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Abstract

Modularity is advocated as a solution for the design of large sys-
tems, the mathematical translation of this concept is often that of
compositionality. This paper is devoted to the issues of composition-
ality for modular code generation, in dataflow synchronous languages.

As careless reuse of object code in new or evolving system designs
fails to work, we first concentrate on what are the additional features
needed to abstract programs for the purpose of code generation: we
show that a central notion is that of scheduling specification as result-
ing from a causality analysis of the given program. Using this notion,
we study separate compilation for synchronous programs. An entire
section is devoted to the formal study of causality and scheduling
specifications.

Then we discuss the issue of distributed implementation using an
asynchronous medium of communication. Our main results are that
it is possible to characterize those synchronous programs which can
be distributed on an asynchronous architecture without loosing se-
mantic properties. Two new notions of endochrony and isochrony are
introduced for this purpose. As a result, we derive a theory for syn-
thesizing additional schedulers and protocols needed to guarantee the
correctness of distributed code generation.

Corresponding algorithms are implemented in the framework of the
DC+ common format for synchronous languages, and the V4-release
of the Signal language.
Keywords : synchronous languages, modularity, distributed code gen-
eration, separate compilation, desynchronization.
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1 Rationale

Modularity is advocated as the ultimate solution for the design of large sys-
tems, and this holds in particular for embedded systems, for both software
and architecture. Modularity allows the designer to scale down design prob-
lems, and facilitates the reuse of pre-existing modules.

The mathematical translation of the concept of modularity is often that
of compositionality. Paying attention to the composition of specifications
[Manna and Pnueli 1992] is central to any system model involving concur-
rency or parallelism. More recently, significant effort has been devoted
toward the introduction of compositionality in verification, which aims at
deriving proofs of large programs from partial proofs involving (abstrac-
tions of) components [Manna and Pnueli 1995]. See also the whole volume
[de Roever et al., Eds, 1998] where a number of papers are devoted to this
topic.

Compilation and code generation has been given less attention from this
very same point of view. This is unfortunate, as it is critical for the designer
to scale down the design of large systems by 1/ storing modules like black-
box “procedures” or “processes” with minimal interface description, and 2/
generating code which uses these modules only on the basis of their interface
description, while preserving in any case the correctness of the design. This
paper is devoted to the issues of compositionality of dataflow synchronous
languages, aimed at modular code generation.

Dataflow synchrony is rather a paradigm than a set of concrete languages
or visual formalisms [Benveniste and Berry, 1991], hence it is desirable to
abstract from such and such particular language. Thus we have chosen to
work with Synchronous Transition Systems (sts), a lightweight formalism
proposed by Amir Pnueli, general enough to capture the essence of the syn-
chronous paradigm. This is the topic of section 2. Using this formalism, we
study in section 2 the composition of specifications.

Most of our effort is then devoted to issues of compositionality that are
critical to code generation. Section 3 contains an informal discussion of this
problem. It is known that careless storing of object code for further reuse
in systems design fails to work. Hence we first concentrate on the addi-
tional features that are required to abstract programs for the purpose of
code generation and reuse : we show that a central notion is that of schedul-
ing specification as resulting from a causality analysis of the given program.
Related issues of compositionality are investigated. Then we show that there
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is some appropriate level of “intermediate code”, which at the same time
allows us to scale down code generation for large systems, and still main-
tains correctness at the system integration phase. Finally we discuss the
side issue of distributed implementation using an asynchronous medium of
communication.

In section 4 we formally study desynchronization. We first formalize what
we mean by desynchronization. Our theory requires that the communication
medium or operating system : 1/ shall not loose messages, and 2/ shall pre-
serve the total ordering of messages, for each flow individually (but, of course,
not globally). These assumptions are typically satisfied by services offered by
reliable communication media or operating system. Our main result is that it
is possible to check, directly on the original synchronous specification, whether
semantic properties will or will not be preserved after desynchronization. The
two fundamental notions are endochrony, which guarantees that, for a single
sts, desynchronization is a “revertible” transformation, and isochrony, which
guarantees that, for a pair of sts, desynchronizing communications is also a
“revertible” transformation. In some sense formalized in section 4, semantics
is preserved by desynchronization when these conditions are satisfied.

Then section 5 is devoted to a formal study of causality. In many re-
spects, this formal study is important. First, it is instrumental in getting
executable, deterministic code from a given sts specification. Then, it is a
cornerstone of proper abstractions for separate compilation and reuse. We
pay strong attention to this study, using a technique not unlike the one used
for analyzing causality in Esterel [Berry, 1995]. Our analysis encompasses
the case of arbitrary data types, and suitable abstractions are used for this
purpose.

In the conclusion we discuss how our views on compositionality are mod-
ified by this study. We sketch the resulting system design methodology, and
we briefly mention the implementation resulting from this theory, mostly
developed in the framework of the Esprit-SACRES project.

2 Specification

This section discusses compositionality aspects of specifications, first infor-
mally, and then formally.
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2.1 The essentials of the synchronous paradigm

There have been several attempts to characterize the essentials of the syn-
chronous paradigm [Berry, 1989] [Benveniste and Berry, 1991] [Halbwachs, 1993].
With some experience, we feel that the following features are indeed essential
and sufficient for characterizing this paradigm :

1. Programs progress via an infinite sequence of reactions, informally writ-
ten :

P = Rω

where R denotes the set of legal reactions1.

2. Within a reaction, decisions can be taken on the basis of the absence of
some events, as exemplified by the following typical statements, taken
from Esterel, Lustre, and Signal respectively :

present S else ‘stat’

y = current x

y := u default v

The first statement is self-explanatory. The “current” operator deliv-
ers the most recent value of x at the clock of the considered node, it
thus has to test for absence of x before producing y. The “default”
operator delivers its first argument when it is present, and otherwise
its second argument.

3. Communication is performed via instantaneous broadcast. In other
words, when it is defined, parallel composition is always given by the
conjunction of associated reactions :

P1‖P2 = (R1 ∧ R2)
ω

The above formula is a perfect definition of parallel composition when
the intention is specifying. In contrast, if producing executable code
was the intention, then this definition has to be compatible with an
operational semantics. This very much complicates the “when it is
defined” prerequisite2.

1In fact, “reaction” is a slightly restrictive term, as we shall see in the sequel that
“reacting to the environment” is not the only possible kind of interaction a synchronous
system may have with its environment.

2For instance, most of the effort related to the semantics of Esterel has been directed
toward solving this issue satisfactorily [Berry, 1995].
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Of course, such a characterization of the synchronous paradigm makes the
class of “synchrony–compliant” formalisms much larger than usually consid-
ered. However it has been our experience that these were the key features of
the techniques we have developed so far.

Clearly, this calls for the simplest possible formalism comprizing the above
features, and on which fundamental questions should be investigated. This
is one of the objectives of the sts formalism described next.

2.2 Synchronous Transition Systems (sts)

Synchronous Transition Systems (sts).

We assume a vocabulary V which is a set of typed variables. All types are
implicitly extended with a special element ⊥ to be interpreted as “absent”.
Some of the types we consider are the type of pure signals with domain {t},
and booleans with domain {t, f} (recall both types are extended with the
distinguished element ⊥).

We define a state s to be a type-consistent interpretation of V , assigning
to each variable v a value s[v] over its domain. We denote by S the set of
all states. For a subset of variables V ⊆ V , we define a V -state to be a
type-consistent interpretation of V .

We define a Synchronous Transition System (sts) to be a triple

Φ = 〈V, Θ, ρ〉

consisting of the following components :

• V is a finite set of typed variables,

• Θ is an assertion characterizing the set of initial states : {s | s |= Θ}.

• ρ ⊆ S × S is the transition relation relating past and current states
denoted by s− and s respectively3. For example the assertion x = x−+1
states that the value of x in s is greater by 1 than its value in s−. If
(s−, s) |= ρ, we say that state s− is a ρ-predecessor of state s.

3Usually, states and primed states are used to refer to current and next states. This is
equivalent to our present notation. We have preferred to consider s− and s, just because
the formulas we shall write mostly involve current variables, rather than past ones. Using
the standard notation would have resulted in a burden of primed variables in the formulas.
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Runs.

A run σ : s0, s1, s2, . . . is a sequence of states such that

s0 |= Θ
∧

∀i > 0 , (si−1, si) |= ρ (1)

Composition.

The composition of two sts Φ = Φ1 ‖ Φ2 is defined as follows :

V = V1 ∪ V2

Θ = Θ1 ∧ Θ2

ρ = ρ1 ∧ ρ2 ,

the composition is thus the pairwise conjunction (denoted by ∧) of initial
and transition relations. Composition is thus commutative and associative.
Note that, in sts composition, interaction occurs through common variables
only.

Notations for sts.

For the convenience of specification, sts have a set of declared variables,
written Vd, implicitly augmented with associated auxiliary variables : the
whole constitutes the set V of variables. We shall use the following generic
notations in the sequel :

• b, c, v, w, . . . denote sts declared variables, and b, c are used to refer to
variables of boolean type.

• for v a declared variable, hv ∈ {t,⊥} denotes its clock :

[hv 6= ⊥] ⇔ [v 6= ⊥]

• for v a declared variable, ξv denotes its associated state-variable, defined
by :

if hv then ξv = v
else ξv = ξ−v

(2)

Values can be given to s0[ξv] as part of the initial condition. Then, ξv

is always present after the 1st occurrence of v. Note that ξξv
= ξv, thus

only state variables of declared variables have to be considered.
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Stuttering.

As modularity is desirable, an sts should be permitted to do nothing while its
environment is possibly working. This feature has been yet identified in the
litterature and is known as stuttering invariance or robustness [Lamport, 1983a,
Lamport, 1983b]. Stuttering invariance of an sts Φ is defined as follows : if

σ : s0, s1, s2, . . .

is a run of Φ, so is

σ′ : s0,⊥s0
, . . . ,⊥s0︸ ︷︷ ︸

0≤ #{⊥s0
} <∞

, s1,⊥s1
, . . . ,⊥s1

, s2,⊥s2
, . . . ,⊥s2

, . . . , (3)

where, for every state s, symbol ⊥s denotes the silent state associated with
s, defined by :

∀v ∈ Vd :

{
⊥s[v] = ⊥
⊥s[ξv] = s[ξv]

.

This means that state variables are kept unchanged, whenever their associ-
ated declared variables are absent. Note that stuttering invariance allows for
runs possessing only a finite number of present states.

We require in the sequel that all sts we consider are stuttering invariant.
They should indeed satisfy :

[
(s−, s) |= ρ

]
⇒

[
(s−,⊥s−) |= ρ

]
∧ [ (⊥s− , s) |= ρ ] (4)

By convention, we shall simply write ⊥ when mentioning a particular state
s is not required.

Examples of Transition Relations :

• A selector :

if b then z = u else z = v . (5)

Note that the “else” part corresponds to the property “ [b = f] ∨ [b =
⊥] ”.
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• A register :

if hz then v = ξ−z else v = ⊥ . (6)

where ξz is the state variable associated with z as in (2), and ξ−z denotes
its past value. The more intuitive interpretation of this statement is :
vn = zn−1, where index “n” denotes the instants at which both v and
z are present (their clocks are specified to be equal). Decrementing a
register would simply be specified by :

if hz then v = ξ−z − 1 else v = ⊥ , (7)

where z is of integer type. Note that both statements (6,7) imply the
equality of clocks :

hz = hv .

• Testing for a property :

if hv then b = (v ≤ 0) else b = ⊥ . (8)

Note that a consequence of this definition is, again,

hv = hb .

• A synchronization constraint :

(b = t) = (hu = t) , (9)

meaning that the clock of u is the set of instants where the boolean
variable b is true.

Putting (5,7,8,9) together yields the sts :

u

u

u

-1

time

z

if b then z = u else z = v
∧ if hz then v = ξ−z − 1 else v = ⊥
∧ if hv then b = (v ≤ 0) else b = ⊥
∧ hv = hz = hb

∧ (b = t) = (hu = t)
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A run of this sts for the variable z is depicted on the figure above. Each
time u is received, z is set to the value of u. Then z is decremented by one
at each activation cycle of the sts, until it reaches the value 0. Immediately
after this, a fresh u can be read, and so on. Note the schyzophrenic nature of
the “inputs” of this sts. While the value carried by u is an input, the instant
at which u is read is not : reading of the input is on demand-driven mode.
This is reflected by the fact that inputs of this sts are the pair {activation
clock h, value of u when it is present}.

Using the primitives (5,6,8,9), dataflow synchronous languages such as
Lustre [Halbwachs, 1993] and Signal [LeGuernic et al., 1991] are easily
encoded. Note that primitives (5,6,8,9) and their composition are stuttering
invariant sts, i.e., they satisfy condition (4).

3 Compositionality in code generation : in-

formal analysis

In this section, we informally discuss issues of compositionality aiming at code
generation. After a brief review of the problems, we acknowledge the impor-
tance of extending our basic sts model with preorders ; preorders are useful
to capture causality, to specify schedulings, and to model communications
in a distributed environment. Also, preorders are instrumental in handling
abstractions. Then we discuss causality analysis and we analyse a few simple
examples. Separate compilation is discussed, using preorders : we show that
separate compilation requires a new level of intermediate code which allows
us to store and reuse modules in a correct way. Finally we discuss the issue
of distributed code generation on an asynchronous architecture.

3.1 What is the problem ?

Basically, the problem is twofold : 1/ bruteforce separate compilation can be
the source of deadlock, and 2/ generating distributed code is generally not
compatible with maintaining strict compliance with the synchronous model
of computation. We illustrate briefly these two issues next.

Naive separate compilation may be dangereous. This is illustrated
in the following picture :
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The first diagram depicts the “dependencies” associated with some sts spec-
ification : the 1st output needs the 1st input for its computation, and the 2nd
output needs the 2nd input for its computation. The second diagram shows
a possible scheduling, corresponding to the standard scheduling : 1/ read in-
puts, 2/ compute reaction, 3/ emit outputs. This gives a correct sequential
execution of the sts. In the third diagram, an additional dependency is en-
forced by setting the considered sts in some environment which reacts with
no delay to its inputs : a deadlock is created. In the last diagram, however,
it is revealed that this additional dependency caused by the environment in-
deed was compatible with the original specification, and no deadlock resulted
from applying it. Here, deadlock was caused by the actual implementation
of the specification, not by the specification itself.

The traditional answer to this problem by the synchronous programming
school has been to refuse considering separate compilation : modules for
further reuse should be stored as source code, and combined as such before
code generation. We shall later see that this does not need to be the case,
however.

Desynchronization. This is illustrated in the following picture :

This figure depicts a communication scenario : two processors, modelled as
sequential machines, exchange messages using an asynchronous medium for
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their communications. The natural structure of time is that of a partial or-
der, as derived from the directed graph composed of 1/ linear time on each
processor, and 2/ communications. This structure for time does not match
the linear time corresponding to the infinite sequence of reactions which is
the very basis of synchronous paradigm.

The need for reasoning about causality, schedulings, and communi-
cations. This need emerges from the above discussion. In the next subsec-
tion, we shall introduce a unique framework to handle these diverse aspects :
the formalism of scheduling specifications.

3.2 Scheduling specifications

Causality relations have been investigated for several years in the past in the
area of models of distributed systems and computations. The classical ap-
proach considers a classical automaton, in which concurrency is modelled via
an “independence” equivalence relation among the labels of the transitions.
Since independence is generally not a symmetric relation (actions of writing
and reading are not symmetric), the theory of traces [Aabelsberg and Rozenberg, 1988]
has been extended to so-called “semi-commutations” [Clerbout and Latteux, 1987],
and this technique has been recently applied to the implementation of reac-
tive automata on distributed architectures [Caillaud et al., 1997]. Causality
preorder relations have also been used in a different way in [LeGuernic and Gautier, 1991],
and also in [Benveniste Caspi et al., 1994], from which we borrow the essen-
tials of the present technique. In addition to modelling causality relations,
preorders can be used to specify scheduling requirements, they can also be
used to model send/receive type of communications.

sts with scheduling specifications

We consider a set V of variables. A preorder on the set V is a relation
(generically denoted by �) which is reflexive (x � x) and transitive (x � y
and y � z imply x � z). To � we associate the equivalence relation ≍,
defined by x ≍ y iff x � y and y � x. If equivalence classes of ≍ are
singletons, then � is a partial order. Preorders are naturally specified via
(possibly cyclic) directed graphs, denoted :

x → y for x, y ∈ V , (10)
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by defining x � z iff there is a path originating from x and terminating in z.
The supremum of two preorders, written

�1 ∨ �2 , (11)

is the least preorder which is an extension of �1 and �2. The set of all
preorders on V is denoted ΛV .

A labelled preorder on V is a preorder on V , together with a value s[v]
for each v ∈ V over its domain. A state ~s is a labelled preorder. The set of
all states is denoted ~S. As before for sts, we denote by S the set of all type
consistent intepretations of V . Thus ~S = S × ΛV , and a state ~s decomposes
as

~s = (s,�V ) . (12)

An sts with scheduling specifications is a triple ~Φ = 〈V, Θ, ~ρ 〉, where V, Θ
are as before, and

~ρ ⊂ S × ~S = S × S × ΛV , (13)

i.e., ~ρ relates the value for the tuple of previous variables to the current state.
By convention, transition relation ~ρ is trivially extended to a transition

on ~S, i.e., a subset of ~S × ~S, and runs are sequences s0, s1, s2, . . . that are
consistent with transition relation (13).

We shall denote by ρ the transition relation on S obtained by projecting ~ρ
on S ×S, i.e., by ignoring the preorder component. Note that Φ = 〈V, Θ, ρ 〉
is an ordinary sts. The composition of two sts with scheduling specifications

~Φ = ~Φ1 ‖ ~Φ2 , (14)

is defined as follows :

1. Associated underlying sts (without scheduling specifications) are sim-
ply composed :

Φ = Φ1 ‖ Φ2 . (15)

Then we need to define how preorders are combined.
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2. For s a state for Φ, for i = 1, 2 let si be the restriction of s to Vi, we
know that si is a state for Φi. Let ~si = (si,�Vi

) be the corresponding

state for ~Φi, cf (12). Define

�V =def �V1
∨ �V2

(cf. (11), (16)

~s =def (s,�V ) . (17)

Thus (15,16,17) define how states of the components ~Φi are combined to-

gether, building up the states and runs of ~Φ = ~Φ1 ‖ ~Φ2. Again, composition
‖ as extended to sts with scheduling specifications, is commutative and
associative.

Notations for scheduling specifications

We now introduce convenient notations for the graphs generating the above
introduced preorders. The notation u > v corresponds to the edge
(10). For b a variable of type bool∪{⊥}, and u, v variables of any type, the
following generic conjunct will be used to specify preorders :

if b then u > v , resp. if b else u > v

also written :

u
b

> v resp. u
b

> v

In subsection 5.1, it is shown that scheduling specifications have the following
properties :

x
b

> y ‖ y
c

> z ⇒ x
b ∧ c

> z (18)

x
b

> y ‖ x
c

> y ⇒ x
b ∨ c

> y (19)

Properties (18,19) can be used to compute input/output abstractions of
scheduling specifications :

h l

kch

b l

(a (b c)) ka

b

h

c

l

k
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In this figure, the diagram on the left depicts a scheduling specification in-
volving local variables. These are hidden in the diagram on the right, using
rules (18,19).

Inferring scheduling specifications from causality analysis

We now provide a technique for inferring schedulings from causality analysis
for sts specified as conjunctions of the particular set of generic conjuncts we
have introduced so far. Considering this restricted set of generic conjuncts is
justified by the fact that 1/ all known synchronous languages can be encoded
using this set of basic conjuncts, and even more, 2/ these primitives allow
to express the most general synchronization mechanisms that are compatible
with the paradigm of perfect synchrony [Benveniste et al., 1992]. We recall
next this set of basic conjuncts for the sake of clarity :

if b then w = u
else w = v

u b > w

w = f(u1, . . . , uk)
hw = hu1

= . . . = huk

}

(20)

In addition to the set (20) of primitives, state-variable ξv associated to vari-
able v can be used on the right hand side of each of the above primitive
statements. The third primitive involves a conjunction of statements that
are considered jointly. Later on, in the examples, we shall freely use nested
expressions such as “if b then w = expr”, where “expr” denotes an expres-
sion built on the same set of primitives. It is understood that such expressions
need to be expanded prior to applying the rules of formulas (21) given next.

In formulas (21), each primitive statement has a scheduling specification
associated with it, given on the corresponding right hand side of the table.
Given an sts specified as the conjunction of a set of such statements, for each
conjunct we add the corresponding scheduling specification to the considered
sts. Since, in turn, scheduling specifications themselves have scheduling
specifications associated with them, this mechanism of adding scheduling
specifications must be applied until fixpoint is reached. Note that applying
these rules until fixpoint is reached takes at most two successive passes. In
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formulas (21), labels of schedulings are expressions involving variables in the
domain {⊥, f,t} ordered by {⊥ < f < t} ; with this in mind, expressions
involving the symbols “∧” (min) and “∨” (max) have a clear meaning.

(R-1) ∀u hu > u

(R-2)
if b then w = u

else w = v
⇒





b hb ∧ (hu∨hv)
> hw

hu
b ∧ hu > hw

hv
b ∧ hv > hw

u b ∧ hu > w

v b ∧ hv > w

(R-3) u b > w ⇒ b > hw

(R-4)
w = f(u1, . . . , uk)

hw = hu1
= . . . = huk

}
⇒ ui

hw > w

(21)

Note that there is no rule involving variables of the form ξ−z , as previous
state variables are available prior to starting the current reaction and thus
do not participate to the causality calculus. Rules (R-1,. . . ,R-4) are formally
justified in section 5. We briefly report the corresponding results. For P an
sts, first apply Rules (R-1,. . . ,R-4) until fixpoint is reached : this yields an
sts we call sched(P). Then, a sufficient condition for P to have a unique
deterministic run is :

1. sched(P) is circuitfree at each instant, meaning that it is never true
that

x1
b1 > x2

b2 > x1

and

(b1 ∧ b2 = t)
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where x1 and x2 are distinct variables.

2. sched(P) has no multiple definition of variables at any instant, meaning
that, whenever

if b1 then x = exp1

∧ if b2 then x = exp2

holds in P and the exp1 and exp2 are different expressions, then

b1 ∧ b2 = t

never holds in P.

Then P is said to be executable, and sched(P) provides (dynamic) schedul-
ing specifications for this run. Note that proof obligations resulting from
the above two conditions are generally not automatically provable, therefore
abstractions may have to be considered.

Summary. What do we have at this stage ?

1. sts composition is just the conjunction of constraints.

2. Scheduling specifications do compose as well.

3. Since causality analysis is based on an abstraction, the rules (R-1,...,R-
4) for inferring scheduling from causality are bound to the syntax of the
sts conjuncts. Hence, in order to maximize the chance of effectively
recognizing that an sts P is executable, P is generally rewritten in a dif-
ferent but semantically equivalent syntax (runs remain the same) while
causality analysis is performed4. But this latter operation is global and
not compositional : here we reach the limits of ideal compositionality.

3.3 Causality analysis : examples

We show here some sts statements and their associated scheduling as derived
from causality analysis. In the following figures, vertices in boldface denote
input clocks, vertices in bold-italic denote input data, and vertices in courier

4This is part of the job performed by the Signal compiler’s “clock calculus”.

18



denote other variables. It is of interest to split between these two different
types of inputs, as input reading for an sts can occur with any combina-
tion of data– and demand–driven mode. Note that, for each vertex of the
graph, the labels sitting on the incoming branches are evaluated prior to the
considered vertex. Thus, when this vertex is to be evaluated, the other vari-
ables needed for its evaluation are already known. Resulting directed graphs
(which are labelled with booleans) specify the set of all legal schedulings for
the execution of the considered sts ; this is formalized in section 5.

A reactive sts :

if b then z = u else z = v

(input clock)
(input data)
(other)

u

b

h v

h

h

u hvhb ( )

hu b hv

h

hu b hv b

vu

b

z

h

b

z

In the above example, input data are associated with their corresponding
input clocks : this sts reads its inputs on a purely data-driven mode, input
patterns (u, v, b) are free to be present or absent, and, when they are present,
their value is free also. We call it a “reactive” sts.

The full example, a proactive sts :

u

u

u

-1

time

z
if b then z = u else z = v

∧ if hz then v = ξ−z − 1 else v = ⊥
∧ if hv then b = (v ≤ 0) else b = ⊥
∧ hv = hz = hb

∧ (b = t) = (hu = t)

Applying scheduling rules (R-1,. . . ,R-4) and then performing some straight-
forward simplifications, we get the result shown in figure 1. Note the change
in control : { input clock, input data} have been drastically modified from
the “ if b then z = u else z = v” statement to the complete sts : inputs
now consist of the pair {h, vu}, where vu refers to the value carried by u
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uh

b

vbzbu

h

h

h
h

hh

if b then z = u else z = v
∧ if hz then v = ξ−z − 1 else v = ⊥
∧ if hv then b = (v ≤ 0) else b = ⊥
∧ hv = hz = hb =def h
∧ (b = t) = (hu = t)

Figure 1: Scheduling from causality analysis for the example.

when present. Reading of u occurs on demand, when condition b is true. We
propose to call such an sts “proactive”.

3.4 Generating scheduling for separate modules

Relevant target architectures for embedded applications are typically 1/
purely sequential code (such as C-code), 2/ code using a threading or task-
ing mechanism provided by some kind of a real-time OS (here the threading
mechanism offers some degree of concurrency), or 3/ DSP-type multiproces-
sor architectures with associated communication media.

On the other hand, the scheduling specifications we derive from causality
rules (R-1,...,R-4) still exhibit maximal concurrency. Actual implementations
will have to conform to these scheduling specifications. In general, they
will exhibit less (and even sometimes no) concurrency, meaning that further
sequentialization has been performed to generate code.

Of course, this additional sequentialization can be the source of potential,
otherwise unjustified, deadlock when the considered module is reused in the
form of object code in some environment, this was illustrated in subsection
3.1. The traditional answer to this problem by the synchronous programming
school has been to refuse considering separate compilation : modules for
further reuse should be stored as source code, and combined as such before
code generation.

We shall however see that this does not need to be the case, however.
Instead, a careful use of the scheduling specifications of an sts will allow us
to decompose it into modules that can be stored as object code for further
reuse, whatever the actual environment and implementation architecture will
be.

For the sake of clarity, we restrict our discussion to the case of single-
clocked sts, i.e., an sts in which all declared variables have the same clock.
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The issue is illustrated in the following picture, in which the directed graph
defining the circuitfree scheduling specification of some single-clocked sts is
depicted :

input clock
input data
other

they all depend on the same inputs

In the above picture, the gray zones group all variables which depend on
the same subset of inputs, let us call them “tasks”. Tasks are not subject to
the risk of creating fake deadlocks from implementation, unlike the example
from subsection 3.1. In fact, as all variables belonging to the same task de-
pend on the same inputs, each task can be executed safely according to the
following scheme : 1/ collect inputs, 2/ execute task.

In the next picture, we show how the actual implementation is prepared :

task for reuseabstract scheduler

The thick arrows inside the task depicted on the right show one possible
fully sequential scheduling of this task. Then, what should be really stored
as source code for further reuse is only the abstraction consisting of the tasks
viewed as black-boxes, together with their associated interface scheduling spec-
ifications. In particular, if the supporting execution architecture involves a
real-time tasking system implementing some preemption mechanism in order
to dynamically optimize scheduling for best response time, tasks can be freely
suspended/resumed by the real-time kernel, without impairing conformity of
the object code to its specification. Using our notion of scheduling specifi-
cation, the above approach easily extends to general sts, in which several
different clocks are involved.
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3.5 Relaxing synchrony

Loosening synchrony. The major problem is that of testing for absence
in an asynchronous environment. This is illustrated in the following picture
in which the information about presence of variables in the considered instant
is lost when passing from left– to right–hand side, since explicit definition of
the “instant” is not available any more :

absence
test for

synchrony asynchrony

?

The question mark indicates that it is generally not possible, in an asyn-
chronous environment, to decide upon presence/absence of a signal relatively
to another one. While testing for absence is perfectly sound in a synchronous
paradigm, it is meaningless in an asynchronous one.

The solution consists in restricting ourselves to so-called endochronous
sts. Endochronous sts are those for which the control depends only on
1/ the past state, and 2/ the values possibly carried by environment signals,
but not on the presence/absence status of these signals. For an endochronous
sts, loosing the synchronization barriers that define the successive reactions
will not result in changing its semantics ; this is formalized in subsection 4.2.

An example of an sts which is “exochronous” is the “reactive” sts given
on the left–hand side of the following picture, whereas the “proactive” sts
shown on the right–hand side is endochronous :

(input clock)
(input data)
(other)

u

b

h v

h

h

u hvhb ( )

hu b hv

h

hu b hv b

vu

b

z

h

b

z uh

b

vbzbu

h

h

h
h

hh

In the diagram on the left–hand side, three different clocks are source nodes
of the directed graph. This means that the first decision in executing a re-
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action consists in deciding upon relative presence/absence of these clocks.
In contrast, in the diagram on the right–hand side, only one clock, the ac-
tivation clock h, is a source node of the graph. Hence no test for relative
presence/absence is needed, and the control only depends on the value of the
internally computed boolean variable b.

How endochrony allows us to desynchronize an sts is illustrated in an in-
tuitive way on the following diagram, which depicts the scheduling specifica-
tion associated with the (endochronous) pseudo-statement “ if b then get u” :

T TF F

u

b T TF Fb

u

In the diagram on the left, a history of this statement is depicted, showing
the successive instants (or reactions) separated by thick dashed lines. In
the right–hand side diagram, thick dashed lines have been removed. Clearly,
no information has been lost : we know that u should happen exactly when
b = t, and thus awaiting for the value of b is enough for deciding whether u
is to be waited for. A formal study of desynchronization and endochrony is
presented in section 4.

Moving from exochronous programs to endochronous programs can be
performed, we only show one typical but simple example :

k k’k k’

h

b b’
(other)
(input data)
(input clock)

hh

The idea is to add to the considered sts a monitor which delivers the pres-
ence/absence information via two boolean variables b, b′ with identical clocks
h, and such that [k = t] = [b = t], and similarly for k′, b′. The resulting
sts is endochronous, since boolean variables b, b′ are scrutinized at the pace
of activation clock h. Other schemes are also possible, this is discussed in
subsection 4.5.
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Loosening synchronous composition. The second question is that of
preserving the semantics of synchronous composition when an asynchronous
communication medium is used. In the synchronous programming paradigm,
communication occurs via instantaneous broadcast, meaning that all compo-
nents must agree on 1/ which variable is present/absent in the considered re-
action, and then 2/ what is the value carried by each present variable. Again
this protocol is meaningless in an asynchronous communication medium. In
subsection 4.3, it is shown that the condition for semantics preserving desyn-
chronization of the communication is that the considered pair of sts should
be isochronous.

Isochrony is a property of the synchronous composition P ‖ Q of two sts.
Roughly speaking, a pair of sts is isochronous if every pair of reactions, of
P and Q respectively, which agree on present common variables, also agree
on all common variables. Thus, again, common agreement for composition
of reactions can disregard absence.

Endochrony and isochrony are the basic concepts for our theory of desyn-
chronization. For this theory to hold, requirements for the communication
medium are : 1/ it should not lose messages, and, 2/ it should not change
the order of messages associated with each given variable.

3.6 Modular design, gals architectures

From the theory informally presented in the previous subsections, the follow-
ing approach results for modular design and distributed implementations of
reactive systems. The target architecture is Globally Asynchronous, Locally
Synchronous (gals) by nature. The whole approach is summarized in the
diagram of figure 2, where the considered sts is assumed to possess a unique,
deterministic execution, i.e., it satisfies the correctness criteria stated in sec-
tion 3.2. In this diagram, gray rectangles denote three modules P1, P2, P3 of
the source sts specification, hence given by P = P1 ‖ P2 ‖ P3. We assume here
that this partitioning has been given by the designer, based on functional and
architectural considerations.

White bubbles inside the gray rectangles depict the structuration into
tasks as discussed in subsection 3.4. The black half-ellipses denote the mon-
itors. Monitors are in charge of 1/ providing the additional protocols if
asynchronous communication media are to be used, and 2/ specifying the
scheduling of the abstract tasks.
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original
module

monitor:
protocols
+ scheduling

Figure 2: Implementation architecture.

In principle, communication media and real-time kernels do not need
to be specified here, as they can be used freely provided they respect the
send-receive abstract communication model and conform to the scheduling
constraints set by the monitors.

4 Formal study of desynchronization

How far/close is indeed synchrony from asynchrony has already been dis-
cussed in the litterature, thus questioning the oversimplified vision of “zero
time” computation and instantaneous broadcast communication. Early pa-
per [Benveniste and Berry, 1991] informally discussed the link between per-
fect synchrony and token-based asynchronous dataflow networks, see in par-
ticular section V therein. The first formal and deep study is [Caspi 1992] :
a precise relation is established between so-called well-clocked synchronous
functional programs and the subset of Kahn networks amenable to “buffer-
less” evaluation.

Distributed code generation from synchronous programs, requires to ad-
dress the issue of the relationship between synchrony and asynchrony in some
way or another. Mapping synchronous programs to a network of automata,
communicating asynchronously via unbounded fifos, has been proposed in
[Caillaud et al., 1997]. Mapping Signal programs to distributed architec-
tures was proposed in [Maffeis and LeGuernic, 1994, Aubry 1997], based on
an early version of the theory we present in this paper. The SynDEx tool
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[Sorel and Lavarenne, Sorel 1996] also implements a similar approach. Re-
cent work [Berry and Sentovich 1998] on the Polis system proposes to reuse
the “constructive semantics” approach for the Esterel synchronous lan-
guage, with CFSM (Codesign Finite State Machines) as a model of syn-
chronous machines which can be desynchronized.

Independently, another route to relate synchrony and asynchrony has
been followed. In [Benveniste and LeGuernic 1990, LeGuernic et al., 1991]
it was shown how nondeterministic Signal programs can be used to model
asynchronous communication media such as queues, buffers, etc. Reactive
Modules were proposed [Alur and Henzinger 1996] as a synchronous language
for hardware modelling, in which asynchrony is emulated by the way of non-
determinism. Although this is of interest, we believe this approach is not
suited to analyze true asynchrony, in which no notion of a global state is
available, unlike for synchrony.

We first informally discuss the essentials of asynchrony. Synchronous
Transition Systems were defined in section 2.2, and their asynchronous coun-
terpart is defined in subsection 4.1, where desynchronization is also formally
defined. The rest of this section is devoted to the analysis of desynchroniza-
tion and its inverse, namely resynchronization.

4.1 Desynchronizing sts, and two fundamental prob-
lems

We first start with an informal discussion, following the discussion of subsec-
tion 2.1. Keeping in mind the essentials of the synchronous paradigm, we are
now ready to discuss informally how asynchrony relates to synchrony. Re-
ferring to points 1, 2, and 3 of the discussion of subsection 2.1, the following
can be stated about asynchrony :

1. Reactions cannot be observed any more : as no global clock exists, the
global synchronization barriers which indicate the transition from one
reaction to the next one are no more available. Instead, we only assume
a reliable distributed communication medium, in which messages are
not lost, and messages within each individual channel are sent and
delivered in the same order. We call a flow such a totally ordered
sequence of messages.

2. Absence cannot be sensed, and thus cannot be used to exercise control.
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3. Composition occurs by means of separately unifying each common flow
of the two components. This models in particular the communications
via asynchronous unbounded fifos, such as used, say, in Kahn networks.
Rendez-vous type of communication can also be abstracted in this way.

From the definition (1) of a run of an sts, we can say that a run is a
sequence of tuples of values in domains extended with the extra symbol ⊥.
Desynchronizing a run amounts to discarding the synchronization barriers
defining the successive reactions. Hence, for each variable v ∈ V , we only
know the ordered sequence of present values. Thus desynchronizing a run
amounts to mapping a sequence of tuples of values in domains extended with
the extra symbol ⊥, into a tuple of sequences of present values, one sequence
per each variable. This is formalized next.

For σ : s0, s1, s2, . . . a run for Φ, we decompose state sk as

sk = (sk[v])v∈V

Thus we can rewrite run σ as follows :

σ = (σ[v])v∈V , where

σ[v] = s0[v] , s1[v] , . . . , sk[v] , . . . .

Now, compress each σ[v] by deleting those sk[v] that are equal to ⊥. Formally,
we denote by k0, k1, k2, . . . the subsequence of k = 0, 1, 2, . . . such that sk[v] 6=
⊥. Then we set

σa = (σa[v])v∈V , where

σa[v] = sk0
[v] , sk1

[v] , sk2
[v] , . . . .

This defines the desynchronization mapping

σ 7−→ σa , (22)

where each

σa[v] = sk0
[v] , sk1

[v] , sk2
[v] , . . .

is called a flow in the sequel.
For Φ = 〈V, Θ, ρ〉 an sts, we define

Φa =def 〈V, Σa〉 , (23)
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where Σa is the family of all σa, for σ ranging over the set of runs of Φ. For
Φi = 〈Vi, Θi, ρi〉 , i = 1, 2, we define

Φa
1 ‖a Φa

2 =def 〈V, Σa〉 , where

{
V = V1 ∪ V2

Σa = Σa
1 ∧a Σa

2

(24)

and ∧a denotes the conjunction of sets of asynchronous runs, which we
define now. For σa

i ∈ Σa
i , i = 1, 2, we say that σa

1 and σa
2 are unifiable, written

σa
1 ⊲⊳a σa

2 , (25)

if the following condition holds :

∀v ∈ V1 ∩ V2 : σa
1 [v] = σa

2 [v] holds.

If condition (25) holds, then we define σa =def σa
1 ∧a σa

2 as

∀v ∈ V1 ∩ V2 : σa[v] = σa
1 [v] = σa

2 [v]

∀v ∈ V1 \ V2 : σa[v] = σa
1 [v]

∀v ∈ V2 \ V1 : σa[v] = σa
2 [v]

Finally, Σa is the set of the so defined σa. Thus asynchronous composition
proceeds via unification of shared flows.

Synchrony vs. Asynchrony ? At this point two natural questions arise,
namely :

Question 1 (desynchronizing a single sts) Is resynchronization feasible
and uniquely defined ? More precisely, is it possible to uniquely reconstruct
the original run σ for our sts from its desychronised version σa as defined
in (22) ?

Question 2 (desynchronizing a communication) Does communication
behave equivalently for both the synchronous and asynchronous compositions ?
More precisely, does the following property hold :

Φa
1 ‖a Φa

2 = (Φ1 ‖ Φ2)
a ? (26)

28



If question 1 had a positive answer, then we could desynchronize a run of
the considered sts, and then still recover the original synchronous run. Thus
a positive answer to question 1 would guarantee the preserving of the syn-
chronous semantics when performing desynchronization, for a single sts.

On the other hand, if question (26) had a positive answer, then we could
interpret our sts composition equivalently as synchronous or asynchronous.

Unfortunately, neither 1 nor 2 have positive answers in general, due to
the possibility to exercise control by the way of absence in synchronous com-
position ‖ . In the following section, we show that questions 1 and 2 have
positive answers under certain sufficient conditions, in which the two notions
of endochrony (for point 1) and isochrony (for point 2) play a central role 5.

4.2 Endochrony and re-synchronization

4.2.1 Formal results

In this section, we use notations from section 2.2. For Φ = 〈V, Θ, ρ〉 an sts,
and s a reachable state of Φ, we denote by sh the clock-abstraction of s,
defined by

∀v ∈ V : sh[v] ∈ {⊥,⊤}, and sh[v] = ⊥ ⇔ s[v] = ⊥ (27)

For Φ = 〈V, Θ, ρ〉 an sts, s− a reachable previous state for Φ, and W ′ ⊆
W ⊆ V , we say that W ′ is a clock inference of W given s−, written

W ′ →֒s− W , (28)

if, for each state s reachable from s− for Φ, knowing the presence/absence and
actual value carried by each variable belonging to W ′, allows us to determine
exactly the presence/absence for each variable belonging to W . In other
words,

s[W ′] determines sh[W ] . (29)

If W ′ →֒s− W1 and W ′ →֒s− W2 hold, then W ′ →֒s− (W1 ∪ W2) follows, thus
there exists a greatest W such that W ′ →֒s− W holds. Hence we can consider
the unique increasing chain, for s− given,

∅ = V (0) →֒s− V (1) →֒s− V (2) →֒s− . . . (30)

5 Endochronous, from ancient greek ενδo–inside and χρoνoς–time ; Isochronous, from
ancient greek ισo–identical and χρoνoς–time. It’s sometimes nice to remember that an-
cient greeks used to be great scientists, and thus honor them by reusing their words in our
context.
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of subsets of V such that, for each k, V (k) is the greatest set of variables such
that V (k − 1) →֒s− V (k) holds. As ∅ = V (0), V (1) consists of the subset of
variables that are present as soon as the considered sts gets activated 6. Of
course chain (30) must become stationary at some finite kmax : V (kmax +1) =
V (kmax). In general, we only know that V (kmax) ⊆ V . Chain (30) is called
the synchronization chain of Φ.

Definition 1 (endochrony) sts Φ is said to be endochronous if, for each
state s− reachable for Φ, V (kmax) = V , i.e., if the following condition is
satisfied : the synchronization chain

(E) ∅ = V (0) →֒s− V (1) →֒s− V (2) →֒s− . . . converges to V . (31)

Condition (31) expresses that presence/absence of all variables can be in-
ferred incrementally from already known values carried by present variables
and state variables of the sts in consideration. Hence no test for pres-
ence/absence on the environment is needed. The following theorem justifies
our approach :

Theorem 1 Consider an sts Φ = 〈V, Θ, ρ〉.

1. Conditions (a) and (b) are equivalent, where :

(a) Φ is endochronous.

(b) For each δ ∈ Σa, we can reconstruct the corresponding synchronous
run σ such that σa = δ, in a unique way up to silent reactions.

2. Assume Φ is endochronous and stuttering invariant. If Φ′ = 〈V, Θ, ρ′〉
is another endochronous and stuttering invariant sts then

(Φ′)a = Φa ⇒ Φ′ = Φ (32)

Proof : We prove successively points 1 and 2.

1. We fix the previous state s− and prove the result by induction. Pick a
δ ∈ Σa, and assume for the moment that we were able to decompose it
as :

s1 , s2 , . . . , sn︸ ︷︷ ︸
n−initial segment of σ

, δn (33)

6Of course we assume here that no variable is absent in every reachable state.
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i.e., into a finite sequence of length n composed of non-silent states si

(the head of the synchronous run σ we wish to reconstruct), followed
by the tail of the asynchronous run δ, which we denote by δn, and we
assume that such a decomposition is unique. Then we claim that

(33) is also valid with n substituted by n + 1. (34)

To prove (34), we note that, when sts Φ gets activated, then we know
that variables belonging to V (1) will be present in the considered state.
By assumption, the clock-abstracted state sh

n+1[V (1)], having V (1) as
variables, is uniquely determined. In the sequel we write sh

n+1(1) for
short instead of sh

n+1[V (1)]. Thus, presence/absence of variables for
state sn+1(1) is known, it remains to determine the values carried by
present variables.

For v ∈ V1, we simply pick the value carried by the minimal element
of the sequence associated with variable v in δn. Values carried by
corresponding state variables are updated accordingly. Thus we know
all of sn+1(1).

Next we move on constructing sn+1(2). From sn+1(1) we know sh
n+1(2).

Thus we know how to split V2 into present and absent variables for the
considered state. Pick the present ones, and repeat the same argument
as before to get sn+1(2).

Repeat this argument until V (k) = V for some finite k (by endochrony
assumption). This proves claim (34).

Given the initial condition for δ, we get from (34), by induction, the
desired proof that (a) ⇒ (b).

Next, we prove (b) ⇒ (a). We assume that Φ is not endochronous, and
show that condition (b) cannot be satisfied. If Φ is not endochronous,
there must be some reachable state s− for which chain (31) does not
converge to V . Thus again we pick a δ ∈ Σa, decomposed as for case
1, cf. formula (33) :

s1 , s2 , . . . , sn︸ ︷︷ ︸
n−initial segment of σ

, δn

and we assume in addition that sn = s−, the given state for which
endochrony is violated. We now show that (34) is disproved. Let
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k∗ ≥ 0 be the smallest index such that V (k) = V (k + 1), we know
Vk∗

6= V . Thus we can apply the algorithm of case 1 for reconstructing
the reaction, until variables of Vk∗

. Then presence/absence for variables
belonging to V \ Vk∗

cannot be determined based on the knowledge of
variables belonging to Vk∗

. Thus there are several possible extensions
for sh

n+1(k∗ + 1) and thus (n + 1)-st reaction is not determined in a
unique way. Hence condition (b) is falsified.

2. Assume Φ is endochronous, and consider Φ′ as in point 2 of the theo-
rem. As both Φ and Φ′ are stuttering invariant, point 2 is an immediate
consequence of point 1. ⋄

Comments.

1. For an sts, endochrony is not decidable in general. It is decidable for
sts involving, say, only finite domains for their variables, and model
checking can be used for that. For general sts, model checking can be
used, in combination with abstraction techniques. The case of interest
is when the chain V (0), V (1), . . . does not depend upon the particular
state s−, and we write simply V (k) →֒ V (k + 1) in this case.

2. The proof of this theorem in fact provides an effective algorithm for
the on-the-fly reconstruction of the successive reactions, for a desyn-
chronized run of an endochronous program.

(Counter)examples.

examples :

• a single-clocked sts.

• sts “ if b = t then get u ”, where b, u are the two inputs, and
b is boolean. The clock of b coincides with the activation clock
for this sts, and thus V (1) = {b}. Then, knowing the value for b
indicates whether or not u is present, thus V (2) = {b, u} = V .

counterexample : sts “ if ( [present a ] ‖ [present b ] ) then... ” is not
endochronous, as the environment is free to offer any combination of
presence/absence for the two inputs a, b. Thus ∅ = V (0) = V (1) =

V (2) = . . .
⊂

6= V , and endochrony does not hold.
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4.2.2 Practical consequences

A first use of endochrony is shown in the following figure :

1 2Φ

Ψ1,2

Φ

In this figure, a pair (Φ1, Φ2) of sts is depicted, with W as set of shared
variables. Rewrite their composition as follows :

Φ1 ‖ Φ2 = Φ1 ‖ Ψ1,2 ‖ Φ2

where Ψ1,2 is the restriction of Φ1 ‖ Φ2 to W , hence Ψ1,2 models the syn-
chronous communication channel. Using the property Φ ‖ Φ = Φ for every
sts Φ, we get

Φ1 ‖ Φ2 = ( Φ1 ‖ Ψ1,2 )
︸ ︷︷ ︸

Φ̃1

‖ ( Ψ1,2 ‖ Φ2 )
︸ ︷︷ ︸

Φ̃2

= Φ̃1 ‖ Φ̃2 (35)

Assume now that channel model Ψ1,2 is endochronous, and composition
Φ1 ‖ Φ2 is implemented as the (equivalent) composition Φ̃1 ‖ Φ̃2. Then,
as Φ̃1 knows channel Ψ1,2 and the latter is endochronous, then communica-
tion can be equivalently implemented according to perfect synchrony or full
asynchrony.

This is fine, but it does not extend to networks of sts involving more
than two nodes. The following figure shows an example :

1 Φ2Φ Φ

ΨΨ1 2

Assume Ψ1, Ψ2 are both endochronous. Then communication between Φ1

and Φ on the one hand, and Φ and Φ2 on the other hand, can be desynchro-
nized. Unfortunately, communication between Φ1 and Φ2 via Φ can’t, as it
is not true in general that Ψ1 ‖ Φ ‖ Ψ2 is endochronous. The problem is
that endochrony is not compositional, hence even ensuring in addition that
Φ itself is endochronous would not do. Thus we would need to ensure that
Ψ1, Ψ2 as well as Ψ1 ‖ Φ ‖ Ψ2 are all endochronous, not an elegant solution
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when networks are considered ! Thus we move on introducing the alternative
notion of isochrony, which focusses on communication, and is compositional.

4.3 Isochrony, and synchronous and asynchronous com-
positions

The next result addresses the question of when property (26) holds true. We
are given two sts Φi = 〈Vi, Θi, ρi〉 , i = 1, 2. Denote by W = V1∩V2 the set of
their common variables, and by Φ = Φ1 ‖ Φ2 their synchronous composition.
For s a reachable state in Φ, we denote by s1 =def s[V1] and s2 =def s[V2] the
restrictions of state s to Φ1 and Φ2, respectively. Note that, for i = 1, 2, si is
a reachable state for Φi. Corresponding notations s−, s−1 , s−2 for past states
will be used accordingly.

Definition 2 (isochrony) Consider a pair (Φ1, Φ2) of sts. Transitions of
Φi, i = 1, 2, are written (s−i , si). Consider the following conditions on pairs
((s−1 , s1), (s

−
2 , s2)) of transitions for (Φ1, Φ2) :

(i) 1. s−1 = s−[V1] and s−2 = s−[V2] holds for some reachable state s− for
Φ, in particular s−1 and s−2 are unifiable ;

2. none of the states si, i = 1, 2 are silent on the common variables,
i.e., it is not the case that, for some i = 1, 2 : si[v] = ⊥ holds
∀v ∈ W ;

3. s1 and s2 coincide over the set of present common variables 7, i.e. :

∀v ∈ W : ( s1[v] 6= ⊥ and s2[v] 6= ⊥ ) ⇒ s1[v] = s2[v] ;

(ii) States s1 and s2 coincide over the whole set of common variables, i.e.,
states s1 and s2 are unifiable :

s1 = s[V1] and s2 = s[V2] holds for some state s for Φ .

The pair (Φ1, Φ2) is called isochronous if condition (i) implies condition (ii),
for each pair ((s−1 , s1), (s

−
2 , s2)) of transitions for (Φ1, Φ2).

7By convention this is satisfied if the set of present common variables is empty.
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Comment. Roughly speaking, condition of isochrony expresses that unify-
ing over present common variables is enough to guarantee the unification of
the two considered states s1 and s2. Condition of isochrony is illustrated on
the following figure :
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The figure depicts, for unifiable previous states s−1 , s−2 , corresponding states
s1, s2 where (s−i , si) is a valid transition for Φi. It shows the interpretation
of s1 (circle on the left) and s2 (circle on the right) over shared variables W .
White and dashed areas represent absent and present values, respectively.
The two left and right circles are superimposed in the mid circle. In general,
vertically and horizontally dashed areas do not coincide, even if s1 and s2

unify over the subset of shared variables that are present for both transitions
(double-dashed area). Pictorially, unification over double-dashed area does
not imply in general that dashed areas coincide. Isochrony indeed requires
that unification over double-dashed area does imply that dashed areas coin-
cide, hence unification of s1 and s2 follows. It is interesting to reformulate
isochrony in a different way.

Define the desynchronized conjunction of two transition relations ρ1 ∧a ρ2

as follows. For t1 and t2 two transitions, we define asynchronous unifiability
t1 ⊲⊳a t2 by :

t1 ⊲⊳a t2 iff

(
v ∈ V1 ∩ V2, and

t1[v] 6= ⊥ and t2[v] 6= ⊥

)
⇒ ( t1[v] = t2[v] ) (36)

Note that t1 ⊲⊳a t2 means that transitions t1 and t2 are unifiable on their
common present ports, regardless of absence (this is just the restriction to
transitions of the definition of ⊲⊳a which was formulated for flows). Definition
(36) is in contrast to synchronous unifiability, or unifiability for short, t1 ⊲⊳ t2
defined by :

t1 ⊲⊳ t2 iff ( v ∈ V1 ∩ V2 ) ⇒ ( t1[v] = t2[v] ) (37)
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which means that transitions t1 and t2 are unifiable on their common ports,
including presence/absence. Condition (37) corresponds to the conjunction
of transition relations introduced in the definition of sts composition. If
t1 ⊲⊳a t2, we can define t1 ⊔

a t2 by

(t1 ⊔
a t2)[v]

=def if ∃i = 1, 2 : ( v ∈ Vi and ti[v] 6= ⊥ ) then ti[v] else ⊥

With this in mind, we define ρ1 ∧a ρ2 as follows :

ρ1 ∧a ρ2 = {t1 ⊔
a t2 : ti |= ρi∀i = 1, 2 ∧ t1 ⊲⊳a t2} ,

and isochrony is equivalently reformulated as follows :

Definition 3 (Isochrony, reformulation) Let (Φ1, Φ2) be a pair of sts
and Φ = Φ1 ‖ Φ2 be their parallel composition. The pair (Φ1, Φ2) is called
isochronous if

ρ1 ∧ ρ2 = ρ1 ∧a ρ2 (38)

holds, restricted to the set of reachable states for Φ.

The following theorem justifies introducing this notion of isochrony.

Theorem 2

1. If the pair (Φ1, Φ2) is isochronous, then it satisfies property (26).

2. Conversely, assume in addition that Φ1 and Φ2 are both endochronous.
If the pair (Φ1, Φ2) satisfies property (26), then it is isochronous.

Thus, isochrony is sufficient for (26) to hold, and it is also in fact necessary
when the components are endochronous.

Comments :

1. We already discussed the importance of guaranteing property (26).
Now, why is this theorem interesting ? Mainly because it replaces con-
dition (26), which involves infinite runs, by condition (I) of isochrony,
which only involves a single reaction for the considered pair of sts.

2. Comment 1 for endochrony also applies here.
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Proof : We successively prove points 1 and 2.

1. Isochrony implies property (26). We proceed into two steps.

1. The desynchronization of Φ, defined by (23), is denoted by Φa, and
we denote by δ a run of Φa. For each δ ∈ Σa, there is at least one
corresponding synchronous run σ for Φ such that δ = σa. Any such
σ is clearly the synchronous composition of two unifiable runs σ1 and
σ2 for Φ1 and Φ2, respectively. Hence associated asynchronous runs σa

1

and σa
2 are also unifiable, and their asynchronous composition σa

1 ∧a σa
2

belongs to Σa
1 ∧a Σa

2. Thus we always have the inclusion

Φa
1 ‖a Φa

2 ⊇ (Φ1 ‖ Φ2)
a , (39)

which proves the first part of (26). So far we have only used the def-
inition of desynchronization and asynchronous composition, isochrony
has not yet been used.

2. To prove the opposite inclusion, we need to prove that, when mov-
ing from asynchronous composition to synchronous one, the additional
need for a reaction-per-reaction matching of unifiable runs will not re-
sult in rejecting pairs of runs that otherwise would be unifiable in the
asynchronous sense. This is where condition (I) of isochrony enters the
game.

Pick a pair (δ1, δ2) such that δ1 ⊲⊳a δ2 (cf. (25)) : they can be combined
while performing the asynchronous composition Φa

1 ‖a Φa
2 to form some

δ (cf. (24)), this is denoted by δ1 ∧a δ2 = δ. By definition of desynchro-
nization (cf. subsection 4.1), there exist a (synchronous) run σ1 for Φ1,
and a (synchronous) run σ2 for Φ2, such that δi is obtained by desyn-
chronizing σi, i = 1, 2 (as we do not assume endochrony at this point,
run σi is not uniquely determined). Thus each run σi is a succession of
states. Clearly, inserting finitely many silent states between successive
states of σi would also provide valid candidates for recovering δi after
desynchronization. We shall show, by induction over successive states,
that :

properly inserting such a silent state in the appropriate
component will provide two runs which are

unifiable in the synchronous sense.
(40)
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This will show that, from a pair (δ1, δ2) such that δ1 ⊲⊳a δ2, we can
reconstruct (at least) one pair (σ1, σ2) of runs for Φ1 and Φ2 that are
unifiable in the synchronous sense, and thus will prove the alternative
inclusion

Φa
1 ‖a Φa

2 ⊆ (Φ1 ‖ Φ2)
a . (41)

From (39) and (41) we then deduce property (26). We prove (40) now,
by induction over successive states.

We are given a pair (δ1, δ2) such that δ1 ⊲⊳a δ2. Pick a σ1 such that
σa

1 = δ1 , and similarly for σ2. For s1 , s2 , . . . , sn a finite run, we
say that another run s′1 , s′2 , . . . , s′m is a stretching of s1 , s2 , . . . , sn,
written

s′1 , s′2 , . . . , s′m = (s1 , s2 , . . . , sn)↑ (42)

if there is a strictly increasing subsequence k1, . . . , kn of 1, . . . ,m such
that s′kj

= sj, j = 1, . . . , n, and s′k = ⊥ for k 6= k1, . . . , kn. Note that
(42) implies m ≥ n. Using notation (42) we introduce the following
hypothesis, for use in our inductive reasoning : for i = 1, 2, run σi

decomposes as

σi = si,1 , si,2 , . . . , si,ni︸ ︷︷ ︸
initial segment of length ni

, σi,ni
(43)

and there are stretchings such that

s′i,1 , s′i,2 , . . . , s′i,n = (si,1 , si,2 , . . . , si,ni
)↑ for i = 1, 2

s′1,m ⊲⊳ s′2,m for m = 1, . . . , n (44)

Note that (44) implies σa
1,n1

⊲⊳a σa
2,n2

. Define index

ζ(n) = min{n1, n2}

where ni is defined in (43). To perform the proof by induction, we need
to extend (43,44) in such a way that index ζ(n) grows to infinity.

To this end, decompose the tail σi,ni
into

σi,ni
= si,ni+1 , σi,ni+1 .

The following cases can occur :
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case 1 : none of the two states s1,n1+1 and s2,n2+1 is silent over the
common W variables. Concentrate on those v ∈ W variables that
are present in both states s1,n1+1 and s2,n2+1. As δ1 ⊲⊳a δ2 holds,
then we must have s1,n1+1[v] = s2,n2+1[v] for any such v. Thus
points 1,2,3 of condition (I) of isochrony are satisfied. Hence
s1,n1+1 and s2,n2+1 are indeed unifiable in this case, by isochrony.
Therefore, in this case, hypothesis (43,44) extends in such a way
that ζ(n + 1) = min{n1 + 1, n2 + 1} = ζ(n) + 1 holds.

case 2 : both states s1,n1+1 and s2,n2+1 are silent over the common W
variables. They are unifiable. Again, hypothesis (43,44) extends
in such a way that ζ(n + 1) = ζ(n) + 1 holds.

case 3 : one and only one of the two states s1,n1+1 and s1,n1+1 is silent
over the common W variables, say ∀v ∈ W : s1,n1+1[v] = ⊥.
In this case we unify state s1,n1+1 with the silent state ⊥ for Φ2.
Thus the matching hypothesis (44) is extended as :

s′1,1 , s′1,2 , . . . , s′1,n , s′1,n+1 = (s1,1 , s1,2 , . . . , s1,n1
, s1,n1+1)

↑

s′2,1 , s′2,2 , . . . , s′2,n , ⊥︸︷︷︸
s′
2,n+1

= (s2,1 , s2,2 , . . . , s2,n2
)↑

s′1,m ⊲⊳ s′2,m for m = 1, . . . , n + 1 . (45)

Therefore ζ(n + 1) = min{n1 + 1, n2} and we cannot infer that
ζ(n + 1) > ζ(n) holds in this case.

Given the analysis above, we only need to show that

case 3 cannot occur for infinitely
many successive induction steps.

(46)

Assume (46) does not hold. Then this implies that the whole tail σ1,n1
is

silent over the common W variables, while σ2,n2
is not. But on the other

hand we should have σa
1,n1

⊲⊳a σa
2,n2

, see(44), whence a contradiction.
This finishes the induction proof, hence (41) follows.

2. Under endochrony of the components, property (26) implies
isochrony. This is easy. From Theorem 1 we know that, in our argument
for proving point 1 of theorem 2, the synchronous runs σi are uniquely de-
fined, up to silent states, from their desynchronized respective versions σa

i .
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Now, focus on case 1 of this argument. If isochrony is not satisfied, then, for
some pair σa

1 ⊲⊳a σa
2 of unifiable asynchronous runs, and some decomposition

(43) of them, it follows that points 1,2,3 of condition (I) of isochrony are sat-
isfied, but states s1,n+1 and s2,n+1 are not unifiable. As our only possibility is
to try to insert silent states for one of the two components – not feasible in
case 1 – our process of incremental unification on a per reaction basis fails.
Thus (41) is violated, and so is property (26). This finishes the proof of the
theorem. ⋄

The following result is intrumental in proving compositionality of isochrony.

Lemma 1 If pairs (Ψ, Φ1) and (Ψ, Φ2) are isochronous, then so is pair
(Ψ, Φ1 ‖ Φ2).

Proof : Let (s−, s) and (t−, t) be pairs of successive states, for Ψ and
Φ1 ‖ Φ2 respectively, satisfying condition (I) for isochrony, see definition
2 or 3. Let t be the unification of the two states s1 and s2 for Φ1 and Φ2,
respectively. By point 2 of (I), at least one of these two states is not silent,
assume s1 is not silent. From point 3 of (I), s and s1 coincide over the set of
present common variables, and thus, since pair (Ψ, Φ1) is isochronous, states
s and s1 coincide over the whole set of common variables for Ψ and Φ1. Thus
s and s1 are unifiable. But, on the other hand, s1 and s2 are also unifiable
since they are just restrictions of the same global state t for Φ1 ‖ Φ2. Thus
states s and t are unifiable, and thus pair (Ψ, Φ1 ‖ Φ2) is isochronous. This
proves lemma 1. ⋄

An interesting immediate byproduct is the extension of the results on
desynchronization, to networks of communicating synchronous components :

Corollary 1 (desynchronizing a network of components) We are given
a finite family (Φk)k=1,...,K of sts. Assume that each pair (Φk, Φk′) is isochronous.
Then

1. For each disjoints subsets I and J of set {1, . . . , K}, the pair
(

‖k∈I Φk , ‖k′∈J Φk′

)
(47)

is isochronous. Thus isochrony is compositional.

2. Also, desynchronization extends to the network :

(Φ1 ‖ . . . ‖ ΦK)a = Φa
1 ‖a . . . ‖a Φa

K . (48)
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Proof :

1. Property (47) follows from lemma 1 via obvious induction on the car-
dinal of sets I, J .

2. The second statement is proved via induction on the cardinal of the
number of components :

(Φ1 ‖ . . . ‖ ΦK)a = ( ( Φ1 ‖ . . . ‖ ΦK−1 ) ‖ ΦK )a

= ( Φ1 ‖ . . . ‖ ΦK−1 )a ‖a Φa
K ,

and the induction step follows from (47). ⋄

The next corollary expresses that isochrony is a “local” property.

Corollary 2 (locality of isochrony) Assume pair (Φ1, Φ2) is isochronous,
and pair (Ψ1, Ψ2) is such that Ψ1 has no common variable with Φ2 ‖ Ψ2 and
Ψ2 has no common variable with Φ1 ‖ Ψ1. Then pair ( Ψ1 ‖ Φ1 , Φ2 ‖ Ψ2 )
is also isochronous.

Proof : This follows directly from lemma 1. ⋄

This is a useful result, it says that, in order for a pair ( ‖k∈I Φk , ‖k′∈J Φk′)
to be isochronous, it is enough to check isochrony for pairs (Φk, Φk′) of
interacting components.

Note however that, in order for a pair ( Ψ1 ‖ Φ1 , Φ2 ‖ Ψ2 ) to be isochronous,
it is not necessary, but only sufficient, that the pair (Φ1, Φ2) is isochronous.

(Counter)examples.

examples :

• a single-clocked communication between two sts.

• the pair (Φ̃1, Φ̃2) of formula (35).

counterexample : assume an sts communicates with another one accord-
ing to the synchronous protocol “ await x ‖ await y ”, the resulting
pair of sts is not isochronous.
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4.4 Getting gals architectures

In practice, only partial desynchronization of networks of communicating
sts may be considered. This means that we really want to have locally
synchronous components communicating via a globally asynchronous com-
munication medium — this is refered to as gals architectures.

In fact, theorems 1 and 2 provide the adequate solution. Let us assume
we have a finite collection Φi of sts such that :

1. each Φi is endochronous, and

2. each pair (Φi, Φj) is isochronous.

Then, from corollary 1 and theorem 1, we know that

(Φ1 ‖ . . . ‖ ΦK)a = Φa
1 ‖a . . . ‖a Φa

K

and each Φa
k is in one-to-one correspondence with its synchronous counterpart

Φk. Here is the resulting running mode for this gals architecture :

• For communications involving a pair (Φi, Φj) of sts, each flow is pre-
served individually, but global synchronization is lost.

• Each sts Φi reconstructs its own successive reactions by just observ-
ing its (desynchronized) environment, and then locally behaves as a
synchronous sts.

• Note that it is allowed, for each Φi, to have an internal activation clock
which is faster than communication clocks. Resulting local activation
clocks evolve asynchronously from one another.

4.5 Handling endo/isochrony in practice

While we have given criteria for endochrony and isochrony, we did not pro-
pose a practical algorithm for checking these criteria. We do this now. Our
aim is to prepare for gals architectures such as discussed in subsection 4.4.
In particular, throughout this subsection, a network of sts satisfying condi-
tions 1 and 2 of subsection 4.4 will be called endo/isochronous.

In this subsection, we shall indicate 1/ how a (tight) sufficient condi-
tion for endo/isochrony can be actually tested, and 2/ how making an sts
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Figure 3: The clock hierarchy computed by the Dc+ or Signal compiler.

endo/isochronous can be performed. As both the Dc+ format and the Sig-
nal language can be considered as concrete instances of our sts model, we
shall rely for our explanation on tools and algorithms already developed in
these environments.

4.5.1 Checking endo/isochrony

As one of the modules of the existing Dc+ or Signal compiler, the data
structure shown in Figure 3 is computed, for a given program P : In this
figure, b, c denote boolean variables, [b], [c] denote clocks composed of the in-
stants at which b, c = t holds, respectively. Finally, h, k are also clocks. The
down-arrows h0 → b1, [b1] → b2, [b2] → b3, etc, indicate that boolean variable
b1 has a clock equal to h0 and only needs variables with clock h0 for its eval-
uation, and so on. Roots of the trees are related by clock equations, depicted
for instance by the bidirectional arrow relating h0 and k0. This defines a tree
under each clock h0, k0, . . ., and yields the so-called clock hierarchy in the
form of a “forest”, i.e., a collection of trees related by clock equations. This
structure is detailed in [Amagbegnon et al., 1994] [Amagbegnon et al., 1995],
where it is shown to be a canonical representation of the combination of clock
equations and scheduling specifications of a program. Now, considering this
clock hierarchy, one easily proves the following :
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Theorem 3 Assume program P has a clock hierarchy consisting of a single
tree. Also assume it is decomposed as P = P1 ‖ . . . ‖ PK, and, for each k,
the clock hierarchy of component Pk is a subtree of the clock tree of P . Then
the corresponding network of sts is endo/isochronous.

Theorem 3 is an immediate corollary of Theorem 1 of section 4, it only
states a sufficient condition. In computing a clock hierarchy, the abstractions
performed are twofold : 1/ inferring dependencies from causality analysis,
and 2/ abstracting boolean variables which result from the evaluation of a
predicate involving a non-boolean expression. In practice, we shall use the
clock hierarchy as the practical criterion for checking endo/isochrony.

4.5.2 Enforcing endo/isochrony

Assume we have an sts P having a clock hierarchy which is not a tree, and
we still want it to be a tree. What can we do ? As revealed by inspecting
the previous figure, it is sufficient to make the roots h0, k0, . . . of the clock
hierarchy belonging to some single clock tree. In other words, we can concen-
trate on the roots of the clock hierarchy. Thus the problem can be restated
as follows :

We are given a set h1, . . . , hk of clocks, which are related by a set of clock
equations of the form :

p1(h1, . . . , hk) 6= f

. . . (49)

pq(h1, . . . , hk) 6= f

This corresponds to having a collection p1, . . . , pq of predicates on clocks,
which are boolean-valued expressions that are either true or absent. Note
that being always true is the case for predicates in classical boolean logic,
while in our case, due to the requirement for stuttering robustness, we must
accept the possibility for a “clock predicate” to be absent. Systems of equa-
tions of the form (49) can be solved for their variables h1, . . . , hk, meaning
that we can find a set ho

1, . . . , h
o
l of clocks, and a set po

1, . . . , p
o
k of clock ex-

pressions, such that equation system :

h1 = po
1(h

o
1, . . . , h

o
l )

. . . (50)

hk = po
k(h

o
1, . . . , h

o
l )
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has the same set of solutions for h1, . . . , hk as the original system (49), and
new clocks ho

1, . . . , h
o
l are free, i.e., unconstrained by the system of equations

(50). Finally, we introduce boolean variables bo
1, . . . , b

o
l , and a “master clock”

ho, such that

ho
1 = [bo

1] , . . . , ho
l = [bo

l ]

hbo
1

= . . . = hbo
l

= h (51)

The bottom line is :

1. System of clock equations (49) is equivalent to (50,51) after hiding
auxiliary variables h, bo

1, . . . , b
o
l .

2. System (50,51) is a clock tree.

Discussion. Basically, building (51,50) from (49) intuitively corresponds
to equipping the original P program with a suitable communication protocol
Q in such a way that the compound program P ‖ Q is endo/isochronous. This
is not surprising indeed, for it is known in the area of distributed systems
that components in a distributed system must be equipped with suitable
protocols for their communications.

Finally, the way we moved from (49) to (50) reveals one unpleasant feature
of this technique, namely : this part of the process is not unique, and thus
there are possibly many different correct protocols.

5 Formal study of causality

In this section we develop a formal theory of causality for sts. Our basic tool
is that of scheduling specifications and labelled preorders. We first formal-
ize this, by adding the value unkown to our domains, like in the Construc-
tive Boolean logic used in [Berry and Sentovich 1998]. Using this extended
domain, we are able to formally state and prove our criterion that circuit-
freedom implies executability. Then we formalize the rules (R-1,2,3,4) of
(21), and we finally show how correct deterministic execution results from a
successful causality analysis.
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5.1 Encoding scheduling specifications using an alge-
braic domain

In this section, we consider the following domain D and its two orderings ≺
and < as an abstraction of arbitrary domains of values :

D = {? ,

¿
︷ ︸︸ ︷
⊥, f,t︸︷︷︸

⊤

} (52)

? ≺ ⊥, f,t ⊥ < f < t (53)

In these formulas , symbols ? (resp. ¿) indicate that the value is “unknown”
(resp. “known”). The “unknown” status should not be confused with absence
(⊥) : absence is a perfectly known status, while “unknown” is intended to
model that a variable has not been produced yet in the current reaction. Non-
boolean types are abstracted as the single distinguished element ⊤, hence,
for booleans, the pair {f,t} can be seen as a refinement of the symbol ⊤,
this is shown by the underbrackets. And {⊥,⊤} is a refinement of ¿, this is
shown by the overbrackets. Ordering < has already been introduced, and the
additional partial order ≺ is the Scott information ordering : ? ≺ ⊥, f,t,
the three values ⊥, f,t being incomparable with respect to ≺.

Definition : Relation x b > y is defined in table 1, where it is specified
in the form of a multivalued function. Its main feature is that it forbids,
whenever b = t, that y gets known while x is not.

Properties of scheduling specifications. The following properties hold :

if b, c 6= ?, then :
x b > y

∧
y c > z ⇒ x b∧c > z

x b > y
∧

x c > y ⇒ x b∨c > y
(54)

In these equations, b∧c and b∨c are respectively defined as the infimum (resp.
supremum) w.r.t. relation “<” defined in (53) when both values belong to
the subdomain {⊥,t, f}. In fact, we do not need formulas (54) in case b or c
are unknown, because the label of a branch is known prior to its extremity, in
executable programs equipped with their scheduling specifications as inferred
from rules (R-1,. . . ,R-4).
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x ? ⊥ ⊤
b

? ? ? ?
⊥
f
t ?

Table 1: Definition of the dependency x b > y. This table gives the result

of this multivalued function for its output y. When nothing is written, this means

that any value is accepted. If x is boolean, then ⊤ is to be refined as any of the

two values {f,t}.

5.2 Circuitfree schedulings

We are given a set of variables x1, . . . , xn. Some of them are boolean ; for
the sake of readability, boolean variables used as labels in scheduling spec-
ifications, will be generically denoted by b1, b2, . . . Then we are given 1/ a
set of constraints of the form C(b1, . . . , bk) on boolean variables restricted
to subdomain {⊥,t, f} of known values ; and 2/ a set of scheduling specifi-
cations defined on x1, . . . , xn. Constraints C(b1, . . . , bk) are extended to the
“unknown” value by simply assuming C(b1, . . . , bk) is satisfied as soon as at
least one of the variables b1, . . . , bk is “unknown”.

Each dependency is interpreted as specified in Table 1. Thus, together
with the boolean constraints of the form C(b1, . . . , bk), they specify a sub-
domain of the product domain Dn of all possible states. The set of states
satisfying these constraints is denoted by S, and we call it a scheduling of
x1, . . . , xn. States in S are written s, t, . . . and corresponding interpretations
are denoted by s1, . . . , sn for short instead of s[x1], . . . , s[xn], and similarly
for t. The “totally unknown state” :

∀i, si = ?, is denoted by s?. (55)

Two states of S are said to be neighbours if they differ exactly in one variable,
we call it their discriminating variable. We call a path in S any finite sequence
s(1), s(2), . . . , s(K) of neighbouring states belonging to S.

For s and t two neighbouring states of S, we write s ≺ t if their respective
values for their discriminating variable xi satisfy the relation si ≺ ti defined
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in (52). A path s(1), s(2), . . . , s(K) such that s(k) ≺ s(k + 1) is called
increasing.

A scheduling S is called circuitfree if it is never true in S that

xi1
b1 > xi2

b2 > xi3 . . . xip
bp > xi1

and (56)

(b1 ∧ . . . ∧ bp = t)

Theorem 4 (circuitfree schedulings) A scheduling is circuitfree iff, for
every state s ∈ S satisfying ∀i : si 6= ?, there is an increasing path linking
s? to s.

The intuitive interpretation of this theorem is that, for an sts with a cir-
cuitfree scheduling, it is possible to compute sequentially without deadlock
all variables, starting from the inputs. Each increasing path mentioned in
theorem 4 corresponds to one possible sequential execution.

Proof : We first prove the “if” part by contradiction. Assume (56)
is violated for some circuit xi1

b1 > xi2
b2 > xi3 . . . xip

bp > xi1 ,
i.e., b1 ∧ . . .∧ bp = t is possible for this circuit in S. We want to deduce from
this assumption that there are states for which all variables are known, but
there is no increasing path originating from s? and terminating at the states
in consideration. Without loss of generality, we can restrict S to those states
for which

∀i = 1, . . . , p : [ bi = ? or bi = t ] holds,

the set of such states is called S(b1∧...∧bp=t). (57)

By table 1, condition xi1
b1 > xi2

b2 > xi3 . . . xip
bp > xi1 implies

that, on S(b1∧...∧bp=t), the following holds :

xi1 � xi2 � . . . � xip � xi1 ,

and thus the xij ’s are either all unknown, or alternatively all known. Thus
there is no increasing path originating from s? and leading to any known
state belonging to S(b1∧...∧bp=t). This proves the “if” part.
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Next, we prove the “only if” part, also by contradiction. Before-
hand, we need a lemma. Two states s and s′ are said complementary if, for
each variable x,

either s[x] = ? or s′[x] = ? .

Two states s and s′ are said compatible if, for each variable x,

either s[x] = ? or s′[x] = ? or s′[x] = s[x] .

Complementary states are also compatible. For two compatible states s and
s′, we define their sum s ⊎ s′ by :

(s ⊎ s′)[x] = if s[x] 6= ? then s[x] else s′[x]

Lemma 2 (monotonicity) Let t0 and t1 be two neighbouring states belong-
ing to S, such that t0 ≺ t1. Let t be a state such that

1. t1 and t are complementary,

2. t0 ⊎ t ∈ S,

3. there is an increasing path contained in S originating from t0 and ter-
minating in t0 ⊎ t, and

4. t1 ⊎ t satisfies the boolean constraints C(b1, . . . , bk) which contribute to
the definition of S.

Then, t1 ⊎ t ∈ S and there is an increasing path contained in S originating
from t1 and terminating in t1 ⊎ t.

Proof : Note that t0⊎t is well defined, since t0 and t are also complementary.
Let t0 → t0 ⊎ t denote the path referred to in item 3. Denote by t̃ the state
such that 1/ t̃ and t0 are complementary, and 2/ t1 = t0⊎ t̃, such a state exists
and is unique. Denote by t0 ⊎ t̃ → t0 ⊎ t ⊎ t̃ the increasing path obtained by
complementing each state belonging to path t0 → t0⊎ t by t̃. This is possible
since each intermediate state of path t0 → t0 ⊎ t and t̃ are complementary.
We claim that

path t0 ⊎ t̃ → t0 ⊎ t ⊎ t̃ is contained in S. (58)
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Clearly, claim (58) is equivalent to the conclusion of the lemma. To prove
(58), using item 4, we first note that each state belonging to path t0 ⊎ t̃ →
t0 ⊎ t ⊎ t̃ satisfies the boolean constraints C(b1, . . . , bk) which contribute to
the definition of S. We thus only need to check that they also satisfy the
dependencies contributing to the definition of S ; but the latter results from
an inspection of table 1. This proves the lemma. ⋄

We now return to the proof of theorem 4 and proceed by steps.

1. Assume ∃s⋆ ∈ S satisfying ∀i : s⋆
i 6= ?, such that there is no increasing

path linking s? to s⋆. Denote by b1, . . . , bp the boolean variables such
that b1 ∧ . . . ∧ bp = t holds at state s⋆. Denote by S the set of states
s ∈ S such that s � s⋆. We have s? ∈ S and s⋆ ∈ S. States belonging
to S are all compatible.

2. Let s, s′ ∈ S be two states such that increasing paths s? → s and
s? → s′ are both contained in S. Then we claim that

s′′ = s ⊎ s′ ∈ S, and there exists an increasing path contained in S,

originating from s?,

and terminating in s′′ (59)

As all s ∈ S satisfy s � s⋆, they satisfy in particular the boolean con-
straints b1∧ . . .∧bp = t. Thus we only need to verify the dependencies.
There is a unique state s0 ∈ S such that 1/ s0 ∈ [s? → s] ∩ [s? → s′],
and 2/ [s0 → s] ∩ [s0 → s′] = {s0}, meaning that s0 is the latest point
at which the two considered path deviate from each other. Let s1 be
the neighbour state of s0 belonging to path [s0 → s′]. Apply lemma 2
with the following substitutions : t0/s0, t1/s1, t/s̃ such that s = s0 ⊎ s̃.
We deduce that path [s? → s ⊎ s1] ⊆ S. Then, let s2 be the neighbour
state of s1 belonging to path [s1 → s′], we can repeat the same argu-
ment. And we proceed repeatedly in the same way until we prove the
claim (59).

3. Consider the set of s ∈ S for which there exists an increasing path [s? →
s] ⊆ S. From (59) we know that this set has a unique maximal element
smax for partial order ≺. By hypothesis we have smax ≺ s⋆, smax 6= s⋆.
Thus there are at least two variables, denote them by x and x′, such that
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smax[x] = smax[x
′] = ?, but s[x] = s[x′] 6= ? for every s ∈ S\[s? → smax].

Hence, the following holds at each state belonging to S :

x
b

> x′ b
> x where b = b1 ∧ . . . ∧ bp = t

Hence condition of circuit freedom is violated on S, and thus it can be vio-
lated on S. This finishes the proof of theorem 4. ⋄

In the sequel, for Φ an sts with scheduling specifications, we shall consider
its associated scheduling

SΦ (60)

which is obtained by keeping, from the set of predicates defining the transition
relation of Φ,

1. the scheduling specifications, and

2. the assertions involving only boolean variables and clocks,

and discarding the other ones.

5.3 Deriving scheduling specifications as causality con-
straints

In this section, we formally justify rules (21). The principles we follow for
our abstraction mechanism are given next :

(P-1) For x not a boolean variable, we abstract its domain Dx as the singleton
{⊤}, and then extend {⊤} with the additional values {?,⊥}.

(P-2) Within equations of the form “y = exp” or “if b then y = exp1 else y =
exp2” we shall further abstract y by mapping the set {⊥, f,t} to the
single value ¿ (known). Note the asymmetry of this abstraction prin-
ciple : for the statement “if b then y = x” where x, y are booleans, we
abstract y but not x.
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(P-3) Since we are interested in causality constraints, we only need to keep
track of configurations for which y cannot be known, i.e., y = ? is
the only allowed possibility. For other configurations, we weaken the
constraint on y to “y unconstrained”, which is depicted in the tables
by an empty box.

We now proceed on deriving the scheduling associated to each primitive state-
ment, using (P-1,2,3). We use the notation: ?,⊥ to indicate that, for the
considered configuration, either y = ? or y = ⊥ holds, and similarly for other
cases.

Lemma 3 The following holds :

x
b

> y ⇒ b > hy

Proof : by inspection of table 1.

Lemma 4 The following holds :

hx > x

Proof : by inspection of the following tables (the first table relates x to hx,
as extended to unknown values) :

hx ? ⊥ t
x ? ?,⊥ ?,⊤

,

abstacted as (using P-2) :
hx ? ⊥ t
x ? ?, ¿ ?, ¿

,

which is equal to :
hx ? ⊥ t
x ?

which turns out to be equivalent to hx > x by table 1.

Lemma 5 The following holds :

(f) :

{
y = f(u, v)

hu = hv = hy
⇒ (u, v)

hy
> y
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Proof : by inspection of table 1 and of the following tables (# denotes a
prohibited value) :

abstraction of (f), using (P-1) :

u ? ⊥ ⊤
v

? ? ?,⊥ ?
⊥ ?,⊥ ⊥ #
⊤ ? # ⊤

,

using (P-2) :

u ? ⊥ ⊤
v

? ? ?, ¿ ?
⊥ ?, ¿ ¿ #
⊤ ? # ¿

,

using (P-3) :

u ? ⊥ ⊤
v

? ? ?
⊥
⊤ ?

,

which is equivalent to the formulas of the conclusion of the rule of lemma 5.

Lemma 6 The following holds :

[ if b then x = u] ∧ [ if b then hx = hu] ⇒





u b ∧ hu > x

b hb ∧ hu > hx

hu
b ∧ hu > hx

Proof : by inspection of table 1 and of the following two tables. These
tables define the possible values, of x and hx respectively, for [ if b then x =
u] ∧ [ if b then hx = hu] :
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u ? ⊥ ⊤
b

? ? ?,⊥ ?
⊥ ?,⊥ ?,⊥ ?,⊥
t ? ?,⊥ ?,⊤
f ?,⊥ ?,⊥ ?,⊥

hu ? ⊥ t
b

? ? ?,⊥ ?
⊥ ?,⊥ ?,⊥ ?,⊥
t ? ?,⊥ ?,⊤
f ?,⊥ ?,⊥ ?,⊥

,

Applying principles (P-2,3) then yields the formulas corresponding to the
conclusion of the rule of lemma 6. Note the asymmetry between x and u,
while statements x = u and u = x are clearly identical. This asymmetry is
due to principle (P-2) for sts abstraction.

5.4 Correct programs

In this subsection, we formally state and prove the result establishing the
link between circuit freedom and executable sts.

Theorem 5 (correct programs) Let P be an sts satisfying the following
conditions :

1. For each statement of P, the scheduling specifications derived from ap-
plying the rules of lemmas 3, 4, 5, 6 are also statements of P.

2. The scheduling SP (cf. (60)) defined by P is circuitfree.

3. There is no multiple definition of a variable, meaning that, whenever

if b1 then x = exp1

∧ if b2 then x = exp2

is part of P, then :

b1 ∧ b2 = t never holds.

Then :

1. As far as control is concerned, the inputs of P are the source nodes of
the dependency graph.

2. Input values are those variables which never occur on the left–hand side
of statements of the form “x =exp”.

3. For each given input control history of P and compatible input value
history, there is exactly one run of P, i.e., P is deterministic.
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Nota : Clearly, theorem 5 provides us with a sufficient condition, this con-
dition is not necessary. Furthermore, the rules for inferring scheduling speci-
fications as causality constraints is bound to the syntax, not to the semantics
of the program. In particular, from statement “ if b then x = u”, we choose
to infer dependency u b ∧ hu > x but not the symmetric one in which x
and u are exchanged. This means that, while P may not satisfy the assump-
tions of theorem 5 for a given syntactic form of P, it may satisfy them after a
proper rewriting into a semantically equivalent form. Here, semantic equiv-
alence means identical runs when scheduling specifications are discarded.

Proof : It is organized into several steps.

1. With the formula x b > y we associate the following automaton :

x,y

set x

set y

set y

set x

set x
set b

set x

x,b,y

or Fb =

x y

x,y b,x

b=T

Transitions are labelled with actions. Label “set x” indicates that vari-
able x is set to an arbitrary value of its (extended) domain Dx ∪ {⊥}.
States are labelled with those variables that are ?, i.e., have not been
set. This automaton is the most permissive one with the following
properties :

(a) states are valued with configurations of the triple (x, b, y) that are
compatible with the scheduling constraint x b > y.

(b) Variables are set sequentially.

(c) All variables are eventually set.
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Thus each path of this automaton specifies an evaluation scheme for the
triple (x, b, y) which is compatible with the considered scheduling spec-
ification. Conversely, any correct evaluation scheme for triple (x, b, y)
can be specified in this way. We call this automaton the execution
automaton associated to scheduling specification x b > y.

2. To each primitive statement we associate the conjunction of its causal-
ity constraints and possible constraints involving clocks and boolean
variables, and we take the product of associated execution automata.
The paths of the resulting automaton specify all correct schedulings to
evaluate the involved variables. We call the resulting product automa-
ton the execution automaton associated to the considered primitive.

3. Then we take the product of the execution automata associated to
each statement. By theorem 4 we know that, for each tuple of vari-
ables which satisfies the specification, there is a path of the product
automaton which originates from its initial state and terminates at the
final state in which all variables are set, meaning that all variables of
the considered tuple are sequentially set.

4. Finally, we refine the transition labels of the form “set x” etc., by as-
signing to x etc the value specified by the program. As source nodes
of the dependency graph are set first, they appear as inputs of P for its
control. Also, variables u that are set and do not occur on the left–hand
side of any statement u =expression must be read from the environ-
ment : their values are inputs of the considered program P. Finally,
thanks to condition 3 of theorem 5, actions of the form “set x” etc.,
are refined into single writings. This finishes the proof of the theorem.
⋄

We illustrate this technique on the following simple sts :

y = f(u, v)
∧

hu = hv = hy =def h .

The causality constraint and associated execution automaton are :
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h > (u, v, y)

∧
(u, v) h > y

∧
hu = hv = hy =def h

set vset u

set uset v

set y

h,u,v,y

y

u,yv,y

u,v,y

h=T

Clock h is the activation clock. The refined execution automaton is ob-
tained by replacing set u and set v by read u and read v, and set y by the
assignment y := f(u, v).

6 Conclusion

Our contribution can be summarized as follows :

• We have proposed sts with scheduling specifications as a paradigm for
causality analysis, sts abstraction, separate compilation and reuse.

• We have characterized those sts for which asynchronous and syn-
chronous semantics are equivalent in some precise meaning.

We advocate system design methodology based on the synchronous paradigm,
possibly followed by a provably correct desynchronization. Advantages of
this approach are numerous, they are listed below according to the different
phases of the design :

Specification : designing within the synchronous paradigm allows the de-
signer to exploit the simplicity and elegance of compositionality of syn-
chronous specifications. In addition, specification can be performed in-
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dependently from the execution architecture ; therefore, upgrading an
execution architecture does not require redesigning the specifications.

Verification :

• In the synchronous paradigm, composition of specifications and
composition of properties are both performed by using the com-
position “ ‖ ” of sts. This facilitates reasoning in general, and in
particular compositional reasoning.

• For endo/isochronous sts, proofs based on the synchronous se-
mantics carry over without modifications to asynchrony. For such
systems, verifications can be performed within the synchronous
framework. This allows to avoid state explosion resulting from
the use of the asynchronous interleaving semantics.

Abstraction, modularity, and reuse :

• Scheduling specifications provide the adequate notion of abstrac-
tion for separate compilation. It allows the designer to check
the correctness of component encapsulation at systems integra-
tion phase.

• sts with scheduling specifications can be composed using a proper
generalization of the composition “ ‖ ” of sts. Thus advantages
of compositionality naturally extend to sts with scheduling spec-
ifications.

• The structuration of specifications into scheduler and tasks allows
us to define proper reusable modules. Of course, if assumptions
are available on the possible behaviours of the environment, then
larger modules can be stored as object code for further reuse.

gals networks : the elegant feature is that isochrony is a local property
within a network of components. As isochrony is compositional, adding
a new component Φnew to a pre-existing gals network (Φi)i=1,...,n while
preserving its gals nature, only requires to check whether pairs (Φnew, Φi)
are isochronous, for each Φi having direct communication with Φnew in
the extended network. Thus gals designs can be built composition-
ally, it is not needed to desynchronize at once the whole synchronous
design.
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Thanks to the outcomes of the SACRES project, the above approach is
supported by the Signal-V4 language8, and by the Dc+ common format
for synchronous languages [DC+ Sacres 1996]. Signal-V4 and the Dc+

format both are concrete implementations of our sts model. This includes
scheduling specifications, which are available as primitive statements in both
formalisms.

In particular, the 1999 release of Sildex [Sildex] 9 implements distributed
code generation based on the approach presented in this paper. The target
architectures above all else are POSIX compliant real-time OS.

The new Signal-V4 compiler developed at Inria implements the whole
methodology, including separate compilation. Services for architecture gen-
eration are also provided, using our notion of abstraction.

Research perspectives. Further work is needed to show that the above
principles are viable for generating architectures built up from pre-existing
C/C++/Java/. . . modules. Then, not all communication media or operating
systems provide services satisfying the requirements of our theory of desyn-
chronization, namely : no loss of messages, first-in/first-out semantics for
each individual channel. Additional work is needed for getting a full im-
plementation on each different type of distributed architecture ; this can be
very easy (writing a few generic drivers, e.g., for POSIX), or can be more
demanding when adequate services are not provided by the architecture, and
thus need to be emulated.
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formal study of causality.
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