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Abstract—In this paper we extend our previous work onsoft
probabilistic contracts for QoS management, from the particular
case of “response time”, to general QoS parameters. Our study
covers composite QoS parameters dealing not only with time
aspects but also withQuality of Data. We also study contract
composition (how to derive QoS contracts for an orchestration
from the QoS contracts with its called services), and contract
monitoring. Our approach supports comprehensive and flexible
QoS management within a probabilistic framework.

I. I NTRODUCTION

Web services and their orchestrations are now considered
an infrastructure of choice for managing business processes
and workflow activities over the Web infrastructure [21]. Be-
sides BPEL, the ORC formalism has been proposed to specify
orchestrations, by W. Cook and J. Misra at Austin [15]. ORC is
a simple and clean academic language for orchestrations with
a rigorous mathematical semantics. For this reason, our study
in this paper relies on ORC. Its conclusions and approaches,
however, are also applicable to BPEL [3].

Contract based QoS management:When dealing with
the management of QoS,contracts—in the form of Service
Level Agreements, SLA [5]—specify the commitments of each
subcontractor with regard to the orchestration. Most SLAs
commonly tend to have QoS parameters which are mild vari-
ations of the following: response time (latency); availability;
maximum allowed query rate (throughput); and security [12].

From QoS contracts with sub-contractors, the overall QoS
contract between orchestration and its clients can be estab-
lished. This process is calledcontract composition. Then, since
contracts cannot only rely on trusting the sub-contractors,
monitoring techniques must be developed for the orchestrator
to be able to detect possible violation of a contract, by a sub-
contractor. Finally, upon contract violation, the orchestrator
may considerreconfiguration, i.e., replacing some called ser-
vices by alternative, “equivalent” ones — we do not address
this last task here.

Hard Contracts versus Soft Probabilistic Contracts:To
the best of our knowledge, with the noticeable exception of
[13], [10], [11], all composition studies consider performance
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related QoS parameters of contracts in the form ofhard
bounds.For instance, response times and query throughput
are required to be less than a certain fixed value and validity
of answers to queries must be guaranteed at all times. When
composing contracts, hard composition rules are used such
as addition or maximum (for response times), or conjunction
(for validity of answers to queries). Whereas this results in
elegant and simple composition rules, this general approach by
using hard bounds does not fit the reality welland may lead
to over pessimistic promises. Indeed, real measurements of
response times for existing Web services reveal that they vary
a lot and are better represented through their histogram. Thus
we have proposed usingsoft probabilistic contractsinstead.
In such contracts, hard bounds are replaced by probabilistic
obligations, i.e., a QoS parameterQ is considered proba-
bilistic and adistribution function, or distribution for short,
FQ(x) = P(Q ≤ x) is agreed for all relevant valuesx of
Q. The obligation is that the called service should behave “no
worse” thanFQ regardingQ, in a sense that will be formalized
later.

Contributions of this paper:In this paper we extend
and systematize the approach of [18], [19] by extending it
beyond the only case of Response Time. Our first contribution
consists in proposing a comprehensive approach for Soft
Probabilistic QoS Contracts encompassing a large class of QoS
parameters taking values in partially ordered domains, together
with means to buildcompositeQoS parameters and contracts
and reason about them. A second contribution consists in a
procedure to perform flexiblecontract composition, which
consists in relating the obligations binding the pair{client,
orchestration}, to the obligations binding the different pairs
{orchestration, called service}. A third (minor) contribution
consists in the extension of the technique proposed in [19] for
contractmonitoring to our generalized case. This extension
turns out to be straightforward, as we shall see. Last but
not least, we discusslanguages featuresthat are useful in
making our approach effective. Not surprisingly, QoS domains
must be declared along with their characteristics allowingto
perform contract composition. We also found it very useful
to introduce a languagefeaturethat is generic with respect to
the various QoS domains and performs a filtering of responses
from called services or from pools thereof, according to best



QoS performance. We illustrate this with the ORC language.
Our whole approach is supported by theTOrQuE tool (Tool
for OrchestrationQuality of Serviceevaluation), from which
we present experimental results for contract composition.

Organization of the paper:Our study is supported by
the UsedCarOnLine Example that we present and discuss in
section II . Based on this example, we discuss in particular
why QoS domains should be partially, not totally, ordered.
SectionIII develops our general framework for flexible QoS
management, including the procedure for contract composi-
tion. Experiments are reported in sectionIV.

II. T HE USEDCARONLINE EXAMPLE

A. Informal description

TheUsedCarOnLine example is shown in Figure1. In search
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Figure 1. Schematic representation of theUsedCarOnLine example.

for a used car, a client calls theUsedCarOnLine orchestration
with a car type — small car, family car, SUV, etc — as
the input. The orchestration calls two garages,GarageAand
GarageB, in parallel, with the client’s car type as an input
parameter. The garages respond with their price quote for that
car. Another dimension to the response from the garage is
the car’s environmental friendliness that we assess using a
green level.1 The green level is used to select the environment
friendlier car inBest Offer. The calls to the garages are guarded
by a timerTimeout. If only one garage has responded when a

1 This refers to the current situation in France where a bonus/penalty system
is attached to each car: when buying a clean car, you may get up to a 700
Euro bonus and you pay a penalty if the car is environment hostile. There are
finitely many tax levels in this system.

timeout occurs, it is taken as the best offer and any eventual
response of the other garage is simply ignored. If no garage
responds before timeout, then aFault message is returned to
the client, indicating an exception.

After selecting the best offer for the car,UsedCarOnLine

finds insurance and credit offers for this car. For credit offers,
two servicesAllCredit andAllCreditPlusare called in parallel
and the offer having the lower interest rate is chosen. The
insurance services called depends on the type of car which
needs to be insured. If the car requested by the client is of some
“deluxe” category, then only one service —GoldInsure— can
offer insurance for such cars, and any offer made by it is taken.
If the car is not a “deluxe” car, then two services,InsureAll
and InsurePlusare called in parallel and the insurance that
costs the least amongst the two offers is selected. In the end,
the (price, credit, insurance) is sent back to the client.

Each query to the orchestration comes as a token having
data and QoS attributes. Each of these tokens are broadcast
to the two garages and timers, which all produce a token at
their output. These tokens are then combined when selecting
the best offer. And so on. The traversal of any of the displayed
sites by a token modifies both data and QoS attributes for the
output tokens. Finally, one output token exits the orchestration
for each given input token.

B. TheORC specification forUsedCarOnLine

The ORC program forUsedCarOnLine is given in TableI.

Assumptions QoS parameters :
δ : inter-query time, Dδ = R+

Guarantees QoS parameters :
d : latency, Dd = R+

Q : clean level, DQ = {0 . . . 4}

UsedCarOnLine(car) ∆ CarPrice(car) >p> let(p, c, i)
where c :∈ GetCredit(p)

i :∈ GetInsur(p, car)

CarPrice(car) ∆ { let(p)
where

p :∈Q {GarCall(GarageA[δ, d, Q](car)) |
GarCall(GarageB[δ, d, Q](car))}

} >p> { if(p 6= Fault)) ≫ let(p) }

GarCall(g) ∆ let(a) where a :∈ { g | RTimer(T )}

GetCredit(p) ∆ Min[δ, d](c1, c2)
where

c1 :∈ AllCredit[δ, d](p)
c2 :∈ AllCreditP lus[δ, d](p)

GetInsur(p, car) ∆ { if(car = deluxe) ≫ GoldInsure[δ, d](p)} |
{ ifnot(car = deluxe) ≫ {min(ip, ia)

where ip :∈ InsureP lus[δ, d](p)
ia :∈ InsureAll[δ, d](p)

}}

Table I
UsedCarOnLine in ORC. We have shown inlight gray the add-ons to ORC.

ORC offers three primitive operators. For ORC expressions
f, g, “f | g” executesf andg in parallel. “f >x> g” evaluates
f first and foreveryvalue returned byf , a new instance of



g is launched with variablex assigned to this return value;
in particular, “f ≫ g” (which is a special case of the former
where returned values are not assigned to any variable) causes
every value returned byf to create anew instance ofg.
“f where x :∈ g” executesf and g in parallel. Wheng

returns itsfirst value, x is assigned to this value and the
computation ofg is terminated. All site calls inf havingx as
a parameter are blocked untilx is defined (i.e., until g returns
its first value).

The operator:∈Q is a new operator introduced for our QoS
studies, whereQ is the (static) parameter of this operator.Q

is a QoS parameter whose domain is a partially ordered set
(DQ,≤) that is an upper and lower lattice; by convention,
“best” will refer to a minimal element among a set. The
expression “f where x :∈Q g” does not take the first value
returned byg asx. Instead it waits for a “best quality” response
among all responses fromg to that call, irrespective of the
time taken to generate them — since the domain ofQ is only
partially ordered in general, a best response may not be unique.
Observe that:∈ is a particular case of:∈Q by taking for Q

the latency or response time of the call — in this case it is not
needed to wait for all the responses fromg to get the best one,
since the first one received will, by definition, be the best.

C. QoS management and contracts

Semantics of QoS parameters:The orchestration
wishes to establish SLA or QoS contracts with its clients. It
wishes to provideGuaranteeson response time (or latency)
when subject to a query andGuaranteeson the “green level”
profile of its used car offers.

In turn, the orchestration will assume that its client com-
plies with theAssumptionthat the query rate will not exceed
some agreed profile; query rate is equivalently captured by
inter-query time. Such an assumption is needed to avoid
overloading and thus making it impossible for the orchestration
server to process queries in due time. Thus, contracts are
implicationsassumptions⇒ guarantees.

The example of tableI begins with QoS parameters dec-
larations, split into Assumptions and Guarantees. For eachof
these a list of QoS parameters and their domains is given.

Then, for each site call, a sub-list of all the QoS parameters
is declared as QoS attributes for this site. For example, the
declaration of the triple[δ, d,Q] in GarageA[δ, d,Q](car)
indicates that siteGarageA knows the listed three QoS
parameters. A token traversing this site will therefore exit with
the following QoS attributes, which are the QoS Guarantees
offered by the site: 1/ the latencyd in traversing this site,
and 2/ the green levelQ associated to the response of this
site. On the other hand, this site computes the elapsed time
δ since the previous token was received; this belongs to the
Assumptions under which the site should work and must
therefore be monitored by the site, see sectionIII-C.

Now, some sites have only a subset of the QoS parameters
in their scope, e.g., bothAllCredit andMin know [δ, d] but
ignore green levelQ. Tokens traversing such sites keep their
value unchanged for the ignored QoS parameterQ. If more

than one input token are combined to form a single output
token, as forMin, then two cases can occur: 1) All input
tokens carry the same value forQ. In this case the output
token has the same value forQ as the inputs. 2) The input
tokens carry different values forQ. In this case the output
token carries a special valueinconsistentfor Q. However if a
token exiting the orchestration has the valueinconsistentfor
Q, butQ appears as a parameter in the orchestration’s contract
with its client, then the orchestration will throw at error in this
case. In theUsedCarOnLine example we are in the first case.

Probabilistic contracts: As advocated in [18], [19],
guarantees on latency as well as assumptions regarding inter-
query time must be of statistical nature. The “green level” QoS
parameter relates to the general concept of Quality of Data
(QoD) and has a different nature. Typically, QoD is qualitative
(cheap/medium/expensive or silver/gold/platinum and so on);
in our case, the green level may, for instance, be captured
by the french categories of bonus/penalty, see footnote1.
If new cars were considered, QoD contract regarding green
level would boil down to a hard constraint: make only offers
involving cars with a green level not less thanx. Since we deal
with used cars however, availability is not always guaranteed
and the distribution of “green level” in the available population
of used cars at a given garage may very well be random. Thus
“green level” will also be a random QoS parameter.

Why considering partially ordered domains for QoS
parameters?: There are two kinds of reasons for that.

First, some QoS domains may not be totally ordered.
Consider the case of a pool of garages — here it consists
of the two garages GarageA and GarageB — from which we
expect getting a good offer. The larger the number of responses
from the pool by its different garages, the better is the chance
of getting a good offer. Therefore, a natural QoS parameter for
a pool is thesubset of members of the poolhaving responded.
Now, subsets of a given set are partially ordered by inclusion.

Another reason for considering partial orders is the need
for building composite QoS parameters. For example, in our
case, we could make the pair{latency, green level} a single
parameter. This composite QoS parameter would be naturally
partially ordered using the product of the two orders:{latency’,
green level’}≥ {latency, green level} iff latency’≥ latency and
green level’≥ green level. Of course, we could instead totally
order this pair by introducing a utility function (as in economy)
u(latency, green level) taking values in, e.g.,N or R+; utility
functions may be sometimes arbitrary, however.

Now, there may be compelling reasons for considering
composite QoS parameters, as we follow a probabilistic ap-
proach. Focus again on the two parameters “latency” and
“green level”. It clearly makes sense to assume that these
two parameters are “uncorrelated” — formally, that they are
probabilistically independent. For other cases, QoS parameters
may not be assumed to be independent. They they must be
packaged as a composite parameter endowed with a joint
probability distribution taking correlation effects intoaccount.

In the rest of the paper we will develop a framework
for flexible QoS management based on a probabilistic ap-



proach. We leave aside the particular issue ofmonotonicity[6]:
QoS management implicitly assumes that, the better a called
service performs, the better the orchestration will perform.
This reference provides conditions for monotonicity as well
as guidelines for the design of monotonic orchestrations.

III. A FRAMEWORK FOR FLEXIBLEQOS MANAGEMENT

A. QoS domains and probabilistic contracts

QoS domains play a different role for Assumptions and
Guarantees. Assumptions concern the flows of queries sub-
mitted to the orchestration or services. In contrast, Guarantees
are performance obligations of the orchestration or the called
services, i.e., they concern the servers supporting the consid-
ered services, and/or the performance of the orchestrationseen
as a composite service. Hence we address QoS domains for
Assumptions and Guarantees separately. We first begin with
Guarantees and then discuss Assumptions.

QoS domain for Guarantees:such a QoS domain is a
tuple (D,≤,⊕) where:

• (D,≤) is a partial order which is a complete lower
and upper lattice; thus infimums, denoted by∧ and
supremums, denoted by∨, can be considered, with the
usual algebraic properties. The two operators∧ and ∨
will be useful in combining QoS of services that are
called concurrently or in conflict.

• (D,≤,⊕) is a commutative semi-ring, meaning that⊕
is a commutative and associative operation onD that
distributes over∧. This operator will be used when
composing QoS for services called in sequence.

Examples of such QoS domains include:

• (R+,≤,+) for latency. Best is shortest for latencies. Re-
sponses awaited in conflict yields the min of the latencies;
the basic example is the ORC statement “f where x :∈
g”. Synchronous waiting for responses of concurrent calls
yields the max of the latencies — since all returns must be
received. Latencies add for calls performed in sequence.

• ([0 . . . L],≤,∨) for green level. 0 is the best value (lowest
tax, or, equivalently, max bonus) andL the worst. If
a composite service consists of a sequence of calls
involving environmental issues, one could consider that
the worst level encountered in the successive responses
yields the level of the whole.

QoS domain for Assumptions:such a QoS domain is a
partial order(D,≤) that is a complete lower and upper lattice.
Examples of such QoS domains include:

• (R+,≥) for inter-query time. From the server’s point of
view, best is longest, whence the choice of≥. The inter-
query time is measured by the orchestration and each
service, by comparing the dates of successive queries.

For Q a QoS parameter, we will denote byDQ its domain.
QoS domainscomposeby taking their products when seen as
partial orders or as semi-rings.

Probabilistic contracts: The domainDQ of a QoS
parameterQ can be randomized by equipping it with a
probability P.2

Consider first the case where(DQ,≤) is a total order.
For this case we can reuse the approach of [19] where the
probabilistic behavior ofQ is represented by itsdistribution:

FQ(x) = P(Q ≤ x).

Now, suppose thatFQ,S has been agreed for the QoS pa-
rameterQ, between the orchestration and some called service
S. How to formalize that “S performs at least as good as
agreed”? (In this case the orchestration should be happy with S

regarding QoS parameterQ.) We need an order on probability
distributions. It turns out that such astochastic orderfor
distributions exists [2], [17]. For F and G two probability
distributions over a totally ordered domainD, say that

G ≤s F iff ∀x ∈ D ⇒ G(x) ≥ F (x) (1)

This definition reads as: there are more chances of being less
than x if the random variable is drawn according toG than
according toF — whence the reverting of inequalities. IfX

andY are two random variables with respective distributions
F andG, then

G ≤s F if and only if E (ϕ(X)) ≤ E (ϕ(Y )) (2)

holds, for any real valuedincreasingfunctionϕ. Now, if FQ,S

has been agreed as said above, and serviceS actually responds
with probability distributionGQ,S , the agreement is met iff
GQ,S ≤s FQ,S holds.

Stochastic ordering has been considered in [17] for the
case when(D,≤) is only a partial order. Observe that the
characterization provided in (2) can be taken as a definition of
stochastic ordering in this case. We give a new characterization
here, not given in [17]. This is obtained by consideringideals
of D, i.e., subsetsI of D that are downward closed:

x ∈ I andy ≤ x =⇒ y ∈ I

Examples of ideals are: forR+, the intervals,[0, x] for all x;
for R+×R+ equipped with the product order, arbitrary unions
of rectangles[0, x] × [0, y]. Now, if Q is a QoS parameter
over a partially ordered QoS domain(DQ,≤), we define its
distribution by

FQ(I) = P(Q ∈ I),

for I ranging over the set of all ideals ofDQ. Again, we then
define, forF andG two distributions overDQ,

G ≤s F iff for any ideal I of D ⇒ G(I) ≥ F (I) (3)

We now have the needed apparatus for defining probabilistic
contracts — in this paper we restrict ourselves to contracts
involving only two parties; we will discuss the case of or-
chestration versus called service, but the same concepts apply
to client versus orchestration.

2 We omit the technicalities behind this notion, e.g., measurability and so
on; a demanding reader may, for simplicity, restrict herself tofinite domains.



Following the established approach of WSLA [12], a
contract must specify the obligations of the two parties.
Since we deal with the asymmetric pairs{client, orchestration}
or {orchestration, called service}, we will use an asymmetric
wording for the obligations. Let us focus from now on, on a
pair {orchestration, called service} and take the point of view
of the called service:

• the obligations that the orchestration has regarding the
service are seen asassumptionsby the service; the
orchestration is supposed to meet them and the service is
bound to its obligations as long as assumptions are met;

• the obligations that the service has regarding the orches-
tration are seen asguaranteesby the service; the service
commits to meeting them as long as assumptions are met.

Definition 1 (probabilistic contract): Aprobabilistic con-
tract is a pair {A,G} = {Assumptions, Guarantees}, which
both are lists of tuples(Q,DQ, FQ), where Q is a QoS
parameter with QoS domainDQ and distributionFQ.

The precise mathematical semantics of such a contract
will be made clear when discussing contract composition and
monitoring. The QoS declaration part of tableI provides an
example of QoS parameter declaration. Specific contracts are
established with each called service regarding relevant QoS
parameters for this service, by providing a distribution for it.
Details regarding this will be provided in sectionIV.

B. Contract composition

Contract composition is the process by which the or-
chestration can build a contract with its client, considering
the contracts it has with the services it calls. Due to the
assume/guarantee type of reasoning, contract compositionis an
intricate problem. It is further complicated by the fact that our
contracts are probabilistic and orchestrations involve complex
interactions between control, QoS parameters, and data — see
[19] for a detailed discussion of the latter point.

Fortunately, QoS management of orchestrations exhibits
a special structure regarding causality between assumptions
and guarantees. Consider again theUsedCarOnLine example
of figure 1. Consider first the latency, which is declared a
Guarantee. Causality regarding latency flows outward in the
following sense: from knowing the latencies of each service,
one can deduce the overall latency of the orchestration. In
contrast, the throughput (represented by the inter-query time)
is declared an Assumption. Regarding throughput, causality
flows inward, from client to services, in the following sense:
knowing the dates of arrival of the calls to the orchestration,
one can observe the dates of resulting calls, for the different
services. Accordingly, contract composition is performedas
explained next, using Monte-Carlo simulations.

Contract composition procedure

In this procedure, all probability distributions are assumed
independent in the probabilistic sense, for QoS parametersas-
sociated to different services and for different QoS parameters
associated to a same service.

a) Initial Conditions:

• Assumptions: the distribution of the AssumptionsAO for
the orchestration is specified — for our example: inter-
query time.

• Guarantees: the distribution of each GuaranteeGS is
specified, for each called service — for our example:
latency and green level (whenever relevant). Sometimes,
the orchestration may contain calls to “public” services
(like Google) which are freely available and cannot be
contracted. For such services, a contract is replaced by
an estimation of the service’s performance, which can be
done through measurements.

b) Inward Sweep:

1) Generate calls to the orchestration randomly, according
to the agreed distribution for their inter-query time;

2) For each query to the orchestration, run a Monte-Carlo
simulation of the orchestration. Corresponding occur-
rences and dates of calls to (a subset of) the different
services are observed.

3) Collect the dates of the successive calls to a same service
during the series of calls to the orchestration. This yields
the successive inter-query times for each called service
and allows to specify the Assumptions for each called
service. Also, the resulting QoS parameters “latency”
and “green level” for the orchestration are stored for
possible subsequent reuse.

c) Outward Sweep:at this point all Assumptions have
been specified. Denote the orchestration by the symbolO. For
each serviceS, the pair(O,S) has both its AssumptionsAS

and GuaranteesGS specified. Then, two cases may occur.

• For the good case, all contracts{AS , GS} form an
acceptable contract for all servicesS. In this case, we
can reuse the data generated at step3) of the inward
sweep to get an empirical estimate of the distributions
constituting the Guarantees offered by the orchestration
to its client, completing contract composition.

• For thebad case, some pairs{AS , GS} do not constitute
an acceptable contract, i.e., guaranteesGS may be too
demanding considering the AssumptionsAS . We can then
adopt two alternative iterative approaches: For the first
approach, we iterate on Guarantees offered by the called
services,i.e., given the AssumptionsAS for each service
S, contracts are re-negotiated, which results in a new
setting for the GuaranteesGS . For the second approach,
we iterate on Assumptions applied to the orchestration,
i.e.,we redesignAO. With any of the two approaches, we
have updated theInitial Conditionsand are now ready to
re-run the process, until all contracts are accepted.

This iterative approach resembles the technique ofpolicy
iteration, used in dynamic programming and game theory to
find similar equilibria [4]. We have no convergence proof yet,
but policy iteration techniques are known to converge in a few
iterations in many cases — as exemplified by our experiments
of sectionIV.



Discussing the independence hypothesis

Independence of all distributions is assumed while per-
forming contract composition. Is this acceptable? Consider
first the case where different QoS parameters are associatedto
a service. If independence is not an acceptable hypothesis,then
just make the tuple of these QoS parameters a new composite
QoS parameter, see sectionII-C — our framework is powerful
enough to allow for this. Of course, this comes with a price:
estimating independent probability distributions is cheaper
(requires less data) than estimating a joint distribution.Now
consider the case of different services. The independence
hypothesis is generally accepted here. It is needed if contracts
are to be negotiated on a pairwise basis, between the orchestra-
tion and each individual service. Otherwise, group negotiation
would be needed, a much heavier process.

C. Contract monitoring

Once contracts have been agreed, they must be monitored
by the orchestration for possible violation. Contract monitoring
is studied in detail in [19] for the case of a single QoS parame-
ter, namely the latency. The same technique, however, extends
without change, to our case. We nevertheless reproduce it here
because QoS domains can be partially, not totally, ordered in
our case. Monitoring applies to each contracted distribution F

individually, whereF is the distribution associated to some
QoS parameterX having partially ordered domainD. By
monitoring the considered service, the orchestration can get
an estimate of the actual distribution ofX, we call it G. The
problem is, for the orchestration, to decide whether or notG

complies withF , where compliance is defined according to
formula (3), rewritten as

sup
I∈ID

F (I) − G(I) ≤ 0 (4)

whereID denote the set of ideals ofD. However,G(I) in (4)
is not given to the orchestration, it can only be estimated by
collecting actual values for QoS parameterX. To this end, we
consider the following basicempirical estimatefor G, namely:

Ĝ∆(I) = |{x∈∆|x∈I}|
|∆|

where∆ is a sample of values forX collected at run time
by the orchestration and|A| is the cardinal of setA. Estimate
Ĝ∆ converges towardG when the size of∆ grows to infinity.
In practice, successive values for̂G∆ are updated on-line at
run time by collecting in∆ buffered values forX in a buffer
of sizeN large enough. If∆t is the content of the buffer at
time t, we thus get an estimatêG∆t

, which we denote bŷGt

for simplicity. Then, the indicator in (4) is replaced by:

χt =def sup
I∈ID

F (I) − Ĝt(I)

At a first sight, a violation should be declared at the first
instant t when χt > 0 occurs. The problem is that estimate
Ĝt(I) can randomly fluctuate aroundG(I), especially forN
not large enough. Hence, applying the brute force stopping rule
χt > 0 will inevitably result in many false alarms. A counter-
measure consists in having atolerance zoneabove the critical

value0. This yields the following stopping rule for declaring
violation: χt ≥ λ, where λ > 0 is a design parameter of
the procedure, defining the tolerance zone. We do not provide
here the details of how monitoring is implemented, the reader
is referred to [19], section V for this.

D. Language features for flexible QoS management

As evidenced from theUsedCarOnLine example of figure
1, ORC requires some additional language features to make
it QoS-enabled. QoS parameter declarations, including the
specification of probability distributions,3 fully comply with
the state-of-practice in WSLA. We will therefore rather focus
on the neededoperators:

(a) Wait synchronously for the returns of concurrent service
calls and combine the QoS values for the collected
returns. This does not require any specific language
feature. The designer should simply state herself how the
combination is performed by specifying a formula for
the combination. Default combination is by assigning the
worst collected value to the tuple.

(b) Combine QoS values of same parameters, for calls per-
formed in sequence. Again, this does not require any spe-
cific language feature but the declaration of the operation
⊕ for this type of QoS parameter, see sectionIII .

(c) Wait asynchronously for the returns of concurrent service
calls and select abest candidateamong the responses,
based on a given QoS parameter.This leads to consider-
ing the :∈Q operator, see tableI. An in-depth study of
this operator and its mathematical semantics is beyond
the scope of this paper and will be reported elsewhere.

To summarize, only one specific new operator needs to be con-
sidered to make ORC QoS-enabled, namely the:∈Q operator.

IV. EXPERIMENTS ON CONTRACT COMPOSITION

We do our experiments on theUsedCarOnLine example of
sectionII . Our experiments are on the contract composition
technique detailed in this paper. Experiments on contract
monitoring are not done here, the interested user may refer
to [19] for this. All experiments were done on a machine with
a 1,000 MHz Pentium Centrino CPU, with 2 GB of memory.

The sites GarageA, GarageB, AllCredit, AllCreditPlus,
GoldInsure, InsurePlusand InsureAll were assigned latency
behaviours inferred from measured values of calls to services
over the web. For this, we invoked six web services —
USWeather, Bushism, XMethods, StockQuote, Caribbean and
CongressMembers — found in the XMethods online reposi-
tory [22]. We made 20,000 calls to each of these six services
and recorded the response time for each of these calls. We
then increasingly reordered these measurements and pickeda
certain number (in our case seven) quantiles. The response
times are assumed to be uniformly distributed between these

3In practice, distributionF will be abstracted by either a finite set of
quantiles(F (x1), . . . , F (xK), for a fixed familyx1, . . . , xK of values for
the QoS parameters) or a finite set ofpercentiles(e.g., the set of values
y1, . . . , y9 such thatF (y1) = 10%, . . . , F (y9) = 90%). Such contracts are
easily expressible in terms of the WSLA standard [12].



quantiles, except after the highest one, after which the response
time decreases exponentially. The estimated distributionfor
each of the contract sites ofUsedCarOnLine is given in figure
2. Other ways of using these measurements were experi-
mented [19] but are not reported here, due to lack of space.
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Figure 2. Interpolated distributions for each of the contracted sites, and the
end to end distribution for UsedCarOnLine.

All the other sites ofUsedCarOnLine like let, if , etc are
internal to the orchestration. Their response times are negligi-
ble in comparison to that of the contracted sites, and so are
assumed to respond instantaneously with zero delay.

We take the “green level” to be a random parameter with
values in{0 . . . 4}, for the two sites where it is contracted with
(i.e., GarageAand GarageB). The corresponding probability
is given in the second and third column of TableII .

Green Level Probability Probability Probability
GarageA GarageB UsedCarOnLine

0 0.25 0.2 0.207
1 0.25 0.25 0.25
2 0.25 0.25 0.25
3 0.15 0.25 0.236
4 0.1 0.05 0.055

Table II
Probability for “green level”, for GarageA, GarageB and the

UsedCarOnLine orchestration.

Sweep 1:We first do an inward sweep, as described in
the contract composition method of sectionIII-B . We generate
random calls to the orchestration following the exponential
distribution for inter-arrival times with a rate parameterof 5
requests/second. We ran 100,000 iterations of the orchestra-
tion. The resulting throughput for each of the contracted sites
is given in TableIII . The end to end latency forUsedCarOnLine

is given by theUsedCarOnLinecurve in figure2.
Sweep 2: During the negotiation phase, say that

GarageBfinds that the request rate of 5.028 calls per second
is too demanding for the performance it guarantees. This

Site Name Throughput Throughput
(sweep1) (sweep2)

GarageA 5.028 5.0
GarageB 5.028 5.0
AllCredit 5.028 4.99

AllCreditPlus 5.028 4.99
GoldInsure 1.679 1.674
InsureAll 3.342 3.332
InsurePlus 3.342 3.332

Table III
Average throughput for each of the contracted sites.

corresponds to theBad Caseas mentioned in sectionIII-B . In
this case,UsedCarOnLine could reduce its own input rate so that
GarageBis not invoked that often. Another possibility would
be thatGarageBagrees to support this request rate, but at a
decreased performance. The new contract is given in figure2
by theGarageB’curve. The resulting throughput for the sites
is given in tableIII and the end to end orchestration delay in
this case is given by theUsedCarOnLine’curve. In our case,
the process converges after a single iteration (the throughput
remain almost unchanged for the two sweeps), despite the
drastic decrease in GarageB’s response time (almost twice
slower). In the general case, this could need more sweeps.
The quality distribution for wholeUsedCarOnLine program after
Sweep two is given in the last column of tableII . The overall
execution time for both the sweeps was about 23.5 seconds.

V. RELATED WORK

Proposals for QoS-based SLA composition are few and no
well-accepted standard exists to date. Menascé [14] discusses
QoS issues in Web services, introducing the response times,
availability, security and throughput as QoS parameters. He
also talks about the need of having SLAs and monitoring them
for violations. He does not however, advocate a specific model
to capture the QoS behaviour of a service, or a composition
approach to compose SLAs. Agarwal et. al [1] view QoS based
SLA composition as a constraint satisfaction/optimization
problem solved by linear programming. Cardoso et al. in [8]
follow a rule based approach to derive QoS parameters for a
workflow, given the QoS parameters of its component tasks.
Zeng et al. [23] use Statecharts to model composite services
and use linear programming techniques such that it optimizes a
specific global QoS criteria. In [16], the authors propose using
fuzzy distributed constraint satisfaction programming (CSP)
techniques for finding the optimal composite service. Canfora
et. al [7] use Genetic Algorithms for deriving optimal QoS
compositions. Compared to the linear programming method
of Cardoso et. al [8], the genetic algorithm is typically slower
on small to moderate size applications, but is more scalable.

A distinguishing feature of our proposal is that we deviate
from using hard bounds and handle soft probabilistic contracts.

In [9] the authors use WSFL (Web Service Flow Lan-
guage) and enhance it with the capability to specify QoS
attributes. Web service Performance Analysis Center (sPAC)



[20], is another similar approach for performance evaluation of
services and their compositions. For both works, probabilistic
models are translated into simulation engines for performance
analysis. The fundamental difference from our approach is that
the approach assumes a “closed world” scenario, assuming
that the services of the orchestration can be instrumented with
measurement code to get information about its performance.
We rely on contracts, instead.

The notion of probabilistic QoS has been introduced and
developed in [10], [11] with the ambition to compute an exact
formula for the composed QoS, which is only possible for
restricted forms of orchestrations without any data depen-
dency. We propose using simulation techniques to analyze
the QoS of a composite service, this allows us to use non-
trivial distributions as models for performance and also permits
analysis of orchestrations whose control flow have data and
time related dependencies. A distinct feature of our approach
is that the quality domains can be partially ordered which
allows expressing rich and possibly complex QoS parameters.

VI. CONCLUSION AND PERSPECTIVES

In this paper we have proposed a framework for QoS
management based onsoft probabilistic contracts.This work
is a step forward toward establishing QoS management of
Web services on a mathematically sound basis. Our vision is
targeted to the use of Web services for business processes, in a
semi-open world such as multi-tier supplier chains. According
to this vision, Web services provider interact viacontracts.

More precisely, Web service interfaces must expose infor-
mation regarding the following: 1/how they should be queried
— this involves conformance of the query with regard to data
types, semantic aspects of data, and, for more sophisticated
services involving complex, dynamic, interaction, the allowed
dialogs between the service and the client who queries it; but
this also involves QoS aspects, e.g., maximal query throughput
or allowed complexity of the submitted query; 2/how they
respond when properly queried— this involves conformance
of the return with regard to data types, semantic aspects of
data, and, for more sophisticated services involving complex,
dynamic, interaction, the possible dialogs between the service
and the client who queries it; but this also involves QoS
aspects, e.g., maximal latency, quality of response, etc. Today,
Web service interfaces are mostly poor in many of these
aspects — emphasis is on typing issues and data semantics
and QoS issues are handled in a primitive way.

Orchestrations allow composing services to form new
services. This immediately raises the issue of how to compose
contracts. Contract composition was the heart of this paper.
To account for variability in Web servers and networks, QoS
parameters were considered to be random. This is still not
common, but we strongly believe it should be like this. In such
a probabilistic framework, QoS contracts consist in exposing
percentiles for the QoS parameter in consideration, e.g.,95%
of responses better than. . . ,75% of responses better than. . . ,
etc. Our main contribution is a general procedure for multi-
QoS contract composition in such a probabilistic context.

QoS relates to performance. Therefore it makes sense
assuming that a Web service outperforming its contract should
do well for the orchestration — actually all SLA are designed
with this implicit assumption in mind. Formal study of mono-
tonicity of orchestrations w.r.t. QoS parameters is the subject
of other ongoing work.
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