
Compositional and Uniform

Modelling

of Hybrid Systems

Albert Benveniste

Abstract This paper discusses fundamentals of
hybrid system modelling. Emphazis is put on com-
positionality and the use of multiform time. Com-
positionality refers to the ability of freely compos-
ing hybrid systems. Since hybrid systems are con-
sidered, different time indices occur, and modu-
larity calls for considering “time” as local to each
module, this is what is called multiform time. The
proposed framework is behavioral, hence a way is
provided to automatically synthesize proper schedul-
ing constraints for the joint simulation of discrete
time, event based, and continuous time compo-
nents. Finally, the relations of this model with
the more traditional state based point of view are
discussed.

I. Introduction

Hybrid Systems have been a topic of growing inter-
est and activity in the recent years. It is our opinion
that relevant real-life applications of hybrid systems
paradigm mainly consist of very large, complex, dis-
tributed, systems. For such systems, modularity in
modelling, simulation, control design, and verifica-
tion, is mandatory. Thus we shall request for our
model that 1/ composition works uniformly for both
discrete and continuous parts, and is based on easy
and clean mathematical principles, and 2/ “time”
shall be local to each module instead of global. Point
1 calls for a composition via the intersection of be-
haviours, or, equivalently, via conjunction of con-
straints or systems of equations. Point 2 leads us
to consider that “time bases” should not be given
once for all, but should rather be variables of our
hybrid systems. A more extensive introduction and

This work has been supported in part by NSF/ESPRIT
grant Nr. EC-US-043.

IRISA-INRIA, Campus de Beaulieu, 35042 Rennes cedex,
France; benveniste@irisa.fr, fax +33 2 99 84 71 71

motivations can be found in [1].

II. A General Hybrid Systems Model

A. Primitives

Time

Our time index set is R = (−∞, +∞) viewed as
a totally ordered dense and continuous set, we also
write R = [−∞, +∞]. This choice only specifies that
we work with a continuous, totally ordered, and one-
dimensional time. It does not imply, however, that
we are bound to a single time t, as we shall see later.

Presences

“Time bases” will be used as index sets for signals,
or for “task activation” (we do not define formally
what we mean by a task here). A time basis sets is
assigned to each signal. Time bases will be referred to
in the sequel as “presences”. A presence is any Borel 1

subset T of R such that T ∩ (−∞, x) = ∅ for some
finite x 2. The family of presences are equipped with
the following set theoretic operations : union, inter-
section, and set difference. Discrete time divergent
sequences, as well as intervals, are particular cases of
presences.

Signals

A signal is a map

X : T 7→ DX , written t 7→ Xt (1)

1The reader not willing to bother with technicalities can
discard the “Borel” assumption. Note however that we need a
class of subsets of R which is invariant under union, intersec-
tion, and set difference.

2This latter condition expresses that signals have some finite
birth date.

where T is a presence (the presence of X), DX is
some topological space, the type of X, and map t 7→
Xt is piecewise continuous. Thus signals are partial
functions of time, whose domain we call a “presence”.
Signals will be used to model trajectories, both dis-
crete or continuous time. In the sequel, for X a sig-
nal, we shall denote by TX the presence of X.

Delaying signals

If X is a signal with presence TX , we define its
delayed version : Y = pre(X) init x0, by setting :

TY = TX = T , (2)

∀t ∈ T : Yt =

{

Xt− if T ∩ (−∞, t) 6= ∅
x0 otherwise,

where Xt− is the left limit of X at t, defined as fol-
lows. Let t− denote the upper boundary of the set
T ∩ (−∞, t). Thus if there are s ∈ T , s < t that
are arbitrarily close to t, then simply t− = t. In the
other hand, if the distance from t to T ∩ (−∞, t) is
strictly positive, then t− equals the largest instant of
T ∩ (−∞, t). Then we define

Xt− = lim
s∈T ,s<t−,sրt−

Xs . (3)

Also, x0 is an initial condition required when t is the
initial instant of T . See Figure 1 for an illustration
of our notion of a delay. From (3) we see that, if t is
not isolated from the left, Xt− can be approximated
by Xt−ε, where ε represents the (possibly variable)
discretization step used at the execution of the pro-
gram. In doing so, we guarantee that no instanta-
neous causality occurs from Xt to Xt− .

Pointwise constraints on signals

Pick two signals X, Y with presences TX and TY
respectively. Let T be a presence. Let C ⊂ DX×DY

be a constraint defined on the types of X, Y . We shall
write C(x, y) to mean that (x, y) ∈ C. We shall say
that signals (X, Y) satisfy the constraint

on T : C(X, Y) (4)

if

C(Xt, Yt) ∀t ∈ T , (5)

: ‘‘ pre ’’

t

X

Fig. 1: The delay operator. For selected instants t,
the backward arrow indicates which value is taken as a
definition of pre(X) init x0. For isolated t points, the
previous value is taken and our delay operator behaves
like a shift register. For points t in the interior of the
presence of X, our delay delivers the value of X “just
prior” to t.

this requires in particular that the involved signals
are present at each instant of T :

T ⊆ TX ∩ TY . (6)

An interesting particular case is

on T : Y = f(X) (7)

where f is a function.

Differential Equations and Differential Algebraic Equa-
tions (ODE,DAE)

In this subsection, we shall consider signals X of
type real, with presence TX which we assume to be
equal to the closure of its interior. Assume also that
t 7→ Xt is continuously differentiable in TX , we de-
note by Ẋ this derivative 3. Pick two such signals
X, Y with presences TX and TY respectively, and a
real signal Z with presence TZ . Let T be an open
presence satisfying

T ⊆ TX ∩ TY ∩ TZ (8)

3If t belongs to the interior of TX , then Ẋ is just the
usual derivative, otherwise there is some ε > 0 such that ei-
ther (t, t + ε) ⊂ TX or (t − ε, t) ⊂ TX ; in the first case we
define ẋt = lims>t,sցt ẋs and in the second case we define
ẋt = lims<t,sրt ẋs.

We shall say that X, Y, Z satisfy the differential equa-
tion

on T :
dY

dX
= Z (9)

if

Ẏt = Ẋt Zt holds ∀t ∈ T . (10)

Examples :

• Of course, one can combine (10) with the equa-
tion “ on T : Z = g(X, Y) ” to get the Or-
dinary Differential Equation (ODE) “ on T :
dY/dX = g(X, Y) ”. On the other hand, com-
bining (10) with the equation “ on T : C(Z, X, Y) ”
yields the Differential Algebraic Equation (DAE)
“ on T : C(dY/dX, X, Y) ”.

• For T of the form {t ∈ R : Xt ≥ 0}, ODE
“ on T : dY/dX = g(X, Y) ” specifies the dif-
ferential equation dy/dx = g(x, y), i.e., x is now
taken as a “time variable”, and the “time do-
main” in which this DE is defined is (0, +∞)
since the presence of signal X was specified
through the predicate {Xt ≥ 0}. This gives
an illustration of our mechanism of multiform
time for differential equations.

• The standard chain rule for successive differen-
tiations yields the usual chain rule for change
of variables in differential equations :

dZ

dX
=

dZ

dY

dY

dX

B. Hybrid Systems and their Composition

Our model makes use of “real time”. However, only
relative timing is relevant, not absolute time. Thus,
prior to defining what is a hybrid system, we need to
consider objects and operations “up to time change”.
This is what we formalize first4.

1 Time changes

A time change is a map σ : R 7→ R, which is
bijective, increasing, and continuous with continuous

4For different purposes, the importance of invariance via
time change has been recognized and utilized in [6].

inverse 5. Time changes change signals in the follow-
ing way :

Y =def σ(X) defined by Yt = Xσ(t)

Lemma 1 (invariance) The following properties es-
tablish invariance under time change of all operations
we have defined so far :

on S : C(X, Y) ⇔ on σ(S) : C (σ(X), σ(Y))

on S :
dY

dX
= Z ⇔ on σ(S) :

dσ(Y)

dσ(X)
= σ(Z)

As a consequence, all operations on signals we have
defined so far are invariant under time changes.

2 Hybrid Systems

Consider a set {X1,. . . ,Xk} of signal names, also
called sort in the sequel, and associated types {D1, . . . , Dk}.

A hybrid system P , of sort {X1,. . . ,Xk}, is a set of
k-tuples (X1, . . . , Xk) of signals of respective types
{D1, . . . , Dk}, which is invariant under time change.
This means that, if (X1, . . . , Xk) ∈ P and σ is a time
change, then (σ(X1), . . . , σ(Xk)) ∈ P . Note that, in
this definition, both the value and presence of signals
are variables.

Thanks to the previous subsection, all relations
on signals we have introduced so far specify hybrid
systems : union/intersection/difference of presences,
pointwise constraints on signals (4), differential equa-
tions (9).

3 Hybrid Systems Composition

If P and Q have the same sort, then

P‖ Q =def P ∩Q , (11)

where P ∩Q denotes the intersection of sets P and Q.
Otherwise, if P has sort X and Q has sort Y, then
1/ we consider equivalently P as a hybrid system of
sort X ∪Y, which sets no constraint on the signals
of names belonging to Y \X (where “\” denotes set
difference), and symmetrically for Q, and then 2/ we
apply definition (11). Note that, since intersection
and sort extension both preserve invariance via time
change, the composition of hybrid systems is a hybrid
system.

5In fact, the statement “continuous with continuous in-
verse” is a consequence of σ being bijective and increasing.

TX = TY = T
‖ S = T \ U
‖ on S : dY/dX = f(X, Y)
‖ on U : Y = g(U)
‖ U = true(pre(Y) init 0 ≤ 0)

TABLE 1: a Hybrid example. In this example, we as-
sume f < 0 and g > 0. The meaning of this program is
the following. X acts as a “time variable”. Y decreases
according to differential equation dY/dX = f(X, Y).
When Y reaches zero, then immediately signal U is read
and differential equation dY/dX = f(X, Y) is reset so
that Y takes value g(U). Thus Y has a discontinuity
when it reaches zero, hence “reaching zero” must be
defined using the left limit of Y , which, by definition, is
pre(Y) init 0 (we have initialized pre(Y) to the value
zero, thus starting immediately by reading U).

Examples :

• Resetting mechanisms in ODE/DAE. Take X, Y, Z
three signals such that TY is a left closed inter-
val, TZ is discrete and divergent, and is con-
tained in TY , and TX = TY \ TZ . Then the
composition of statements

on TY :
dY

dX
= g(X, Y) (12)

‖ on TZ : Y = h(Z) (13)

specifies that Y satisfies ODE (12) with reset-
ting by (13) at the instants of TZ . In this way
we encompass the usual setting (15) of hybrid
systems as a particular case.

• For B a boolean signal with presence T , we
define the presence

true(B) =def {t ∈ T : Bt = true}

to be the instants t at which Bt is true, and
similarly for false(B).

The formalism consisting of the previously introduced
primitives, plus the latter ones true(B) and false(B),
is called Hybrid. Table 1 shows an example of hy-
brid system specified with Hybrid.

III. Timing and causality

At this point we have provided a hybrid systems
specification formalism. It is behavioral in style. This

is in accordance with the modern way of buidling sim-
ulation models of physical systems from first princi-
ples of the physics, as advocated by J.C. Willems.
Since it is a formalism of behavioral style, it gener-
ally results in programs that are not in operational
form (they cannot be directly executed). In this sec-
tion we investigate issues related to this fact.

Clock calculus and causality analysis are key is-
sues in the compilation of synchronous languages [4].
On the other hand, causality analysis in bond graphs
[5] helps preparing and facilitating the work of the
ODE/DAE solvers. We propose here a framework
which generalizes these notions (we follow the tech-
nique presented in [4]). In Table 2, we associate to
each Hybrid primitive statement, its presence cal-
culus and causality calculus. The presence calculus
involves only presences and boolean signals, it sum-
marizes the constraints on presences and their rela-
tions to boolean signals. Causality calculus uses a
new statement, which we term a causality, and intro-
duce informally now (a formal definition is provided
in Appendix A) :

on T : X > Y (14)

Its intuitive meaning is : At each instant of T , Y
cannot be produced before X. The statement “on
T ” is optional. When it is omitted, then causality
X > Y always hold.

Table 2 is commented now. For a signal X, the
status of X a instant t shall be “absent” if t 6∈ TX ,
and the value of Xt otherwise.

1. One cannot produce a signal before knowing
whether it is present or not at the current in-
stant.

2. Enforcing causality “X > Y ” cannot be
performed before knowing the status of T at
the current instant.

3. Here “op” denotes union, intersection, or set
difference, and (S,U) > T indicates that
both S > T and U > T hold.

4. Exact translation of (7) with TX = TY = T ,
induced causality is clear.

5. Exact translation of (4) with TX = TY = T , the
resulting causality constraints exhibits a circuit

statement
presence calculus
causality calculus

1. TX > X

2. on T : X > Y T > Y

3. T = op(S,U)
T = op(S,U)

(S,U) > T

4. on T : Y = f(X)
T ⊆ TX ∩ TY

on T : X > Y

5. on T : C(X, Y)
T ⊆ TX ∩ TY

on T : X < > Y

6. Y = pre(X) init x0 TY = TX

7. on T : dY/dX = Z T ⊆ TX ∩ TY ∩ TZ

8. T = true(B)
T = true(B)

on TB : B > T

TABLE 2: Timing and causality. In the third column,
clock (top) and causality (bottom) calculi associated
with each basic statement are shown.

(notation ↔ means that both ← and → hold),
which expresses that none of the two signals
X, Y can be computed before the other at the
current instant.

6. Exact translation of (2). No instantaneous causal-
ity results since X influences only the future
of Y , as the discussion following equation (3)
shows.

7. Exact translation of (9). No instantaneous causal-
ity results since X, Z influence only the future
of Y .

8. Selfexplanatory.

Table 2 is used as follows for executing a program.
First, for each statement of the program, add to this
program the associated presence and causality cal-
culi, following Table 2. This yields a new program,
in which relations between the various presences, as
well as causality constraints, have been made explicit.

Table 3 depicts the presence and causality calculi
associated with the Hybrid program of table 1.

For all instants, at which causality circuits are in
force 6, we must solve (differential) algebraic equa-
tions, i.e., sophisticated and fragile solvers must be
used. This cannot be avoided in general, but is better
performed most seldomly.

Since causality constraints, as derived from Table
2, depend on the syntax of the program, we can try
to rewrite this program differently, with the objective
of breaking most possible circuits [4]. Rewriting part
of the program involving timing and booleans, can
be performed using exactly the techniques of Signal

language compilation, since the Signal clock calcu-
lus has identical algebraic structure as our presences
and boolean signals. Rewriting DAE’s (which would
cause instantaneous cycles in the graph) into ODE’s
can sometimes be performed using symbolic calculus,
but this may not be desirable in general, due to pos-
sible numerical illconditioning of the resulting ODE.
A study related to our present notion of causality has
been independently performed in the AI-related area
in [9] and [10], for static hybrid systems (involving no
dynamics, i.e., no ODE), and corresponding software
has been developed.

6for example : “on T : X > Y ” and “on S :
Y > X” and S ∩ T 6= ∅.

TX = TY = T (1)
‖ S = T \ U (2)
‖ U = true(pre(Y) init 0 ≤ 0) (3)
‖ T > (X, Y,pre(Y)) (4)
‖ U > U (5)
‖ (T ,U) > S (6)

‖ (on T : pre(Y) > U

‖ T > U) (7)

‖ (on U : U > Y

‖ U > Y) (8)

‖ (on S : (X, Y) > dY/dX

‖ S > dY/dX) (9)

TABLE 3: The example of table 1 : pres-
ence and causality calculus. This Hybrid program
is obtained by applying the rules of Table 2 until fix-
point is reached. To apply these rules, we should have
introduced the intermediate signal Z = f(X, Y) ; this
intermediate signal is simply denoted by dY/dX in the
above program. Instructions (1–3) are copied from the
full program of table 1, these are the constraints relating
presences. The rest is the causality calculus. Instruc-
tions (4,5) result from rule 1. Instruction (6) follows
from rule 3. Instructions (7,8,9) show two causality
constraints on each line. These result from rules 4 and
8 (first causality), followed by the subsequent applica-
tion of rule 2 (second causality). The resulting program
exhibits no circuit, hence correct scheduling to execute
the simulation follows as explained next. At each in-
stant, 1/ test if this current instant belongs to T , if
yes, then 2/ compute pre(Y) init 0 and then if the
current instant belongs to U or S. 3/ If it belongs to
U reset the ODE using U . Otherwise simulate a step
of the ODE.

IV. Data-flow vs. state based models of

hybrid systems

A. State based models of hybrid systems : the clas-
sical view

According to the most commonly accepted approach
today [2], a hybrid system is a continuous time dy-
namical system having persistent locations and in-
stantaneous transitions occurring at a divergent se-
quence of instants. Such a triple

location
transition

> new location (15)

has the following form (ẋ denotes the time derivative
of function x(t), and u, a function of time, is the
exogeneous control) :

location :

{

ẋ = F (x, u)
xinit = ...

transition :
P(x, u) ∨ ? interrupt I(x0)

! emit S
>

location :

{

ẋ = G(x, u)
xinit = x0

Thus, locations are characterized by constraints on
continuous trajectories — expressed here in the form
of differential equations. Transitions are triggered
either by guards, i.e., predicates on state variables
(P(x, u)), or by external interrupts possibly carrying
reset values for the new location (? interrupt I(x0)).
Transitions can output signals of any type (bool, in-
teger, real,... : ! emitS). Here follow some features of
this model :

– it is a continuous time systems model, its time
index is global and unique, and is R+ = [0, +∞),

– discrete time “timers” occur in the form of the
various sequences of “interrupts” or “emit” events,

– events trigger transitions, hence they are the
vehicle for switching from one continuous be-
haviour to another one,

– continuous behaviours in turn can create events
(by testing guards over continuous time state
variables), this is the mechanism for creating
discrete time from continuous time,

– such systems compose only via their discrete
parts : discrete signals and events are the only
vehicle for systems interaction ; in contrast, con-
tinuous state variables are local. At least, ODE
specifying locations cannot be freely combined,
since their combination generally results in DAE.

As we have noticed, our approach generalizes the
classical one.

B. State based models for Hybrid

State variables in dynamical systems abstract tra-
jectories according to the Nerode equivalence rela-
tion, in which, at each instant t, two trajectories
having the same future are equivalent. For classical
continuous time dynamical systems, state variables
can be chosen by selecting those variables to which
derivatives apply. In our case of the Hybrid formal-
ism, state variables originate from the following two
items :

1. the “Y = pre(X) init x0 ” delay operator makes
X a state variable ;

2. the statement “ on T : dY/dX = Z ” makes
X, Y to be state variables.

Keeping state variables of type (1), and then testing
the validity of predicates over these variables is all
what is needed to build “locations” in the sense of
(15), as clearly shown in the example of Table 1.

V. Conclusion

We have proposed a framework for hybrid systems
in which continuous and discrete parts are handled
in a uniform way including system composition. Our
model seems quite general. Clearly, issues related to
discretization schemes of differential equations have
not been considered. A feature of our model is its be-
havioral nature. This makes compositionality much
easier, which facilitates specification. In turn, this
makes program execution nontrivial, and timing and
causality calculi are needed. Finally, one can sus-
pect that the techniques of separate compilation and
desynchronization developed in particular for Sig-

nal could be extended to provide distributed hybrid
systems simulation, in which different ODE/DAE solvers

cooperate for the simulation of a hybrid systems, and
interact at discrete events.

Finally, I should mention the remarkable work of
Favret [7], who developed so-called “fake real-time
simulation” for high-fidelity joint hybrid simulation
of the plant and its control/supervision, taking into
account real-time durations for computing control
and reactions. “Fake” real-time simulation refers to
the ability to perform this without building hard-
ware. The prototype system developed by Favret
implements the ideas of multiform time and hybrid
simulation we have presented, although our theory
has not been used for this.

Acknowledgement : Oded Maler is gratefully ac-
knowledged for his highly stimulating, inspiring, and
nearly theological remarks, which I did not fully ex-
ploit yet. Also, thanks are due to Paul Caspi and Eric
Rutten for improving early versions of this manuscript.
Also, discussions with André Arnold have clarified
the notion of a state in Hybrid. Finally, thanks are
due to the reviewers for improving an earlier version
of the manuscript.

A Appendix : formal definition of the

causality relation

Causality relations have been investigated for sev-
eral years in the past in the area of models of dis-
tributed systems and computations, see for exam-
ple [4], from which we borrow the essentials of the
present technique.

We consider an hybrid system P of sort {X1,. . . ,Xk},
where {X1,. . . ,Xk} denotes the set of the signal names
of P .

1. A preorder on the set {X1,. . . ,Xk} is a relation
(generically denoted by �) which is reflexive
(x � x) and transitive (x � y and y � z imply
x � z). To � we associate the equivalence re-
lation ≍, defined by x ≍ y iff x � y and y � x.
If equivalence classes of ≍ are singletons, then
� is said to be a partial order.

We shall denote by D
{X1,. . . ,Xk}
� the set of all

preorders defined on the set {X1,. . . ,Xk}.

2. A labelled preorder � on the set {X1,. . . ,Xk} is

a signal of type D
{X1,. . . ,Xk}
� , i.e., a map

� : T� 7−→ D
{X1,. . . ,Xk}
�

Thus, as usually for signals, for t ∈ T�, �t shall
denote the value of signal � at instant t, i.e.,
some preorder on the set {X1,. . . ,Xk}.

3. For X, Y signals of the considered hybrid sys-
tem P , we define

on T : X > Y (16)

as

X �t Y holds ∀t ∈ T (17)

which consequently requires

T ⊆ TX ∩ TY . (18)

The rationale for infering causality constraints in Ta-
ble 2 is simple.

Actions of computing are abstracted as term rewrit-
ing : the computation action y = f(x) is abstracted
as “y can be substituted by f(x)”, which is encoded
as the preorder x � y, also written x > y. For a
system of numerical equations, having the resulting
graph being circuitfree means that simple substitu-
tions would solve the system — this does not imply
that solving the system should be performed in this
way, it just expresses that the considered system of
equations is not implicit but already explicit. This
explains the rules 3 and 4 of Table 2. In particular, in
rule 4, no substitution is possible and this is reflected
by the occurrence of the circuit X > Y > X.

Other rules in this table cannot be explained in
this way. But they are justified by the following
“pseudo-theorem” (in which we skip the necessary
discussion on smoothness assumption required for the
ODE solvers to work properly), see [4] for related de-
tails on discrete time systems :

Theorem 1 (executable hybrid systems) Let P
be a hybrid system such that

1. Referring to (17), for each instant t, the pre-
order �t is indeed a partial order.

2. There is no double definition, i.e., no presence
T is defined via two different expressions, and
there is no instant t such that Xt is multiply
defined for some X.

Then P can be executed using ODE solvers only (mean-
ing that there is no need for a DAE solver or even
an Algebraic Equation solver for such an execution).

REFERENCES

[1] A. Benveniste, Compositional and Uniform Modelling
of Hybrid Systems (extended version), Inria Res. Rep. to
appear, 1997.

[2] R. Alur, C. Courcoubetis, T. Henzinger, and

P. Ho, Hybrid automata: an algorithmic approach to the
specification and verification of hybrid systems, in Hybrid
systems, Lecture Notes in Computer Science, vol 736,
Springer Verlag, 1993, pp. 209–229.

[3] A. Benveniste, and P. Le Guernic, Hybrid dynamical
systems theory and the Signal language, IEEE Trans. on
Autom. Control, AC-35/5, 535–546, 1990.

[4] A. Benveniste, P. Caspi, N. Halbwachs, and P. Le

Guernic, Data-flow synchronous languages. In A
Decade of Concurrency, reflexions and perspectives, REX
School/Symposium, pages 1–45, LNCS Vol. 803, Springer
Verlag, 1994.

[5] P. Breedveld, R. Rosenberg, and T. Zhou, Bibliog-
raphy of bond graph theory and applications, Journal of
the Franklin Institute, 328 (1991), pp. 1067–1109.

[6] T. Henzinger, Hybrid Automata with Finite Bisimula-
tions, preprint, Cornell University, 1995.

[7] F. Favret, Aide à la communication modeleurs/solveurs
et contribution à l’analyse des systèmes techniques com-
plexes, Thesis Ecole Centrale de Paris and Gaz de France,
DR, 1995.

[8] P. L. Guernic, T. Gautier, M. L. Borgne, and

C. L. Maire, Programming real-time applications with
Signal, Proceedings of the IEEE, 79 (1991), pp. 1321–
1336.

[9] N. Rouquette, Operationalizing engineering models of
steady-state equations into efficient simulation programs,
PhD thesis, USC, Dept. of Computer Science, 1995.

[10] N. Rouquette, Hierarchical feedback decomposition of
steady-state equation models, Technical Report, Artificial
Intelligence Group, Caltech, 1995.

List of Figures

1 The delay operator 2

