
Non-massive, non-high performance,

distributed computing: selected issues?

Albert Benveniste1

Irisa/Inria, Campus de Beaulieu, 35042 Rennes cedex, France
Albert.Benveniste@irisa.fr, http://www.irisa.fr/sigma2/benveniste/

Abstract There are important distributed computing systems which
are neither massive nor high performance. Examples are: telecommuni-
cations systems, transportation or power networks, embedded control
systems (such as embedded electronics in automobiles), or Systems on
a Chip. Many of them are embedded systems, i.e., not directly visible to
the user. For these systems, performance is not a primary issue, major
issues are reviewed in this paper. Then, we focus on a particular but
important point, namely the correct implementation of specifications on
distributed architectures.

1 Beware

This is a special and slightly provocative section, just to insist, for the Euro-Par
community, that:

there are important distributed computing systems which are

neither massive nor high performance.

Here is a list, to mention just a few:

(a) Telecommunications or web systems.
(b) Transportation or power networks (train, air-traffic management, electricity

supply, military command and control, etc.).
(c) Industrial plants (power, chemical, etc.).
(d) Manufacturing systems.
(e) Embedded control systems (automobiles, aircrafts, etc.).
(f) System on Chip (SoC) such as encountered in consumer electronics, and

Intellectual Property (IP)-based hardware.

Examples (a,b) are distributed, so to say, by tautology: they are distributed be-
cause they are networked. Examples (c,d,e) are distributed by requirement from
the physics: the underlying physical system is made of components, each compo-
nent is computerized, and the components concur at the overall behaviour of the
system. Finally, example (f) is distributed by requirement from the electrons:
billion-transistor SoC cannot be globally synchronous.

? This work is or has been supported in part by the following projects : Esprit R&D
safeair, and Esprit NoE artist.



Now, (almost) all the above examples have one fundamental feature: they
are open systems, which interact continuously with some unspecified environment
having its own dynamics. Furthermore, some of these open systems interact with
their environment in a tight way, e.g. (c,d,e) and possibly also (f). These we call

reactive systems,

which will be the focus of this paper. For many reactive systems, computing
performance is not the main issue. The extreme case is avionics system, in which
the computing system is largely oversized in performance. Major requirements,
instead, are [20]:

Correctness: the system should behave the way it is supposed to.
Since the computer system interacts with some physical system, we are in-

terested in the resulting closed-loop behaviour, i.e., the joint behaviour of the
physical plant and its computer control system. Thus, specifying the signal/data
processing and control functionalities to be implemented is a first difficulty, and
sometimes even a challenge (think of a flight control system for a modern flight-
by-wire aircraft). Extensive virtual prototyping using tools from scientific and
control engineering is performed to this end, by using typically Matlab/Simulink
with its toolboxes.

Another difficulty is that such reactive systems involve many modes of op-
eration (a mode of operation is the combination of a subset of the available
functionalities). For example, consider a modern car equipped with computer
assisted emergency breaking. If the driver suddendly strongly brakes, then the
resulting strong increase in the brake pedal pressure is detected. This causes the
fuel injection mode to stop, abs mode to start, and the maximal braking force
is computed on-line and applied automatically, in combination with abs. Thus
mode changes are driven by the pilot, they can also be driven automatically,
being indirect consequences of human requests, or due to protection actions.

There are many such modes, some of them can run concurrently, and their
combination can yield thousands to million of discrete states. This discrete part
of the system interfers with the “continuous” functionalities in a bidirectional
way: the monitoring of continuous measurements triggers protection actions,
which results in mode changes; symmetrically, continuous functionalities are
typically attached to modes. The overall system is called hybrid, since it tightly
combines both continuous and discrete aspects. This discrete part, and its in-
teraction with the continuous part, is extremely error prone, its correctness is a
major concern for the designer.

For some of these systems, real-time is one important aspect. It can be soft
real-time, where requested time-bounds and throughput are loose, or hard real-
time, where they are strict and critical. This is different from requesting high
performance in terms of average throughput.

As correctness is a major component of safety, it is also critical that the
actual distributed implementation—also called distributed deployment in the
sequel—of the specified functionalities and mode changes shall be performed in



a correct way. After all, the implementation matters, not the spec! But the im-
plementation adds a lot of nondeterminism: rtos (real-time operating system),
buses, and sometimes even analog-to-digital and digital-to-analog conversions.
Thus a careless deployment can impair an otherwise correct design, even if the
computer equipment is oversized.

Robustness: the system should resist to (some amount of) uncertainty or error.
No real physical system can be exactly modeled. Models of different accu-

racies and complexities are used, for the different phases of the scientific en-
gineering part of the systems design. Accurate models are used for mechanics,
aerodynamics, chemical dynamics, etc., when virtual simulation models are de-
veloped. Control design uses simple models reflecting only some facets of the
systems dynamics. The design of the discrete part for mode switching usually
oversimplifies the physics. Therefore, the design of all functionalities, both con-
tinuous and discrete, must be robust against uncertainties and approximations
in the physics. This is routine for the continuous control engineer, but still re-
quires modern control design techniques. Performing this for the discrete part,
however, is still an open challenge today.

Fault-tolerance is another component of robustness of the overall system.
Faults can occur, due to failures of physical components. They can be due to
the on-board computer and communication hardware. They can also originate
from residual faults in the embedded software. Distributed architectures are a
key counter-measure against possible faults : separation of computers helps mas-
tering the propagation of errors. Now, special principles should be followed when
designing the corresponding distributed architecture, so as to limit the propaga-
tion of errors, not to increase its risk! For example, rendez-vous communication
may be dangerous: a component failing to communicate will block the overall
system.

Scope of this paper: Addressing all the above challenges is certainly beyond a
single paper, and even more beyond my own capacity. I shall restrict myself to
examples (e,f), and to a lesser extend (c,d). There, I shall mainly focus on the
issue of correctness, and only express some considerations related to robustness.
Moreover, since the correctness issue is very large, I shall focus on the correctness
of the distributed deployment, for so-called embedded systems.

2 Correct deployment of distributed embedded

applications

As a motivating application example, the reader should think of safety critical
embedded systems such as flight control systems in flight-by-wire avionics, or
anti-skidding and anti-collision equipment in automobiles. Such systems can be
characterized as moderately distributed, meaning that:

– The considered system has a “limited scope”, in contrast with large dis-
tributed systems such as telecommunication or web systems.



– All its (main) components interact, as they concur at the overall correct
behaviour of the system. Therefore, unlike for large distributed systems, the
aim is not that different services or components should not interact, but
rather that they should interact in a correct way.

– Correctness, of the components and of their interactions with each other and
with the physical plant, is critical. This requires tight control of synchroniza-
tion and timing.

– The design of such systems involves methods and tools from the underlying
technical engineering area, e.g., mechanics and mechatronics, control, signal
processing, etc. Concurrency is a natural paradigm for the systems engineer,
not something difficult to be afraid of. The different functionalities run by
the computer system operate concurrently, and they are concurrent with the
physical plant.

– For systems architecture reasons, not performance reasons, deployment is
performed on distributed architectures. The system is distributed, and even
some components themselves can be distributed—they can involve intelli-
gent sensors & actuators, and have part of their supervision functionalities
embedded in some centralized computer.

Methods and tools used, and corresponding communication paradigms: The meth-
ods and tools used are discussed in Fig. 1. In this figure, we show on the left the

UML
model engineering

(Matlab/Simulink/Stateflow)
control engineering performance, timeliness

fault tolerance

architecture

system from
components

System on a Chip
hardware modules

bus, protocols & algorithms
tasks

functional aspects non functional aspects

system architecture

GALS
code generation

timing evaluation
timed

timeliness, urgencyfunctional models
equations + states

synchronous

multiform

tasks
scheduling

time−triggered

model engineering
abstractions, interfaces

‘‘loose’’

Figure1. Embedded systems: overview of methods and tools used (left), and corre-
sponding communication paradigms (right). The top row (“model engineering”) refers
to the high level system specification, the second row (“control engineering”) refers to
the the detailed specification of the different components (e.g., anti-skidding control
subsystem). And the bottom row refers to the the (distributed) implementation.

different tool-sets used throughout the systems design. This diagram is mirrored
on the right hand side of the same figure, where the corresponding communica-
tion paradigms are shown.



Let us focus on the functional aspects first. This is a phase of the design in
which scientific engineering tools (such as the Matlab family) are mainly used, for
functionalities definition and prototyping. In this framework, there is a natural
global time available. Physical continuous time triggers the models developed
at the functionalities prototyping phase, in which controllers interact with a
physical model of the plant. The digital controllers themselves are discrete time,
and refer to some unique global discrete time. Sharing a global discrete time
means using a perfectly synchronous communication paradigm, this is indicated
in the diagram sitting on the right.

Now, some parts of the system are (hard or soft) real-time, meaning that
the data handled are needed and are valid only within some specified window of
time: buffering an unbounded amount of data, or buffering data for unbounded
time, is not possible.

For these first two aspects, tight logical or timed synchronization is essential.
However, when dealing with higher level, global, systems architecture aspects,

it may sometimes happen that no precise model for the the components inter-
action is considered. In this case the communication paradigm is left mostly
unspecified. This is a typical situation within the UML (Universal Modeling
Language) [19] community of systems engineering.

Focus now on the bottom part of this figure, in which deployment is consid-
ered. Of course, there is no such thing like a “loose” communication paradigm,
but still different paradigms are mixed. Tasks can be run concurrently or can be
scheduled, and scheduling may or may not be based on physical time. Hybrid
paradigms are also encountered within Systems on a Chip (SoC), which typically
follow a Globally Asynchronous Locally Synchronous (gals) paradigm.

Fig. 2 shows a different view of the same landscape, by emphasizing the dif-
ferent scheduling paradigms. In this figure, we show a typical control structure of

sequential
code generationcontrol structure

distributed execution
partial order based time

triggering

Figure2. Embedded systems: scheduling models for execution.

a functional specification (left) with its multi-threaded logical control structure.
The horizontal bars figure synchronization points, the (dashed) thick lines fig-
ure (terminated) threads, and the diamonds indicate fork/joins. This functional



specification can be compiled into non-threaded sequential code by generating
a total order for the threads (mid-left), this has the advantage of producing
deterministic executable code for embedding.

But a concurrent, and possibly distributed, execution is also possible (mid-
right). For instance, task scheduling is subcontracted to some underlying rtos,
or tasks can be physically distributed.

Finally, task and even component scheduling can be entirely triggered by
physical time, by using a distributed infrastructure which provides physically
synchronized timers1, this is usually referred to as “time-triggered architec-
ture” [17].

Objective of this paper. As can be expected from the above discussion, mixed
communication paradigms are in use throughout the design process, and are
even combined both at early phases of the design and at deployment phase.

This was not so much an issue in the traditional design flow, in which most
work was performed manually. In this traditional approach: the physics engineer
provides models; the control engineer massages them for his own use and designs
the control; then he forwards this as a document in textual/graphical format to
the software engineer, who performs programming (in C or assembly language).
This holds for each component. Then unit testing follows, and then integration
and system testing 2. Bugs discovered at this last stage are the nightmare of the
systems designer! Where and how to find the cause? How to fix them? On the
other hand, for this traditional design flow, each engineer has his own skills and
underlying scientific background, but there is no need for an overall coherent
mathematical foundation for the whole. So the design flow is simple. It uses
different skills in a (nearly) independent way. This is why this is mainly the
current practice.

However, due to the above indicated drawback, this design flow does not
scale up. In very complex systems, many components would mutually interact
in an intricate way. There are about 70 ECU’s (Electronic Computing Units) in
a modern BMW Series 7 car, each of these implements one or more functional-
ities. Moreover, some of them interact together, and the number of embedded
functionalities rapidly increases. Therefore, there is a double need. First, specifi-
cations transferred between the different stages of the design must be as formal
as possible (fully formal is the best). Second, the ancillary phases, such as pro-
gramming, must be made automatic from higher level specifications 3.

1 we prefer not to use the term clock for this, since the latter term will be used for a
different purpose in the present paper.

2 This is known as the traditional cycle consisting of {specification ↘ coding ↘ unit
testing ↗ integration ↗ system testing}, with everything manual. It is called the
V-shaped development cycle.

3 Referring to Footnote 2, when some of the listed activities become automatic (e.g.,
coding being replaced by code generation), then the corresponding ↘↗ is replaced
by a l (to refer to a “zero-time” activity), thus one moves from a V to a Y, and then
further to a T, by relying on extensive virtual prototyping, an approach promoted
by the Ptolemy tool [8].



This can only be achieved if we have a full understanding of how the different
communication paradigms, attached to the different stages of the design flow,
can be combined, and of how migration from a paradigm to the next one can be
performed in a provably correct way. A study involving all the above mentioned
paradigms is beyond the current state of the research. The purpose of this paper
is to focus on the pair consisting of the {synchronous, asynchronous} paradigms.

But, before doing so, it is worth discussing in more depth the synchronous
programming paradigm and its associated family of tools, as this paradigm is
certainly not familiar to the High Performance Computing community. Although
many visual or textual formalisms follow this paradigm, it is the contribution
of the three “synchronous languages” Esterel, Lustre, and Signal [1] [7] [13] [18]
[14] [6] [2], to have provided a firm basis for this concept.

3 Synchronous programming and synchronous languages

The three synchronous languages Esterel, Lustre, and Signal, are built on a
common mathematical framework that combines synchrony (i.e., time progresses
in lockstep with one or more clocks) with deterministic concurrency.

Fundamentals of synchrony. Requirements from the applications, as result-
ing from the discussion of Section 2, are the following:

– Concurrency. The languages must support functional concurrency, and they
must rely on notations that express concurrency in a user-friendly manner.
Therefore, depending on the targeted application area, the languages should
offer as a notation: block diagrams (also called dataflow diagrams), or hier-
achical automata, or some imperative type of syntax, familiar to the targeted
engineering communities.

– Simplicity. The languages must have the simplest formal model possible to
make formal reasoning tractable. In particular, the semantics for the parallel
composition of two processes must be the cleanest possible.

– Synchrony. The languages must support the simple and frequently-used im-
plementation models in Fig. 3, where all mentioned actions are assumed to
take finite memory and time.

Combining synchrony and concurrency while maintaining a simple mathematical
model is not so straightforward. Here, we discuss the approach taken by the
synchronous languages.

Synchrony divides time into discrete instants: a synchronous program pro-
gresses according to successive atomic reactions, in which the program commu-
nicates with its environment and performs computations, see Fig. 3. We write
this for convenience using the “pseudo-mathematical” statement P =def Rω,
where R denotes the set of all possible reactions and the superscript ω indicates
non-terminating iterations.



Initialize Memory
for each input event do

Compute Outputs
Update Memory

end

Initialize Memory
for each clock tick do

Read Inputs
Compute Outputs
Update Memory

end

Figure3. Two common synchronous execution schemes: event driven (left) and sample
driven (right). The bodies of the two loops are examples of reactions.

For example, in the block (or dataflow) diagrams of control engineering,
the nth reaction of the whole system is the combination of the individual nth
reactions for each constitutive component. For component i,

X i
n = f(X i

n−1, U
i
n)

Y i
n = g(X i

n−1, U
i
n)

(1)

where U, X, Y are the (vector) input, state, and output, and combination means
that some input or output of component i is connected to some input of com-
ponent j, say

U j
n(k) = U i

n(l) or Y i
n(l), (2)

where Y i
n(l) denotes the l-th coordinate of vector output of component i at

instant n. Hence the whole reaction is simply the conjunction of the reactions (1)
for each component, and the connections (2) between components.

Connecting two finite-state machines (FSM) in hardware is similar. Fig. 4a
shows how a finite-state system is typically implemented in synchronous digital
logic: a block of acyclic (and hence functional) logic computes outputs and the
next state as a function of inputs and the current state. Fig. 4b shows the most
natural way to run two such FSMs concurrently and have them communicate,
i.e., by connecting some of the outputs of one FSM to the inputs of the other
and vice versa.

Therefore, the following natural definition for parallel composition in syn-
chronous languages was chosen, namely: P1 ‖P2 =def (R1 ∧ R2)

ω, where ∧ de-
notes conjunction. Note that this definition for parallel composition also fits
several variants of the synchronous product of automata. Hence the model of
synchrony can be summarized by the following two pseudo-equations:

P =def Rω, (3)

P1 ‖P2 =def (R1 ∧ R2)
ω . (4)

A flavour of the different styles of synchronous languages. Here is an
example of a Lustre program, which describes a typical fragment of digital logic
hardware. The program:



Acyclic

Combinational

Logic

State

Holding

Elements

(a) (b)

Figure4. (a) The usual structure of an FSM implemented in hardware. (b) Connecting
two FSMs. The dashed line shows a path with instantaneous feedback that arises from
connecting these two otherwise functional FSMs.

edge = false -> (c and not pre(c));
nat = 0 -> pre(nat) + 1;
edgecount = 0 -> if edge then pre(edgecount) + 1

else pre(edgecount);

defines edge to be true whenever the Boolean flow c has a rising edge, nat to be
the step counter (natn = n), and edgecount to count the number of rising edges
in c. Its meaning can be expressed in the form of a finite difference equation,
with obvious shorthand notations:

{

e0 = false
N0 = 0

, ∀n > 0 :















en = cn and not cn−1

Nn = Nn−1 + 1

ecn =

{

if en = true then ecn−1 + 1
else ecn−1

This style of programming is amenable of graphical formalisms of block-diagram
type. It is suited for computation-dominated programs. The Signal language is
sort of a generalization of the Lustre language, suited to handle open systems,
we discuss this point later on.

But reactive systems can also be control-dominated. To illustrate how Esterel
can be used to describe control behavior, consider the program fragment in Fig. 5
describing the user interface of a portable CD player. It has input signals for play
and stop and a lock signal that causes these signals to be ignored until an unlock
signal is received, to prevent the player from accidentally starting while stuffed
in a bag. Note how the first process ignores the Play signal when it is already
playing, and how the suspend statement is used to ignore Stop and Play signals.

The nice thing about synchronous language is that, despite the very different
styles of Esterel, Lustre, and Signal, they can be cleanly combined, since they
share fully common mathematical semantics.



loop

suspend

await Play; emit Change

when Locked;

abort

run CodeForPlay

when Change

end

‖
loop

suspend

await Stop; emit Change

when Locked;

abort

run CodeForStop

when Change

end

‖
every Lock do

abort

sustain Locked

when Unlock

end

emit S Make signal S present im-
mediately

pause Stop this thread of control
until the next reaction

p ; q Run p then q

loop p end Run p; restart when it ter-
minates

await S Pause until the next reac-
tion in which S is present

p ‖ q Start p and q together;
terminate when both have
terminated

abort p when S Run p up to, but not
including, a reaction in
which S is present

suspend p when S Run p except when S is
present

sustain S Means loop emit S; pause

end

run M Expands to code for mod-
ule M

Figure5. An Esterel program fragment describing the user interface of a portable CD
player. Play and Stop inputs represent the usual pushbutton controls. The presence of
the Lock input causes these commands to be ignored.

Besides the three so-called “synchronous languages”, other formalisms or
notations share the same type of mathematical semantics, without saying so
explicitly. We only mention two major ones. The most widespread formalism is
the discrete time part of the Simulink 4 graphical modeling tool for Matlab, it is
a dataflow graphical formalism. David Harel’s Statecharts [15][16] as for instance
implemented in the Statemate tool by Ilogix 5, is a visual formalism to specify
concurrent and hierarchical state machines. These formalisms are much more
widely used than the previously described synchronous languages. However they
do not fully exploit the underlying mathematical theory.

4 Desynchronization

As can be seen from Fig. 1, functionalities are naturally specified using the
paradigm of synchrony. In contrast, by looking at the bottom part of the dia-
grams in the same figure, one can notice that, for larger systems, deployment uses

4 http://www.mathworks.com/products/
5 http://www.ilogix.com/frame html.cfm



infrastructures that do not comply with the model of synchrony. This problem
can be addressed in two different ways.

1. If the objective is to combine, in the considered system, functionalities that
are only loosely coupled, then a direct integration without any special care
taken to the nondeterminism of the distributed, asynchronous, infrastruc-
ture, will do the job. As an example, think of integrating an air bag system
with an anti-skidding system in an automobile. In fact, integrating different
functionalities in the overall system, is mostly performed this way in the
current practice [11].

2. However, when different functionalities have to be combined, which involve
a significant discrete part, and interact together in a tight way, then brute
force deployment on a nondeterministic infrastructure can create unexpected
combinations of discrete states, a source of risk. As an example to contrast
with the previous one, think of combining an air bag system with an auto-
matic door locking control (which decides upon locking/unlocking the doors
depending on the driving condition).

For this second case, having a precise understanding of how to perform, in a
provably correct way, asynchronous distributed deployment of synchronous sys-
tems, is a key issue. In this section, we summarize our theory on the interaction
between the two {synchronous, asynchronous} paradigms [5].

4.1 The models used

In all the models discussed below, we assume some given underlying finite set
V of variables—with no loss of generality, we will assume that each system
possesses the same V as its set of variables. Interaction between systems occurs
via common variables. The difference between these models lies in the way this
interaction occurs, from strictly synchronous to asynchronous. We consider the
following three different models :

– Strictly synchronous : Think of an intelligent sensor, it possesses a unique
clock which triggers the reading of its input values, the processing it per-
forms, and the delivery of its processed values to the bus. The same model
can be used for human/machine interfaces, in which the internal clock trig-
gers the scanning of the possible input events: only a subset of these are
present at a given tick of the overall clock.

– Synchronous : The previous model becomes inadequate when open systems
are considered. Think of a generic protection subsystem, it must perform
reconfiguration actions on the reception of some alarm event—thus, “some
alarm event” is the clock which triggers this protection subsystem, when
being designed. But, clearly, this protection subsystem is for subsequent use
in combination with some sensoring system which will generate the possible
alarm events. Thus, if we wish to consider the protection system separately,
we must regard it as an open system, which will be combined with some
other, yet unspecified, subsystems. And these additional components may



very well be active when the considered open system is silent, cf. the exam-
ple of the protection subsystem. Thus, the model of a global clock triggering
the whole system becomes inadequate for open systems, and we must go
for a view in which several clocks trigger different components or subsys-
tems, which would in turn interact at some synchronization points. This
is an extension of the strictly synchronous model, we call it synchronous.
The Esterel and Lustre languages follow the strictly synchronous paradigm,
whereas Signal also encompasses the synchronous one.

– Asynchronous : In the synchronous model, interacting components or subsys-
tems share some clocks for their mutual synchronization, this requires some
kind of broadcast synchronization protocol. Unfortunately, most distributed
architectures are asynchronous and do not offer such a service. Instead, they
would typically offer asynchronous communication services satisfying the
following conditions: 1/ no data shall be lost, and 2/ the ordering of the
successive values, for a given variable, shall be preserved (but the global in-
terleaving of the different variables is not). This corresponds to a network
of reliable, point to point channels, with otherwise no synchronization ser-
vice being provided. This type of infrastructure is typically offered by rtos

or buses in embedded distributed architectures, we refer to it as an asyn-
chronous infrastructure in the sequel.

We formalize these three models as follows.

Strictly synchronous. According to this model, a state x assigns an effective
value to each variable v ∈ V . A strictly synchronous behaviour is a sequence
σ = x1, x2, . . . of states. A strictly synchronous process is a set of strictly syn-
chronous behaviours. A strictly synchronous signal is the sequence of values
σv = v(x1), v(x2), . . . , for v ∈ V given. Hence all signals are indexed by the
same totally ordered set of integers N = {1, 2, . . .} (or some finite prefix of it).
Hence all behaviours are synchronous and are tagged by the same clock, this is
why I use the term “strictly” synchronous. In practice, strictly synchronous pro-
cesses are specified using a set of legal strictly synchronous reactions R, where
R is some transition relation. Therefore, strictly synchronous processes take the
form

P = Rω ,

where superscript “.ω” denotes unbounded iterations6. Composition is defined as
the intersection of the set of behaviours, it is performed by taking the conjunction
of reactions :

P ‖P ′ := P ∩ P ′ = (R ∧ R′)ω . (5)

This is the classical mathematical framework used in (discrete time) models
in scientific engineering, where systems of difference equations and finite state

6 Now, it is clear why we can assume that all processes possess identical sets of vari-
ables: just enlarge the actual set of variables with additional ones, by setting no
constraint on the values taken by the states for these additional variables.



machines are usually considered. But it is also used in synchronous hardware
modeling.

Synchronous. Here the model is the same as in the previous case, but every
domain of data is enlarged with some non-informative value, denoted by the
special symbol ⊥ [3][4][5]. A ⊥ value is to be interpreted as the considered
variable being absent in the considered reaction And the process can use the
absence of these variables as a viable information for its control. Besides this,
things are as before : a state x assigns an informative or non-informative value
to each state variable v ∈ V . A synchronous behaviour is a sequence of states:
σ = x0, x1, x2, . . .. A synchronous process is a set of synchronous behaviours.
A synchronous signal is the sequence of informative or non-informative values
σv = v(x1), v(x2), . . . , for v ∈ V given. And composition is performed as in (5).
Hence, strictly synchronous processes are just synchronous processes involving
only informative (or “present”) values.

A reaction is called silent if all variables are absent in the considered reac-
tion. Now, if P = P1 ‖P2 ‖ . . . ‖PK is a system composed of a set of components,
each Pk has its own activation clock, consisting of the sequence of its non-silent
reactions. Thus the activation clock of Pk is local to it, and activation clocks
provide the adequate notion of local time reference for larger systems. For in-
stance, if P1 and P2 do not interact at all (they share no variable), then there
is no purpose that they should share some time reference. According to the syn-
chronous model, non interacting components simply possess independent, non
synchronized, activation clocks.

Thus, our synchronous model can mimic asynchrony. As soon as two processes
can synchronize on some common clock, they can also exercise control on the
basis of the absence of some variables at a given instant of this shared clock.
Of course, sharing a clock needs broadcasting this clock among the different
involved processes, this may require some protocol if the considered components
are distributed.

Asynchronous. Reactions cannot be observed any more, no clock exists. In-
stead a behaviour is a tuple of signals, and each individual signal is a totally
ordered sequence of (informative) values: sv = v(1), v(2), . . . A process P is a
set of behaviours. “Absence” cannot be sensed, and has therefore no meaning.
Composition occurs by means of unifying each individual signal shared between
two processes:

P1 ‖a P2 := P1 ∩ P2

Hence, in this model, a network of reliable and order-preserving, point-to-point
channels is assumed (since each individual signal must be preserved by the
medium), but no synchronization between the different channels is required. This
models in particular the communications via asynchronous unbounded fifos.



4.2 The fundamental problems

Many embedded systems use the Globally Asynchronous Locally Synchronous
(gals) architecture, which consists of a network of synchronous processes, in-
terconnected by asynchronous communications (as defined above). The central
issue considered in this paper is:

what do we preserve when deploying a synchronous specification on a
gals architecture?

The issue is best illustrated in Fig. 6. In this figure, we show a how desynchro-

X
Y
Z

Y
X

Z

Y

Z

X

?

Figure6. Desynchronization / resynchronization. Unless desynchronization (shown by
the downgoing arrows), resynchronization (shown by the upgoing arrows) is generally
non determinate.

nization modifies a given run of a synchronous program. The synchronous run is
shown on the top, it involves three variables, X, Y, Z. That this is a synchronous
run is manifested by the presence of the successive rectangular patches, indicat-
ing the successive reactions. A black circle indicates that the considered variable
is present in the considered reaction, and a white circle indicates that it is absent;
for example, X is present in reactions 1, 3, 6. Desynchronizing this run amounts
to 1/ removing the global synchronization clock indicating the successive reac-
tions, and 2/ erasing the absent occurrences, for each variable individually, since
absence has no meaning when no more synchronization clock is available. The
result is shown in the middle. And there is no difference between the mid and
bottom drawings, since time is only logical, not metric. Of course, the down-
going arrows define a proper desynchronization map, we formalize it below. In
contrast, desynchronization is clearly not revertible in general, since there are
many different possible ways of inserting absent occurrences, for each variable.

Problem 1: What if a synchronous program receives its data from
an asynchronous environment? Focus on a synchronous program within a
gals architecture, it receives its inputs as a tuple of (non synchronized) signals.



Since some variables can be absent in a given state, it can be the case that
some signals will not be involved in a given reaction. But since the environment
is asynchronous, this information is not provided by the environment. In other
words, the environment does not offer to the synchronous program the correct
model for its input stimuli. In general this will drastically affect the semantics of
the program. However, some particular synchronous programs are robust against
this type of difficulty. How to formalize this?

Let P be such a program, we recall some notations for subsequent use. Symbol
σ = x0, x1, x2, . . . denotes a behaviour of P , i.e., a sequence of states compliant
with the reactions of P . V is the (finite) set of state variables of P . Each state x

is a valuation for all v ∈ V , the valuation for v at state x is written v(x). Hence
we can write equivalently

σ = (v(x0))v∈V , (v(x1))v∈V , (v(x2))v∈V , . . .

= (v(x0), v(x1), v(x2), . . .)v∈V

=def (σv)v∈V

The valuation v(x) is either an informative value belonging to some domain
(e.g., boolean, integer), or it can be the possible special status absent, which is
denoted by the special symbol ⊥ in [3][4][5]. Now, for each separate v, remove
the ⊥ from the sequence σv = v(x0), v(x1), v(x2), . . ., this yields a (strict) signal

sv =def sv(0), sv(1), sv(2), . . .

where sv(0) is the first non ⊥ term in σv and so on. Finally we set

σa =def (sv)v∈V

The so-defined map σ 7→ σa takes a synchronous behaviour, and returns a
uniquely defined asynchronous one. This results in a map

P 7−→ P a

defining the desynchronization P a, of P . Clearly, the map σ 7→ σa is not one-to-
one, and thus it is not invertible. However, we have shown in [3][4][5] the first
fundamental result that

if P satisfies a special condition called endochrony, then
∀σa ∈ P a there exists a unique σ ∈ P such that σ 7→ σa holds.

(6)

This means that, by knowing the formula defining reaction R such that P = Rω,
we can uniquely reconstruct a synchronous behaviour, from observing its desyn-
chronized version. In addition, it is shown in [3][4][5] that this reconstruction
can be perfomed on-line meaning that each continuation of a prefix of σa yields
a corresponding continuation for the corresponding prefix of σ.



Examples/counterexamples. Referring to Fig. 3, the program shown on the left
is not endochronous. The environment tells the program which input event is
present in the considered reaction, thus the environment provides the structura-
tion of the run into its successive reactions. An asynchronous environment would
not provide this service.

In contrast, the program on the right is endochronous. In its simplest form,
all inputs are present at each clock tick. In a more complex form, some inputs can
be absent, but this the presence/absence, for each input, is explicitly indicated
by some corresponding always present boolean input. In other words, clocks are
encoded using always present booleans; reading the value of these booleans tells
the program which input is present in the considered reaction. Thus no extra
synchronization role is played by the environment, the synchronization is entirely
carried by the program itself (hence the name).

Clearly, if, for the considered program, it is known that the absence of some
variable X implies the absence of some other variable Y, then there is no need to
read the boolean clock of Y when X is absent. Endochrony introduced in [3][4][5]
generalizes this informal analysis. �

The important point about result (6) is that endochrony can be model-
checked 7 on the reaction R defining the synchronous process P . Also,

any P can be given a wrapper W making P‖W endochronous. (7)

How can we use (6) to solve Problem 1 ? Let E be the model of the environment.
It is an asynchronous process according to our above definition. Hence we need
to formalize what it means having “P interacting with E” since they do not
belong to the same world. The only possible formal meaning is

P a ‖a E

Hence having P a interacting with E results in an asynchronous behaviour σa ∈
P a, but using (6) we can reconstruct uniquely its synchronous counterpart σ ∈ P .
So, this solves Problem 1.

However, considering Problem 1 is not enough, since it only deals with a single
synchronous program interacting with its asynchronous environment. It remains
to consider the problem of mapping a synchronous network of synchronous pro-
grams onto a gals architecture.

Problem 2 : What if we deploy a synchronous network of synchronous
programs onto a gals architecture ? Consider the simple case of a network
of two programs P and Q. Since our communication media behave like a set of
fifos, one per signal sent from one program to the other, we already know what

7 Model checking consists in exhaustively exploring the state space of a finite state
model, for checking whether some given property is satisfied or not by this model.
See [12].



the desynchronized behaviours of our deployed system will be, namely:

P a ‖a Qa.

There is not need for inserting any particular explicit model for the communi-
cation medium, since by definition ‖a-communication preserves each individual
asynchronous signal (but not their global synchronization). In fact, Qa will be
the asynchronous environment for P a and vice-versa.

Now, if P is endochronous, then, having solved Problem 1 we can uniquely
recover a synchronous behaviour σ for P , from observing an asynchronous be-
haviour σa for P a as produced by P a ‖a Qa.

Yet, we are not happy: it may be the case that there exists some asynchronous
behaviour σa for P a produced by P a ‖a Qa, which cannot be obtained by desyn-
chronizing the synchronous behaviours of P ‖ Q. In fact we only know in general
that

(P ‖ Q)a ⊆ (P a ‖a Qa). (8)

However, we have shown in [3][4][5] the second fundamental result that

if (P, Q) satisfies a special condition called isochrony,
then equality in (8) indeed holds.

(9)

The nice thing about isochrony is that it is compositional : if P1, P2, P3 are pair-
wise isochronous, then ((P1‖P2), P3) is an isochronous pair, so we can refer to
an isochronous network of synchronous processes—also, isochrony enjoys addi-
tional useful compositionality properties listed in [3][4][5]. Again, the condition
of isochrony can be model-checked on the pair of reactions associated to the pair
(P, Q), and

any pair (P, Q) can be given wrappers (WP , WQ)
making (P‖WP , Q‖WQ) an isochronous pair.

(10)

Examples. A pair (P, Q) of programs having a single clocked communication (all
shared variables possess the same clock), is isochronous. More generally, if the
restriction of P ‖Q, to the subset of shared variables, is endochronous, the the
pair (P, Q) is isochronous: an isochronous pair does not need extra syncrhro-
nization help from the environment, in order to communicate. �

Just a few additional words about the condition of isochrony, since isochrony
is of interest per se. Synchronous composition P‖Q is achieved by considering
the conjunction

RP ∧ RQ

of corresponding reactions of P and Q. In taking this conjunction of relations,
we ask in particular that common variables have identical status present/absent
in both components, in the considered reaction. Assume we relax this latter
requirement by simply requiring that the two reactions should only agree on



effective values of common variables, when they are both present. This means
that a given variable can be freely present in one component but absent in the
other. This defines a “weakly synchronous” conjunction of reactions, we denote
it by

RP ∧a RQ

In general, RP ∧a RQ has more legal reactions than RP ∧ RQ. It turns out
that the isochrony condition for the pair (P, Q) writes :

(RP ∧ RQ) ≡ (RP ∧a RQ).

4.3 A sketch of the resulting methodology

How can we use (6) and (9) for a correct deployment on a gals architecture?
Well, consider a synchronous network of synchronous processes

P1 ‖ P2 ‖ . . . ‖ PK ,

such that

(gals1) : Each Pk is endochronous, and

(gals2) : The Pk, k = 1, . . . , K form an isochronous network.

Using condition (gals2), we get

P a
1 ‖a (P a

2 ‖a . . . ‖a P a
K) = (P1 ‖ P2 ‖ . . . ‖ PK)a.

Hence every asynchronous behaviour σa
1 of P a

1 produced by its interaction with
the rest of the asynchronous network (P a

2 ‖a . . . ‖a P a
K) is a desynchronized

version of a synchronous behaviour of P1 produced by its interaction with the
rest of the synchronous network. Hence the asynchronous communication does
not add spurious asynchronous behaviour. Next, by (gals1), we can reconstruct
on-line this unique synchronous behaviour σ1, from σa

1 . Hence,

Theorem 1. For P1 ‖ P2 ‖ . . . ‖ PK a synchronous network, assume the de-
ployment is simply performed by using an asynchronous mode of communication
between the different programs. If the network satisfies conditions (gals1) and
(gals2), then the original synchronous semantics of each individual program
of the deployed gals architecture is preserved (of course the global synchronous
semantics is not preserved).

To summarize, a synchronous network satisfying conditions (gals1) and (gals2)
is the right model for a gals–targetable design, and we have a correct-by-
construction deployment technique for gals architectures. The method consists
in preparing the design to satisfy (gals1) and (gals2) by adding the proper
wrappers, and then performing bruteforce desynchronization as stated in Theo-
rem 1.



5 Conclusion

There are important distributed computing systems which are neither massive
nor high performance, systems of that kind are in fact numerous—they are esti-
mated to constitute more than 80% of the computer systems. Still, their design
can be extremely complex, and it raises several difficult problems of interest for
computer scientists. These are mainly related to tracking the correctness of the
implementation throughout the different design phases. Synchronous languages
have emerged as an efficient vehicle for this, but the distributed implementation
of synchronous programs raises some fundamental difficulties, which we have
briefly reviewed.

Still, this issue is not closed, since not every distributed architecture in use in
actual embedded systems complies with our model of “reliable” asynchrony [17].
In fact, the bus architecture used at Airbus does not satisfy our assumptions,
and there are excellent reasons for this. Many additional studies are underway to
address actual architectures in use in important safety critical systems [10][11].

Acknowledgement. The author is gratefully indebted to Luc Bougé for his help
in selecting the focus and style of this paper, and to Joel Daniels for correcting
a draft version of it.

References

1. A. Benveniste and G. Berry, The synchronous approach to reactive real-time sys-
tems. Proceedings of the IEEE, 79, 1270–1282, Sept. 1991.

2. A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Si-
mone. The synchronous languages twelve years later. To appear in Proceedings of

the IEEE, special issue on Embedded Systems, Sastry and Sztipanovits Eds., 2002.

3. A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in dataflow syn-
chronous languages : specification & distributed code generation. Information and

Computation, 163, 125-171, 2000.

4. A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony.
In J.C.M. Baeten and S. Mauw, editors, CONCUR’99, Concurrency Theory, 10th
International Conference, Lecture Notes in Computer Science, vol. 1664, 162–177,
Springer Verlag, 1999.

5. A. Benveniste. Some synchronization issuess when designing embedded systems. In
Proc. of the first int. workshop on Embedded Software, EMSOFT’2001, T.A. Hen-
zinger and C.M. Kirsch Eds., Lecture Notes in Computer Science, vol 2211, 32–49,
Springer Verlag, 2001.

6. G. Berry, Proof, Language and Interaction: Essays in Honour of Robin Milner,
ch. The Foundations of Esterel. MIT Press, 2000.

7. F. Boussinot and R. de Simone, “The Esterel language,” Proceedings of the IEEE,
vol. 79, 1293–1304, Sept. 1991.

8. J. Buck, S. Ha, E. Lee, and D. Messerschmitt, “Ptolemy: A framework for simu-
lating and prototyping heterogeneous systems,” International Journal of computer

Simulation, special issue on Simulation Software Development, 1994.



9. L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. The theory of la-
tency insensitive design. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 20(9), Sept. 2001.
10. P. Caspi and R. Salem. Threshold and Bounded-Delay Voting in Critical Control

Systems. Proceedings of Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems, Joseph Mathai Ed., Lecture Notes in Computer Science, vol. 1926, 68–81,
Springer Verlag, Sept. 2000.

11. P. Caspi. Embedded control: from asynchrony to synchrony and back. In Proc. of
the first int. workshop on Embedded Software, EMSOFT’2001, T.A. Henzinger and
C.M. Kirsch Eds., Lecture Notes in Computer Science, vol 2211, 80–96, Springer
Verlag, 2001.

12. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. on Program-

ming Languages and Systems, 8(2), 244–263, April 1986.
13. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data flow

programming language LUSTRE,” Proceedings of the IEEE, vol. 79, 1305–1320,
Sept. 1991.

14. N. Halbwachs. Synchronous programming of reactive systems. Kluwer, 1993.
15. D. Harel, “Statecharts: A visual formalism for complex systems,” Science of Com-

puter Programming, vol. 8, 231–274, June 1987.
16. D. Harel and M. Politi. Modeling Reactive Systems with Statecharts. McGraw-Hill,

1998.
17. H. Kopetz, Real-time systems, design principles for distributed embedded applica-

tions, 3rd edition. London: Kluwer academic publishers, 1997.
18. P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire, “Programming real-

time applications with SIGNAL,” Proceedings of the IEEE, vol. 79, 1321–1336,
Sept. 1991.

19. J. Rumbaugh, I. Jacobson, and G. Booch, Tne Unified Modeling Language reference

manual. Object technologies series, Addison-Wesley, 1999.
20. J. Sztipanovits and G. Karsai. Embedded software: challenges and opportunities. In

Proc. of the first int. workshop on Embedded Software, EMSOFT’2001, T.A. Hen-
zinger and C.M. Kirsch Eds., Lecture Notes in Computer Science, vol 2211, 403–
415, Springer Verlag, 2001.


