is labeled by ϕ(b), a
place of P . Each event e of B is labeled by ϕ(e), a transition of P . A configuration of Petri
net P is shown in grey. Note that the minimal condition labeled by 7 is branching in B,
although it is not branching in P itself. The reason is that, in P , the token can freely move
along the circuit 1→ ii → 2→ iii → 1, and resynchronize afterwards with the token sitting
in 7.

The mechanism for constructing the unfolding of Petri net P is illustrated in the middle,
it is informally explained as follows. Put the three conditions labeled by the initial marking
of P , this is the minimal branching process of P . Then, for each constructed branching
process B, select a co-set X of B, which is labeled by the preset •t of some transition t of
P , and has no event labeled by t in its postset within B. Append to X a net isomorphic to
•t → t→ t• (recall that ϕ(•t) = X), and label its additional nodes by t and t•, respectively.
Performing this recursively yields all possible finite branching processes of P . Their union
is the unfolding UP .

Irisa
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Figure 2: Example 1 (left), a configuration (middle), and a branching process (right). For this
and subsequent examples, we take the following convention for drawing Petri nets and occurrence
nets. In Petri nets, the flow relation is depicted using directed arrows. In occurrence nets, since
no cycle occurs, the flow relation progresses downwards, and therefore there is no need to figure
them via directed arrows, standard solid lines are used instead.

Labeled nets and their products. For P = (P, T,→) a net, a labeling is a map λ :
T 7−→ A, where A is some finite alphabet. A net P = (P, T,→, λ) equipped with a labeling
λ is called a labeled net. For Pi = {Pi, Ti,→i, λi}, i = 1, 2, two labeled nets, their product
P1 ×P2 is the labeled net defined as follows:

P1 ×P2 = (P, T,→, λ). (2)

In (2), P = P1 ] P2, where ] denotes the disjoint union, and:

T =
{t1 ∈ T1 : λ1(t1) ∈ A1 \A2} (i)

∪ {(t1, t2) ∈ T1 × T2 : λ1(t1) = λ2(t2)} (ii)
∪ {t2 ∈ T2 : λ2(t2) ∈ A2 \A1} , (iii)

p→ t iff
p ∈ P1 and p→1 t1 for case (ii) or (i)
p ∈ P2 and p→2 t2 for case (ii) or (iii)

t→ p iff
p ∈ P1 and t1 →1 p for case (ii) or (i)
p ∈ P2 and t2 →2 p for case (ii) or (iii)
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10 A. Benveniste, E. Fabre, C. Jard, S. Haar

In cases (i,iii) only one net fires a transition and this transition has a private label, while
the two nets synchronize on transitions with identical labels in case (ii). Petri nets and
occurrence nets inherit the above notions of labeling and product.

2.2 Discussing asynchronous diagnosis on example 1

A labeled Petri net model. Our first example of Fig. 2 is redrawn slightly differently in
Fig. 3, in the form of a labeled Petri net. The example is now intepreted as two interacting

component 1

component 2

ραα

ββρ

1

42 3

5 6
7

Figure 3: Example 1, two interacting components modelled as a labeled Petri net.

components, numbered 1 and 2. Component 2 uses the services of component 1 for its
functioning, and therefore it may fail to deliver its service when component 1 is faulty.

Component 1 has two states: nominal, figured by place 1, and faulty, figured by place
2. When getting in faulty state, the component 1 emits an alarm β, which is associated to
transition (i) and (ii) (cf. Fig. 2) as a label. The fault of component 1 is temporary, and
therefore self-repair can occur, this is figured by the label ρ associated to transition (iii) (cf.
Fig. 2).

Component 2 has three states, figured by places 4, 5, 6. State 4 is nominal, state 6
indicates that component 2 is faulty, and state 5 indicates that component 2 fails to deliver
its service, due to the failure of component 1. Fault 6 is permanent and cannot be repaired.

The fact that component 2 may fail to deliver its service due to a fault of component
1, is modelled by the shared place 3. The monitoring system of component 2 only detects
that this component fails to deliver its service, it does not distinguish between the different
reasons for this. Hence the same alarm α is attached to the two transitions (iv,v) as a
label (cf. Fig. 2). Since fault 2 of component 1 is temporary, self-repair can also occur
for component 2, when in faulty state 5. This self-repair is not synchronized with that of
component 1, but is still assumed to be manifested by the same label ρ. Finally, place 7
guarantees that fault propagation, from component 1 to component 2, occurs only when the
latter is in nominal state.

Irisa



Asynchronous diagnosis 11

The grey area indicates where interaction occurs between the two components. The
initial marking consists of the two nominal states 1, 4, for each component. Labels (alarms
α, β or self-repair ρ) attached to the different transitions or events, are generically referred
to as alarms in the sequel.

The different setups considered, for diagnosis. Three different setups can be consid-
ered:

S1: The successive alarms are recorded in sequence by a single supervisor, in charge of fault
monitoring. The sensor and communication infrastructure guarantees that causality
is respected: for any two alarms that are causally related (α causes α′), then α is
recorded before α′.

S2: Each sensor records its local alarms in sequence, by respecting causality. The different
sensors perform independently and asynchronously, and there is a single supervisor
which collects the records from the different sensors. No assumption is made on
the communication infrastructure. Thus any interleaving of the records from different
sensors can occur, and possible causalities relating alarms collected at different sensors
are lost.

S3: The fault monitoring is performed in a distributed way, by different supervisors cooper-
ating asynchronously. Each supervisor is attached to a component, it records its local
alarms in sequence, and can exchange supervision messages with the other supervisor,
asynchronously. No assumption is made on the communication infrastructure.

In this paper we consider S1 and S2 (and generalizations of them), but not distributed
diagnosis S3 (for distributed diagnosis, the reader is referred to [16][17]). Note that Internet
cannot be used as a communication infrastructure for setup S1, but it can be used for setup
S2.

The different setups are illustrated in Fig. 4, which is a combination of Fig. 2 and Fig. 3.
The labeled Petri net of Fig. 3 is redrawn, on the left, with the topology used in Fig. 2.
In the middle, we redraw the configuration shown in grey in Fig. 2-right, call it κ, and we
relabel its events by their associated alarms. Configuration κ expresses that component 1
went into its faulty state 2, and then was repaired; concurrently, component 2 moved to
its faulty state 6, where self-repair cannot occur. Note that the transmission of the fault of
component 1 to component 2, via place 3, is preempted, due to the fatal failure of component
2.

How alarms are recorded is modelled by the two occurrence nets shown in the third
and fourth diagrams, we call them alarm patterns. In the third diagram, we assume the
first setup, in which a single sensor is available to collect the alarms. Hence configuration
κ produces the alarms β, α, ρ, recorded in sequence. This record is modelled by the linear
alarm pattern shown in the third diagram. This alarm pattern has its events labeled by
alarms, but its conditions are “blind”, i.e., they have no label. This manifests the fact that

PI n˚1456
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71

5

2 4

β
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βρ

3

α
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ρ

β

2 3 4

α

71

ρ

αβ

ρ6

ρ

α

β

first setup

second setup

Figure 4: Example 1, a scenario involving a single sensor, and two independent sensors.

the different places of the Petri net, which are traversed while producing the alarms β, α, or
ρ, are not observed.

Now, in the last diagram, we show the case of the second setup, in which β, ρ are collected
by the first sensor, and α is collected by the second one, independently. The result is an
alarm pattern composed of two concurrent parts, corresponding to the records collected
by each sensor. When collected by the supervisor, these concurrent parts can interleave
arbitrarily—this manifests asynchrony.

Asynchronous diagnosis. Alarm patterns are generically denoted by the symbol A.
Note that each sensor delivers, as an alarm pattern, some linear extension of the partial
order of events it sees. But the causality relations involving pairs of events seen by different
sensors, are lost. In general, observations may add some causalities, may lose other ones, but
they never reverse any of them. Therefore, the only valid invariant between alarm pattern
A and the configuration κ that produced it, is that A and κ possess a common linear
extension. With this definition, we encompass setups S1 and S2 in a common framework.
From the above discussion, we must accept as plausible explanations of an alarm pattern A
any configuration κ such that A and κ possess a common linear extension. Such κ are said
to explain A. We are now ready to formalize our problem setting.

2.3 Asynchronous diagnosis: formal problem setting

Now, we formalize what an alarm pattern A is, and what it means, for A, to be associated
with some configuration κ. We are given the following objects, where the different notions
have been introduced in subsection 2.1:

• A labeled Petri net P = (P, T,→,M0, λ), where the range of the labeling map λ is the
alphabet of possible alarms, denoted by A, and

Irisa



Asynchronous diagnosis 13

• its unfolding UP = (B,E,→, ϕ).

Note the following chain of labeling maps:

E
︸︷︷︸

events

ϕ
−→ T

︸︷︷︸

transitions

λ
−→ A

︸︷︷︸

alarms

: e 7−→ ϕ(e) 7−→ λ(ϕ(e))
∆
= Λ(e) , (3)

which defines the alarm label of event e, we denote it by Λ(e)—we call it also “alarm”, for
short, when no confusion can occur.

An extension of a net P = (P, T,→) is any net obtained by adding places and flow
relations but not transitions. Occurrence nets inherit this notion. An occurrence net induces
a labeled partial order on the set of its events, extending this occurrence net induces an
extension of this labeled partial order 2.

Two labeled occurrence nets O = (B,E,→,Λ) and O′ = (B′, E′,→′,Λ′) are called
alarm-isomorphic if there exists an isomorphism ψ, from (B,E,→) onto (B ′, E′,→′), seen
as directed graphs, which preserves the alarm labels, i.e., such that ∀e ∈ E : Λ′(ψ(e)) = Λ(e).
Thus, two alarm-isomorphic occurrence nets can be regarded as identical if we are interested
only in causalities and alarm labels.

Definition 1 (alarm pattern) Consider P, UP , and Λ, as in (3). A labeled occurrence
net A = (BA, EA,→A, λA) is an alarm pattern of P iff:

1. Its labeling map λA takes its value in the alphabet A of alarms,

2. A is itself a configuration (it is conflict free), its set of conditions BA is disjoint from
that of UP , and

3. There exists a configuration κ of UP , such that A and κ possess extensions that are
alarm-isomorphic.

Assuming, for A, a set of places disjoint from that of UP , aims at reflecting that alarm
patterns vehicle no information regarding hidden states of the original net. This justifies
condition 2. Concerning condition 3 the allowed discrepancy between κ and A formalizes the
possible loss of some causalities (e.g., due to independent and non synchronized sensors), and
the possible adding of other ones (e.g., when sensors record their alarms in sequence). The
key fact is that the information about the concurrency of events produced by the system
cannot be observed by the supervisor. For instance, if the supervisor receives two alarm
events α, β that are not causally related, then the net P may have produced α⊥⊥β, or α � β,
or α � β.

To refer to our context of diagnosis, we say that the configuration κ can explain A. For
A a given alarm pattern of P , we denote by

diag(A) (4)
2 Recall that the labeled partial order (X,�) is an extension of labeled partial order (X ′,�′) if labeled

sets X and X′ are isomorphic, and � ⊇ �′ holds. When (X,�) is a total order, we call it a linear extension
of (X′,�′).
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14 A. Benveniste, E. Fabre, C. Jard, S. Haar

the set of configurations κ of UP satisfying conditions 1,2,3 of definition 1. Due to asynchrony,
ambiguity frequently occurs so that the set diag(A) is far from being a singleton. Therefore
the issue of how to compute and represent this solution set efficiently is of great importance
when large scale applications are considered. In the next subsection, we propose an adequate
data structure to represent and manipulate the set diag(A) efficiently, we call it a diagnosis
net.

3 Diagnosis nets: expressing asynchronous diagnosis by

means of unfoldings

In this section, we provide explicit formulas for the solution of asynchronous diagnosis, in
the form of suitable unfoldings.

A first natural idea is to represent diag(A) by the minimal subnet of unfolding UP which
contains all configurations belonging to diag(A), we denote it by UP(A). Subnet UP(A)
inherits canonically by restriction, the causality, conflict, and concurrence relations defined
on UP . Net UP(A) contains all configurations belonging to diag(A), but unfortunately
it also contains undesirable maximal configurations not belonging to diag(A), as Fig. 5
reveals.

3

1

26

4 1 1

2 3

,

5

4

5 6

4

diag(A)AP

Figure 5: Example 2. Showing P ,A, and diag(A). Note that UP(A) = P .

In this figure, we show, on the left hand side, a Petri net P having the set of places {1, 4}
as initial marking, note that P is an occurrence net. In the middle, we show a possible
associated alarm pattern A. Alarm labels are figured by colors (black and white). The set
diag(A) is shown on the right hand side, it comprises two configurations. Unfortunately the
minimal subnet UP(A) of the original unfolding P which contains diag(A), is indeed identi-
cal to P ! Undesirable configurations are {(1, t12, 2), (4, t46, 6)} and {(1, t13, 3), (4, t45, 5)} (in
these statements, t12 denotes the transition separating states 1 and 2). But configuration
{(1, t12, 2), (4, t46, 6)} is such that its two transitions t12, t46 explain the same alarm event
in A. And the same holds for the other undesirable configuration.

Fig. 6 suggests an alternative solution, using the product P × A of P and A, seen as
labeled nets with respective labels λ and λA (see subsection 2.3 for these notations). The
unfolding UP×A is shown. The projection, on the set of nodes labelled by nodes from

Irisa



Asynchronous diagnosis 15

4

6

35

1

2

2

1

3

4

65

UP×A

P ×A

Figure 6: Example 2. Representing diag(A) by UP×A.

P , is depicted using larger arrows. The reader can verify that the corresponding set of
maximal configurations coincides with diag(A). This suggests that UP×A is an appropriate
representation of diag(A). We formalize this in the theorem to follow. We use the notations
from subsections 2.1 and 2.3, and we need a few more notations.

For P = (P, T,→) a net and X a subset of its nodes, P|X denotes the restriction of P
to X , defined as

P|X
∆
= (P ∩X,T ∩X,→|X ),

where the flow relation → |X is defined as the restriction, to X × X , of the flow relation
→⊆ (P × T ) ∪ (T × P ) given on P . Be careful that we restrict the flow relation, not its
transitive closure.

Let P = (P, T,→,M0, λ) and Q = (Q,S,→, N0, µ) be two labeled Petri nets, and U =
(B,E,→, ϕ) a sub-net of the unfolding UP×Q. Define the labeled occurrence net projP (U),
the projection of U on P , as follows: 1/ restrict U to its subset of nodes labelled by nodes
from P , and 2/ project, onto T , the labels consisting of synchronized pairs of transitions
belonging to T ×S. Let us formalize this construction. The set E of events of U decomposes
as E = EP ∪ EP,Q ∪ EQ, where EP is the set of events labeled by transitions t ∈ T , EQ is
the set of events labeled by transitions s ∈ S, and EP,Q is the set of events labelled by pairs
of synchronized transitions (t, s) ∈ T × S. Then we define:

projP (U)
∆
=

(
U |ϕ−1(P )∪EP∪EP,Q

, φ
)

(5)

where the labeling map φ is defined as follows: if b ∈ B, then φ(b) = ϕ(b); if e ∈ EP , then
φ(e) = ϕ(e); if e ∈ EP,Q is such that ϕ(e) = (t, s), then φ(e) = t. Hence projP (U) has
P ∪ T , the set of nodes of P , as its label set.

Finally, for O an occurrence net, we denote by config (O) the set of all its configurations.
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16 A. Benveniste, E. Fabre, C. Jard, S. Haar

Theorem 1 Let UP be the unfolding of some Petri net P, A an associated alarm pattern,

and let diag(A) be defined as in (4). Consider the unfolding UP×A
∆
= (B̄, Ē,→, ϕ̄), and its

associated projections projP (.) and projA(.). Then, κ ∈ diag(A) iff:

∃κ̄ ∈ config (UP×A) : projP (κ̄) = κ and projA(κ̄) = A. (6)

Note that the product P ×A involves only synchronized transitions. Note also that every κ̄
satisfying (6) must be a maximal configuration of UP×A. Theorem 1 expresses that UP×A

is an adequate representation of diag(A), we call it a diagnosis net.

Proof : We first prove the if part. Let κ̄ be a configuration of UP×A such that projA(κ̄) =
A, and define κ = projP (κ̄). By definition of net extensions (cf. definition 1 and above), κ̄
is an extension of both κ and A. Hence, by definition 1, κ ∈ diag(A). This was the easy
part.

We then prove the only if part. Select an arbitrary κ ∈ diag(A). We need to show the
existence of a κ̄ satisfying (6). Since κ ∈ diag(A), then κ and A possess two respective
extensions, κe and Ae, that are alarm isomorphic, let ψ be the corresponding isomorphism,
from EA (the set of events ofA), onto the set of events of κ. Note that κe possesses additional
dummy conditions that are not labeled by places from P , and Ae possesses conditions that
do not belong to A.

Consider the following configuration κ̄e, obtained as follows. Its set of events is the set of
pairs (ψ(e), e), where e ranges over EA. Then its set of conditions as well as its flow relation
is defined by:

flow relation of κ̄e :

{
•(ψ(e), e) = •ψ(e) ∪ •e
(ψ(e), e)

•
= ψ(e)

• ∪ e•
, (7)

where the pre- and postset operations occurring on the right hand sides of the two equalities
are taken from the extensions κe and Ae. Informally speaking, κ̄e is obtained by glueing
together κe and Ae at their events associated via ψ. Note that κ̄e is circuit free.

Now, erase, in κ̄e, the conditions that are neither labeled by places from P , nor belong
to A (such places originate from having extended κ and A into κe and Ae, respectively).
Call κ̄ the so obtained configuration. By construction:

projP (κ̄) = κ and projA(κ̄) = A.

Thus it remains to show that κ̄ ∈ config (UP×A). On the one hand, κ̄e was circuit/conflict
free and causally closed, then so is κ̄, thus κ̄ is a configuration. On the other hand, the flow
relation and nodes of κ̄ are also defined by formula (7), provided that the pre- and postset
operations occurring on the right hand sides of the two equalities are taken from the original
configurations κ and A. By keeping in mind (7), we define the following labeling map φ̄ on
κ̄:

φ̄(ψ(e), e) = (ϕ(ψ(e)), e) (8)

∀b̄ ∈ •(ψ(e), e) ∪ (ψ(e), e)• :

{
for b̄ ∈ •e ∪ e• : φ̄(b̄) = b̄
for b̄ ∈ •ψ(e) ∪ ψ(e)

•
: φ̄(b̄) = ϕ(b̄)
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Asynchronous diagnosis 17

Hence, φ̄ is an homorphism from κ̄ into P ×A. By using the universal property (1), there
exists an injective homomorphism from κ̄ into UP×A. This, and the fact that κ̄ was already
proved to be a configuration, shows that κ̄ ∈ config (UP×A), this finishes the proof of the
theorem. �

Remark. Theorem 1 assumes the knowledge of the initial marking M0 for Petri net P .
When only a setM0 of possible initial markings is known instead, simply augment (P, T,→)
as follows. Add some additional place p0 not belonging to P , for each possible initial marking
M0 ∈M0 add one transition tM0

to T with label α0 not belonging to A, and add the branches
po → tM0

→M0 to the flow relation. To account for this additional places and transitions,
add to A a dummy prefix of the form b0 → e0 → min(A), where event e0 has label α0.
Then, apply theorem 1 to the so augmented Petri net.

Example 1, illustration of diagnosis nets, and comparison with the use of the
marking graph. Fig. 7 shows an illustration of theorem 1. In this figure we show the Petri

#ρρ

ρ

11

α

71

2

1

2 3 4

7 5 61

4

ρα

1 7

α

4

42 3

5 ρ

α

6

ρ β β

α

βββ

Figure 7: Example 1, diagnosis net, an illustration of theorem 1.

net P of Fig. 3 (left), an associated alarm pattern A (middle), and the net UP×A, restricted
to its nodes labeled by nodes from P (right). We show in dashed-thick the additional conflict
relation between the two otherwise concurrent events labeled by the same alarm ρ. This
conflict is inherited from the sharing of a common condition, not shown, belonging to A. It
is easily checked that diag(A) is adequately represented by this diagram3.

Four alternative explanations are delivered by this diagnosis, this reflects the ambiguity
resulting from asynchrony in this example. Explanation 1: component 1 gets in its faulty
state without causing damage to component 2, and then gets self-repaired; independently,

3The restriction, to its events, of this data structure, is an event structure according to Winskel’s definition
[28][36].
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18 A. Benveniste, E. Fabre, C. Jard, S. Haar

component 2 gets into its fatal faulty state 6; thus, for this scenario, (β ≺ ρ)⊥⊥α holds.
Explanation 2: component 1 gets in its faulty state while causing damage to component 2,
and then gets self-repaired; independently, component 2 gets into its fatal faulty state 6;
again, for this scenario, (β ≺ ρ)⊥⊥α holds. Explanation 3: component 1 gets in its faulty
state while causing damage to component 2; consequently, component 2 fails to delivers its
service and gets into its state 5, where it subsequently gets self-repaired; for this scenario,
we have β ≺ ρ ≺ α. Explanation 4: component 1 gets in its faulty state while causing dam-
age to component 2; consequently, component 2 fails to delivers its service; independently
component 1 gets self-repaired; thus β ≺ (ρ⊥⊥α) holds for this scenario.

Fig. 8 compares diagnosis nets with the use of marking graphs. The reader is referred
again to our running example 1 (shown in Fig. 7), call it P . In the first diagram we show the
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Figure 8: Marking graph of example 1 (left), and unfolding (right).

marking graph of P , denoted by M(P). It is a labeled Petri net whose places are labeled
by the reachable markings of P , shown by the combination of the places composing the
different markings. We identify the places of the marking graph M(P) with the markings
of P . Then, M [t〉M ′ in P iff M → τ →M ′ inM(P). Transition τ ofM(P) is then labeled
by transition t of P . In Fig. 8 we have labeled instead the transitions τ of M(P) by the
alarm labels λ(t) = α, β, ρ of the associated transitions t from P .

The pre/postset of each transition ofM(P) is a singleton, hence there is no concurrency,
and M(P) represents an automaton. Note the diamond composed of the two branches
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Asynchronous diagnosis 19

275→ ρ → 175→ ρ → 174 and 275→ ρ → 274 → ρ → 174, it represents the two possible
interleavings of the concurrent transitions labeled by ρ in P .

We can still regard M(P) as a Petri net, and consider its unfolding UM(P), shown in
part in the second diagram (some flow relations are sketched in dashed, to save space). Now,
we can safely merge the two conditions labeled by 174 in the bottom of this diagram. The
reasons for this are the following: 1/ they are both labeled by the same state (namely 174),
hence they possess identical continuations, and, 2/ their causal closures are labeled by the
same alarm sequence β, α, ρ, ρ, i.e., explain the same sequences of alarms. Merging the two
conditions labeled by 174 in the bottom of the second diagram yields a lattice, i.e., a labeled
net with branching and joining conditions but no circuit, we denote it by LM(P). Lattices
are not new, they are the data structures used when applying the Viterbi algorithm for
maximum likelihood estimation of hidden state sequences in stochastic automata.

Being linear and not branching any more, LM(P) is a more compact data structure than
the unfolding UM(P). The reason for merging the two places labeled by 174 in UM(P) is
the diamond occuring in M(P). But this diamond manifests the concurrency of the two
self-repairing transitions, and the unfolding UP of P , shown in Fig. 2, already handles this
properly: the marking 174 is not duplicated in UP , unlike in UM(P). In fact, this lattice
corresponds to a prefix of the unfolding shown in Fig. 2. The unfolding of Fig. 2 is more
compact, but in turn, building co-sets requires some processing, whereas this requires no
processing for the unfolding of Fig. 8, since co-sets are just places. Therefore, for applications
in which memory constraints prevail over processing speed, unfoldings should be preferred.
Still, the generalization of lattices to Petri nets is of interest, and their definition and use
for diagnosis is investigated in section 5.

4 Algorithms

In this section, we detail the algorithms for the construction of diagnosis nets. In subsection
4.2 we consider the general case considered in theorem 1, this encompasses setups S1 and S2

of subsection 2.2. Then, in subsection 4.3, we focus on S1, for which we give an improved
algorithm. In subsection 4.1 we first describe the framework we need for the description of
these algorithms.

4.1 Algorithms as pattern matching rules

As a prerequisite, we formally state an inductive construction of the unfolding UP of a Petri
net P in the form of a nested family of branching processes B—this construction is borrowed
from [15], it was illustrated in Fig. 2-middle.

We use the following notations. The conditions of UP have the form (e, p), where e is an
event of UP and p a place of P . Similarly, events of UP have the form (X, t), where X is a
co-set of conditions belonging to UP , and t is a transition of P . The homomorphism ϕ, from
UP to P , is given by ϕ(e, p) = p, and ϕ(X, t) = t. And the flow relation on UP is given by
•(e, p) = e, and •(X, t) = X . Conditions (nil , p) are those having no input event, i.e., the
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20 A. Benveniste, E. Fabre, C. Jard, S. Haar

distinguished symbol nil is used for the minimal conditions of UP . Hence, we represent a
branching process as a pair B = (B,E) of conditions and events, and the flow relation and
homomorphism are derived implicitly, using the above convention. The term coB denotes
the set of co-sets of B.

The set of branching processes of P = (P, T,→,M0) can be inductively constructed as
follows:

• ({(nil , p), p ∈M0}, ∅) is a branching process of P .

• For (B,E) a branching process, t ∈ T , and X ∈ coB such that ϕ(X) = •t, then the
following term is also a branching process of P :

(B ∪ { (e, p) | p ∈ t• } , E ∪ {e} ) , where e = (X, t) . (9)

If e 6∈ E we call e a possible extension of (B,E), and we call the corresponding extended
branching process a continuation of (B,E) by e. The inductive construction (9) can be
expressed in the form of a pattern matching rule:

if precondition {. . . } holds,

then, possible extension {. . . }
and its postset {. . . } result.

:
X ∈ coB , ϕ(X) = •t

e = (X, t)
e• = { (e, p) | p ∈ t• }

(10)

where the three {. . . } denote the corresponding three statements shown on the right hand
side. In rule (10), it is understood that e = (X, t) is a possible extension of the current
branching process, meaning that e 6∈ E (the current event set), this will not be repeated in the
sequel. Most importantly, rule (10) applies asynchronously, meaning that the continuation
can be performed in any order, from the different co-sets which have possible extensions in
the current branching process.

4.2 Asynchronous diagnosis

The raw rules: computing UP×A. We first provide the rules for the computation of the
unfolding UP1×P2

, for two nets P1 and P2. For two nets P1 and P2, pi (resp. ti) denotes
generically a place (resp. transition) of net Pi, and the labeling map is denoted by λi. The
homomorphism of the unfolding under construction is denoted by ϕ. Using these notations,
we have the following rules for inductively constructing the branching processes (B,E) of
P1 ×P2, whose union forms the unfolding UP1×P2

, cf. (2):

for i = 1, 2 :
Xi ∈ coBi

, λi(ti) is private, and ϕ(Xi) = •ti
ei = (Xi, ti)

e•i = { (ei, pi) | pi ∈ t•i }

(11)

X1 ∪X2 ∈ coB , λ1(t1) = λ2(t2) , ∀i = 1, 2 : ϕ(Xi) = •ti
e = (X1 ∪X2, (t1, t2))

e• = { (e, p) | p ∈ t•1 ∪ t
•
2 }

(12)
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Rule (11) performs a local continuation involving a single component, whereas rule (12)
performs a synchronized continuation. Thanks to theorem 1, the above rules (11,12) can
be specialized to implement the inductive computation of the branching processes (B,E) of
P ×A: simply discard rule (11) since no private label is involved. This yields:

X ∪XA ∈ coB , λ(t) = λA(eA) , ϕ(X) = •t , ϕ(XA) = •eA

e = (X ∪XA, (t, e
A))

e• =
{

(e, p)
∣
∣
∣ p ∈ t• ∪ eA

•
}

, (13)

where eA denotes a generic event of A. Since the presence of the term X ∪XA in the preset
of the extension e always requires the corresponding precondition X ∪XA ∈ coB , we shall
omit the term X ∪XA ∈ coB in the precondition of the rules in the sequel. Thus rule (13)
will be simply written:

λ(t) = λA(eA) , ϕ(X) = •t , ϕ(XA) = •eA

e = (X ∪XA, (t, e
A))

e• =
{

(e, p)
∣
∣
∣ p ∈ t• ∪ eA

•
}

Since continuations can occur from any co-set of the current branching process, the whole
branching process must be continuously maintained, for possible continuation, along the
construction of the unfolding. Of course this data structure is of rapidly increasing com-
plexity, and this makes the general algorithm based on rule (13) quite cumbersome. Also, in
this general case, explanations of an alarm can occur with an arbitrary long delay, but this
is the unavoidable price to pay for handling asynchrony with no restriction on the allowed
sensor setup.

Refining the rules. Let us investigate how to refine rule (13). Theorem 1 states that
diag(A) is in one-to-one correspondence with the set of κ̄’s satisfying (6). Thus, only a
subnet of UP×A has to be computed, not all of it. We investigate this issue next. Consider
the unfolding UP×A = (B,E). For A fixed, and A′ a subnet of A, denote by

explain A′ (14)

the maximal subnet U of UP×A, such that: 1/ all events of U are labeled by events of A′,
and 2/ min(U) and max(U) are conditions. The subnet explain A′ collects all events of
UP×A which can explain some alarm belonging to A′. For V v UP×A a branching process
of P ×A, set:

Aterm
V = max {A′ v A | (explain A′) ⊆ V} . (15)

Then, Aterm
V is the terminated prefix of A, i.e., no further continuation of V will provide a

new explanation for Aterm
V . Symmetrically, keeping in mind that UP×A = (B,E), set:

Afut
V = max {A′ ⊆ A | (explain A′) ∩ V ∩ E = ∅} , (16)
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it collects the future alarms, that have not yet been considered at all in V . Note the subnet
symbol ⊆ in (16), indicating that Afut

V is not a prefix of A (it is in fact a postfix of A). Also,
the two “max” in (15) and (16) are well defined, since the corresponding sets of A′’s are
stable under union. In general, the set Aact

V of active alarms satisfies:

Aact
V

∆
= A \

(

Aterm
V ∪Afut

V

)

6= ∅, (17)

and Aact
V can even have cardinality greater than 1. This means that alarms cannot be

processed in sequence, i.e., there is no on-line algorithm. We shall see, however, thatAact
V = ∅

holds for a certain increasing chain of V ’s, for setup S1. In general, refined rules must
maintain the triple (Aterm

V ,Aact
V ,Afut

V ).
For A′ a prefix of A such that no node of A′ is maximal in A, denote by

stop (A′) (18)

the maximal subnet of UP×A′ possessing no continuation in UP×A, note that stop (A′) is a
postfix of UP×A′ , and no continuation of it will explain alarms belonging to A \ A′. Hence
stop (A′) should be pruned prior to further performing continuations of UP×A′ .

For an arbitrary branching process V of P × A, we must prune V term ∆
= stop (Aterm

V ),

where Aterm
V is defined in (15), and keep only Vact ∆

= V \ V term , from which continuation
can proceed.

By maintaining the above objects along the steps of the algorithm, refined versions of
rule (13) can be derived. Using this technique, in the next subsection we focus on setup S1

and provide for it an improved algorithm.

4.3 An improved algorithm for the case in which causality is re-
spected

Here we investigate the computation of the diagnosis net UP×A, and then of diag(A), for
the case of A being a totally ordered alarm pattern of P—this corresponds to setup S1. We
start with some lemmas. The first lemma establishes that on-line algorithms exist for setup
S1.

Lemma 1 Let A′ v A be a prefix of A. Then:

UP×A′ v explain A′. (19)

If A is totally ordered, then we have:

UP×A′ = explain A′. (20)

Formula (20) says that, if A is totally ordered, then UP×A′ contains all explanations of A′.
In this case, as soon as UP×A′ has been constructed, we can forget A′, this justifies the
consideration of on-line algorithms—we insist that this does not hold in general, cf. (17)!
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Proof : Inclusion (19) is obvious, so we need only to prove equality (20) under the as-
sumption that A is totally ordered. This is the result of interest. It is trivial if A′ = ∅, so
we can assume that this is not the case.

In the sequel of the proof, symbols ē, f̄ denote events of the unfolding UP×A, hence,
using the notations of (13), ē has the form:

ē = (X ∪XA, (t, e
A)),

and φA(projA(ē)) = eA, where φA denotes the labeling map of projA(UP×A) (cf. (5)).
Also, �(ē) denotes the configuration spaned by the causal closure of ē in UP×A. Similar
notations and remarks hold for f̄ .

Pick ē ∈ explain A′, and set κ̄ =�(ē). Pick f̄ ∈ κ̄. Since f̄ � ē, then either eA⊥⊥fA or
fA � eA holds (eA � fA is impossible, by definition of alarm patterns). But, since A is to-
tally ordered, then only fA � eA can hold, thus fA must belong to A′, since eA ∈ A′. Since
this holds ∀f̄ ∈ κ̄, then κ̄ ⊂ UP×A′ , therefore explain A′ ⊆ UP×A′ , this proves the lemma. �

For the following results, we assume A totally ordered. For U a subnet of UP×A, denote
by #(U) the subnet of UP×A comprising the nodes that are in conflict with every node of
U . The following theorem indicates how the pruning introduced in subsection 4.2 should be
performed, it refines theorem 1 for the case in which A is totally ordered:

Theorem 2 Assume that A is totally ordered.

1. If A′ is the maximal strict prefix of A, then diag(A) coincides with the set of all
maximal configurations of UP×A \ stop (A′).

2. Consider a chain A′
@A′′ v A of prefixes of A. Then:

stop (A′) = # (W) , where W
∆
= UP×A′′ \ UP×A′ .

Proof : Point 1 follows from the definition (18) of stop (A′). Then, by lemma 1, we have
W = ( explain A′′ \ explain A′ ) , from which point 2 follows. �

The following lemma is of lesser importance, but it will be useful for further optimizing our
algorithm, by restricting the set of co-sets than can serve for possible continuation. For U
a subnet of UP×A, denote by ⊥⊥(U) the subnet of UP×A consisting of the nodes that are
concurrent with some node of U—note the difference with the definition of #(U).

Lemma 2 Let A′,A′′, and W be as in point 2 of theorem 2. Set

ext (A′′)
∆
= W ∪ ⊥⊥ (W) (21)

Then all possible extensions of UP×A′′ have their preset contained in ext (A′′).
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Proof : Assume this is not the case. Hence there exists a co-set X not contained in the
subnet sitting on the right hand side of (21), and some event e ∈ (UP×A \ UP×A′′), such
that •e = X . Hence we must have:

X ∩ (≺(W) ∪#(W)) 6= ∅,

which implies that e ∈ #(W), a contradiction with theorem 2. �

Using the above results, successive optimizations of the generic rule (13) are performed in
several steps.

1. On-line computation of the successive branching processes, (B,E), of unfold-
ing UP×A. Write A = (BA, EA,→A, λA), with:

BA = {b0, b1, b2, . . . , bn, . . .},
EA = {e1, e2, . . . , en, . . .}, λA(ek) ∈ A,

∀n > 0 : bn−1 →A en →A bn,
(22)

where we recall that A is the alphabet of possible alarms—the superscipt A has been removed
from the events and conditions of A, for the sake of clarity. In other words, the flow relation
is obtained by interleaving alternatively one condition from BA and one event from EA.
Using these notations, rule (13) rewrites as follows:

λ(t) = λA(en) , ϕ(X) = •t , ϕ(XA) = bn−1

e = (X ∪XA, (t, en))
e• = {(e, p) | p ∈ t• } ∪ {(e, bn)}

(23)

Denote by An = (b0 →A e1 →A b1 →A . . . →A bn) the prefix of length n of A, and apply
lemma 1 with A′ := An, we get:

(B̂n, Ên)
∆
= explain An = UP×An

(24)

(recall that we represent branching processes as a pair of condition and event sets). Formula
(24) expresses that we can forget about An as soon as UP×An

has been computed, and
implement an on-line computation of UP×An

:

(B̂n, Ên) = R(23)
n (B̂n−1, Ên−1), where R(23)

n
∆
= [ ∀t : R

(23)
n,t ], (25)

and R
(23)
n,t denotes rule (23), for n and t seen as parameters. Formula (25) defines our on-line

algorithm.

2. Computing the set {κ̄ ∈ config (UP×A) : projA(κ̄) = A}. Theorem 1 indicates that
we need only to compute those configurations κ̄ of UP×A, such that projA(κ̄) = A. In
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UP×A, some configurations, while being maximal (for set inclusion) in UP×A, explain only a
strict prefix of A. To represent diag(A) exactly, such configurations must be removed. For
this we use theorem 2. Consider

δÊn
∆
= Ên \ Ên−1,

the set of events added to Ên−1 by applying the rule R
(23)
n , and let #(δÊn) denote the set

of nodes belonging to (B̂n, Ên) that are in conflict with every node of δÊn. Apply theorem
2 with A′ := An−1,A′′ := An, we deduce that stop (An−1) = #(δÊn), i.e.,

the nodes belonging to #(δÊn) cannot belong
to a configuration explaining alarm n.

(26)

Thus, for computing the set {κ̄n ∈ config (UP×A) : projA(κ̄n) = An} we must prune the
nodes belonging to #(δÊn).

This pruning can then be interleaved with the successive application of the on-line rule
(25). Performing this yields the desired sequence (Bn, En) of branching processes, and all
maximal configurations, κ̄n, of (Bn, En), are such that projA(κ̄n) = An. Therefore, the
following post-processing is applied after rule (25):

pruneRn : remove #(δEn) from (Bn, En), (27)

and rule (25) is modified as follows:

R(23)
n ; pruneRn. (28)

The pruning mechanism (27) is illustrated in Fig. 9, the reader should compare with Fig. 7.
In this figure, we have extended the A shown in Fig. 7 by adding one more alarm labeled α
(middle). The branching process shown in the right is a continuation of the one shown in
Fig. 7. The result of the pruning mechanism (27) is depicted in dark grey: corresponding
nodes are pruned from the updated UP×A, which is therefore the white part of the diagram
on the right. Note that the ambiguity has been removed, since the remaining net is now
itself a single configuration. In fact, this figure shows directly this pruning mechanism on
the restriction of diagnosis net UP×A, to the subset of its nodes that are labeled by nodes
from P .

3. Optimizing. We can still optimize rule (28) by noting that, in the term (Bn, En)
resulting from applying this rule, not all places from Bn can serve for future continuations
of (Bn, En)—compare this situation with the general one discussed at the end of subsection
4.2. For this, we use lemma 2. Denote by ⊥⊥(δEn) the set of places belonging to (Bn, En)
that are concurrent with some event belonging to δEn—note the difference with the former
definition of #(δEn). Then, by lemma 2 we know that

only the nodes belonging to δE•
n ∪ ⊥⊥(δEn)

can serve for future continuations of (Bn, En).
(29)
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Figure 9: The pruning mechanism (27), and optimization (29).

Using claim (29), rule (23) rewrites as follows, note the modification of the pre-condition:

R
(30)
n,t :

X ∪XA ⊆
(
δE•

n−1 ∪ ⊥⊥(δEn−1)
)

λ(t) = λA(en) , ϕ(X) = •t , ϕ(XA) = bn−1

e = (X ∪XA, (t, en))
e• = {(e, p) | p ∈ t• } ∪ {(e, bn)}

(30)

The additional precondition is then updated as follows, prior to handling the n+ 1st alarm:

optimRn : δE•
n ∪ ⊥⊥(δEn) = δE•

n ∪ (⊥⊥(δEn−1) \
•δEn ) (31)

Then, post-processing (27) applies after rule (30) as well, hence the optimized rule becomes:

R(30)
n ; pruneRn ; optimRn. (32)

This optimization is illustrated in Fig. 9. In this figure, the set δE•
n∪⊥⊥(δEn) consists of the

three conditions encircled in thick, in the diagnosis net shown on the right hand side. Hence
co-sets not contained in this set need not be tested, for possible continuation. Note that,
unlike the pruning, this optimization does not modify the constructed branching process.

4. Maintaining co-sets. So far we have ignored the need for testing the condition
X ∈ coBn−1

, see the remark at the end of subsection 4.1. But the optimization optimR(n)
applies, hence only a postfix of the whole branching process is explored for performing the
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continuation. Therefore we should avoid exploring backward the entire branching process
under construction, in order to check the co-set property. So we need to maintain and
update explicitly the co-set property, restricted to δE•

n ∪ ⊥⊥(δEn). We discuss this now.
Focus on rule (30). The following formula holds, to update the co-set property while

processing the nth alarm:

coB := coB ∪ (
⋃

Y ∈coB , Y ⊇X

Y [X ← e•] ), (33)

where we denote by Y [X ← e•] the co-set Y in which X has been substituted with e•.
Formula (33) possesses the following initialization and termination conditions:

initialization : coB := coBn−1
,

termination : coBn
:= coB .

Finally, rule R
(30)
n,t refines as:

R
(34)
n,t :

X ∪XA ⊆
(
δE•

n−1 ∪ ⊥⊥(δEn−1)
)

λ(t) = λA(en) , ϕ(X) = •t , ϕ(XA) = bn−1

e = (X ∪XA, (t, en))

e• = {(e, p) | p ∈ t• } ∪ {(e, bn)}
coB := coB ∪ (

⋃

Y ∈coB , Y ⊇X Y [X ← e•] )

(34)

And the refined on-line algorithm is obtained by substituting R
(34)
n,t for R

(30)
n,t in (32). Note

that maintaining on-line the concurrency relation is of low cost in this case, in contrast to
the general case where continuations can be performed from far in the interior of the net
under construction.

5 Lattice nets, and their use for asynchronous diagnosis

In this section we discuss how diagnosis nets can be made more compact, by using nets
possessing branching and joining conditions, but no circuit. Such nets are new, we call
them lattice nets. We will see that we can avoid unnecessary duplications that can occur in
diagnosis nets.

Example 3. The previous examples are not sufficient to exhibit the need for considering
lattice nets, hence we consider another one. This example is shown in Fig. 10. It is a
simplified, and then symmetrized, version of example 1, Fig. 3, in which fault propagation
can occur in both directions, through places 3 and 3′. We assume now that the two “self-
repair” events are distinguished, whence the two different labels, ρ and σ. A branching
process of example 3 is shown in Fig. 11. While only places 1, 1′ are branching in the
Petri net, conditions labelled by C,C ′ are infinitely branching in the unfolding, due to
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Figure 10: Example 3.
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Figure 11: Unfolding example 3.

synchronizations. Unlike example 1, this example has symmetries that are not explained by
differing interleavings. How a lattice net can be derived from this unfolding is analyzed in
the following section.

5.1 Layers and lattice nets

Finding aggregates of conditions that are suitable for merging relates to finding an appro-
priate notion of “atomic progress of time”, this is analyzed now. Branching processes are
partially ordered by the prefix relation. We propose to interpret branching processes of a
Petri net as a (partially ordered) time for it, in which the progress of time is materialized by
the continuation of branching processes. But not every progress of time is of interest. Pre-
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dictable stopping times and layers have been introduced for the first time in [4] to formalize
a proper notion of atomic progress of time.

In the following, Pc denotes the set of branching places of Petri net P , i.e., places having

at least two different transitions in their postsets. Denote by Bc
∆
= {b ∈ B : ϕ(b) ∈ Pc} the

set of branching conditions.
A branching process B = {B,E,→, ϕ} is called a predictable stopping time of the un-

folding UP if it satisfies the following conditions:

(i) ∀b ∈ Bc, either b•B = ∅ or b•B = b•, where b•B denotes the postset of condition b in the
branching process B, and b• denotes, as usual, the postset of condition b in the whole
unfolding UP .

(ii) Each continuation of B contains at least one additional condition belonging to Bc.

Requirement (i) is the key one. It guarantees that the boundary of B does not cross con-
flicting sets of conditions (co-set X ⊂ Bc is called conflicting if ∀b ∈ X, ∃b′ ∈ X : b′ 6= b and
b•∩ b′• 6= ∅). Requirement (ii) is stated for convenience, in order to avoid considering trivial
progresses of time, in which no choice occurs. Having defined our proper notion of time, it
is natural to consider the associated notion of “atomic progress of time”.

Let B and B′ be two predictable stopping times such that 1/ B′ is strictly contained
in B, and 2/ there exists no predictable stopping time strictly containing B′ and strictly
contained in B (the set of all predictable stopping times is closed under intersection [4],
hence the latter statement is sound). We call a layer the following suffix of B:

L = (B \ B′) ∪ •(B \ B′) (35)

The representation (35) of layer L is not unique. However, we note that, if decompositions
L = (B1 \B′

1)∪
•(B1 \ B′

1) = (B2 \B′
2)∪

•(B2 \ B′
2) hold, then L can also be defined using the

pair (B1 ∩ B2,B′
1 ∩ B

′
2). Hence there exists a minimal pair (B,B′) such that representation

(35) of layer L holds, we take it as the canonical representation of L and write it

L = B/B′ . (36)

We collect below some useful results from [4]. L denotes the set of all layers of the considered
unfolding.

1. For L1, L2 ∈ L two layers, either L1∩B•
c = L2∩B•

c (L1 and L2 possess identical post-
branching events), or L1 ∩ B•

c ∩ L2 = ∅ (L1 and L2 possess disjoint post-branching
events). We introduce the following equivalence relation on L:

L1 � L2 iff L1 ∩ B
•
c = L2 ∩ B

•
c . (37)

2. Consider the following relation on L:

L′ ≺ L iff L = B/B′ , and (L′ ∩ Bc) ⊆ B
′ . (38)
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Then relation ≺ is compatible with the equivalence relation �, and the quotient space
L� = (L/�,≺) is a partial order. We denote by→ the transitive reduction of ≺, hence
we can also regard L� = (L/�,→) as a dag. In the sequel, we will freely identify layer
L with its equivalence class in L�.

3. Layers can be generally infinite, they are finite for free choice Petri nets, however [4].

We are now ready to extend lattice nets to Petri nets. Consider a labelled Petri net P =
{P, T,→,M0, λ}, where the labelling map takes its values in the alphabet A of alarms, and
let UP = {B,E,→, ϕ} be the unfolding of P . We use the notations of (3). Consider the
following equivalence relation on the set L:

for L1, L2 ∈ L, we write L1 ∼ L2 (39)

if the following two conditions are satisfied—the reader should compare them with the
conditions (`1) and (`2) at the beginning of this section (see (36) for the definition of
symbol “/”):

(L1) There exist layers L′
i = Bi/B′

i, such that L′
i � Li, i = 1, 2, and L′

1 and L′
2 are

isomorphic, when seen as occurrence nets (i.e., directed graphs labelled by places and
transitions from Petri net P); in particular, L′

1 and L′
2 possess identical continuations;

(L2) the predictable stopping times B′
1 and B′

2 possess extensions that are alarm-isomorphic
(cf. definition 1 and above), i.e., they explain the same alarm pattern.

By construction, ∼⊆�, i.e., the equivalence relation ∼ is coarser than �. The equivalence
class of layer L for ∼ is denoted by L∼. Denote the quotient L/∼ by L∼, we make it a
labelled directed circuitfree hypergraph as follows:

(a) If L ∈ L, then

L∼ is a vertex of L∼, and its label is ψ (L∼)
∆
= L◦, (40)

where L◦ denotes the equivalence class of layer L modulo an isomorphism of labelled
occurrence nets.

(b) For L ∈ L, denote by •L the preset of L in the dag (L�,→). The set of equivalence
classes of L′ for∼, for L′ ranging over •L, is denoted by (•L)∼. We create a hyperbranch

(•L)∼ → L∼ (41)

and label it with the set

ψ ( (•L)∼ → L∼ )
∆
= { (L′ ∩ L)◦ : L′ ∈ •L∼ } , (42)

where we regard (L′ ∩ L)◦ as a subnet of L′
◦.
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Definition 2 The labelled directed hypergraph LP
∆
= (L∼,→, ψ) defined in (40,41,42) is

called the lattice net of the Petri net P.

Since LP is a coding of the unfolding UP , we can use it to code the set of all configurations of
UP . The unfolding UP can be recovered from LP by using the following inductive algorithm:

Algorithm 1 Let L be a prefix of LP and U the corresponding prefix of UP .

1. Choose L∼ ∈ min(LP \ L).

2. For each hyperbranch (•L)∼ → L∼, constructX ⊂ U such thatX◦ = ψ ((•L)∼ → L∼).

3. Continue U by gluing ψ (L∼) at X .

This yields an extension of U by the set of layers belonging to equivalence class L∼, we
denote it by U •L∼, it corresponds to the extension of L by L∼ in LP .

5.2 Diagnosis lattices

We are now ready to use lattice nets for diagnosis. We are given an alarm labelled Petri
net P = {P, T,→,M0, λ}, and an associated alarm pattern A. From theorem 1 we need to
consider the diagnosis net UP×A, and, from the analysis of the preceding section, we can
represent it by its lattice net LP×A instead. Thus, LP×A is an adequate representation
of diag(A), we call it a diagnosis lattice. Diagnosis lattices provide an alternative data
structure for asynchronous diagnosis. This data structure is linear and not branching any
more, it is therefore more effective than unfoldings.

Example 3, continued. Fig. 12 shows a partially ordered alarm pattern A for the Petri
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Figure 12: Example 3, and a partially ordered alarm pattern for it.

net P of example 3. It consists of two concurrent alarm sequences A = {β → ρ, α → σ},
respectively recorded by two local sensors. Then, we show again the net P , we need to
compute the product A×P , and then its unfolding.
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Figure 13: Showing the product A×P .

The product A × P is shown in Fig. 13. In this figure, the branches and conditions
that originate from the alarm pattern A are dashed. Also, we have omitted the branches
ii → σ → iii and ii ′ → ρ → iii ′ , for readability purposes. A branching process B of the
unfolding UP×A is shown in Fig. 14. Again, the branches and conditions that originate from
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Figure 14: Example 3, the unfolding UP×A.

the alarm pattern A are dashed. We have glued together the minimal condition labelled by
1 (resp. 1′) with the condition labelled by i (resp. i′), since they possess identical postsets.

Finally, in Fig. 15-left, we show again this branching process B, in which we have removed
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Figure 15: Example 3, diagnosis lattice LP×A.

the dashed part, for the sake of readability. B is a predictable stopping time, and the grey
regions called A,B,C,D are the four layers it contains. Layer A is the set of minimal
conditions; the reason is that places 1, 1′ are branching. The next layer, B, continues A;
hence, by condition (ii) for the definition of predictable stopping times, it must stop at the
next conditions labelled by 1, 1′.

In Fig. 15-top-right, we show the dag L�. Its vertices are the layers A,B,C,D, and its
branches reflect the relative position of the corresponding regions, on B. Note that the two
layers C,D satisfy C∼D, hence they can be merged when constructing the diagnosis lattice.

In Fig. 15-bottom-right, we show the resulting diagnosis lattice LP×A. The label R is
composed of the four conditions labelled by 1, C, C ′, 1′ in layer C (shown in mid grey), and
the label R’ is composed of the four conditions labelled by 1, C, C ′, 1′ in layer D (shown in
light grey).

In the above example, each layer terminates at a set of cuts—corresponding to a set of
states of the marking graph of P . However, in general, for more complex Petri nets, layers
terminate at sets of co-sets, not cuts. Therefore, layers provide a finer grain than states of
the marking graph, for merging.
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6 Discussion

A net unfolding approach to on-line asynchronous diagnosis was presented. This true con-
currency approach is suited to distributed and asynchronous systems in which no global
state and no global time is available, and therefore a partial order model of time is con-
sidered. In the present paper, our basic tool was the net unfolding, a branching structure
representing the set of configurations of a Petri net, with asynchronous semantics, local
states, and partially ordered time. Diagnosis nets were introduced as a way to encode all
solutions of a diagnosis problem. They avoid the wellknown state explosion problem, that
typically results from having concurrent components in a distributed system interacting
asynchronously. Whereas state explosion is kept under control, the computing cost of per-
forming the diagnosis on-line increases (due to the need to compute co-sets); but this is
typically a preferred tradeoff for the diagnosis of complex asynchronous systems involving
significant concurrency. We have also proposed lattice nets, as an improvement of unfoldings,
in which both branching and joining conditions are allowed, but no circuit.

It is worth saying what this paper does not consider. We do not follow a diagnoser
approach. One can view a diagnoser as a “compiled” algorithm for diagnosis. It consists in
pre-computing a finite state machine which accepts alarm events, and has states labeled by,
e.g., visited faults. In contrast, our approach can be seen as an “interpreted” one, since our
diagnosis nets are computed, on-line, by using only the original Petri net structure. Also,
we did not investigate issues of diagnosability. Diagnosers for unbounded asynchronous
diagnosis and related diagnosability issues have not been considered in the literature, at
least to our knowledge. We believe this could be performed by using so-called complete
prefixes of the unfolding, see [14][15].

Complexity issues have not been addressed. However, the following pragmatic argument
can be given to justify the use of unfoldings. Complete prefixes of unfoldings have been
used for model checking, an area in which practical complexity is of paramount importance
[27][13][14][15].

Various extensions of this work are under progress. The algorithms developed in this
paper return all explanations as a diagnosis. Our target application—fault management in
telecommunications networks—typically exhibits a great deal of ambiguity. Hence it is of
interest to return (the) most likely explanation(s). Probabilistic versions of the present work
have been developed for this purpose, see [1][2][18], and [4] for a theory of corresponding
stochastic processes.

Since our algorithm is interpreted, not compiled, it can be extended to asynchronous
systems subject to dynamic changes in their structure—this is typically a situation encoun-
tered in network management. This feature favors the use of diagnosis nets instead of the
pre-computed diagnosers.

Then, this study is clearly an intermediate step toward distributed diagnosis, in which
diagnosis is perfomed jointly by a network of supervisors communicating asynchronously.
Papers [16][17][18] are a first attempt toward distributed diagnosis. These references concen-
trate on how to compute the set of configurations diag(A) in a distributed way, but they do
not consider the issue of how to represent diag(A) efficiently via unfoldings. The techniques
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of the present paper therefore should be combined with those of [16][17][18] for getting an
efficient solution for the distributed case, this topic will be the subject of a forthcoming
paper.

The robustness of algorithms against alarm losses, or more generally the failure to com-
municate, needs to be investigated. Also, due to the systems complexity, there is little hope
indeed, that an exact model can be provided, hence we need to develop diagnosis methods
that work based on an incomplete model, i.e., a model not able to explain all observed
behaviours.

Last but not least, getting the system model itself is a bottleneck, for complex distributed
systems such as, e.g., telecommunications network management systems. The issue of how
to partially automatize the model construction is investigated in [26].
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[14] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding algo-
rithm. In T. Margaria and B. Steffen Eds., Proc. of TACACS’96, LNCS 1055, 87-106,
1996. Extended version to appear in Formal Methods in System Design, 2000.
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