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Abstract. This paper aims to simplify recent efforts proposed by the
Berkeley school in giving a formal semantics to the Ptolemy toolbox. We
achieve this by developing a simple and elegant functional theory of de-
terministic tag systems that is a generalisation of Kahn Process Network
theory (KPN). Our theory extends KPN by encompassing networks of
processes labelled by tags from partially ordered sets and makes deeper
use of Scott theory of Complete Partial Orders (CPO). Since CPO com-
pose well under direct sums, heterogeneous systems are simply captured
by direct sums of homogeneous systems, which are in turn constructed
by connecting systems over different tag sets by means of tag conver-
sion processes. For the (large) class of tag systems of “stream” type,
we show how to define tag conversion processes and how to implement
process communication. The resulting architecture is fully decentralised
and does not require Ptolemy’s directors. Last but not least, it provides
distribution for free.

1 Introduction

The semantics of heterogeneity. The need for heterogeneity in modelling and
development tools has been increasing while applications are becoming more
and more complex. In view of this state of matters, pioneering frameworks like
Ptolemy [11,13] which have started addressing the issue of heterogeneity a long
time ago are becoming always more popular and raising an ever growing interest.
Thus, concepts of this framework like models of computation and communication
(MoCC), actors, directors, and so on, have been getting an increasingly larger
acceptance.

Among the problems raised by this subject, the semantic question is impor-
tant. While homogeneous applications are in general well-mastered, problems
start at their interfaces, when several subsystems are composed to form a larger
application. Ambiguities, semantic inconsistencies, etc., are likely to produce
undesired behaviours which can badly impair the overall functioning of the com-
posed application. To this end, Lee & Sangiovanni have introduced their cele-
brated tagged signal model [10] which was meant to provide a precise semantics
to such frameworks as Ptolemy.
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Yet, there was still a large gap between this denotational formalism and the
behaviour of Ptolemy which is still largely bound to the operational semantics of
the simulation engine. Efforts have been devoted to filling this gap: for instance
BIP which is based on operational semantics [2] and 42 [14] which provides
building blocks for designing MoCCs in a comprehensive way.

The application of Scott theory to tag systems. A comprehensive step toward
closing this gap has recently been taken in [11], so as to make things simpler by
getting rid of non-determinism, that is, by restricting from relations to functions.
After all, determinism is something designers are fond of, most simulators like
Ptolemy are deterministic and, when non-determinism is needed, in most cases it
can be emulated by adding extra inputs to functions, aiming at choosing between
several possible futures.1

Yet, this was not sufficient: when composing functions, inputs of one function
can become outputs of another one and conversely, creating feedback loops and
resulting in the functional aspect being lost: we get systems of equations which
can have no solution as well as several solutions.

But this is a well-known issue of denotational semantics and well-known solu-
tions exist. The most widely adopted one is Scott’s semantics [15]: if the domain
of interest is a complete partial order (CPO) and we restrict ourselves to contin-
uous functions, then we know that every system of equations has a least solution
and it is sensible to decide that this is the semantics of the system. Moreover,
the least solution is itself a continuous function of its free inputs and thus can
in turn be composed at will. The framework is thus closed by composition (and
even by lifting to higher orders) and works perfectly well.

But there was another problem. The basic objects of the tagged signal model
are signals which in a deterministic point of view can be seen as functions from
tags to values. Scott approaches turn these signals into CPOs by turning the
value set into a CPO. In this way, the CPO property gets automatically lifted
from the image set to the function set. Thus, in this Scott theory applied to
tag systems, the tag set does not need to have any order property. But, in tag
system theory, tag sets are partially ordered and have a strong time flavour: in
Ptolemy, computations go from past to future, while in the Scott framework, it
does not matter (tags may not have any order and there may be neither past
nor future!).

Towards Kahn semantics. Thus [13] had to modify Scott’s order by requiring a
prefix ordering principle in the spirit of the Kahn order [9]: a signal is larger than
another one not only if it is more defined but also if both signals are defined
on some initial segment of the tag set. In this way, a signal s1 is larger than
another signal s2 if the initial segment over which s1 is defined is larger than
the initial segment over which s2 is defined. In this way, computations can only
extend the initial segments on which signals are defined and naturally flow from
past to future.
1 This is the way probability theory works: by adding input spaces about which the

only knowledge we can have is their probability measure.
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There was still a problem due to the fact that some tag sets, for instance
associated with the discrete event (DE) domain, are infinite in several dimen-
sions: in this case, initial segments are infinite and thus a signal defined over an
initial segment has to have an infinity of values. In some sense, time may not
progress, as in the so-called Zeno phenomenon of timed systems. But it is not
possible to compute an infinite number of values in a simulator. In [13,11] the
problem is solved using the idea of absent value from the French synchronous
language school [3]: thus a signal defined on an initial segment may have only a
finite number of computed non-absent values (while absent values need not be
computed).

Paper’s objectives and organisation. In this paper we develop a simple and el-
egant functional theory of deterministic tag systems that is a generalisation of
Kahn’s theory of Process Networks (KPN); KPN theory is recalled in section 2.
As developed in section 3, our theory extends KPN by encompassing networks
of processes labelled by tags from partially ordered sets and makes deeper use
of Scott theory of Complete Partial Orders (CPO); since CPO compose well
under direct sums, heterogeneous systems are simply captured by direct sums
of homogeneous systems, which are in turn constructed by connecting systems
over different tag sets by means of tag conversion processes. For the (large) class
of tag systems of stream type introduced in section 4, we show how to imple-
ment process communication and how to define tag conversion processes (see
section 6). Examples of tag systems are provided in section 5. Finally, we show
in section 6 that the resulting architecture: 1) is fully decentralised; 2) does not
require Ptolemy’s directors, and 3) provides distribution for free. An extended
presentation of this work can be found in [1].

2 Background on Deterministic Tag Systems and Kahn
Theory

Signals, Deterministic Signals, and Processes. The basic idea of the Tagged
Signal Model [10] is to consider a signal x ∈ S as a set of events, consisting of a
pair “(tag, value)”. Signals can thus be formalised as: S = {s | s ⊆ T×V }, where
V is a set of values, and (T,≤) is a partially ordered set of tags. These signals
are non-deterministic ones: several values can be associated with the same tag.
As we aim at considering deterministic tag systems, we first need to consider
deterministic signals. This amounts to saying that we only consider signals that
are partial functions from tags to values which we denote as: S = T ↪→ V .

In the deterministic setting, processes (or actors, following the Ptolemy ter-
minology) are just functions transforming input signals into output signals. For
the sake of simplicity, we do not consider the types of signal values and assume
an “universal” type V . Thus, the set of processes, P , is just the set of total
functions from Sm to Sn: P = Sm �→ Sn, where m, n are the input and output
arities.
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Functional Composition and Feedback Loops. In this deterministic setting, things
are very simple. Processes are composed by functional composition and a com-
posed process is just a system of equations, e.g.,

x3 = p1(x1, x2) x4 = p2(x1, x3)

which can define another process p3 such that (x3, x4) = p3(x1, x2). However,
this raises the question of feedback loops: for instance consider the system:

x3 = p1(x1, x2) x2 = p2(x1, x3)

What does it compute? This system of equations may have no solution or it may
have several solutions. Then determinism can be lost.

Scott Semantics. Scott semantics [15] provides a well-known solution to this
issue. It consists of the following changes to the previous framework:
1. Add to V an undefined element ⊥ and a partial order relation ≤ such that:

– V ⊥ = V ∪ {⊥}
– ≤ is the least order relation over V ⊥ generated by: ∀v ∈ V,⊥ ≤ v.

This makes (V ⊥,≤,⊥) a (flat) CPO. ⊥ is the least element of V ⊥ and any
sequence of ordered elements (a chain) has a least upper bound (

∨
) which

is ⊥ if the chain contains only ⊥’s, or some v1 if the chain contains this v1:
note that in the latter case the chain cannot contain another v2 distinct from
v1 as the two are incomparable.

2. Redefine S as the set of total functions from T to V ⊥:2 S = T �→ V ⊥. Then
S inherits the CPO property of V ⊥ by defining:
– x ≤ x′ if for all t ∈ T, x(t) ≤ x′(t) which amounts to saying that x is

smaller than x′ if it is less defined,
– the bottom element of S, also denoted ⊥, as the signal which is undefined

everywhere: ⊥(t) = ⊥.
Given a chain of signals x0, . . . xn, . . . , and given any tag t, x0(t), . . . xn(t), . . .
is chain of values and

∨
{x0, . . . xn, . . . }(t) =

∨
{x0(t), . . . xn(t), . . . }

3. Restrict processes to continuous functions from input to output signals,
which means that, given a chain of inputs, that is to say a sequence of
more and more defined signals, the outputs should form a chain and

∨
{p(x0), . . . p(xn), . . . } = p(

∨
{x0, . . . xn, . . . }) (1)

Note that continuity implies order preservation: s ≤ s′ ⇒ p(s) ≤ p(s′)
and note that this definition for single-input/single-output processes can be
extended naturally to processes of different arities because products of CPOs
inherit the CPO structure of their components. In particular, the order on
the product is the component-wise order.

2 A partial function can be made total by giving it the value ⊥ whenever it is not
defined.
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4. Then the Kleene theorem says that any system of equations has a (unique)
least solution, which is in turn a continuous function of its free input sig-
nals. Thus composition preserves determinism and confluence of unscheduled
distributed executions is guaranteed.

Kahn Theory. But this solution is still unsatisfactory because it does not take
advantage of the ordering over tags which have a flavour of time. In particular, a
process may as well compute from future to past—we can easily design a process
that is continuous in the Scott sense but not causal. This issue of causality is
properly addressed by Kahn theory.

Kahn’s world is a special case of Scott’s world. In Kahn’s world, the tag
domain is N, which is a totally-ordered and enumerable set. Signals are partial
functions from N to a set of values V . In addition, all signals are assumed to
be prefix-closed, meaning that if they are undefined at some time n then they
remain undefined for all n′ > n.

Note that in Kahn’s original paper [9] signals are elements of V ∞ = V ∗ ∪ V ω

where V ∗ is the set of all finite sequences over V and V ω is the set of all infinite
sequences over V . The set of all prefix-closed signals from N to V is isomorphic to
V ∞: partially-defined signals correspond to finite sequences and totally-defined
signals to infinite sequences.

Looking at signals x and y as sequences, x ≤ y means that x is a prefix
of y (there exists a sequence x′ such that y = x · x′, where x · x′ denotes the
concatenation of x and x′). With this order, the set of all signals becomes a
poset. It is in fact a CPO: (1) ⊥ is the empty sequence ε; (2) the least upper
bound of a chain of increasingly defined signals is either: (2.1) the most defined
one if the chain is finite or: (2.2) the infinite sequence defined by the chain,
because an infinite sequence is a maximal element of the CPO (concatenating a
sequence to an infinite sequence does not change this sequence).

Processes are assumed to be continuous functions from Sm to Sn. Again we
can define the semantics as the least solution of systems of equations. Thus the
Kahn theory solves the feedback loop problem. But it also solves the causality
problem: a continuous process is order preserving and, in terms of Kahn order,
this means that if x is a prefix of y, it is also the case that f(x) is a prefix of f(y).
This means that the future of x cannot influence the present of x. Computations
are guaranteed to flow from past to future.

3 Kahn Generalisation to Partially Ordered Tag Sets

Kahn network over a Partially Ordered Tag set. Kahn signals can be
seen as tagged signals over the particular tag set N. In order to address het-
erogeneity, we would like to generalise Kahn’s approach to other tag sets. The
technical difficulty here is that in general, tag signals cannot be prefix-closed
because prefixes can be infinite. While in [13,11] this problem is solved by intro-
ducing a special “absent” value, we propose here an alternative, more general
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approach, that does not require absent values and is still compatible with infinite
prefixes.

Let S be the set of all total functions

S = T �→ V ⊥, (2)

where T is a poset. Following Kahn, we endow S with the following partial order:

Definition 1 (Prefix order over signals). A signal x is a prefix of a signal
y, if for all t, y(t) �= x(t) implies for all t′ ≥ t, x(t′) = ⊥.

It is easy to see that this is indeed an order relation. Please note also that this
definition allows “holes” in the defined values; for instance we could have:

x : 1,⊥, 2,⊥,⊥,⊥ . . . y : 1,⊥, 2,⊥, 3,⊥ . . .

In the above example we have indeed x ≤ y. Note that in this example T = N.

Proposition 1 (CPO). S endowed with the prefix order is a CPO.

Proof. First, take ⊥(t) = ⊥. Then we notice that given x ≤ y in S, for any t,
x(t) ≤ y(t) according to the CPO V ⊥. Thus, if {xn} is a chain, then, for any t,
{xn(t)} is a chain and we can take:

∨{xn}(t) =
∨{xn(t)}.

Definition 2. A process p is order-preserving if, for any two signals, x, y if x
is a prefix of y, then p(x) is a prefix of p(y); p is continuous if it satisfies (1).

This means that only the past can influence the present value of a process.
The mathematical framework of this section is both simple and very power-
ful. Restricting to order-preserving processes allows us to preserve determinism,
causality, and confluence of unscheduled distributed executions.

Capturing Heterogeneity via Sum of CPOs. The next problem is to ex-
tend the previous generalised Kahn theory to encompass heterogeneity, that is,
systems involving different tag sets. But this in our framework comes for free:
The sum of two CPOs S1 and S2 is a CPO S1 + S2, defined as

S1 + S2 = (S1 − {⊥S1}) ∪ (S2 − {⊥S2}) ∪ {⊥}

where ⊥,⊥S1 , and ⊥S2 are the corresponding bottom elements. The order on
each of S1, S2 is maintained in the sum, but two elements from two different sets
are not comparable. Therefore, chains can only be formed of elements of a single
set and the least upper bounds are preserved.

Heterogenous architectures. At this point, suppose that we know how to
construct tag conversion functions, i.e., continuous functions

f : S1 → S2. (3)
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Let us see now how such a function can be seen as operating on the sum CPO
S1 +S2. Indeed, f : S1 → S2 can be seen as a function f ′ : (S1 +S2) → (S1 +S2)
by setting:

f ′(⊥) = ⊥, f ′(in1(x)) = f(x), f ′(in2(x)) = ⊥
where in1, in2 are the canonical injection of each CPO into the sum. Next,
consider the following toolkit of functions, consisting of:
– homogeneous functions, mapping input signals to output signals belonging

to a domain S of signals over a same partially ordered tag set T;
– tag conversion functions, mapping an input signal over T1 to an output signal

over T2.
By using the previous reasoning, a finite network of such functions can be seen
as a network of homogeneous functions acting on the direct sum

∑
i∈I Si, where

finite set I indexes the set of homogeneous functions of the considered network.
By proposition 1, the network itself is an homogeneous function acting on the
direct sum

∑
i∈I Si. Thus this network itself can be encapsulated as a function

acting on S =def

∑
i∈I Si, so the same construction can be reused, hierarchically.

Observe that we can also encapsulate tuples of signals over different tag sets as
a single signal defined over the sum of the considered tag sets. In other words,
hierarchy can be used for both boxes (functions) and wires (signals). Having this
architecture model addresses the main objective of this paper.

The remaining problems. From the previous analysis, the following two cen-
tral issues remain to be addressed:

Problem 1. How to construct tag conversion functions?

Having a solution to problem 1 provides us immediately with a framework of
heterogeneous Kahn-like architectures, as explained just above.

Problem 2. How to implement wires carrying signals defined over a partially
ordered tag set T?

This problem also remains to be solved in order to make our approach effective—
recall that such an implementation exists for basic Kahn networks since the
latter rely on a communication medium of unbounded FIFOs. Other media may
be needed for other partially ordered tag sets. We address Problem 1 in Section
4 and Problem 2 in Section 6 and show how to solve them in the restricted case
of “streams”.

4 Streams: From Generalised to Ordinary Kahn Theory

In the generalised Kahn theory developed in section 3, signals are total functions
from a partially ordered tag set T to a set of values V ⊥, or, equivalently, partial
functions from T to V . These signals can thus be seen as “labelled partial orders”
and are fairly general. Yet, in many practical cases, for instance those which
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correspond to what is considered in Ptolemy [13] and which are addressed in
section 5, this generality is not needed and the approach can be simplified. This
simplification is based on two assumptions. When these assumptions are in force,
signals can be seen as streams and the theory boils down to an ordinary Kahn
theory. While this reduction is unnecessary from a mathematical standpoint, it
has practical applicability, since we know that Kahn networks (unlike general
tag systems of section 3) are implementable on networks of processors related by
FIFO links, cf. our problem 2.

Assumption 1 (DTOS). In the considered set S of signals:
1. The tag set is a total order.
2. The defined values of any signal can be indexed in non-decreasing order,

meaning that there is an order preserving isomorphism from the domain of
any signal, dom(x) = {t | x(t) �= ⊥}, to (an initial segment of) N.

Call Discrete over Totally Ordered tag Set (DTOS) such a set S of signals.

This means that there is an order preserving isomorphism from the domain
of a signal (dom(x) = {t | x(t) �= ⊥}) to (an initial segment of) N. We call
this a discrete signal. Assumption 1 yields signals whose defined tags are order
isomorphic to (an initial segment of) N.3 In this case we speak of a discrete total
order.

An important question arising from Assumption 1 is whether the restriction
of signals based on these assumptions still preserves the CPO structure defined
in proposition 1. This is by no means a trivial issue. The following proposition
provides a positive answer.

Proposition 2 (DTOS). The set of Discrete signals over a Totally Ordered
tag set (DTOS) endowed with the prefix order is indeed a CPO.

The proof can be found in [1].

DTOS signals as streams. When dealing with DTOS signals, tags associated
to defined values can be indexed in increasing order and signals can be seen
as streams of pairs (value, tag). In other words, to a DTOS signal x we can
associate its stream St(x) : (V × T)∞ where there is no more need to consider
an undefined value.4 The tag ordering constraint is then for any s ∈ DTOS such
that s = (v1, t1).(v2, t2).s′,
1. t1 < t2
2. s′ ∈ DTOS

It is then clear that the stream view of DTOS signals enjoys the same properties
as the functional one. Formally the DTOS-to-stream transformation is as follows:

St(⊥) = ε, the empty sequence
St(x) = (x(t1), t1).St(x[t1 → ⊥]) (4)

where:
3 Note the importance of requiring an order-preserving isomorphism in Assumption 1.

Rationals are both totally ordered and countable but not order isomorphic to N.
4 This view is inspired by our previous work [4].
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– t1 is the least tag yielding a defined value in x
– x[t1 → ⊥] is the function x where the value at t1 has been changed to ⊥.

To conclude this section, we formally state the following property:

Proposition 3. St defined in (4) is a CPO isomorphism between DTOS signals
and streams. Moreover, it preserves parallel composition. (This solves problem 2.)

Thus, DTOS systems can be brought back to streams, i.e., ordinary Kahn net-
works.

5 Examples

Kahn Process Networks. Kahn Process Networks (KPN) naturally fit into
that landscape. N is the tag set and there are no “holes” between defined values.
Thus signals are just streams of defined values. An operator like the sum operator
over numbers can be lifted to streams according to the following Haskell-like
definition:

sumK ε y = sumK x ε; = ε
sumK v.x v′.y = (v + v′).sumK x y

where ε denotes the empty stream and “.” denotes concatenation. Basically, the
Kahn actor sumK waits until both its input queues are non-empty. Then, it re-
moves their heads, adds them, puts the result into its output queue and starts
again. Note that waiting until both queues are non-empty can be implemented
using Kahn’s blocking read operator, without having to test both queues simul-
taneously: sumK simply blocks on one queue, then on the other. The order in
which queues are read can be arbitrary.

Discrete Event. We begin with a tagged view of Discrete Event Signals and
then present a streamed view for them.

A Tagged View of Discrete Event (DE) Signals. Discrete event (DE) signals are
discrete signals (according to assumption 1) with real-time stamps. A tag set for
DE is:

T = R+ × N

where τ = (t, n), t denotes a time stamp, and n is the index of events sharing
the same time stamp.5 This tag set is ordered with the lexicographic order:

(t, n) ≤ (t′, n′) iff either t < t′ or t = t′ and n ≤ n′

which is a total order. Then a discrete event signal x is a total function x : T �→ V ⊥

satisfying the following constraint: for any two tags τ, τ ′ ∈ T, with τ = (t, n),
τ ′ = (t, n′), and n ≤ n′, if x(τ ′) �= ⊥ then x(τ) �= ⊥. Figure 1 shows an example
of such a signal. In this example the following table provides the correspondence
between tags and values:
5 This approach, which has been called super-dense time by some authors [13], could

be easily extended to tag sets T = R+ × N
N to account for so-called “nested over-

samplings”. For the sake of simplicity, we do not address such an extension here.
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v7

R+t1 t2 t3 t4

v1 v2

v3

v4 v5

v6

�

Fig. 1. A discrete-event signal

tag : (t1, 1) (t2, 1) (t2, 2) (t3, 1) (t4, 1) (t4, 2) (t4, 3)
value : v1 v2 v3 v4 v5 v6 v7

We can remark that in this definition, there are many undefined (or absent)
values namely between two consecutive time stamps holding defined values and
after the last defined value sharing a given time stamp.

A Streamed View of Discrete Event Signals. DE signals are DTOS, so we can
apply the results of section 4, thus providing a streamed view of them:

sx : (V × (R+ × N))∞

where R+ is the set of non-negative reals modelling the physical (or real) time.
Furthermore we observe that in this definition, the second component N of the
tag set is not necessary because we can always rebuild it by applying the following
index rebuilding mapping Ir : (V × R+)∞ → (V × (R+ × N))∞:

Ir1(t′, n, ε) = ε
Ir1(t′, n, (v, t).sx) = if t == t′

then (v, (t, n + 1)).Ir1(t, n + 1, sx)
else (v, (t, 1)).Ir1(t, 1, sx)

Ir(ε) = ε
Ir((v, t).sx) = (v, (t, 1)).Ir1(t, 1, sx)

An Actor Example. It is interesting to see how to define some primitive actors
in DE. Let us start by defining the sum of two signals. There are several ways
of defining it, each having, perhaps surprisingly, very different properties [1].
Here we present only one possibility, which states that, when both input signals
appear with the same tag, we output the sum, otherwise we just output the
defined signal:

sumDE2 x ε = sumDE2 ε y = ε
sumDE2 (v, τ ).x (v′, τ ′).y = if τ < τ ′

then (v, τ ).sumDE2 x (v′, τ ′).y
else if τ = τ ′

then (v + v′, τ ).sumDE2 x y
else (v′, τ ′)′.sumDE2 (v, τ ).x y

Figure 2 illustrates this definition which can be proved to be continuous ([1])
though it uses, unlike in KPN, the infamous6 operation that tests values in input
queues without removing (consuming) them.
6 Because its undisciplined usage may result in non-continuous processes.
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v2

R+t1 t5

v′
1 v5

x2
t3

v3

�
R+t1

v1 v4
x1

t2

v2

t4

v4

t4

�
R+t1

v1 + v′
1

x1 + x2
t3

v3

t2

�

Fig. 2. Sum (DE2) of two discrete-event signals

Other operators can be found in [1].

Continuous Time. In general, the continuous time (CT) case is more involved,
and its study is part of our on-going work. Some preliminary ideas can be found
in [1]. We summarise these here.

First, note that there are different CT domains, depending on whether we
want to define signals with exact (i.e., ideal) CT semantics, or approximate CT
semantics, as computed using a numerical solver. Exact semantics is linked to
the theory of ordinary differential equations (ODEs) (see also [12] and [6]). Yet
it seems to us that exact CT does not fit into the Kahn landscape: in order to
exactly solve a differential equation, this equation has to be considered globally as
a whole and it cannot be decomposed into its components. For instance we cannot
define the exact behaviour of an integrator, independently from the network of
operators which feeds it. Indeed, in theory we would need to check whether this
network computes a Lipschitz function or not.

Regarding approximate semantics, observe that ODEs, when discretised using
explicit schemes with fixed step size, are simply DE systems, thus can be handled
in the DE domain. However, this no longer holds if more sophisticated schemes
are used, e.g. implicit schemes and/or variable step size.

Synchronous Reactive. Synchronous Reactive systems have been addressed
among others in [5,7]. It is in this domain that absent values have been first
introduced. Here also, we begin with a Tagged view of Synchronous Reactive
(SR) systems. These are very similar to discrete event ones, but real-time is
replaced with a logical integer time. Thus the tag set is7 N × N where the first
component gives the reaction logical time and the second one the multiplicity
index in that reaction. The reason we need both components is to model easily
multi-clock systems: in such systems, a signal may be “absent” in some reactions
(captured by ⊥) and occur several times in other reactions. In some sense, the
reaction logical time acts as a replacement of absent values.

7 The same remark on a possible extension to nested oversamplings as stated at sec-
tion 5 applies here.
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For the Streamed view of Synchronous Reactive, we can proceed as with DE
signals: St(x) : (V × N)∞. In this interpretation St(x)(n) = (v, r) means the
n-th occurrence of x has value v and takes place within the r-th reaction.

An example that is not DTOS. So far all examples we have presented
are DTOS. It will not be the case for the following one, however. The MoCC we
present here is that of signals that are themselves streams of events, however with
causality relations between events belonging to different signals. To formalise this
example we need an underlying set X of signal names. The set T of tags has the
following form, where N∞ = N ∪ {−∞}:

T = X × (X → N∞)

In other words, t ∈ T has the form t = (x, τ), where τ is a vector clock, i.e., a
total function mapping X to N∞. The interpretation of t = (x, τ) is as follows:
– tag t belongs to a signal with name x;
– signal x is indexed by the set of positive integers N and its rank is given by

n = τ(x), which must therefore be > −∞;
– a positive value for τ(y) = m > −∞, where y ∈ X \{x} indicates a causality

constraint of the nth event of signal x with respect to the mth event of signal
y; having τ(y) = −∞ indicates lack of causality constraint of the nth event
of signal x with respect to any event of y.

We may (but do not need to) restrict T to tags whose vector clock τ takes a
value τ(y) �= −∞ for only finitely many y’s. T is equipped with the following
order relation, making it a partial order:

t ≥ t′ iff ∀y ∈ X s.t. τ ′(y) > −∞ ⇒ τ (y) ≥ τ ′(y)

6 Actors without Directors

6.1 Tag Conversion Actors in Lieu of Directors

When dealing with heterogeneity, there is generally no “golden rule” saying
what the meaning of composing actors with different tag sets should be. This
information must instead be provided by the designer.

In Ptolemy this problem is solved using the concept of directors. Roughly
speaking, a director schedules the operation of a set of concurrent actors in
time, thus in essence defining the concurrency (and time) semantics of the model.
There are many types of directors in Ptolemy, each implementing a given MoCC:
discrete-event, synchronous-reactive, etc.

Here, we take a different approach: we define tag-conversion actors, i.e., het-
erogeneous actors operating on different tag sets and transforming signals on
one tag set to signals on another tag set. Compared to directors, our approach
has two main advantages. First, we do not need to introduce an additional
concept in our modelling framework, actors is all we need. Second, our ap-
proach allows to separate the issue of semantic compatibility from that of using
different MoCCs.
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We give now some standard conversion actors to allow the interconnection of
signals of different tags. These are only a few examples and other tag-conversion
actors can obviously be defined.

From DE and SR to KPN. Going from DE and SR to KPN can be done by
“forgetting” the tag:

forget ε = ε
forget (x, t).xs = x.forget xs

From KPN to DE and SR. In the opposite direction, a “timestamping” actor
can be used. This actor uses a clock that specifies the timestamps:

timestamp ε cl = ε
timestamp xs ε = ε
timestamp (x.xs) (t.ts) = (x, t).(timestamp xs ts)

6.2 Distribution

A stated at the end of section 3, restricting to order-preserving processes in the
sense of definition 2 allows us to preserve determinism, causality, and conflu-
ence of unscheduled distributed executions. Thus, distribution comes for free and
does not need coordination. This holds in particular for heterogeneous models
mentioned at the end of section 6.1.

Still, the following issue remains, namely: which type of communication link is
needed in such distributed implementations? Since tag conversion is performed
by actors, links involve only homogeneous tag sets. So, in general, our (directed)
links only need to preserve the prefix order of definition 1 for a given (homoge-
neous) tag set T, from source node to sink node. This holds in particular for
heterogeneous models mentioned at the end of section 6.1. In particular, standard
FIFO links can be used to implement communications for such architectures.

Take for instance the definition of the discrete event sum illustrated in figure 2
of section 5. The actor has two input FIFO queues x and y and an output FIFO
queue z. The queues contain pairs (v : V, t : R+). Indeed the N component of the
DE tag set is useless because the FIFO queues preserve the order of production.
Thus an operational version of the sum actor can be defined in C-like syntax as:

void sum(input queue x, input queue y, output queue z) {

if (x.empty() OR y.empty()) return;

if (x.head().tag() < y.head().tag()) {

z.append(x.head()); x.erase_head(); return; }

if (x.head().tag() == y.head().tag()) {

z.append(x.head().tag(), x.head().val() + y.head().val());

x.erase_head(); y.erase_head(); return; }

// it must be that: x.head().tag() > y.head().tag()

z.append(y.head()); y.erase_head(); return;

}

Basically, the sum process needs that its two input files be non-empty to exe-
cute. Otherwise it waits. If it can execute, it takes the two tagged heads and
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compares their tags. If they are equal, it sums up the two values, tags the result
with the common tag, puts it in the output queue and erases the two heads from
the input queues. If the two tags are different, the earlier tagged value is erased
from its input queue (as a matter of fact we know that, since the input queue
values are produced in an orderly manner, it will not be possible that the other
queue will later contain an item matching this earlier tag) and the other queue
is left unchanged. Nothing is produced and the process waits.

Indeed, we could say, adopting the Ptolemy terminology that such networks
do not need directors, i.e., some deus ex machina able to schedule the executions
of each actor. In a simulation engine, the only need is that execution is fairly
distributed between actors in such a way that no actor is infinitely excluded from
execution. Also note that there is no “event queue” like what is found in most
simulation engines like Ptolemy and this feature avoids the burden of building
a distributed event queue. Distributed actors are truly autonomous, they only
know of the heads of their input queues.

6.3 Hierarchy

It has been advocated that the use of directors enforces a clean separation be-
tween several MoCCs in a hierarchical way: in order to get a communication
between two different MoCCs these have to be encapsulated within a “larger”
MoCC which encompasses the former ones. It is true that this is a good design
practice but the “flat” directorless approach we present here is fully compatible
with hierarchy: Kahn actors can be gathered so as to form compound actors and
this hierarchical composition can be extended at will.

7 Conclusion

This paper has intended to simplify recent efforts proposed by the Berkeley
school in giving a formal semantics to the Ptolemy toolbox. We have proposed a
simple and elegant functional theory of deterministic tag systems that is a gen-
eralisation Kahn’s theory of Process Networks (KPN). Our theory encompasses
networks of processes labelled by tags from partially ordered sets and makes
deeper use of Scott theory of Complete Partial Orders (CPO). Since CPO com-
pose well under direct sums, heterogeneous systems are simply captured by direct
sums of homogeneous systems, which are in turn constructed by connecting sys-
tems over different tag sets by means of tag conversion processes. For the (large)
class of tag systems of stream or DTOS type, we have shown how to define tag
conversion processes and how to implement process communication. The result-
ing architecture is fully decentralised and does not require Ptolemy’s directors.
Last but not least, it provides distribution for free.

A natural question is to find broader frameworks than just DTOS in which
problems 1 and 2 can be properly solved. This is left for future work.

An important issue not addressed in the paper is the issue of liveness (also
called productivity in the co-algebraic framework). This issue has already been
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partially addressed in [13] and its adaptation to our stream approach will be a
subject for future work.

Another semantic theory for stream-based systems, alternative to Kahn, is
the co-algebraic theory of streams (see for instance [8]). Basically, moving to co-
algebraic streams would consist, in the stream programs shown in the paper, to
remove the ε cases. Indeed, this is what has been done in the Haskell prototype
we have implemented of our framework. Examining the consequences of such an
alternative choice is also a subject for future work.
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