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Abstract—In this paper we extend our previous work onsoft related QoS parameters of contracts in the formhafd
probabilistic contracts for Q0S management, from the particular - bounds.For instance, response times and query throughput
case of ‘response time”, to general QoS parameters. Our study 4e yaquired to be less than a certain fixed value and validity

covers composite QoS parameters dealing not only with time f t . tb teed at all ti Wh
aspects but also withQuality of Data. We also study contract of answers to queries must be guaranteed at all imes. en

composition (how to derive QoS contracts for an orchestration ComPOISilng contraqts, hard ComPOSition. rules are us.ed S'UCh
from the QoS contracts with its called services), and contract as addition or maximum (for response times), or conjunction

monitoring. Our approach supports comprehensive and flexible (for validity of answers to queries). Whereas this results in
QoS management within a probabilistic framework. elegant and simple composition rules, this general apprbgc
using hard bounds does not fit the reality watld may lead
. ] . ~ to over pessimistic promise$ndeed, real measurements of
Web services and their orchestrations are now con&deq@%onse times for existing Web services reveal that they va
an infrastructure of choice for managing business prosessgiot and are better represented through their histograms Th
and workflow activities over the Web infrastructul]. Be- \ye have proposed usingpft probabilistic contractinstead.
sides BPEL, the @c formalism has been proposed to specify, sych contracts, hard bounds are replaced by probailisti
orchestrations, by W. Cook and J. Misra at Austif][ ORC is obligations, i.e., a QoS parameter) is considered proba-
a simple and clean academic language for orchestratiois Wijistic and adistribution function or distribution for short,
a rigorous mathematical semantics. For this reason, odystuFQ(x) = P(Q < z) is agreed for all relevant values of

in this paper relies on Rc. Its conclusions and approachesg) The obligation is that the called service should behave “no

I. INTRODUCTION

however, are also applicable to BPER].[ _ _ worse” thanFy, regarding, in a sense that will be formalized
Contract based QoS managemeh¥hen dealing with |gter.
the management of QoSpntracts—in the form of Service Contributions of this paper:n this paper we extend

Level AgreementSLA [5]—specify the commitments of eachgq systematize the approach df§], [19] by extending it
subcontractor with regard to the orchestration. Most SLASsyond the only case of Response Time. Our first contribution
commonly tend to have QoS parameters which are mild vaggnsists in proposing a comprehensive approach for Soft
ations of the following: response time (latency); avail@ai  propabilistic QoS Contracts encompassing a large clasesf Q
maximum allowed query rate (throughput); and secu®.[ parameters taking values in partially ordered domainstteey
From QoS contracts with sub-contractors, the overall Q@gith means to builccompositeQoS parameters and contracts
contract between orchestration and its clients can be -estgiq reason about them. A second contribution consists in a
lished. This process is callebntract compositionThen, since procedure to perform flexibl@ontract composition which
contracts cannot only rely on trusting the sub-contractorgynsists in relating the obligations binding the pédiient,
monitoringtechniques must be developed for the orchestratgfchestratioh, to the obligations binding the different pairs
to be able to detect possible violation of a contract, by & sulyrchestration, called servige A third (minor) contribution
contractor. Finally, upon contract violation, the orchasir cgnsists in the extension of the technique proposedShfpr
may considereconfiguration i.e., replacing some called ser-contractmonitoring to our generalized case. This extension
vices by alternative, “equivalent” ones — we do not addreggms out to be straightforward, as we shall see. Last but
this last task here. not least, we discustanguages featureshat are useful in
Hard Contracts versus Soft Probabilistic Contracio making our approach effective. Not surprisingly, QoS dorsai
the best of our knowledge, with the noticeable exception @fust be declared along with their characteristics allovtimg
[13], [10], [11], all composition studies consider performancgerform contract composition. We also found it very useful

: . _ to introduce a languagkeaturethat is generic with respect to
This work was partially funded by the ANR national researchgpam
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QoS performance. We illustrate this with ther©language. timeout occurs, it is taken as the best offer and any eventual
Our whole approach is supported by th®rQuE tool (Tool response of the other garage is simply ignored. If no garage
for OrchestrationQuality of Serviceevaluation), from which responds before timeout, thenFault message is returned to
we present experimental results for contract composition. the client, indicating an exception.
Organization of the paperOur study is supported by  After selecting the best offer for the cassedCarOnLine
the UsedcaronLine Example that we present and discuss ifinds insurance and credit offers for this car. For credieisf
sectionll. Based on this example, we discuss in particulawo servicesAllCredit and AllCreditPlusare called in parallel
why QoS domains should be partially, not totally, ordereénd the offer having the lower interest rate is chosen. The
Sectionlll develops our general framework for flexible QoSnsurance services called depends on the type of car which
management, including the procedure for contract compoaieeds to be insured. If the car requested by the client isoéso
tion. Experiments are reported in sectibh. “deluxe” category, then only one service GeldInsure— can
offer insurance for such cars, and any offer made by it isrtake
If the car is not a “deluxe” car, then two servicéssureAll
A. Informal description and InsurePlusare called in parallel and the insurance that
TheusedcCarOnLine example is shown in Figuré. In search costs the least amongst the two offers is selected. In the end
the (price, credit, insurance) is sent back to the client.
CarOnLine Request Each query to the orchestration comes as a token having
data and QoS attributes. Each of these tokens are broadcast
: : to the two garages and timers, which all produce a token at
(Timeout)) - (Garagen) ((GarageB) (_Timeout) yp ey output. These tokens are then combined when selecting
’ the best offer. And so on. The traversal of any of the displaye
sites by a token modifies both data and QoS attributes for the
output tokens. Finally, one output token exits the orclaisin

1 for each given input token.
yes no
Y

Y Y
@IICrediD CAIICreditPlug @oldlnsu@ ClnsureA)C InsureP@s Assumptions QoS parameters :
\ J : inter-query timeDs = R
Guarantees QoS parameters :
min min d:latency Dy = R
Q : clean leve| Dg = {0...4}

UsedCarOnLine(car) A CarPrice(car) >p> let(p,c,1)
9 where c:€ GetCredit(p)

i i :€ GetlInsur(p,car)

CarPrice(car) A {let(p)

where
p €0 {GarCall(GarageAld. d, Q|(car)) |
CarOnLine Response GarCall(GarageB|d, d. Q| (car))}
} >p> { if(p # Fault)) > let(p) }

Il. THE UsepDCARONLINE EXAMPLE

B. TheORc specification forusedCarOnLine
The ORrC program forusedCarOnLine is given in Tablel.

Ve

Figure 1. Schematic representation of theedCarOnLine example. GarCall(g) A let(a) where a:c { g | RTimer(T)}
for a used car, a client calls theésedCarOnLine orchestration  GetCredit(p) A Min|é. d|(cl, c2)

with a car type — small car, family car, SUV, etc — as Wheﬁe o

the input. The orchestration calls two garagésrageAand i ﬁfﬁgﬁjﬁﬁi’,ﬂ‘i{?di ®)

GarageB in parallel, with the client's car type as an input

parameter. The garages respond with their price quote &br th Getlnsur(p, car) A {if(car = deluwe) > GoldInsure[s, d|(p)} |
car. Another dimension to the response from the garage is ‘f“v‘;if;fig :ipdfé“ﬁ)ﬁe;{a’fﬁi?’fiﬁ%

the car's environmental friendliness that we assess using a ia :€ InsureAllls, d|(p)

green level The green level is used to select the environment 1}

friendlier car inBest Offer The calls to the garages are guarded Table |

by a timerTimeout If only one garage has responded when GsedCarOnLine in ORC. We have shown inght gray the add-ons to @c.

1 This refers to the current situation in France where a bgrmslty system ORc offers three primitive operators. FOrR@ expressions
is attached to each car: when buying a clean car, you may geh ap700

Euro bonus and you pay a penalty if the car is environmentisodtere are /> 9 “f | 9" executesf andg in parallel. °f >z > 9_" evaluates
finitely many tax levels in this system. f first and foreveryvalue returned byf, a new instance of



g is launched with variabler assigned to this return value;than one input token are combined to form a single output
in particular, “f > ¢” (which is a special case of the formertoken, as forMin, then two cases can occur: 1) All input
where returned values are not assigned to any variablegsauskens carry the same value f@. In this case the output
every value returned byf to create anew instance ofg. token has the same value f@ as the inputs. 2) The input
“f where z :€ ¢" executesf and g in parallel. Wheng tokens carry different values fap. In this case the output
returns itsfirst value, z is assigned to this value and theoken carries a special valuleconsistentfor ). However if a
computation ofy is terminated. All site calls irf havingxz as token exiting the orchestration has the valoeonsistentfor

a parameter are blocked untilis defined ie., until g returns @, but@Q appears as a parameter in the orchestration’s contract

its first value). with its client, then the orchestration will throw at errarthis
The operatore is a new operator introduced for our QoStase. In theJsedCaronLine example we are in the first case.
studies, where) is the (static) parameter of this operat@r. Probabilistic contracts: As advocated in 18], [19],

is a QoS parameter whose domain is a partially ordered geiarantees on latency as well as assumptions regarding inte
(Dg, <) that is an upper and lower lattice; by conventiomuery time must be of statistical nature. The “green leved'SQ
“best” will refer to a minimal element among a set. The@arameter relates to the general concept of Quality of Data
expression f where x :€g ¢” does not take the first value (QoD) and has a different nature. Typically, QoD is qualitat
returned by asz. Instead it waits for a “best quality” responsgcheap/medium/expensive or silver/gold/platinum and 8p o
among all responses from to that call, irrespective of the in our case, the green level may, for instance, be captured
time taken to generate them — since the domaid)as only by the french categories of bonus/penalty, see footriote
partially ordered in general, a best response may not beianiglf new cars were considered, QoD contract regarding green
Observe thate is a particular case ofc by taking for @ level would boil down to a hard constraint: make only offers
the latency or response time of the call — in this case it is nwivolving cars with a green level not less thanSince we deal
needed to wait for all the responses frgrno get the best one, with used cars however, availability is not always guaradte
since the first one received will, by definition, be the best. and the distribution of “green level” in the available pogiidn
of used cars at a given garage may very well be random. Thus
“green level” will also be a random QoS parameter.
Semantics of QoS parametersThe orchestration Why considering partially ordered domains for QoS
wishes to establish SLA or QoS contracts with its clients. flarameters? There are two kinds of reasons for that.
wishes to provideGuaranteeson response time (or latency) First, some QoS domains may not be totally ordered.
when subject to a query ar@uaranteeson the “green level” Consider the case of a pool of garages — here it consists
profile of its used car offers. of the two garages GarageA and GarageB — from which we
In turn, the orchestration will assume that its client comexpect getting a good offer. The larger the number of regmns
plies with theAssumptiorthat the query rate will not exceedfrom the pool by its different garages, the better is the ckan
some agreed profile; query rate is equivalently captured bygetting a good offer. Therefore, a natural QoS parameter f
inter-query time. Such an assumption is needed to avaidoool is thesubset of members of the pdwlving responded.
overloading and thus making it impossible for the orchéisina Now, subsets of a given set are partially ordered by inctusio
server to process queries in due time. Thus, contracts areAnother reason for considering partial orders is the need
implicationsassumptions=- guarantees for building composite QoS parameters. For example, in our
The example of tablé begins with QoS parameters decease, we could make the pdilatency, green levéla single
larations, split into Assumptions and Guarantees. For eichparameter. This composite QoS parameter would be naturally
these a list of QoS parameters and their domains is given.partially ordered using the product of the two ord€tatency’,
Then, for each site call, a sub-list of all the QoS parametegseen level} > {latency, green levgliff latency’> latency and
is declared as QoS attributes for this site. For example, theeen level’> green level. Of course, we could instead totally
declaration of the triple[d, d, Q] in GarageA[d,d,Q](car) order this pair by introducing a utility function (as in econy)
indicates that siteGarageA knows the listed three QoS wu(latency, green levegltaking values in, e.glN or R ; utility
parameters. A token traversing this site will thereforeé exih  functions may be sometimes arbitrary, however.
the following QoS attributes, which are the QoS Guarantees Now, there may be compelling reasons for considering
offered by the site: 1/ the latenay in traversing this site, composite QoS parameters, as we follow a probabilistic ap-
and 2/ the green level) associated to the response of thiproach. Focus again on the two parameters “latency” and
site. On the other hand, this site computes the elapsed tifgeeen level”. It clearly makes sense to assume that these
0 since the previous token was received; this belongs to ttveo parameters are “uncorrelated” — formally, that they are
Assumptions under which the site should work and muptobabilistically independent. For other cases, QoS petars
therefore be monitored by the site, see sectloC. may not be assumed to be independent. They they must be
Now, some sites have only a subset of the QoS parametpaskaged as a composite parameter endowed with a joint
in their scope, e.g., botdliCredit and Min know [4, d] but probability distribution taking correlation effects indmcount.
ignore green level). Tokens traversing such sites keep their In the rest of the paper we will develop a framework
value unchanged for the ignored QoS paramé@eif more for flexible QoS management based on a probabilistic ap-

C. QoS management and contracts



proach. We leave aside the particular issuenohotonicity 6]: Probabilistic contracts: The domainDg of a QoS

QoS management implicitly assumes that, the better a callgagtameterQ) can be randomized by equipping it with a

service performs, the better the orchestration will penfor probability P.?

This reference provides conditions for monotonicity aslwel Consider first the case whel@g, <) is a total order.

as guidelines for the design of monotonic orchestrations. For this case we can reuse the approachl®f jvhere the
probabilistic behavior of) is represented by itdistributior

Ill. A FRAMEWORK FOR FLEXIBLEQOS MANAGEMENT FQ(x) — P(Q < JJ)

A. QoS domains and probabilistic contracts Now, suppose thaFy s has been agreed for the QoS pa-

QoS domains play a different role for Assumptions anrgimeterQ, between the orchestration and some called service

. : . How to formalize that S performs at least as good as
Guarantees. Assumptions concern the flows of queries sub- ” . . .
. ; : agreed™? (In this case the orchestration should be hapySwit
mitted to the orchestration or services. In contrast, Quers

are performance obligations of the orchestration or thiedal regarding QoS parametéy.) We need an order on probability

services. i.e. thev concern the servers supporting thsidon distributions. It turns out that such stochastic orderfor
o 1€, They PP 9 . distributions exists 4], [17]. For ' and G two probability
ered services, and/or the performance of the orchestragien .~ . " .
; . . stributions over a totally ordered domain, say that

as a composite service. Hence we address QoS domains for
Assumptions and Guarantees separately. We first begin with G < F iff Vxe D= G(x)> F(x) 1)
Guarantees and then discuss Assumptions.

QoS domain for Guaranteesuch a QoS domain is a
tuple (D, <, &) where:

This definition reads as: there are more chances of being less
than z if the random variable is drawn according € than
according toF' — whence the reverting of inequalities. X

« (D,<) is a partial order which is a complete lowerandy are two random variables with respective distributions
and upper lattice; thus infimums, denoted byand £ andc, then

supremums, denoted by, can be considered, with the

usual algebraic properties. The two operatarand v G <, Fif and only if E (¢(X)) < E (¢(Y)) 2
will be useful in combining QoS of services that ar
called concurrently or in conflict.

o (D,<,®) is a commutative semi-ring, meaning that
is a commutative and associative operation onthat
distributes overA. This operator will be used when
composing QoS for services called in sequence.

fiolds, for any real valuehcreasingfunction o. Now, if Fo s
has been agreed as said above, and sef/getually responds
with probability distributionGg g, the agreement is met iff
Gg,s <s Fp 5 holds.

Stochastic ordering has been considered 1| ffor the
case when(D, <) is only a partial order. Observe that the
Examples of such QoS domains include: characterization provided ir2) can be taken as a definition of

« (R, <,+) for latency Best is shortest for latencies. ReStochastic ordering in this case. We give a new charactenza

sponses awaited in conflict yields the min of the latencieBre, not given in17]. This is obtained by considerinigeals
the basic example is ther@ statement f where 2 :c¢  © D, i.e., subsets/ of D that are downward closed:

g"’. Synchronous waiting for_ responses of concurrent calls celandy<z — yel

yields the max of the latencies — since all returns must be

received. Latencies add for calls performed in sequendsxamples of ideals are: fdk,, the intervals [0, z] for all x;

o ([0...L],<,V) for green level0 is the best value (lowest for R xR, equipped with the product order, arbitrary unions
tax, or, equivalently, max bonus) antl the worst. If of rectangles[0,z] x [0,y]. Now, if @ is a QoS parameter
a composite service consists of a sequence of callger a partially ordered QoS domaig, <), we define its
involving environmental issues, one could consider thdistribution by
the worst level encountered in the successive responses Fo(I)=P(Qe€I),

yields the level of the whole. for I ranging over the set of all ideals @lg. Again, we then

QoS domain for Assumptionsuich a QoS domain is adefine, for 7 and G two distributions ovetD,,,
partial order(D, <) that is a complete lower and upper lattice. _ .
Examples of such QoS domains include: G <s; F iff foranyideall of D= G(I) > F(I) (3)

o (Ry,>) for inter-query time From the server’s point of We now have the needed apparatus for defining probabilistic
view, best is longest, whence the choice>afThe inter- contracts — in this paper we restrict ourselves to contracts
query time is measured by the orchestration and eaitlvolving only two parties; we will discuss the case of or-
service, by comparing the dates of successive querieschestration versus called service, but the same conceplg ap

For Q a QoS parameter, we will denote i, its domain, [© client versus orchestration.

QoS domainzomposey taking their products when seen as 2 e omit the technicalities behind this notion, e.g., measlifand so
partlal orders or as semi-rings. on; a demanding reader may, for simplicity, restrict hersefirtite domains.



Following the established approach of WSLAZ], a a) Initial Conditions:
contract must specify the obligations of the two parties.
Since we deal with the asymmetric pajidient, orchestratioh
or {orchestration, called servitewe will use an asymmetric
wording for the obligations. Let us focus from now on, on a
pair {orchestration, called serviteand take the point of view
of the called service:

Assumptionsthe distribution of the Assumptiond, for

the orchestration is specified — for our example: inter-

query time.

o Guarantees the distribution of each Guarante@s is
specified, for each called service — for our example:
latency and green level (whenever relevant). Sometimes,

« the obligations that the orchestration has regarding the the orchestration may contain calls to “public” services
service are seen aassumptionsby the service; the (like Google) which are freely available and cannot be
orchestration is supposed to meet them and the service is contracted. For such services, a contract is replaced by
bound to its obligations as long as assumptions are met; an estimation of the service’s performance, which can be

« the obligations that the service has regarding the orches- done through measurements.
tration are seen aguaranteedy the service; the service
commits to meeting them as long as assumptions are met. ] ]

Definition 1 (probabilistic contract): Aprobabilistic con- 1) Generate calls to the orchestration randomly, according

tractis a pair {A,G} — {Assumptions, Guaranteeswhich to the agreed distribution for thEI!’ inter-query time;
. : 2) For each query to the orchestration, run a Monte-Carlo
both are lists of tuples(Q, Dg, Fp), where Q is a QoS . ; . .
. ; o simulation of the orchestration. Corresponding occur-
parameter with QoS domaib, and distributionFy,. .
. . . rences and dates of calls to (a subset of) the different
The precise mathematical semantics of such a contract .
. . ) » services are observed.
will be made clear when discussing contract composition and : .
- ) . 3) Collect the dates of the successive calls to a same service
monitoring. The QoS declaration part of tablgrovides an : . . T
. " during the series of calls to the orchestration. This yields
example of QoS parameter declaration. Specific contraets ar

. . . . the successive inter-query times for each called service
established with each called service regarding relevarg Qo ; .
. : s TN and allows to specify the Assumptions for each called
parameters for this service, by providing a distribution ifo

Details regarding this will be provided in sectidvi. serwse. Also, th? resulting QoS parameters latency
and “green level” for the orchestration are stored for

possible subsequent reuse.

b) Inward Sweep:

B. Contract composition

Contract composition is the process by which the o ¢) Outward Sweepat this point all Assumptions have

chestration can build a contract with its client, considgri been specified. Denote the orchestration by the syrblor
the contracts it has with the services it calls. Due to thee"jlch services, the palr(_O_,S) has both its Assumptionds
assume/guarantee type of reasoning, contract compokstan and Guarantee&'s specified. Then, two cases may occur.
intricate problem. It is further complicated by the factttbar ~ « For the good case all contracts{Ag,Ggs} form an

contracts are probabilistic and orchestrations involvegex acceptable contract for all servicés In this case, we
interactions between control, QoS parameters, and datae— se can reuse the data generated at s3pmf the inward
[19] for a detailed discussion of the latter point. sweep to get an empirical estimate of the distributions

Fortunately, QoS management of orchestrations exhibits constituting the Guarantees offered by the orchestration
a special structure regarding causality between assunsptio  to its client, completing contract composition.
and guarantees. Consider again thedcaronLine example ¢ For thebad casesome pair§ As, G's} do not constitute
of figure 1. Consider first the latency, which is declared a an acceptable contract, i.e., guarantégs may be too
Guarantee. Causality regarding latency flows outward in the demanding considering the Assumptiofis. We can then
following sense: from knowing the latencies of each service adopt two alternative iterative approaches: For the first
one can deduce the overall latency of the orchestration. In approach, we iterate on Guarantees offered by the called
contrast, the throughput (represented by the inter-quierg)t servicesj.e., given the Assumptionslg for each service
is declared an Assumption. Regarding throughput, caysalit S, contracts are re-negotiated, which results in a new
flows inward, from client to services, in the following sense  setting for the Guaranteess. For the second approach,
knowing the dates of arrival of the calls to the orchestrgtio ~ Wwe iterate on Assumptions applied to the orchestration,

one can observe the dates of resulting calls, for the differe  i.e.,we redesigndo. With any of the two approaches, we
services. Accordingly, contract composition is performasd have updated thinitial Conditionsand are now ready to
explained next, using Monte-Carlo simulations. re-run the process, until all contracts are accepted.

This iterative approach resembles the techniquepolicy
iteration, used in dynamic programming and game theory to

In this procedure, all probability distributions are assdam find similar equilibria fi]. We have no convergence proof yet,
independent in the probabilistic sense, for QoS paramaters but policy iteration techniques are known to converge inva fe
sociated to different services and for different QoS patarse iterations in many cases — as exemplified by our experiments
associated to a same service. of sectionlV.

Contract composition procedure



Discussing the independence hypothesis value 0. This yields the following stopping rule for declaring

Independence of all distributions is assumed while peyiolation: x;, > A, where A > 0 is a design parameter of
forming contract composition. Is this acceptable? Considde procedure, defining the tolerance zone. We do not provide
first the case where different QoS parameters are assotiatefere the details of how monitoring is implemented, the reade
a service. If independence is not an acceptable hypotfiesis, IS referred to 19], section V for this.
just make the tuple of thgse QoS parameters a new CompoﬂFeLanguage features for flexible QoS management
QoS parameter, see sectitrC — our framework is powerful i . .
enough to allow for this. Of course, this comes with a price; AS €videnced from theJsedCaronLine example of figure
estimating independent probability distributions is qiera L ORC requires some additional language features to make
(requires less data) than estimating a joint distributisow it QoS-enabled. QoS parameter declarations, including the

consider the case of different services. The independerfigcification of probability distributiorisfully comply with
hypothesis is generally accepted here. It is needed if acstr the state-of-practice in WSLA. We will therefore rather fecu

are to be negotiated on a pairwise basis, between the orahe<tn the neededperators

tion and each individual service. Otherwise, group negiotia (&) Wait synchronously for the returns of concurrent sevic

would be needed, a much heavier process. calls and combine the QoS values for the collected

. returns. This does not require any specific language

C. Contract monitoring feature. The designer should simply state herself how the
Once contracts have been agreed, they must be monitored combination is performed by specifying a formula for

by the orchestration for possible violation. Contract normng the combination. Default combination is by assigning the

is studied in detail in19] for the case of a single QoS parame-  worst collected value to the tuple.

ter, namely the latency. The same technique, however, @xtenb) Combine QoS values of same parameters, for calls per-

without change, to our case. We nevertheless reproducedt he  formed in sequence. Again, this does not require any spe-

because QoS domains can be partially, not totally, ordered i  cific language feature but the declaration of the operation

our case. Monitoring applies to each contracted distraoui @ for this type of QoS parameter, see sectibn
individually, where F' is the distribution associated to some(c) Wait asynchronously for the returns of concurrent servi
QoS parameterX having partially ordered domai®. By calls and select ®#est candidateamong the responses,
monitoring the considered service, the orchestration @&n g  based on a given QoS paramefEhis leads to consider-
an estimate of the actual distribution &f, we call it G. The ing the :c operator, see tabld. An in-depth study of
problem is, for the orchestration, to decide whether or ot this operator and its mathematical semantics is beyond
complies with I, where compliance is defined according to  the scope of this paper and will be reported elsewhere.
formula @), rewritten as To summarize, only one specific new operator needs to be con-
sup F(I)—G(I) < 0 (4) sidered to make ®c QoS-enabled, namely the, operator.
I€Ip

. . IV. EXPERIMENTS ON CONTRACT COMPOSITION
whereZp denote the set of ideals @. However,G(I) in (4)

is not given to the orchestration, it can only be estimated by e do our experiments on thesedCaronLine example Of.
Co”ecting actua' Va'ues for QoS parame}érTo th|s end, we sectionll. OUI’ expel’lments are on the contract ComDOSItlon

consider the following basiempirical estimatdor G, namely: technique detailed in this paper. Experiments on contract
N A monitoring are not done here, the interested user may refer
GA(I) _ I{:EE |$€I}‘

[A] to [19] for this. All experiments were done on a machine with
where A is a sample of values foX collected at run time & 1,000 MHz Pentium Centrino CPU, with 2 GB of memory.
by the orchestration and!| is the cardinal of sett. Estimate _ The sites GarageA, GarageB, AliCredit, AllCreditPlus,

G a converges toward? when the size ofA grows to infinity. GoldInsure, InsurePlusand InsureAll were assigned latency
In practice, successive values f6ix are updated on-line at P€haviours inferred from measured values of calls to sesvic

run time by collecting inA buffered values forY in a buffer OVer the web. For this, we invoked six web services —
of size N large enough. IfA, is the content of the buffer at YSWeather, Bushism, XMethods, StockQuote, Caribbean and

time ¢, we thus get an estimat&,,, which we denote by, CongressMembers — found in the XMethods online reposi-

for simplicity. Then, the indicator in4j is replaced by: tory [22]. We made 20,000 calls to each of these six services
N and recorded the response time for each of these calls. We
X Zdef  SUD F(I) = G(I) then increasingly reordered these measurements and picked
D

certain number (in our case seven) quantiles. The response

At a first sight, a violation should be declared at the fir§fmes are assumed to be uniformly distributed between these
instantt when x; > 0 occurs. The problem is that estimate
G(I) can randomly fluctuate arour@(7), especially forv 8In practice, distribution? will be abstracted by either a finite set of
not Iarge enough. Hence, applying the brute force stoppu'hg r quantiles(F'(x1), .. ., F(:cK),_fqr a fixed famllya:l, ...,z of values for

il itabl Iti fal | A the QoS parameters) or a finite set pércentiles(e.g., the set of values
x¢ > 0 will inevitably result in many false alarms. A counter-, " "~ "s\ch thatr'(y1) = 10%, ..., F(ys) = 90%). Such contracts are

measure consists in havinga@erance zonabove the critical easily expressible in terms of the WSLA standaté][



quantiles, except after the highest one, after which theomse Site Name T(z\rl\?gg:g“t T(rs‘w:g:g“t

time decreases expon_entlally. The e§t|rr_1at(a_d d|s_tr|puﬂmn GarageA 5078 50

each of the contract sites OkedCarOnLine is given in figure GarageB 5.028 5.0

2. Other ways of using these measurements were experi- AliCredit 5.028 4.99

mented 9] but are not reported here, due to lack of space. AliCreditPlus 5.028 4.99
GoldInsure 1.679 1.674
InsureAll 3.342 3.332
InsurePlus 3.342 3.332

p / L T T Garages ——
AlCredit ------

AllCreditPlus o Table 11l .
Goldinsure , Average throughput for each of the contracted sites.
InsurePlus -- -e- -
GarageB’ — &~

UsedCarOnLine - |
UsedCarOnLine’ —+—

ve

corresponds to thBad Caseas mentioned in sectidhl-B. In
this casepsedcaronLine could reduce its own input rate so that
GarageBis not invoked that often. Another possibility would
be thatGarageBagrees to support this request rate, but at a
decreased performance. The new contract is given in figure
by the GarageB’curve. The resulting throughput for the sites
is given in tablelll and the end to end orchestration delay in
mo“ s o p o i this case is given by thesedCarOnLine'curve. In our case,
delay (msec) the process converges after a single iteration (the thqmuigh
remain almost unchanged for the two sweeps), despite the
drastic decrease in GarageB’s response time (almost twice
slower). In the general case, this could need more sweeps.
All the other sites ofusedCaronLine like let, if, etc are The quality distribution for whol@sedCarOnLine program after

internal to the orchestration. Their response times aréigieg SWeeP o is given in the last column of tale The overall
ble in comparison to that of the contracted sites, and so &rgecution time for both the sweeps was about 23.5 seconds.
assumed to respond instantaneously with zero delay.

We take the “green level” to be a random parameter with
values in{0. .. 4}, for the two sites where it is contracted with ~ Proposals for QoS-based SLA composition are few and no
(i.e., GarageAand GarageB. The corresponding probability well-accepted standard exists to date. Meaddd] discusses

Cumulative Distribution Function

Figure 2. Interpolated distributions for each of the corted sites, and the
end to end distribution for UsedCarOnLine.

V. RELATED WORK

is given in the second and third column of Talble QoS issues in Web services, introducing the response times,
availability, security and throughput as QoS parameters. H
Green Level| Probability | Probability Probability also talks about the need of having SLAs and monitoring them
GarageA | GarageB | UsedCarOnLine|  for violations. He does not however, advocate a specific tode
0 0.25 0.2 0.207 to capture the QoS behaviour of a service, or a composition
1 0.25 0.25 0.25 .
2 0.25 0.25 0.25 approach to compose SLAs. Agarwal et. Hl\liew QoS based
3 0.15 0.25 0.236 SLA composition as a constraint satisfaction/optimizatio
4 0.1 0.05 0.055 problem solved by linear programming. Cardoso et al.8 [
follow a rule based approach to derive QoS parameters for a
Table Il workflow, given the QoS parameters of its component tasks.

Probability for “green level”, for GarageA, GarageB and the

UsedCarOnLine orchestration. Zeng et al. 23] use Statecharts to model composite services

and use linear programming techniques such that it optsraze
specific global QoS criteria. IrLp], the authors propose using
Sweep 1:We first do an inward sweep, as described ifuzzy distributed constraint satisfaction programmindSE}
the contract composition method of sectitinB . We generate techniques for finding the optimal composite service. Canfo
random calls to the orchestration following the exponéntiat. al [7] use Genetic Algorithms for deriving optimal QoS
distribution for inter-arrival times with a rate paramet#r5 compositions. Compared to the linear programming method
requests/second. We ran 100,000 iterations of the orehestf Cardoso et. alf], the genetic algorithm is typically slower
tion. The resulting throughput for each of the contractegssi on small to moderate size applications, but is more scalable
is given in TabldlIl. The end to end latency farsedCarOnLine A distinguishing feature of our proposal is that we deviate
is given by theUsedCarOnLinecurve in figure2. from using hard bounds and handle soft probabilistic catdra
Sweep 2: During the negotiation phase, say that In [9] the authors use WSFL (Web Service Flow Lan-
GarageBfinds that the request rate of 5.028 calls per secogdage) and enhance it with the capability to specify QoS
is too demanding for the performance it guarantees. Thagtributes. Web service Performance Analysis Center (3PAC



[20], is another similar approach for performance evaluation o QoS relates to performance. Therefore it makes sense
services and their compositions. For both works, probstili assuming that a Web service outperforming its contractlshou
models are translated into simulation engines for perfocaa do well for the orchestration — actually all SLA are designed
analysis. The fundamental difference from our approachas t with this implicit assumption in mind. Formal study of mono-
the approach assumes a “closed world” scenario, assuminogicity of orchestrations w.r.t. QoS parameters is thgesib
that the services of the orchestration can be instrumenithd wof other ongoing work.

measurement code to get information about its performance.
We rely on contracts, instead.

The notion of probabilistic QoS has been introduced ang]
developed in10], [11] with the ambition to compute an exact
formula for the composed QoS, which is only possible for2l
restricted forms of orchestrations without any data depeqa
dency. We propose using simulation techniques to analyze
the QoS of a composite service, this allows us to use non-
trivial distributions as models for performance and alsaopes 4
analysis of orchestrations whose control flow have data an
time related dependencies. A distinct feature of our apgroa [5]
is that the quality domains can be partially ordered whichy,
allows expressing rich and possibly complex QoS parameters

(7]

In this paper we have proposed a framework for QoS
management based @oft probabilistic contractsThis work  [&]
is a step forward toward establishing QoS management of
Web services on a mathematically sound basis. Our vision [sj
targeted to the use of Web services for business processes, i
semi-open world such as multi-tier supplier chains. Acoayd
to this vision, Web services provider interact @antracts [10]

More precisely, Web service interfaces must expose infor-
mation regarding the following: Hiow they should be queried [11]
— this involves conformance of the query with regard to data
types, semantic aspects of data, and, for more sophisticate
services involving complex, dynamic, interaction, theatkkd
dialogs between the service and the client who queries it; bu
this also involves QoS aspects, e.g., maximal query throuigh [13]
or allowed complexity of the submitted query; Bow they
respond when properly queried- this involves conformance [14]
of the return with regard to data types, semantic aspects of
data, and, for more sophisticated services involving cempl [t
dynamic, interaction, the possible dialogs between theiceer
and the client who queries it; but this also involves QoS

. . [16]
aspects, e.g., maximal latency, quality of response, eftdayl,
Web service interfaces are mostly poor in many of these

VI. CONCLUSION AND PERSPECTIVES

] Jayadev Misra and William R. Cook.
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