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Abstract. We extend previous constructions of probabilities for a prime
event structure E by allowing arbitrary confusion. Our study builds on
results related to fairness in event structures that are of interest per se.

Executions of E are captured by the set Ω of maximal configurations.
We show that the information collected by observing only fair executions
of E is confined in some σ-algebra F0, contained in the Borel σ-algebra F

of Ω. Equality F0 = F holds when confusion is finite (formally, for the
class of locally finite event structures), but inclusion F0 ⊆ F is strict in
general. We show the existence of an increasing chain F0 ⊆ F1 ⊆ F2 ⊆ . . .
of sub-σ-algebras of F that capture the information collected when ob-
serving executions of increasing unfairness. We show that, if the event
structure unfolds a 1-safe net, then unfairness remains quantitatively
bounded, that is, the above chain reaches F in finitely many steps.

The construction of probabilities typically relies on a Kolmogorov ex-
tension argument. Such arguments can achieve the construction of prob-
abilities on the σ-algebra F0 only, while one is interested in probabilities
defined on the entire Borel σ-algebra F. We prove that, when the event
structure unfolds a 1-safe net, then unfair executions all belong to some
set of F0 of zero probability. Whence F0 = F modulo 0 always holds,
whereas F0 6= F in general. This yields a new construction of Markovian
probabilistic nets, carrying a natural interpretation that “unfair execu-
tions possess zero probability”.

Keywords: Probabilistic Petri nets, probabilistic event structures, true-concurrency,

probabilistic fairness.

Introduction

The distinction between interleaving and partial orders semantics (also called
true-concurrency semantics), has a deep impact when considering probabilistic
aspects. In true-concurrency models, executions are modeled by traces or config-
urations, i.e., partial orders of events. Corresponding probabilistic models thus
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consist in randomizing maximal configurations, not infinite firing sequences. It
turns out that a central issue in developing true-concurrency probabilistic models
is to localize choices made while the executions progress. In a previous work [4,6],
the authors have introduced branching cells, which dynamically localize choices
along the progress of configurations. In this context, it is natural to introduce the
class of locally finite event structures, in which each choice is causally connected
to only finitely many other choices—as a particular case, every confusion free
event structure is locally finite [20,3]. In locally finite event structures, maximal
configurations are tiled by branching cells. A recursive and non deterministic
procedure allows to scan this set of tiling branching cells—of course, non deter-
minism in the procedure is due to concurrency within the configuration. This
tiling shows that every execution may be seen as a partial order of choices. There-
fore, it is natural to proceed to the randomization of executions by randomizing
local choices and imposing probabilistic independence to concurrent choices.

Although quite natural, the class of locally finite event structures is not gen-
eral enough. Finite 1-safe nets may unfold to non locally finite event structures.
Worse, the class of locally finite event structures is not stable under natural op-
erations such as synchronization product. In this paper, to free our theory from
external constraints on confusion, we consider general event structures with ar-
bitrary confusion. We still try to build a coherent theory of choice for these, with
applications to probabilistic event structures.

As a first contribution, we show that the branching cells that tile a con-
figuration may require infinite ordinals greater than ω for their enumeration.
We classify configurations according to their height, that is the number of limit
ordinals greater than ω needed to enumerate the branching cells that tile the
configuration—thus, for a locally finite event structure, all configurations have
height zero. We show that, for event structures unfolding a finite 1-safe net,
configurations have their height bounded by the number of transitions of the
net. Configurations of strictly positive height turn out to exhibit lack of fairness.
Thus our results provide an analysis of the structure of choice in relation with
fairness in that the height of a configuration can be seen as a measure of its
“unfairness degree”.

A second contribution of our paper concerns the construction of probabili-
ties for event structures with arbitrary confusion. When equipping concurrent
systems with probabilities, the partial orders semantics attaches probabilities to
partial orders of events, not to sequences. Randomizing an event structure is
performed by equipping each “local zone” where a choice occurs with a local
“routing” probability. Accordingly, local probabilities are attached to branching
cells. An event structure is said to be probabilistic when a probability measure is
attached to the space (Ω,F) of maximal configurations equipped with its Borel
σ-algebra. For locally finite event structures, we have shown in [4] that a Kol-
mogorov extension argument allows to infer the existence and uniqueness of a
probability P on (Ω,F) coherent with a given family of local “routing” prob-
abilities attached to branching cells—see also [20] for a similar result valid for
confusion free event structures. For event structures with possibly infinite confu-



sion, however, this construction is not sufficient, mainly because branching cells
do not entirely tile maximal configurations.

The novel idea of this paper is to introduce an increasing family Fn of σ-alge-
bras, where index n ranges over the set of all possible heights for configurations.
F0 captures the information obtained by observing only configurations of height 0
(the fair ones) and Fn captures the information obtained by observing only con-
figurations of height up to n. In particular, if the maximal height for configura-
tions is finite and equal to N , then FN = F, the Borel σ-algebra—we show in
this paper that this property holds for unfoldings of 1-safe nets.

The Kolmogorov extension argument always allows to construct a probability
P0 over F0. However, F0 ⊆ F holds with strict inclusion unless the event structure
is locally finite. The second important result of this paper consists in showing
that, for Markovian probabilistic nets, “unfair executions have zero probability”.
Formally, we show that, for every Borel set A ∈ F, there exist two measurable
sets B,B′ ∈ F0 such that B ⊆ A ⊆ B′ and P0(B′ − B) = 0. Consequently,
P0 extends trivially to the Borel σ-algebra F by adding to F0 all zero probability
sets. With these results we fill the gap that remained in our previous studies and
therefore complete the landscape of true-concurrency probabilistic systems.

Related work. Our study of related work is structured according to the two
contributions of this paper.

The first contribution is concerned with the structure of choice in prime event
structures and nets. Confusion freeness and its variants have been extensively
considered for Petri nets, particularly in the context of stochastic Petri nets [7].
Regarding prime event structures, the notion of cell has been introduced by
Varacca et al. in [20] as equivalence classes of the minimal conflict relation. For
this construction to work, confusion-freeness of the event structure is required.
Cells are minimal zones of the event structure where local choices occur. In-
dependently, the authors of this paper have developed in [2,4,6] the theory of
locally finite event structures, in which confusion freeness is relaxed to kind of
a “bounded confusion”. Branching cells generalize cells in this context. They
still represent zones of local choice. However, unlike cells in confusion free event
structures, branching cells are dynamically defined in that they depend on the
configuration enabling them. Local finiteness guarantees that branching cells are
finite. Restricting ourselves to confusion free or locally finite event structures en-
sures that the structure of choice is “simple” enough. With the present paper,
however, we show that the concept of local choice is valid and useful for general
prime event structures and is still adequately captured by the notion of branch-
ing cell. Thus branching cells appear as the central concept when dealing with
choice in general event structures. In addition, we have characterized fairness
by means of the infinite ordinal (but still countable) needed when incremen-
tally tiling configurations with branching cells. While most authors characterize
fairness with topological tools [19,11], our use of σ-algebras for fairness related
issues is quite new.

The second contribution of this paper relates to probabilistic models for
systems involving concurrency. The definition and specification of probabilistic



systems can be done through process algebra techniques. Probabilistic process
algebra allow to retain performance information on a system while giving its
specifications. According to the different modeling constraints, the definition
of synchronization for probabilistic processes will differ. Several variants have
thus been proposed, such as PCCS [17], TIPP [14], MPA [9], the probabilis-
tic π-calculus [15], PEPA [16], or the κ-calculus [21] developed for biological
applications. The above theories have been developed in the framework of inter-
leaving semantics, where a probability is assigned to a sequence of events once
proper scheduling of non deterministic choices has been performed. In contrast
our work addresses the construction of true concurrency probabilistic models in
which probabilities are assigned to partially ordered executions, not sequences.

In the context of interleaving probabilistic semantics, the main focus has been
and remains on finding appropriate bisimulation relations for correctly testing
and monitoring systems. The original probabilistic bisimulation relation from
the seminal paper [18] has thus been extensively developed and generalized until
recently [13,10]. As an instance of this series of developments, in [10] simulation
relations as well as approximations are studied, relying on techniques of σ-alge-
bras and conditional expectations. The objective is to approximate the state
space by a possibly non-injective labeling of its states, thus giving rise to a
sub-σ-algebra. Our present work also makes use of σ-algebras but in a totally
different way. Our σ-algebras are not attached to the state space but rather
to the space of trajectories (i.e., the maximal configurations) and they capture
the increasing flow of information gathered while observing the system. Our
objectives are not to obtain simulation relations but rather 1/ to develop the
bases needed to equip prime structures with probabilities with no restriction,
2/ to further study their properties when the event structure originates from
a 1-safe net, thus yielding Markov nets, and 3/ to carry over to Markov nets
the fundamental and highly powerful statistical apparatus attached to infinite
behaviours (Law of Large numbers, Central Limit Theorem, etc.). In this paper
we address the two first issues; the reader is referred to [6] for the third one.
Note that the present work shows that the ergodic results of the latter reference
also hold without the local finiteness assumption.

Organization of the paper. The paper is organized as follows. Section 1 quickly re-
views the decomposition of event structures through branching cells, and recalls
the probabilistic construction for locally finite event structures. A generalized
induction is introduced in §2, to deal with choices in case of infinite confusion.
Probabilistic applications are given in §3. Finally, §4 discusses further research
perspectives. Omitted proofs may be found in the research report [5].

1 Background on Probability and Concurrency

We first describe how choices may be distributed on simple examples of nets. We
explain in the same way the randomization that comes with the decomposition
of choices.
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Fig. 1. Two nets (top) and their associated event structures (bottom).

1.1 Branching cells by example.

We recall the construction of branching cells through examples. Formal defini-
tions and results will also be given. Branching cells are best understood in the
case of a finite event structure. In a sense, local finiteness is just the most natural
extension of the finite case.

Consider thus the net N1 depicted in Figure 1, top left, and its (quite trivial)
unfolding event structure E1 depicted on bottom left. Remember that we ran-
domize maximal configurations of unfoldings, hence the space to be randomized
here is simply the set with two elements Ω1 = {(ac), (b)}, where we note (ac)
for the configuration with events a and c, the order between a and c being of
no importance. Note that, although a and c are concurrent events, they are not
independent. On the contrary, their occurrences are strongly correlated, since
any maximal configuration ω1 has the following property: a ∈ ω1 if and only if
c ∈ ω1. Obviously, the set Ω1 with 2 elements cannot be further decomposed; this
shows that concurrency and independence are distinct notions. This also shows
that choices, here between (ac) or (b), are not supported by transitions, places or
events of nets or event structures. Here, the event structure must be considered
as a whole. We shall therefore randomize N1 by means of a finite probability µ1,
i.e., two non-negative numbers µ1(ac) and µ1(b) such that µ1(ac) + µ1(b) = 1.

In the same way, consider also the net N2 depicted on the right column of
Figure 1, top, and its event structure equivalent E2 depicted at bottom-right.
Here, the set to be randomized is Ω2 = {(d), (e)}, so we are given a probability
µ2 on Ω2: µ2(d) + µ2(e) = 1.

Consider now the net N ′ consisting of the two above nets N1 and N2 put side
by side—mentally erase the vertical rule of Fig. 1 to get the picture of net N ′.
The corresponding event structure, say E′, has the property that any event in
E1 is concurrent and independent of any event in E2. To verify this, just observe
that the occurrence of any event in E1 is compatible with the occurrence of any
event in E2; and vice versa. Hence N1 and N2, being atomic units of choice, are
the branching cells that form net N ′. As a consequence, the set Ω′ of maximal
configurations of N ′ has the natural product decomposition Ω′ = Ω1 × Ω2.
It is thus natural to consider the product probability µ′ = µ1 ⊗ µ2 on Ω′.
Hence, for instance, the probability of firing a, c and d is given by µ′(acd) =



76540123 76540123 76540123 76540123
OO

f

OO

g

OO

h

OO

i

76540123 76540123
jjTTTTTTTTTTTT

__?????
??����� 76540123
__?????

??����� 76540123
??����� a

__?????
b

OO

c

OO

d

OO

e

76540123
__?????

??�����
• 76540123

__?????
??�����

• 76540123
__?????

??�����
•

• /o/o
>~ <|
9y 4t
/o *j %e "b  `

f
• /o/o

g
• /o/o

h
•
i

• /o/o

a
• /o/o

b
•

]];;;;;;;

OO AA�������

c
• /o/o

OO AA�������

d
•
e

76540123 76540123 76540123 76540123
OO

f

OO

g

OO

h

OO

i

76540123• 76540123
iiRRRRRRRRRRR

]]:::::
AA�����

• 76540123
]]:::::

AA�����
•

76540123 76540123
OO

f

OO

g

76540123• 76540123
\\99999

BB�����
• 76540123•

Fig. 2. Illustrating the decomposition of nets.

µ1(ac)× µ2(d). Observe the application here of the principle of correspondence
between concurrency and probabilistic independence–see [4,6] for a discussion of
this idea.

It remains to continue the construction in case of synchronisation. For this,
consider the net N depicted on the top line of Figure 2, with the event structure
equivalent E on the right. Observe that net N ′, itself composed of N1 and N2,
stands as the “beginning” of net N . We already know how to randomize events
that occur in the N ′ area of N , thanks to the product decomposition of N ′.
What happens “next” will be randomized by a classical conditioning process.
Let for instance the probability of executing maximal configuration ω = (ac d gi)
to be computed. The prefix of ω in N ′ is v = (ac d). Since we know already
the probability of execution of v = (ac d) in N ′, we consider the system after
configuration v. Hence we delete from N all transitions that either have already
been fired during the execution of v, or either that are now unable to fire. The
resulting net is depicted on bottom left of Figure 2—in the event structure
model, we would call it the future Ev of v, to be detailed below in §1.2. We
now start again the analysis we made in the beginning, and realize that f , g,
h and i being correlated, they belong to a same third branching cell, say N3,
or E3 in the event structure model, and we shall consider a third probability
distribution µ3 on the set Ω3 of maximal configurations of E3. Hence, if µ denotes
the global probability on the set Ω of maximal configurations of E, we get that
µ(ac d gi) = µ1(ac)× µ2(d)× µ3(gi).

Now assume that w = (ace) had fired instead of (ade). Erasing events in-
compatible with w only leave events f and g (see the result on bottom right of
Figure 2). Hence f and g are now still two competing events, but they do not
compete in the same context than previously. We have to consider they form a



fourth branching cell, to which we attach a fourth probability distribution µ4

on associated set Ω4 = {(f), (g)} of maximal configurations. We would have for
instance µ(ac d f) = µ1(ac)×µ2(d)×µ4(f). Since a same event, here f or g, may
appear in different branching cells according to the context brought by the con-
figuration, we say that the decomposition of configurations through branching
cells is dynamic. It is part of the theory that the function µ for which we have
explained the construction does indeed sum up to 1 over the set Ω of maximal
configurations of E—a fact that can be easily checked by hand on this example.
Let us now formalise the construction.

1.2 Formalisation: stopping prefixes and branching cells.

We refer to the research report [5] and to our original publications [3,4] for the
detailed construction and properties of branching cells. Here we will recall some
essential definitions.

Recall that the relation #µ of minimal conflict has been defined by several
authors for an event structure (E,≤,#) as follows:

∀x, y ∈ E, x#µy ⇐⇒ (↓ x× ↓ y) ∩# = {(x, y)},

where ↓ x = {e ∈ E : e ≤ x} represents the set of predecessors of event x.
Define a stopping prefix of event structure E as a subset B ⊆ E such that:

1. B is downward closed: ∀x ∈ B, ∀y ∈ E, y ≤ x ⇒ y ∈ B;
2. B is #µ-closed: ∀x ∈ B, ∀y ∈ E, y#µx ⇒ y ∈ B.

Stopping prefixes of E form a complete lattice with ∅ and E as minimal and
maximal elements. Say that a stopping prefix is initial if it is minimal among
non empty stopping prefixes. In the above example depicted in Fig. 2, E1 and E2

were the two initial prefixes of E. Any event structure may not have an initial
stopping prefix—see the research report [5] for an example of event structure
without initial stopping prefix. However if E is the non empty unfolding of a finite
Petri net, then any stopping prefix B of E contains an initial stopping prefix—in
particular, E itself contains initial stopping prefixes. This is a particular case of
the following result:

Theorem 1. Let E be a non empty event structure with the following property:
there is a constant K ≥ 0 such that, for any finite configuration v of E, at most
K events e ∈ E \ v are such that v ∪ {e} is a configuration. Then for every
nonempty stopping prefix B of E, there is an initial stopping prefix A ⊆ B.

We will always consider event structures satisfying the assumption of Theorem 1,
even if it is not explicitly formulated.

Finally, if v is a configuration of E (that is, a subset of E downward closed
and conflict free), we define the future Ev of v in E as the following sub-event
structure of E:

Ev = {e ∈ E : e is compatible with v} \ v.



If z is a configuration of Ev, then the set-theoretic union v∪ z is a configuration
of E, that we denote v ⊕ z to emphasize that we form the concatenation of v
and z.

Consider the following recursive construction:

1. Pick an initial stopping prefix of E, pick a maximal configuration x0 in it,
and consider the future Ex0 ;

2. Pick an initial stopping prefix of Ex0 , pick a maximal configuration x1 in it,
and consider the future Ex0⊕x1 ;

3. And so on.

Any configuration that can be obtained as some x0 ⊕ . . . ⊕ xn as in the above
construction, or as an increasing union of such, we call a stopped configuration1

of E. A configuration obtained as some x0⊕ . . .⊕xn as in the above construction
is called finitely stopped. The reader that would not know about branching cells
is encouraged to apply this construction to the previous examples.

The several initial stopping prefixes of nested event structures that appear
in the decomposition of some stopped configuration v are called the branching
cells in the decomposition of v. Although there is range for non determinism in
the decomposition of stopped configurations, it is a result that branching cells
encountered in the decomposition of some stopped configuration v only depend
on v. Branching cells are thus intrinsic to stopped configurations. We denote by
∆(v) the set of branching cells that occur in the decomposition of any stopped
configuration v. If v is a finitely stopped configuration, any initial stopping prefix
of Ev is called a branching cell enabled at v.

Specializing to the case where E is the unfolding of some finite 1-safe net,
it is easy to realize in this case that branching cells of E are finitely many, up
to isomorphism of labeled event structures—the labeling originates of course
from the unfolding structure. Furthermore, the isomorphism of labelled event
structures between isomorphic branching cells is unique. If N is the net being
unfolded, we say that the isomorphism classes of branching cells of E are the
local states of N . We use the generic notation x to denote local states of nets.

1.3 The case of locally finite event structures and Markov nets.

Additional properties of branching cells hold if the event structure satisfies the
following property: any event e ∈ E belongs to some finite stopping prefix of E.
In that case, event structure E is said to be locally finite [3,4]. In the remaining of
this paragraph, we consider a locally finite event structure E, maybe originating
from the unfolding of a 1-safe Petri net.

The first property is that any branching cell is finite. Furthermore, any max-
imal configuration of E is stopped. We will give an interpretation of the latter
fact through σ-algebras in a next section (§2).

The next steps forward to get to the randomization of locally finite event
structures are the following—the following definition of a probabilistic event
1 Such configurations are called recursively stopped in [4,6].



structure is general, and does not require E to be locally finite. We denote by
ΩE the set of maximal configurations of event structure E—this set is always
non empty. The Borel σ-algebra on E is the σ-algebra generated by subsets of
the form

↑ v = {ω ∈ Ω : v ⊆ ω},

for v ranging over the finite configurations of E. We denote by F the Borel
σ-algebra on ΩE . We say the event structure E is probabilistic if we are given a
probability measure P on the measurable space (ΩE ,F). Next, consider for each
branching cell x of E the set Ωx of maximal configurations of x, and a finite
probability distribution px on Ωx. Then define the following function p, for v
ranging over the set of finitely stopped configurations of E:

p(v) =
∏

x∈∆(v)

px(v ∩ x), (1)

where we recall that ∆(v) denotes the set of branching cells involved in the
decomposition of v. Then v∩x belongs to Ωx, and thus the finite product above
is well defined. It is a result that there is a unique probability measure P on
(Ω,F) such that P(↑ v) = p(v) for any finitely stopped configuration v [3,4]. This
result makes use of the local finiteness assumption, the crucial point being that
maximal configurations of E are stopped.

Assume, furthermore, that the locally finite event structure E is the unfolding
of some 1-safe net N . Then we require the family (px)x to satisfy the following
additional property: if x and x′ are isomorphic branching cells, then so are px

and px′ . Formally, px′(ω′) = px(ω), where ω is an arbitrary maximal configura-
tion of x, ω′ = φx,x′(ω), and φx,x′ is the unique isomorphism of labelled event
structures from x to x′. Let x denote the local state associated with x and x′.
Since φx,x′ is unique, it makes sense to consider the set Ωx of maximal configu-
rations of x, and the probability distribution px attached to it, derived from the
various px’s. Such a px is called a local transition probability.

According to the previous result, the (finite) family of local transition proba-
bilities defines a unique probability measure P on the space (Ω,F). Call Markov
net a net equipped with such a probability measure. Markovian and ergodic
properties of Markov nets were studied in [1,6].

The aim of this paper is to generalise the above construction to an arbitrary
1-safe net, without the local finiteness assumption.

2 Non locally Finite Unfoldings and the Height of Nets

In this section we introduce a new notion of height for nets, which formalizes
our informal discussion in the introduction regarding fairness.

Let us first analyze non locally finite unfoldings on an example. Let N be
the 1-safe net depicted in Fig. 3, top. The unfolding E of N is depicted in
bottom-left. Events ai, bi and ci, for i = 1, 2, . . . , are respectively labeled by
transitions a, b and c. Events named d, e and f are labeled by transitions d, e
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Fig. 3. A 1-safe net that unfolds to a non locally finite event structure.

and f respectively. E has a unique initial stopping prefix, namely x1 = {a1, b1}.
Observe that the smallest stopping prefix that contains d is E \ {e, f}, since
d#µ ci for all i = 1, 2, . . . , and thus E is not locally finite. The finitely stopped
configurations associated with x1 are (a1) and (b1). Now the future E(b1) is
depicted in Fig. 3, bottom-right. It contains the two branching cells {c1, d} and
{e, f}. On the other hand, the future E(a1) is isomorphic to E. Repeating this
process, we find all stopped configurations of E. We describe them as follows:
let r0 = ∅, and rn = a1 ⊕ · · · ⊕ an, for n = 1, 2, . . . . Putting sn = rn−1 ⊕ bn for
n ≥ 1, stopped configurations containing bn must belong to the following list:

sn, sn ⊕ cn, sn ⊕ d, sn ⊕ d⊕ e, sn ⊕ d⊕ f, n ≥ 1 . (2)

All stopped configurations are those listed in (2), plus all rn for n ≥ 0, and
finally the infinite configuration a∞ = (a1, a2, . . . ). Branching cells are computed
accordingly. They belong to the following list: xn = {an, bn}, x′n = {cn, d}, n ≥ 1,
or x′′ = {e, f}. This shows in passing that branching cells can be all finite without
E being locally finite. On the other hand, the set ΩE of maximal configurations
is described by:

ΩE =
{
a∞ ⊕ d⊕ e, a∞ ⊕ d⊕ f

}
∪

{
sn ⊕ cn, sn ⊕ d⊕ e, sn ⊕ d⊕ f, n ≥ 1

}
.



As a consequence, a∞ ⊕ d ⊕ e and a∞ ⊕ d ⊕ f are two maximal configurations
that are not stopped. This contrasts with the case of locally finite unfoldings, as
we mentioned above.

We may however reach the missing maximal configurations ωe = a∞ ⊕ d⊕ e
and ωf = a∞ ⊕ d ⊕ f by a recursion of higher order than ω. Indeed, a∞ is a
stopped configuration of E. Its future is the simple event structure with 3 ele-
ments d � e, d � f , and e#f . Ea∞ has two branching cells, namely {d} and
{e, f}. Hence if we authorize to perform concatenation, not only with finitely
stopped configurations as left-concatenated element, but also on stopped con-
figurations such as a∞, we reach more configurations. In this example, in one
additional step, we reach the missing elements ωe and ωf of ΩE . We formalize
and extend the above discussion in a general context next.

Let E be the unfolding of a 1-safe net N . We set X−1 = {∅}, and we define
inductively:

for n ≥ 0, Xn =
{
u⊕ v : u ∈ Xn−1, and v is stopped in Eu

}
.

It follows from this definition that Xn−1 ⊆ Xn for all n ≥ 0, and that X0 is the
set of stopped configurations of E. Then we define a non-decreasing sequence of
associated σ-algebras of ΩE as follows: For n ≥ 0, Fn is the σ-algebra generated
by arbitrary unions of subsets of the form ↑ (u⊕v), with u ∈ Xn−1 and v finitely
stopped in Eu. Then Fn ⊆ Fn+1 for all n ≥ 0 since Xn ⊆ Xn+1. In case of locally
finite unfoldings, we have the following:

Proposition 1. If E is locally finite, then F = F0.

Example 1. That F = F0 is not true in general. For instance, in the above exam-
ple of Figure 3, consider A =↑ (a∞ ⊕ d⊕ f). Then A /∈ F0. Indeed, considering
the σ-algebra G = {↑ a∞ ∩K, K ∈ F0}, the description that we gave of finitely
stopped configurations shows that G = {∅, ↑ a∞}. This implies that A /∈ F0.

The following result generalizes the observation made on the above example:
maximal configurations are reached after a finite number of (infinite) steps.

Theorem 2. Let N be a 1-safe net with p transitions. Let E be the unfolding
of N , and construct as above the sequences (Xn)n and (Fn)n. Then ΩE ⊆ Xp

and F ⊆ Fp+1.

Definition 1 (height). The height of a maximal configuration ω ∈ ΩE is the
smallest integer q such that ω ∈ Xq. The height of a 1-safe net is the smallest
integer q such that ΩE ⊆ Xq.

Theorem 2 says that 1-safe nets have finite height, less than the number of
transitions. Nets with locally finite unfoldings have height 0, although all nets
of height 0 need not to have a locally finite unfolding, as shown by the example
of the double loop depicted on Fig. 4.
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Fig. 4. A net with height 0 and infinite branching cells. A prefix of the (unique and
infinite) initial stopping prefix x0 of the unfolding is depicted at right. To get the entire
unfolding, add a fresh copy of x0 after each event ci,j , i, j ≥ 1, and continue recursively.
Maximal configurations of x0 have the form ωn,m = a1⊕· · ·⊕an⊕b1⊕. . . bm⊕cn+1,m+1,
with n, m ≥ 0, or ω∞ = a1 ⊕ b1 ⊕ a2 ⊕ b2 ⊕ · · · . Any maximal configuration ω of
the unfolding is a finite concatenation of ωn,m’s, ended with a ω∞ , or an infinite
concatenation of ωn,m’s. The net has therefore height zero.

3 Application to the Construction of Probabilistic Nets

From the result on σ-algebras stated in Th. 2, one may wish to construct a
probability measure on (ΩE ,F) by using recursively and finitely many times
formula (1). For locally finite unfoldings, such a construction amounts to taking
a projective limit of measures (see [2]). We thus want to take nested projective
limits of measures. Although this procedure would apply to any event structure
(satisfying the hypotheses of Th. 1), considering unfoldings of nets brings a
surprising simplification.

3.1 Analyzing an Example.

Let us informally apply this construction to the example depicted in Fig. 3; jus-
tifications of the computations that we perform will be given below. We have al-
ready listed configurations from X0 and associated branching cells xn = {an, bn},
x′n = {cn, d}, n ≥ 1, and x′′ = {e, f}. With a∞ = (a1, a2, . . . ), configurations
from X1 are a∞ ⊕ d, a∞ ⊕ d ⊕ e and a∞ ⊕ d ⊕ f (concatenation of a∞ with
stopped configurations of Ea∞). Hence, extending the definition of branching
cells to initial stopping prefixes in the future of configurations from X1, we
add x′′′ = {d} and the already known x′′. Hence the net has four generalized
local states (=classes of generalized branching cells) x = {a, b}, x′ = {c, d},
x′′ = {e, f} and x′′′ = {d}. Consider µ, µ′, µ′′ and µ′′′, probabilities on the
associated sets Ωx, Ωx′ , Ωx′′ and Ωx′′′ . For a finite configuration v ∈ X0 as
listed in (2) and thereafter, the probability P

(
↑ v

)
is computed by the product



formula (1). Every maximal configuration ω belongs to X1, and that some of
them belong to X0. We may thus ask: what is the probability that ω ∈ X0?
Using formula (1), and recalling the notation rn = a1 ⊕ · · · ⊕ an, we have:

P{ω /∈ X0} = P{ω ⊇ a∞, ω 6= a∞} ≤ P{ω ⊇ a∞} = lim
n→∞

P{ω ⊇ rn} = lim
n→∞

αn ,

where parameter α = µ(a) is the probability of choosing transition a for a token
sitting on the left most place of the net.

We thus obtain that P(X1 \ X0) = 0 whenever α < 1 (note that α < 1 is
a natural situation). In other words, configurations in X1 are unfair, since they
have infinitely many chances to enable local state x′ but never do, and thus they
have probability zero. This is of course an expected result—see, e.g., [12] for an
account on probabilistic fairness. We shall now see that this situation is indeed
general, for Markov nets.

3.2 Markov Nets of First Order.

The first result we have is the following:

Theorem 3. Let N be a 1-safe net, and let µx be a local transition probability
for every local state x of N . For each finitely stopped configuration v, let p(v) be
defined by:

p(v) =
∏

x∈∆(v)

µx(v ∩ x) , (3)

where x denotes the isomorphism class of branching cell x. Then there is a
unique probability measure P0 on (ΩE ,F0) such that P0

(
↑ v

)
= p(v) for all

finitely stopped configurations v. The pair (N , (µx)x), where x ranges over the
set of all local states of N , is called a Markov net of first order.

Comment—For simplicity, the above theorem is formulated only for the case
where each local state x has the property that Ωx is at most of countable car-
dinality. In general we would need to consider subsets of the form ↑x z := {w ∈
Ωx : z ⊆ w}, for z ranging over the finite configurations of x, instead of the
mere singletons {v ∩ x}.

Observe the difference with the result stated in §1.3 for nets with locally
finite unfoldings. The probability constructed in Th. 3 is defined only on F0,
and cannot measure in general all Borel subsets. We will see that this is actually
not a restriction (see Th. 4 below). In case E is locally finite, we see that both
constructions of probability are the same, since F = F0 by Prop. 1, and since
formula (1) and (3) are the same.

3.3 Completion of Markov Nets of First Order to Markov Nets.

We now formalize the result observed on the example above (§3.1), that there
is “no room left” for maximal configurations ω not in X0. For this we use the



notions of complete and of completed σ-algebras. Define first the symmetric
difference A4A′ between two sets A and A′ by A4A′ = (A \ A′) ∪ (A′ \ A).
Let (Ω,F, P) be a probability space. Say that a subset A ⊆ Ω is P-negligible (or
simply negligible if no confusion can occur) if there is a subset A′ ∈ F such that
A ⊆ A′ and P(A′) = 0. Remark that, in this definition, A is not required to be
in F. The σ-algebra F is said to be complete (with respect to probability P) if
F contains all P-negligible subsets. For any σ-algebra F, a σ-algebra H is said to
be a completion of F (w.r.t. P) if H is complete, and if for every A′ ∈ H, there is
a A ∈ F such that A4A′ is negligible. It is well known that every σ-algebra F
has a unique completion, which is called the completed σ-algebra of F [8].

Theorem 4. Let N and (µx)x define a Markov net of first order. We assume
that µx(↑ y) > 0 for any local state x and for any finite configuration y of x.

Let P0 be the probability on (ΩE ,F0) constructed as in Th. 3, and let H be
the completed σ-algebra of F0. Then F ⊆ H, and thus P0 extends to a unique
probability P on (ΩE ,F), where F is the Borel σ-algebra of ΩE.

Comment——The case when F0 6= F brings an obstruction to a purely topolog-
ical or combinatorial construction of the probability P on F. A detailed reading
of the proof reveals that our construction indeed combines combinatorial argu-
ments that use the notion of height for nets with measure theoretic tools.

4 Conclusion

We have shown how to define and construct probabilistic Petri nets for 1-safe net
with arbitrary confusion. The basic idea is that choice is supported by the notion
of branching cells, so independent dice can be attached to each branching cell in
order to draw maximal configurations at random.

Whereas a countable sequence of drawings is enough for nets with locally
finite unfolding, an induction of higher order than ω, although still countable,
is needed in the more general case. Surprisingly enough, for Markov nets, this
higher order induction is actually not required.

Limitations of this approach are encountered when we try to construct ef-
fective local transition probabilities. Although nets with non locally finite un-
foldings can have finite branching cells, we face in general the case of infinite
branching cells x, with associated spaces Ωx being infinite also. Worst is when
Ωx is not countable. We hope that such more difficult cases can be reached by
regarding them as products of simpler probabilistic nets. Composition of true-
concurrent probabilistic processes is a field that we currently explore.
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