
Branching Cells as Local States for Event
Structures and Nets: Probabilistic Applications

Samy Abbes� and Albert Benveniste��

IRISA Campus de Beaulieu,
35042 Rennes Cedex. France

Abstract. We study the concept of choice for true concurrency models
such as prime event structures and safe Petri nets. We propose a dynamic
variation of the notion of cluster previously introduced for nets. This new
object is defined for event structures, it is called a branching cell. Our
aim is to bring an interpretation of branching cells as a right notion of
“local state”, for concurrent systems.

We illustrate the above claim through applications to probabilistic
concurrent models. In this respect, our results extends in part previous
work by Varacca-Völzer-Winskel on probabilistic confusion free event
structures. We propose a construction for probabilities over so-called lo-
cally finite event structures that makes concurrent processes probabilis-
tically independent—simply attach a dice to each branching cell; dices
attached to concurrent branching cells are thrown independently. Fur-
thermore, we provide a true concurrency generalization of Markov chains,
called Markov nets. Unlike in existing variants of stochastic Petri nets,
our approach randomizes Mazurkiewicz traces, not firing sequences. We
show in this context the Law of Large Numbers (LLN), which confirms
that branching cells deserve the status of local state.

Our study was motivated by the stochastic modeling of fault propaga-
tion and alarm correlation in telecommunications networks and services.
It provides the foundations for probabilistic diagnosis, as well as the
statistical distributed learning of such models.

1 Introduction

The study we present in this paper was motivated by algorithmic problems of
distributed nature encountered in the area of telecommunications network and
service management [4], in particular distributed alarm correlation and fault
diagnosis. This problem consists in reconstructing the hidden history of the
distributed system from partial observations (the alarms). The supervision ar-
chitecture is distributed and comprises several supervisors acting as peers and
communicating asynchronously.

� ISR, A. V. Williams Building, University of Maryland, College Park, MD 20742,
USA; work performed while this author was with IRISA/Université de Rennes 1.

�� IRISA/INRIA, benveniste@irisa.fr, http://www.irisa.fr/sigma2/benveniste/

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 95–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

96 S. Abbes and A. Benveniste

True concurrency is essential in these algorithms: interleaving semantics is
not adequate for such large distributed systems. States need to be local. Time
is totally ordered at each network node, but only partially ordered by causality
between nodes. Due to unavoidable ambiguity in diagnosis, nondeterminism is
solved by seeking for the “most likely” solutions of the diagnosis problem. This
requires having a probabilistic setting at hand.

While searching for existing models in the literature, we found very few
approaches meeting our requirements. Stochastic Petri nets [6] and their vari-
ants are useful for performance evaluation. This model typically randomizes the
holding time in places or the firing time at transitions. Making reference to
a global time causes some probabilistic coupling to occur between subsystems
that otherwise do not interact. Probabilistic process algebras [7] or probabilistic
automata [11] are related to so-called Markov Decision Processes from applied
probability theory, they rely on interleaving semantics and do not meet our
needs either. In those models, interactions occur via synchronized actions and
are subject to nondeterminism. In contrast, probabilistic choices are purely pri-
vate, occur between interactions and do not conflict with these. Whereas this is
perfectly adequate, e.g, for testing or security protocols [8, 9], this is not con-
venient for modeling the uncertain occurrence and propagation of faults and
alarms in telecommunications networks.

Concurrent probabilistic models is a recent area of research meeting our re-
quirements. Runs of concurrent systems are randomized without reference to
a global clock, and with a true-concurrent semantics. Fundamental difficulties
have lead to restrict to models with limited concurrency, e.g., confusion free
event structures [14, 13]. Distributed probabilistic event structures and Markov
nets are studied in [1], following an approach initiated in [3]; these approaches
address event structures with confusion.

It appears that the very key for the analysis of probabilistic choice in true-
concurrent models are the informal concepts of “concurrent local state” and
“concurrent local choices”. In this paper, we investigate these notions for safe
Petri nets and prime event structures. We show that so-called branching cells
introduced in [1] for event structures provide the answer. Informally, for an event
structure, branching cells are minimal subsets of events closed under immediate
conflict. Processes are dynamically decomposed by branching cells: in different
executions, the same event can belong to different branching cells. Branching
cells differ from clusters [5], which are statically defined on nets.

We apply the notion of branching cell to the definition and construction
of concurrent probabilistic models. The probabilities we construct in this way
satisfy the following essential requirement regarding concurrency: parallel local
processes are made independent in the probabilistic sense, conditionally on their
common past. Such probabilities deserve the name of distributed probabilities.
They generalize to event structures with confusion the notion of valuation with
independence from [13]. When applied to event structure obtained by unfolding
safe Petri nets, this yields Markov nets, a probabilistic form of Petri nets com-

Branching Cells as Local States for Event Structures and Nets 97

pliant with true concurrency. We prove a Markov property and a Law of Large
Numbers for Markov nets, in which branching cells play the role of local states.

The paper is organized as follows. Branching cells for prime event structures
are introduced in Section 2, together with their properties. Their use for the
definition and construction of concurrent probabilistic models is demonstrated
in Section 3. In Section 4, Markov nets are introduced in order to state the
Markov property and the Law of Large Numbers.

2 Branching Cells and Their Properties

A prime event structure [10] is a triple E = (E, �, #) satisfying the following
properties. (E, �) is a partial order. The elements of E are called events and E
is at most countable. # is the conflict relation on E; it is a binary relation that
is symmetric and irreflexive, and satisfies the following axiom: ∀x, y, z ∈ E, x#y
and y � z together imply x#z. A subset A ⊆ E is said to be a prefix if it is
downwards closed: ∀x ∈ E, ∀y ∈ A, x � y ⇒ x ∈ A. Finally, a prefix v is called
a configuration of E if it is conflict-free, i.e., if # ∩ (v × v) = ∅. Configurations
are partially ordered by inclusion, and we denote by VE the poset of the finite
configurations of E . We denote by ΩE the set of maximal configurations of E—this
set is nonempty, due to Zorn’s Lemma. A subset F ⊆ E implicitly defines a sub-
event structure (F,�F , #F) of E with causality and conflict relations inherited
by:

�F =� ∩(F × F), #F = # ∩ (F × F),

and we shall freely write F , VF , and ΩF to denote this event structure and its set
of finite and maximal configurations, respectively. Fore∈E,[e] ∆= {e′ ∈E : e′ � e}
denotes the smallest configuration containing e. For v a finite or infinite config-
uration of E , we set Ev ∆= {e ∈ E \ v : ∀e′ ∈ v, ¬(e#e′)}. We denote by Ev the
induced event structure and we call it the future of v. Throughout the paper,
we assume that E satisfies the following assumption:

Assumption 1. Configuration [e] is finite for every event e. For every v ∈ VE ,
Min�

(
Ev

)
contains finitely many events.

The first part of Assumption 1 is very standard, it says that every event has
finitely many causal predecessors. The second part of the assumption expresses
that any finite configuration enables only finitely many events. The concurrency
relation on E, denoted by ‖, is defined as the reflexive closure of (E ×E)\(# ∪ �
∪
).

A central concept in defining probabilities is the notion of choice. Choice is
therefore a key concept in this paper; it is captured by the notion of immediate
conflict we recall next. The immediate conflict relation #µ on E is defined by:

∀e, e′ ∈ E, e #µ e′ iff ([e] × [e′]) ∩ # = {(e, e′)}. (1)

Definition 1 (stopping prefix). A prefix B of E is called a stopping prefix
iff it is closed under immediate conflict.

98 S. Abbes and A. Benveniste

E is called locally finite iff for each event e of E , there exists a finite stopping
prefix B containing e. The following condition is assumed throughout this paper:

Assumption 2. E is locally finite.

Locally finite event structures have not been considered by authors so far. We
shall see at the end of this section that confusion freeness implies local finiteness.

Stopping prefixes B satisfy the following property (see [1–Ch.3,I-3.1]):

ΩB = {ω ∩ B | ω ∈ ΩE} . (2)

Although the inclusion ⊆ always holds, not every prefix does satisfy the equality
of property (2). Take for instance E = {a, b} with a#b. Consider prefix P = {a}
and maximal configuration ω = {b}. Then ω ∩ P = ∅ is not maximal in P .

Clearly, the set of all stopping prefixes is a complete lattice. However, stopping
prefixes are not stable under concatenation: if B is a stopping prefix of E , v ∈ ΩB ,
and Bv is a stopping prefix of Ev, then B ∪Bv is generally not a stopping prefix
of E . As a consequence, the concatenation of v and of a configuration stopped
in Ev is not stopped in E in general. Roughly speaking, the class of stopped
configurations is not closed under concatenation, which is inconvenient. The
notions of recursively stopped configuration and branching cell we introduce
next overcome this drawback.

Definition 2 (stopped and recursively stopped configurations).

1. A configuration v of E is said to be stopped if there is a stopping prefix B
such that v ∈ ΩB.

2. Call recursively stopped a configuration v of E such that there exists a finite
nondecreasing sequence (vn)0≤n≤N of configurations, where v0 = ∅, vN = v,
and for n < N , vn+1 \ vn is a finite stopped configuration of the future Evn

of vn. The set of all finite recursively stopped configurations is denoted by
WE , or simply W if no confusion can occur.

The class of recursively stopped configurations is the smallest class of configu-
rations that contains stopped configurations and is closed under concatenation
(see the examples at the end of this section).

Definition 3 (branching cell). Stopping prefix B is called initial iff ∅ is the
only stopping prefix strictly contained in B. Call branching cell of E any initial
stopping prefix of Ev, where v ranges over W. The set of all branching cells of E
is denoted by XE (or simply X when no confusion can occur). Branching cells
are generically denoted by the symbol x.

Informally, branching cells are minimal subsets of events closed under immediate
conflict. For v ∈ W, denote by δ(v) the set of branching cells that are initial
prefixes of Ev. Clearly, branching cells of δ(v) do not overlap (in general, branch-
ing cells may overlap, see the examples at the end of this section). Consider the
following map ∆, called the covering map of E :

for v ∈ W: ∆(v) ∆= ∆(v) \ δ(v) , (3)

where ∆(v) ∆= {x ∈ δ(v′) | v′ ∈ W, v′ ⊆ v} .

Branching Cells as Local States for Event Structures and Nets 99

We list some properties of branching cells. The proof of Th. 4 is given in the
Appendix, the remaining proofs are found in the extended version [2].

Theorem 1. If B is a stopping prefix of E, then XB ⊆ XE and WB ⊆ WE .
Furthermore, the covering maps ∆ and ∆B respectively defined on W and WB

coincide on WB.

Theorem 2. For every v ∈ W, XEv ⊆ XE . For v ⊆ v′ two finite recursively
stopped configurations, v′ \ v is recursively stopped in Ev. Denote by ∆v the
covering map (3) defined on Ev. We have:

∆(v′) = ∆(v) ∪ ∆v(v′ \ v) , and ∆(v) ∩ ∆v(v′ \ v) = ∅. (4)

Theorem 3. Branching cells recursively cover stopped configurations, i.e.:

∀v ∈ W, v =
⋃

x∈∆(v)

v ∩ x , (5)

and, for each x ∈ ∆(v), v ∩ x is an element of Ωx.

Theorem 4. Let ξ be a subset of δ(∅E), where ∅E denotes the empty configura-
tion of E. The formula

Bξ
∆=

⋃
x∈ξ

x (6)

defines a stopping prefix of E, whose set of finite configurations VBξ
and maximal

configurations ΩBξ
respectively decompose as:

VBξ
=

∏
x∈ξ

Vx and ΩBξ
=

∏
x∈ξ

Ωx . (7)

Call thin a prefix of E of the form (6), where ξ ⊆ δ(∅E). The complete lattice of
thin prefixes has finite upper bound.

Comments. Theorem 1 expresses that recursively stopped configurations and
branching cells are stable under restriction to stopping prefixes.

Theorem 2 expresses that recursively stopped configurations and branching
cells are stable under restriction to the futures Ev of elements v ∈ W. Equa-
tion (4) says that covering maps are incremental with respect to the future.

Theorem 3 is self explanatory. Remark that the property v ∩ x ∈ Ωx extends
the property ω ∩ B ∈ ΩB stated by Eqn. (2).

The product forms given in Th. 4 show that branching cells are traversed by
local processes that are both concurrent and independent : in the future of v, local
decisions taken in a branching cell x ∈ δ(v) do not influence the range of possible
local decisions that can be taken in other branching cells of δ(v). In other words,
choices in different concurrent branching cells are made by independent and
non-communicating agents. Section 3 adds a probabilistic interpretation to this.

100 S. Abbes and A. Benveniste

Theorem 4 is stated only for thin prefixes that “begin” the event structure.
However, Th. 4 can be recursively applied in the futures Ev, for v ∈ W, with
δ(v) playing the role of δ(∅E).

Finally, the finiteness of the above introduced objects follows from our as-
sumptions: the finiteness of branching cells follows from Assumption 2, and the
finiteness of the upper bound

⋃
ξ Bξ of thin prefixes follows from Assumption 1

(see the proof of Th. 4 in the Appendix).

Examples. For all examples of this paper, we write (abc) to denote the config-
uration {a, b, c}.

The event structure E shown in Figure 1–left has two nonempty stopping pre-
fixes: {a, b} and {a, b, c, d, e}. Its stopped configurations are ∅, (a), (b), (a, c, e), (b, d),
and (b, c, e). Let us determine the recursively stopped configurations and the
branching cells of E . Since E has a unique initial stopping prefix δ(∅) =

{{a, b}}
,

it follows that (a) and (b) are recursively stopped. The future E(a) is the event
structure {c, e} with empty conflict and causality; it has two initial stopping
prefixes: δ(a) =

{{c}, {e}}
. Therefore (ac) and (ae) are recursively stopped,

as well as (ace). The future of (ace) is empty. The future E(b) is given by:
E(b) = c ���� d ���� e , with a unique initial stopping prefix: δ(b) =

{{c, d, e}}
.

Therefore (bd) and (bce) are also recursively stopped. The futures of (bd) and
of (bce) are empty, so we are done: W = {∅, (a), (b), (ac), (ae), (ace), (bd), (bce)}.
Note that (ac) and (ae) are recursively stopped but not stopped. Note also that
configurations (bc) and (be) are not recursively stopped. Finally, the set of all
branching cells is

{{a, b}, {c}, {e}, {c, d, e}}
.

The event structure depicted in Figure 1–middle illustrates the concurrency
of branching cells of δ(∅). Note that some minimal events belong to no initial
branching cell.

• ��������
a

•
��

b

• ��

c
• ��

d
•
e

• �� •
��

•
��

��
����

��
•
��• •

����

conflict
��

causality

Fig. 1. Left: configuration (ac) is recursively stopped, with associated sequence(∅, (a), (ac)
)

according to Definition 2; however, (ac) is not stopped. Middle: branching
cells of δ(∅) are depicted by frames

Local Finiteness Relaxes Confusion Freeness. Recall that event structure
E is said to be confusion free if E satisfies the Q axiom of concrete domains [10].
Equivalently, E is confusion free iff [13]:

1. #µ is transitive,
2. for all e, e′ ∈ E : e #µ e′ ⇒ [e] \ {e} = [e′] \ {e′}.

Branching Cells as Local States for Event Structures and Nets 101

Define, for every event e ∈ E:

F (e) = {f ∈ E : e #µ f}, B(e) =
⋃

f∈[e]

F (f) .

The second part of Assumption 1 together with point 2 above imply that every
set F (f) is finite. It follows that B(e) is finite, and point 1 implies that B(e) is
a stopping prefix, that contains e. This holds for every event e, so E is locally
finite. Moreover every finite configuration is stopped, and therefore recursively
stopped. The set of branching cells is equal to {F (e) : e ∈ E}, which forms a
partition of E. Such simple properties fail for event structures with confusion.
For example, in the event structure depicted in Figure 1–left, branching cells {c}
and {c, d, e} possess a nonempty intersection. For confusion free event structures,
branching cells reduce to the cells defined in [13].

To summarize, confusion free event structures are locally finite, but the con-
verse is not true. Locally finite event structures appear as event structures with
“finite confusion”.

3 Application to Probabilistic Event Structures

We recall that a probabilistic event structure is a pair (E , P) with P a probability
measure1 on the space Ω of maximal configurations of E . We shall prove that
a probabilistic event structure can be naturally defined from the new notion of
locally randomized event structure (Th. 5). The construction performed below
adds a probabilistic interpretation to the properties of branching cells and of
recursively stopped configurations.

Definition 4 (locally randomized event structure). A locally randomized
event structure is a pair (E , (px)x∈X), where X is the set of branching cells of E,
and for each x ∈ X, px is a probability over Ωx.

Let (E , (px)x∈X) be a locally randomized event structure. For F ⊆ E a sub-
event structure of E , denote by XF the set of all branching cells of F . Call F
well formed if it is finite and such that XF ⊆ XE . Note that finite stopping
prefixes are well formed according to Th. 1. For F a well formed, set:

for ωF ∈ ΩF : PF (ωF) =
∏

x∈∆(ωF)

px(ωF ∩ x), (8)

which is well defined since, according to Th. 3, ωF ∩ x ∈ Ωx.

Lemma 1. If B = Bξ is a thin prefix (see Th. 4), then PB is the direct product
of the px’s, for x ranging over ξ. In particular, PB is a probability.

1 The σ-algebra considered is the Borel σ-algebra generated by the Scott topology
on Ω, see [1] for details. In the remaining of the paper, we do not mention the
σ-algebras considered since they are always canonical.

102 S. Abbes and A. Benveniste

Proof. This is a direct consequence of Eqn. (8) and Th. 4. �
Lemma 2. If F ⊆ E is a well formed sub-event structure, then PF is a proba-
bility. In particular, for each stopping prefix B, PB is a probability.

Proof. We show that PF is a probability by induction on integer nF = supωF ∈ΩF

Card∆(ωF) < ∞. The result is a direct consequence of Lemma 1 for nF ≤ 1.
Assume it holds until n ≥ 1, and let F be well formed and such that nF ≤ n+1.
Consider the (finite) upper bound D of thin prefixes of F . Applying property (2)
to D yields the following decomposition for ΩF : ΩF =

⋃
v∈ΩD

{v} × ΩF v . More-
over, for each v ∈ ΩD and ω′ ∈ ΩF v , and setting ω = v ∪ω′, we obtain by Th. 2:

∆(ω) = ∆(v) ∪ ∆v(ω′), ∆(v) ∩ ∆v(ω′) = ∅ . (9)

Formulas (8) and (9) together imply:
∑

ω∈ΩF

PF (ω) =
∑

v∈ΩD

PD(v)
(∑

ω′∈ΩF v

PF v (ω′)
)
. (10)

It follows from Th. 2 that for each v ∈ ΩD, the future F v of v in F satis-
fies XF v ⊆ XF ⊆ XE . Formula (9) implies that nF v ≤ n. Hence we can ap-
ply the induction hypothesis to F v and obtain

∑
ω′∈ΩF v

PF v (ω′) = 1. From
Lemma 1 we get:

∑
v∈ΩD

PD(v) = 1. This, together with Eqn. (10), implies∑
ω∈ΩF

PF (ω) = 1, which completes the induction. �
Corollary 1. Let B ⊆ B′ be two finite stopping prefixes of E. The following
formula holds:

∀ωB ∈ ΩB : PB(ωB) =
∑

ω′∈ΩB′ , ω′⊇ωB

PB′(ω′). (11)

Proof. Let ωB be an element of ΩB , and denote by B′′ ∆= B′ωB the future of
ωB in B′. Then {ω′ ∈ ΩB′ : ω′ ⊇ ωB} is one to one with ΩB′′ . Eqn. (4) gives
∆(ω′) = ∆(ωB) ∪ ∆ωB (ω′ \ ωB), whence:

∑
ω′∈ΩB′ , ω′⊇ωB

PB′(ω′) = PB(ωB)
∑

z∈ΩB′′

PB′′(z). (12)

From Lemma 2 applied to finite event structure B′′, the sum on the right hand
side of (12) equals 1, which implies (11). �
Theorem 5. Let (E , (px)x∈X) be a locally randomized event structure. Then
there exists a unique probabilistic event structure (E , P) such that, for every finite
stopping prefix B:

∀v ∈ ΩB , P
({ω ∈ Ω : ω ⊇ v) = PB(v) , (13)

where PB is defined by Eqn. (8).

Branching Cells as Local States for Event Structures and Nets 103

Proof. Corollary 1 expresses that the family (ΩB , PB), where B ranges over the
set of finite stopping prefixes, is a projective system of (finite) probability spaces.
It is proved in [1–Ch.2] that, under Assumption 2, this projective system defines
a unique probability P on ΩE that extends this projective system, i.e., satisfies
Eqn. (13). �
Probabilistic Future and Distributed Probabilities. So far we have shown
how to construct probabilistic event structures from locally randomized event
structures. Conversely, each probability P over E , such that P(v) > 0 for every
finite configuration v, defines a family (px)x∈X of local probabilities associated
to branching cells as follows, for x ∈ X and ωx ∈ Ωx: 2

px(ωx) ∆=
P

({
ω ∈ ΩE : x ∈ ∆(ω), ω ∩ x = ωx

})

P
({

ω ∈ ΩE : x ∈ ∆(ω)
}) . (14)

Of course, the following natural question arises: is it true that the family (px)x∈X

conversely induces P through Eqn. (8) and Th. 5? Not in general. The following
Th. 6, which proof is found in [1–Ch.4], provides the answer.

For (E , P) a probabilistic event structure, consider the likelihood function q
defined on the set of finite configurations by:

∀v ∈ VE , q(v) ∆= P
({ω ∈ ΩE : ω ⊇ v})

. (15)

For v a finite configuration, the probabilistic future (Ev, Pv) is defined by

P
v(·) ∆=

1
q(v)

P(·).

The associated likelihood qv is given by qv(w) = 1
q(v)q(v ∪ w), for w ranging over

the set of finite configurations of Ev.

Definition 5 (distributed probability). A probability P is called distributed
iff, for each recursively stopped configuration v, and each thin prefix Bv

ξ in Ev,
the following holds:

∀ω ∈ ΩBv
ξ

, qv(ω) =
∏
x∈ξ

px(ω ∩ x) (16)

where px is defined from P by using (14).

Theorem 6. Let (E , P) be a probabilistic event structure, and let (px)x∈X be
defined from P by using (14). The construction of Th. 5 induces again P iff P is
a distributed probability. In this case, the likelihood function is given on W by:
q(v) =

∏
x∈∆(v) px(v ∩ x).

Remark that the likelihood given in Th. 6 extends the original formula (8). Th. 6
also shows that, for confusion-free event structures, the valuations with indepen-
dence defined in [13] are equivalently defined as likelihoods (15) associated with
distributed probabilities.

2 The condition p(v) > 0 is stated here for simplicity, it can be removed with some
more technical effort.

104 S. Abbes and A. Benveniste

Comment. Eqn. (16), which characterizes distributed probabilities, has the fol-
lowing interpretation. Because of the absence of conflicts, and conditionally on
a partial execution v ∈ W, the local choices inside the different branching cells
belonging to δ(v) are performed independently from one another. Eqn. (16) is
the probabilistic counterpart of the concurrency of branching cells, stated by
Eqn. (7) in Th. 4.

4 Markov Nets

In this section, we apply the previous results to event structures arising from the
unfolding of safe and finite Petri nets. Markov nets are introduced and briefly
studied. Proofs of the results stated in this section as well as additional results
can be found in [1], Chapters 5–7.

Event structures arising from the unfolding of safe and finite Petri nets are
equipped with a labelling of their events by transitions of the net. It is therefore
natural to consider local randomizations of these event structures that are such
that px = px′ whenever branching cells x and x′ are isomorphic as labelled event
structures. Finite safe Petri nets equipped with such local randomizations are
called Markov nets; they generalize Markov chains to concurrent systems. We
show in this section that branching cells provide the adequate concept of “local
state” for Markov nets. In particular, we show that the classical Law of Large
Numbers (LLN) for Markov chains properly generalizes to Markov nets, provided
that the set of all equivalence classes of isomorphic branching cells is taken as
state space for Markov nets. Such equivalence classes, called dynamic clusters,
are introduced next.

Throughout this section, we assume that E is a locally finite event structure
arising from the unfolding of a finite safe Petri net N . Although Assumption 1
is always satisfied by the unfolding of a safe and finite Petri net, this is not
necessarily the case for local finiteness (Assumption 2). Local finiteness is an
important restriction, although the class of safe nets with locally finite unfolding
is strictly larger than the classes of free-choice or confusion-free nets.

Let M0 denote the initial marking of N . For v a finite configuration of E , we
denote by m(v) the marking reached in N after the action of configuration v. It
is well known that, up to an isomorphism of labelled event structure, the future
Ev is the unfolding of net N from the initial marking m(v). Whence:

∀v, v′ ∈ VE , m(v) = m(v′) ⇒ Ev = Ev′
. (17)

It makes thus sense to denote by Em the event structure that unfolds N starting
from the reachable marking m. Since the reachable markings are finitely many,
the futures Ev = Em(v) are finitely many up to isomorphism of labelled event
structures. Since each set of branching cells δ(v) is finite, it follows then from
Def. 3 that branching cells of E are finitely many, up to an isomorphism of
labelled event structures.

Branching Cells as Local States for Event Structures and Nets 105

Definition 6 (dynamic cluster). An isomorphism class of branching cells is
called a dynamic cluster of N . We denote by Σ the (finite) set of dynamic
clusters. Dynamic clusters are generically denoted by the boldface symbol s. The
equivalence class of branching cell x is denoted by 〈x〉.
It is shown in the extended version [2] that, if the event structure is confusion-
free, branching cells can be interpreted as the events of a new event structure,
called choice structure. The set of dynamic clusters Σ is then a finite alphabet
that labels the choice structure. Under certain conditions, the labelled event
structure obtained is actually itself the unfolding of a safe Petri net, called the
choice net. The interested reader is referred to [2] for further details.

Definition 7 (Markov net). A Markov net is a pair
(N , (ps)s∈Σ

)
, where N

is a finite safe Petri net with locally finite unfolding, and ps is a probability on
the finite set Ωs for every s ∈ Σ.

Markov net
(N , (ps)s∈Σ

)
induces a locally randomized event structure (E , (px)x∈X)

(see Def. 4) by setting px = p〈x〉 for every branching cell x ∈ XE , whence a
unique distributed probability P on Ω (Th. 5 and Th. 6). Note that, if net N is
the product of two non interacting nets N = N1 ×N2, then the two components
Ni, i ∈ {1, 2} are independent in the probabilistic sense, i.e., P = P1 ⊗ P2.

Theorem 7 (Markov property). Let (N , (ps)s∈Σ) be a Markov net, and let
P be the associated distributed probability on Ω. For v a finite recursively stopped
configuration of E, let m(v) and Σv denote respectively the marking reached by v
and the classes of branching cells of Ev. Then for every v ∈ W, the probabilistic
future (Ev, Pv) is associated with Markov net (N v, (ps)s∈Σv), where N v is the
same net as N , except that N v has initial marking m(v). Moreover we have:

∀v, v′ ∈ W, m(v) = m(v′) ⇒ P
v = P

v′
. (18)

Eqn. (18) expresses the memoryless nature of Markov nets: the probabilistic
future of a v ∈ W only depends on the final marking m(v). It is the probabilistic
counterpart of Eqn. (17).

The Law of Large Numbers (LLN). Call return to the initial marking M0
any finite recursively stopped configuration v such that:

1. m(v) = M0,
2. Min�(E) ∩ Min�(Ev) = ∅ .

Informally, Point 2 above says that all the tokens in the net have moved when
we apply configuration v. It prohibits recurrent behaviors that leave a part of
the initial marking unchanged. For our study of LLN, we restrict ourselves to
recurrent Markov nets, i.e., Markov nets such that, with probability 1, ω ∈ Ω
contains infinitely many returns to M0. If the considered net is indeed sequential,
then our definition reduces to the classical notion of recurrence, for Markov
chains [12].

106 S. Abbes and A. Benveniste

For finite recurrent Markov chains, the LLN states as follows. Let Σ be
the finite state space of a Markov chain (Xk)k≥1, and let f : Σ → R be a
test function. The sums Sn(f) =

∑n
k=1 f(Xk) are called ergodic sums, and the

LLN studies the limit, for n → ∞, of the ergodic means: Mn(f) = 1
nSn(f). In

extending the LLN to Markov net N , we are faced with two difficulties:

1. What is the proper concept of state?
2. What replaces counter n, since time is not totally ordered?

Corresponding answers are:

1. The set Σ of dynamic clusters of N is taken as the state space.
2. For v a recursively stopped configuration, the number of branching cells

contained in ∆(v) is taken as the “duration” of v.

More precisely, call distributed function a finite family f = (fs)s∈Σ of real-valued
functions fs : Ωs → R. Distributed functions form a vector space of finite dimen-
sion over R. The concurrent ergodic sums of f are defined as the function S(f):

S(f) : W → R , ∀v ∈ W, S(f)(v) =
∑

x∈∆(v)

f〈x〉(v ∩ x) . (19)

For example, if N = (Ns)s∈Σ is the distributed function given by Ns(w) = 1
for all s ∈ Σ and w ∈ Ωs, then S(N)(v) counts the number of branching cells
contained in ∆(v). The concurrent ergodic means M(f) : W → R associated with
a distributed function f are defined as the following ratios:

∀v ∈ W, M(f)(v) =
1

S(N)(v)
S(f)(v) . (20)

The LLN is concerned by the limit

lim
v⊆ω,v→ω

M(f)(v) , (21)

and this for each ω ∈ Ω, in a sense we shall make precise. The following notion
of stopping operator will be central in this respect—stopping operators indeed
generalize stopping times [12] for sequential stochastic processes:

Definition 8 (stopping operator). A random variable V : Ω → W, satisfy-
ing V (ω) ⊆ ω for all ω ∈ Ω, is called a stopping operator if for all ω, ω′ ∈ Ω,
we have: ω′ ⊇ V (ω) ⇒ V (ω′) = V (ω). Say that a sequence (Vn)n≥1 of stopping
operators is regular if the following properties are satisfied—such sequences exist:

1. Vn ⊆ Vn+1 for all n, and
⋃

n Vn(ω) = ω for all ω ∈ Ω;
2. there are two constants k1, k2 > 0 such that, with N the distributed function

defined above, for all ω ∈ Ω and all n ≥ 1: k1n ≤ S(N)
(
Vn(ω)

) ≤ k2n.

Using this concept, Eqn. (21) is re-expressed as follows:

Branching Cells as Local States for Event Structures and Nets 107

Definition 9 (convergence of ergodic means). For f a distributed function,
we say that the ergodic means M(f) converge to a function µ : Ω → R if for every
regular sequence (Vn)n≥1 of stopping operators,

lim
n→∞ M(f)

(
Vn(ω)

)
= µ(ω) with probability 1. (22)

Concurrency prevents property (22) from holding for general recurrent Markov
nets, as the following particular case shows. Assume that net N decomposes
as N = N1 × N2 and the two components N1 and N2 do not interact at all.
In this case, regular sequences V = (Vn)n≥1 of stopping operators decompose
into pairs (V 1, V 2) of independent regular sequences, one for each component.
For f and v decomposed as f = (f1, f2) and v = (v1, v2) respectively, we have
S(f)(v) = S(f1)(v1) + S(f2)(v2) and S(N)(v) = S(N1)(v1) + S(N2)(v2). Since
V 1

n and V 2
n are free to converge at their own speed, we cannot expect that

convergence of ergodic means will hold for this case. Clearly, concurrency is the
very cause for this difficulty.

For the detailed statement of the condition needed to overcome this problem,
the reader is referred to [1–Ch.8]. We only give an informal explanation, in
terms of Petri nets and branching cells. If, in an execution ω ∈ Ω, we block a
token represented by some condition b in the unfolding, we measure the “loss of
synchronization” of the system by counting the number of branching cells that
can be traversed without moving the blocked token. This length defines a random
variable Ω → R for each condition b of the unfolding. We say that the considered
Markov net has integrable concurrency height if all these random variables are
integrable, i.e., possess finite expectation w.r.t. probability P, for b ranging over
the set of all conditions of the unfolding. Remark that, due to the memoryless
property of the system, this set of random variables is actually finite.

Theorem 8 (Law of Large Numbers). Let (N , (ps)s∈Σ) be a Markov net.
Assume that N is recurrent and has integrable concurrency height. Then:

1. For any distributed function f = (fs)s∈Σ, the ergodic means M(f) converge
in the sense of Def. 9 to a function µ(f) : Ω → R.

2. Except possibly on a set of zero probability, µ(f) is constant and given by:

µ(f) =
∑
s∈Σ

ps(fs)α(s) , with: ps(fs) =
∑

w∈Ωs

fs(w)ps(w). (23)

3. In formula (23), coefficients α(s) are equal to

α(s) = µ(N s), (24)

and satisfy α(s) ∈ [0, 1] and
∑

s α(s) = 1; α(s) is the asymptotic rate of
occurrence of local state s in a typical execution ω ∈ Ω.

Statement 3 is a direct consequence of statements 1 and 2: Fix s ∈ Σ, and
consider the distributed function N s defined by N s

s (w) = 1 for all w ∈ Ωs and
N s

s′ = 0 if s �= s′. Applying statements 1 and 2 to N s yields α(s) = µ(N s). In
particular, from N =

∑
s N s we obtain:

∑
s α(s) = 1.

108 S. Abbes and A. Benveniste

If the net is actually sequential (i.e., reduces to a recurrent finite Markov
chain), then Σ is the state space of the chain and coefficients α(s) are equal to
the coefficients of the invariant measure of the chain. This again reveals that
dynamic clusters play the role of local states for concurrent systems.

5 Conclusion and Perspectives

We have proposed branching cells as a form of local concurrent state for prime
event structures and safe Petri nets. Our study applies to so-called locally fi-
nite event structures that significantly extend the confusion-free case. We have
applied this to probabilistic event structures: for E an event structure with set
of maximal configurations Ω, there is a one-to-one correspondence between lo-
cal randomizations of the branching cells of E on the one hand, and the class
of distributed probabilities on Ω on the other hand. Distributed probabilities
yield concurrent systems in which locally concurrent random choices are taken
independently in the probabilistic sense.

We have applied the construction of distributed probabilities to unfoldings of
safe and finite Petri nets. This leads to the model of Markov nets, a probabilistic
model of concurrent system specified by finitely many parameters. Besides the
relation between causal and probabilistic independence, Markov nets bring the
Markov property as a probabilistic counterpart to the memoryless nature of
Petri nets. The Law of Large Numbers extends to Markov nets, with dynamic
clusters taken as states. Therefore branching cells and dynamic clusters provide
the adequate notion of local state, for systems with concurrency.

Acknowledgments. We wish to thank Philippe Darondeau for fruitful discus-
sions and hints.

References

1. Abbes, S.: Probabilistic model for concurrent and distributed systems. Limit theo-
rems and applications. PhD Thesis (2004), IRISA-Université de Rennes 1.

2. Abbes, S. and Benvensite, A.: Branching cells as local states for event structures
and nets: probabilistic applications. INRIA Research Report (2004) RR-5347.
http://www.inria.fr/rrrt/rr-5347.html

3. Benveniste, A., Haar, S. and Fabre, E.: Markov nets: probabilistic models for dis-
tributed and concurrent systems. IEEE Trans. on Aut. Cont. 48:11 (2003) 1936–
1950.

4. Benveniste, A., Haar, S., Fabre, E. and Jard, C.: Distributed monitoring of concur-
rent and asynchronous systems. Proc. of CONCUR’03, LNCS 2761 (2003), 1–26.
Extended and improved version to appear in Discrete Event Dynamic Systems:
Theory and Application, Kluwer, 2005.

5. Desel, J. and Esparza, R.: Free choice Petri nets. Cambridge University Press
(1995).

Branching Cells as Local States for Event Structures and Nets 109

6. Haas, P. J.: Stochastic Petri nets. Springer-Verlag (2002).
7. Hermanns, H., Herzog, U. and Katoen, J.-P.: Process algebra for performance

evaluation. T.C.S. 274:1 (2002) 43–88.
8. Larsen, K. G. and Skou, A.: Bisimulation through probabilistic testing. Inf. and

Comp. 94:1 (1991) 1–28.
9. Mateus, P., Mitchell, J. C. and Scedrov, A.: Composition of cryptographic protocols

in a probabilistic polynomial-time process calculus. Proc. of CONCURR’03, LNCS
2761 (2003) 327–349.

10. Nielsen, M., Plotkin, G. and Winskel, G.: Petri nets, event structures and domains,
part 1. T.C.S. 13 (1981) 85–108.

11. Segala, R. and Lynch, N.: Decision algorithms for probabilistic bisimulations. Proc.
of CONCUR’02, LNCS 2421 (2002) 371–396.

12. Shiryaev, A. N.: Probability. Springer Verlag (1984).
13. Varacca, D., Völzer, H. and Winskel, G.: Probabilistic event structures and do-

mains. Proc. of CONCUR’04, LNCS 3170 (2004) 481–496.
14. Völzer, H.: Randomized non-sequential processes. Proc. of CONCUR’01, LNCS

2154 (2001) 184–201.

A Appendix: Proof of Th. 4.

This section presents the proof of Th. 4 of Section 2. For the other proofs of
results of Section 2, the reader is referred to the extended version [2]. For the
proof of the Law of large numbers, we refer to [1].

Lemma 3. If x, y are two distinct initial stopping prefixes, then e ‖ f for all
pairs (e, f) ∈ x × y.

Proof. Follows from the definitions, and from the fact that if x, y are two events
in conflict, then there are two events x′, y′ in minimal conflict and with x′ � x
and y′ � y. �
Proof of Th. 4. Remark first that δ(∅) is finite. Indeed, choose for each x ∈ δ(∅)
an event ex minimal in x. All x ∈ δ(∅) are disjoint since they are minimal, hence
all the ex are distinct, and minimal in E . Assumption 1 (applied with v = ∅)
implies that they are finitely many, and thus δ(∅) is finite. Assumption 2 implies
that each x ∈ δ(∅) is a finite prefix. It follows than thin prefixes Bξ have

⋃
x∈δ(∅) x

as finite upper bound.
Now let ξ be a subset of δ(∅), and let Bξ =

⋃
x∈ξ x. For each configuration v

of Bξ, and for each x ∈ ξ, v∩x is clearly a configuration of x, whence a mapping:
φ : VBξ

→ ∏
x∈ξ Vx. For each tuple (vx)x∈ξ with vx ∈ Vx, put v =

⋃
x∈ξ vx. Then

v is clearly a prefix of Bξ, and it follows from Lemma 3 that v is also conflict-
free, thus v is a configuration of Bξ. The mapping (vx)x∈ξ → v defined by this
way is the inverse of φ, thus φ is a bijection. Clearly, φ maps the set of maximal
configurations of Bξ onto

∏
x∈ξ Ωx, which completes the proof.

