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Abstract

The problem of structural model identification under both known and unknown input excitations, is addressed. In-flight

data analysis is an important instance of that problem. Input/output and output-only eigenstructure identification methods

are described and compared, within two classes of methods: subspace-based and prediction error. In particular, different

types of relevant projections for handling the known and unknown inputs are discussed. The relevance of the methods is

emphasized through numerical results obtained on real flight test data sets.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

System identification and parameter estimation from flight data sets is a research and industrial topic of
growing interest for flight vehicule design and certification [1]. For in-flight structural model identification, the
handling of both known (measured) and unknown (often non-stationary) input excitations is mandatory [2].
This topic is the subject of the present paper. Before outlining its content, both practical and conceptual
motivations are provided for the structural identification methods which are investigated here.

1.1. Practical motivations

Experimental modal analysis (EMA) is currently one of the key technologies in structural dynamics
analysis. Based on the academic foundations of system identification, it has evolved to become a ‘‘standard’’
approach in mechanical product development. Essential in this evolution is that modal analysis research has,
from the start, taken the point of view of industrial applicability, focusing on solving the specific problems
related to testing and modeling large industrial structures (see also Section 4.4). The merit of each new method
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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or new approach has always been checked against the added value it brought in terms of helping the
application engineers to derive better models.

A nice example is the development cycle of a new aircraft, which consists of several modeling and testing
stages: structural finite element (FE) modeling, ground vibration testing (GVT), computational fluid dynamics
(CFD) modeling, wind tunnel testing, and in-flight tests. These flight (vibration) tests allow the validation of
the analytical models under various real flight conditions and, more important, allow to assess, as a function
of airspeed and altitude, the aero-elastic interaction between the structure and the aerodynamic forces as they
may lead to a sudden unstable behavior known as flutter. Flutter shows up in the vibration signals as apparent
negative damping and corresponding sudden increase of the vibration amplitudes. For economic and safety
reasons, it is evidently avoided that an aircraft undergoes flutter during an in-flight test, but it has to be
certified that it has sufficient flutter margin when flying at the different points of the flight envelope where it is
designed for. To determine this margin, typically, the trends of eigenfrequencies and damping ratios of the
critical modes as a function of airspeed are carefully studied [3,2]. This explains the need to perform system
identification during the flight.

Current practice is to apply and measure artificial excitation (the inputs) during the flight and measure the
aircraft acceleration response at various locations (the outputs). Various solutions were developed to provide
this dynamic excitation during the flight such as excitation through the control surfaces or wing-tip excitation
by aerodynamic vanes [3]. A recent trend in flight-testing is the use of atmospheric turbulences as additional
excitation sources, from which it is expected that a better exploitation of flight test data, and a wider
exploration of the flight domain, can be achieved. In this case, the typical situation is that it is practically
impossible to measure those forces acting on the aircraft, and that the deterministic knowledge for those
inputs is replaced by a white noise assumption.

1.2. Conceptual motivations

It is known [4–6] that the modes and mode-shapes of a mechanical structure coincide with the eigenstructure
of a continuous time multiple input multiple output (MIMO) linear system driven by an excitation, and whose
output vector is the set of accelerometer measurements. Because of what has been argued above, the key issue
is to identify the eigenstructure in the presence of both a natural (unknown, unmeasured and often non-
stationary) excitation and a known (measured) input. This set up is often referred to as input/output [7].

Handling both known and unknown excitations inputs should take advantage of the available knowledge
on the inputs, and thus should rely on input/output identification methods. However, it is of interest to under-
stand that involving the input data can be done with minor modification of output-only identification methods
to be used for eigenstructure identification in-operation, that is in the presence of natural excitation [8,9].

During the last decade, there has been a growing interest in subspace-based linear system identification
methods [10–12]. These time domain methods, which process either raw data or correlation matrices, are well
suited for capturing the system eigenstructure, even without observed inputs [8]. On the other hand, the recent
frequency domain polyreference least-squares complex frequency (LSCF) method [13–15] is a special
implementation of a matrix fraction description-based prediction error method (PEM) for eigenstructure
identification. It handles Fourier transformed data, and can be run under either input/output or output-only
form, using frequency response functions (FRF) or power spectra, respectively.

The purpose of this paper is to discuss different types of projections which can be performed for handling,
separately or simultaneously, the known and unknown inputs within the framework of the covariance driven
subspace-based time domain structural identification method; to review the recent frequency domain

polyreference LSCF input/output and output-only eigenstructure identification methods and re-cast them
in a framework closely related to the subspace methods; and to investigate the relevance of both classes of
methods for in-flight data analysis by reporting on numerical results obtained on real data sets.

1.3. Paper outline

In Section 2, the key elements of subspace-based covariance-driven eigenstructure identification are recalled,
and how to process time-domain input/output data and to handle both known and unknown inputs, is
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explained. In Section 3, the key elements of a recent matrix fraction description-based implementation of the
PEM are introduced under both input/output and output-only forms, and related to the subspace-based
methods. In Section 4, implementation issues and industrial testing requirements are addressed. In Section 5,
numerical results obtained on real flight data sets are reported, and the two types of methods and input
handling are discussed. Section 6 contains further comments and conclusions.

2. Subspace-based eigenstructure identification

The widespread use of state-space representations for modal analysis [4,5,8,16] relies on the fact that the
eigenstructure of the state transition matrix F of a discrete time linear model:

Xk ¼ FXk�1 þWk;

Yk ¼ HXk;

(
(1)

is in one-to-one correspondence with the structural modes (eigenvalues) and mode-shapes (eigenvectors); see
Appendix. The use of either covariance- or data-driven subspace-based identification algorithms for structural
analysis has thus been advocated [17,18,8,9]. Covariance-driven algorithms might be appealing when
processing long samples of multi-sensor output measurements, which can be mandatory for in-operation
modal analysis under non-stationary environment. In this section, we describe covariance-driven subspace-
based identification algorithms for the combined handling of known and unknown inputs.

2.1. Fundamentals of covariance-driven identification algorithms

Throughout the paper, we use repeatedly the following elementary remark, which belongs to the folklore of
system or matrix theory. Consider a pair ðH;FÞ of matrices, respectively r� n and n� n. Let R9ðRiÞiX0 be a
sequence of matrices such that Ri decomposes as

Ri ¼ HFi�1G (2)

for some matrix G, independent from i. Then the (infinite) Hankel matrix:

HðRÞ9

R1 R2 R3 R4 . . .

R2 R3 R4 R5 . . .

R3 R4 R5 R6 . . .

. . . . . . . . . . . . . . .

26664
37775 (3)

factors out as: HðRÞ ¼ GðH;FÞXðF;GÞ, where: GðH;FÞ9

H

HF

HF2

..

.

266664
377775 and XðF;GÞ9½G FG F2G . . .�. Such a

factorization is unique up to a post-multiplication of GðH;FÞ by an invertible matrix. Then, up to a change of
basis on F, the pair ðH;FÞ can be recovered, respectively, from the first block-row and the shift invariance
property of GðH;FÞ, namely:

G"ðH;FÞ ¼ GðH;FÞF where G"ðH;FÞ9

HF

HF2

..

.

264
375. (4)

Two important instances of the factorization in Eq. (2) come out with state-space system in Eq. (1).
�
 The first case is when the sequence ðWkÞ is a white noise, and the matrices Ri’s are the output covariance
matrices: Ri9EðYkY

T
k�iÞ, where Eð:Þ denotes the expectation operator. In that case, G is the cross-

covariance between the state and the output vectors: G9EðXkY
T
k Þ.
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�
 The second case is when the sequence ðWkÞ is a measured and white input, and the matrices Ri’s are the
input/output cross-covariance matrices: Ri9EðYkW

T
k�iÞ. In that case, G is the state/input cross-covariance:

G9EðXkW
T
k Þ.

In both cases, the technique sketched above applies, and the system eigenstructure is then extracted from F.
Subspace-based structural identification is known to be a key instance of that. See Section 4.1 for the
implementation details.

All the algorithms introduced in this section are based on this approach. Fed with selected input and output
data covariance matrices, they all handle factorizations in the form of Eq. (2), with an identical left factor HFi.
Different measured and/or projected data covariances are used, possibly in a combined manner thanks to the
unique left factor.
2.2. Handling time domain input/output data

We consider a linear time-invariant state space system with a combined known input excitation Uk and
unknown ambient excitation Vk:

Xk ¼ FXk�1 þDUk þ Vk; covðVkÞ ¼ QV ;

Yk ¼ HXk�1 þ ek; covðekÞ ¼ Qe;

(
(5)

where ðUkÞ is the known input, the unknown noises ðVkÞ and ðekÞ are zero mean Gaussian white noise
sequences, and the three sequences ðUkÞ; ðVkÞ and ðekÞ are pairwise uncorrelated. Note that the measurement
noise ðekÞ does not affect the eigenstructure of the system in Eq. (5), and that a moving average sequence ðekÞ

can also be encompassed [12,16]. The different signals, and in particular the known input vector ðUkÞ, are
assumed to be stationary.1 Furthermore, because of what is explained above, we assume that:

Known Uk and unknown Vk inputs are uncorrelated, (6)

Unknown input Vk is white, (7)

White measurement noise ek is uncorrelated from both Uk and Vk. (8)

For recovering the eigenstructure of Eq. (5), our approach consists in handling different projections of the
system onto the subspace generated by all the known inputs, or onto its orthogonal subspace. Formally, the
set of zero mean finite covariance vector random variables is equipped with the scalar product: hW;Zi9
EðWZÞ. Let U denote the linear space generated by all the known inputs: U ¼ SpanfUj : �1ojoþ1g. Its
orthogonal complement is denoted by U?. Recovering the eigenstructure of Eq. (5) can be performed by using
the following approaches:2
A1.
1A
2Si

varia
Eliminating the unknown input V by projecting Eq. (5) onto U.

A2.
 Eliminating the known input U by projecting Eq. (5) onto U?.

A3.
 Using jointly both projections of Eq. (5) onto U and U?—Variant 1.

A4.
 Using jointly both projections of Eq. (5) onto U and U?—Variant 2.

A5.
 Ignoring the presence of the known input U.
Using projections in combination with subspace algorithms is a very natural idea that is found in several
places in Ref. [12]. However, as the experienced reader will recognize, we exploit this idea under non-classical
variants. The following notation is used throughout. For ðWkÞk2Z and ðZkÞk2Z two stationary zero mean
rguments similar to those in Refs. [19,20] can be used for relaxing this assumption; this will be addressed elsewhere.

nce the system in Eq. (5) is dynamical, it is mandatory to project it on shift-invariant subspaces, this is why all the known input

bles are considered in U.
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vector random processes, we set:

RWZ
i 9EðWkZ

T
k�iÞ. (9)

The algorithms A1–A5 are now described. Except for Algorithm A2, they all require ðUkÞ to be white.

2.2.1. Algorithm A1: eliminating the unknown input

For this algorithm, ðUkÞ is assumed white. Thanks to assumptions in Eqs. (6) and (8), projecting Eq. (5)
onto U amounts to eliminating the unknown input. This projection writes:

Xk=U ¼ FXk�1=UþDUk;

Yk=U ¼ HXk�1=U:

(
(10)

Setting for short ZU9Z=U when there is no risk of confusion, Eq. (10) rewrites:

XU
k ¼ F XU

k�1 þDUk;

YU
k ¼ H XU

k�1:

(
(11)

Using the notation in Eq. (9), thanks to the assumption in Eq. (7), and assuming additionally ðUkÞ white, the
relations in Eq. (11) give rise to decompositions of the form in Eq. (2) for the covariance matrices RYUYU

i and
RYUU

i :

RYUYU

i ¼ HFi�1GY ; where GY9EðXU
k Y

U
k

T
Þ ¼ RXUYU

0 , (12)

RYUU
i ¼ HFi�1GU ; where GU9EðXU

k U
T
k Þ ¼ RXUU

0 . (13)

Algorithm A1 is the method in Section 2.1 applied to the auto-covariances RYUYU

i in Eq. (12). The cross-
covariances RYUU

i in Eq. (13) are to be handled in a combined manner; this is introduced in Algorithm A4
below.

2.2.2. Algorithm A2: eliminating the known input

For this algorithm, ðUkÞ does not need to be white. Thanks to assumptions in Eqs. (6) and (8), projecting
Eq. (5) onto U? amounts to eliminating the known input U (which does not need to be white). This projection
writes:

Xk=U
? ¼ FXk�1=U

? þ Vk;

Yk=U
? ¼ HXk�1=U

? þ ek:

(
(14)

Thus, setting for short Z? ¼ Z=U?, we get:

X?k ¼ FX?k�1 þ Vk;

Y?k ¼ HX?k�1 þ ek:

(
(15)

From Eq. (15), the following key decompositions for the covariance matrices holds:

RY?Y?

i ¼ HFi�1GY? ; where GY?9EðX?k Y
?
k

T
Þ. (16)

Since there are no known inputs to the system in Eq. (15), the method in Section 2.1 can be applied to the auto-

covariances in Eq. (16). This is referred to as Algorithm A2.

2.2.3. Algorithm A3: using jointly both projections of Eq. (5) onto U and U?—Variant 1

For this algorithm, ðUkÞ is assumed white. This approach consists in combining the projections of the
output Yk onto both U andU?. Using Xk9ðXU

k X?k Þ and Yk9ðYU
k Y?k Þ, the two systems in Eqs. (11) and (15)

can be compacted into:

Xk ¼ F Xk�1 þ ðDUk VkÞ;

Yk ¼ H Xk�1 þ ð0 ekÞ:

(
(17)
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Consider the covariances:

R
Y

i 9E½YkþiðY
U
k

T
Y?k

T
Þ�. (18)

Note that:

E½Ykþi YU
k

T
� ¼ E½YU

kþi YU
k

T
� ¼ RYUYU

i , (19)

EðYkþi Y?k
T
Þ ¼ EðY?kþi Y?k

T
Þ ¼ RY?Y?

i . (20)

Thanks to Eqs. (19) and (20) and to Eqs. (12) and (16), we have:

R
Y

i ¼ ½R
YUYU

i RY?Y?

i � ¼ HFi�1½GY GY?
�. (21)

Method in Section 2.1 applied to the combined auto-covariances in Eq. (21) is now called Algorithm A3.

2.2.4. Algorithm A4: using jointly both projections of Eq. (5) onto U and U?—Variant 2

For this algorithm, ðUkÞ is assumed white. Consider again the system in Eq. (17) with ðUÞ white and, now,
the covariances:

R
U

i 9E Ykþi UT
k Y?k

T
� �h i

. (22)

Note that:

E½Ykþi UT
k � ¼ E½YU

kþi UT
k � ¼ RYUU

i . (23)

Thanks to Eqs. (23) and (20) and to Eqs. (13) and (16), we have:

R
U

i ¼ ½R
YUU
i RY?Y?

i � ¼ HFi�1½GU GY?
�. (24)

Method in Section 2.1 applied to the combined cross and auto-covariances in Eq. (24) is called Algorithm A4.

2.2.5. Algorithm A5: ignoring the known input

For this algorithm, ðUkÞ is assumed white. One obvious way to ignore the presence of the known input Uk

consists in performing output-only identification (namely regarding DUk þ Vk as a single unknown white
noise). This way is a priori a loss of information, which is confirmed a posteriori when comparing input/output
and output-only identification methods (Section 5). Recall that the output-only covariance-driven subspace
identification of the eigenstructure is based on the method in Section 2.1 applied to the measured output
covariances Ri9EðYk YT

k�iÞ ¼ RYY
i , which we refer to as Algorithm A5.

2.2.6. Discussion

Subspace methods as described here share a lot of similarities with those described in Ref. [12].
Subspace methods in their more general form fit into two different categories. Either they try to recover
the state matrices ðH;FÞ from the observability matrix, or they try to recover these matrices from a state
estimate. Our approach obviously fits into the first category, since we are using the left singular vectors
of a weighted Hankel matrix. Different choices for the weights [21] can lead to different methods. Thus,
the methods described here can be compared with existing methods like IV-4SID, basic-4SID, and MOESP
[22,18] which is indeed very similar to Algorithm 4 above. Also, Algorithm 2 is of the same spirit as the
projection algorithm for linear deterministic systems proposed in Ref. [12, Chapter 2]. Since we use different
weights and different data stacking operations, we get different factorizations of the Hankel matrix. Thus,
although in principle all these methods lead to the same left factor, they may have different numerical
behaviors.

3. Polyreference LSCF for eigenstructure identification

The recent polyreference LSCF method [13–15] is a frequency domain method related in part to the basic
PEM, when both inputs and outputs are available; see Ref. [23, Chapter 7] for single input single output
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(SISO) systems, and Ref. [24, Appendix 4A, Chapter 7.3] for MIMO systems. By frequency domain method,
we mean that measurements are directly collected in the Fourier domain, and are processed in the Fourier
domain as well. This method is not new in its principle, but we feel it useful to review it and re-cast it in the
classical system identification framework. Only an outline of the method is provided here. The reader is
referred to Ref. [25] for the underlying system theoretic concepts, and to Refs. [13–15] for implementation
details.

3.1. The input/output polyreference LSCF method

Throughout this section, we assume a N-size input/output time domain data sample ðYk;UkÞk. The DFT
associated with a N-size vector data sample ðZkÞk is generically denoted by: fZ

N ðoÞ91=
ffiffiffiffiffi
N
p PN

k¼1Zke
�jok,

where o ¼ o‘92p‘=N; for ‘ ¼ 1; . . . ;N. We write fZ instead of fZ
N when the sample size N is understood.

Let SðoÞ be the discrete Fourier domain matrix such that: fY
ðoÞ ¼ SðoÞfU

ðoÞ. Matrix S is called the FRF
matrix. Its dimension is r� s, r being the number of outputs and s being the number of inputs. The sequence
Sðo‘Þ; ‘ ¼ 1; . . . ;N, can be estimated from measurements in a non-parametric way (see Section 4.2). The
polyreference LSCF method has two variants which are summarized now.

3.1.1. Left matrix-fraction description (LMFD)

In this variant, the system model is assumed under the form

Aðe�jo‘ ÞSðo‘Þ � Bðe�jo‘ Þ ¼ Vðo‘Þ for ‘ ¼ 0; . . . ;N, (25)

where AðzÞ ¼ A0 þ A1zþ � � � þ Apzp and BðzÞ ¼ B0 þ B1zþ � � � þ Bqzq are matrix polynomials, with size r� r

and r� s, respectively, and Vðo‘Þ; ‘ ¼ 0; . . . ;N is a white noise matrix of suitable dimensions over the discrete
unit circle. This model amounts to approximating the FRF matrix S by the LMFD form A�1B. The
eigenstructure of the system in Eq. (5)—modes and mode-shapes defined in Eq. (35)—is then recovered as the
pairs ðm;cmÞ solutions of the eigenvalue problem:

AðmÞcm ¼ 0. (26)

3.1.2. Right matrix-fraction description (RMFD)

In this variant, the system model is assumed under the form

Sðo‘ÞAðe
�jo‘ Þ � Bðe�jo‘ Þ ¼ Vðo‘Þ for ‘ ¼ 0; . . . ;N. (27)

In this case, A and B are matrix polynomials, with size s� s and r� s, respectively. This model amounts to
approximating the FRF matrix S by the RMFD form BA�1. The poles m of system (5) are solutions of the
following eigenvalue problem:

AðmÞjm ¼ 0. (28)

Note that the so-called modal participation vector jm associated with m in Eq. (28) is different from the mode-
shape cm in Eq. (26). But the cm’s can be easily recovered as follows. A LS approximation of SðoÞ by a partial
fraction expansion having the m’s as its poles writes

SðoÞ �
Xn=2
i¼1

Ti

jo� mi

þ
T%

i

jo� m�i

� �
, (29)

where n is the system order (state dimension) and the superscript % denotes complex conjugate. Then, if there
are no multiple poles, the residue matrices Ti have rank one. From Eq. (29), we get that Ti ¼ cmi

jT
mi
, which

yields the mode-shape cmi
[13].

Note that it is possible to include in Eq. (29) so-called residual terms, that take into account the
effect of modes outside the frequency band that is being analyzed. This is rather classical, see for instance
Ref. [4].
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3.1.3. Discussion
�
 The two models in Eqs. (25) and (27) are linear in the parameters, with additive noise. Thus they can be
identified via classical linear LS estimates; we refer the reader to Refs. [13–15] for implementation details.
As it is well known [26,25], the MFD form (both left and right) suffers from non-identifiability problems,
since, e.g., A�1B is invariant by pre-multiplication of both A and B by the same arbitrary invertible matrix.
But this is of no harm in our case, since the eigenvalue problem in Eq. (26) is also invariant under the same
pre-multiplication. Thus we only need to make sure that we find a maximal row rank MFD representation;
the uniqueness of A, however, is not our concern.

�
 If we ignore for a while the noise term in Eq. (25) for LMFD, then we can post-multiply this equation by
Uðo‘Þ, and this yields the data based system model AY� BU ¼ 0. Reintroducing noise uncertainties gives
raise to the popular linear LS PEM associated with the system model AY� BU ¼ �, that can be handled in
both frequency or time domains [24]. However, this reasoning does not work for the RMFD variant, and
we do not know how to relate this method to classical ones from the system identification literature in an
easy way.

�
 Reasons for considering both variants are more practical than theoretical. Assume that there are many
more inputs than outputs, i.e., r5s. Then, the order of matrix polynomial A is much larger in the usual
LMFD representation S ¼ A�1B than in the RMFD representation S ¼ B̄Ā

�1
. This favors choosing the

LMFD representation, for the following reason: if we want to explore the LS solutions by assuming
different model orders, increasing by one the order of polynomial A will increase the assumed model order
(state dimension) by a smaller amount (see the discussion in Section 4.3 on the use of stabilization
diagrams). Or course, the same arguments favor the RMFD representation S ¼ B̄Ā

�1
in the opposite case,

where many more outputs are available than inputs. For modal analysis with controlled excitation, the
second situation is the generic one, and therefore the non-classical RMFD representation is preferred.

For related discussions and additional information on this method, see Refs. [13,15].
3.2. The output-only polyreference LSCF method

Here we assume the model in Eq. (5) with D ¼ 0, that is no measured input is available and the unmeasured
input is assumed to be white noise. Let SðoÞ be the discrete Fourier domain matrix whose ði; jÞ entry equals
fY i ðoÞ � ðfY j ðoÞÞ%, namely the measured cross-spectrum between the ith and jth outputs. Again, Sðo‘Þ; ‘ ¼
1; . . . ;N can be estimated from measurements in a non-parametric way (see Section 4.2).

The output-only polyreference LSCF method relies on the following basic fact from stochastic realization
theory for linear systems [27]. Let RY ðzÞ be the spectrum of Y, expand it in a Fourier series RY ðzÞ ¼Pþ1

i¼�1RYY
i zi, and set:

RþY ðzÞ9RYY
0 =2þ

Xþ1
i¼1

RYY
i zi; R�Y ðzÞ9RYY

0 =2þ
X�1

i¼�1

RYY
i zi.

The additive decomposition RY ¼ RþY þ R�Y holds, and RþY is called the positive half-spectrum of Y and writes:
RþY ðzÞ ¼ HðI� z�1FÞ�1Gþ J with J ¼ RYY

0 =2 and G ¼ EðXkY
T
k Þ ¼ RXY

0 . Then, approximating RþY with a
LMFD or RMFD representation as in Section 3.1 yields (estimates of) the poles of the system in Eq. (5).
Finally, the corresponding mode-shapes are estimated using again partial fraction expansion of Eq. (29).
4. Implementation issues and testing requirements

First some implementation issues for the algorithms of Sections 2 and 3 are outlined. Second, constraints
and requirements of the industrial testing practice, which should be kept in mind for the assessment of the
practical applicability of the proposed methods, are discussed.
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4.1. Implementation issues—subspace algorithms

4.1.1. Truncation

Of course, the doubly infinite linear space U ¼ SpanfUj : �1ojoþ1g is not practical. However, if the
input excitation has no pure frequency (multi-sine)3 and if matrix F is stable (no root on the unit circle), then
ðXk;YkÞ is nearly independent of Uk�m for m large enough. Therefore U can be truncated and, in Eqs. (10),

(14) and (17), it can be replaced by: UT
k ¼ ½U

T
k�m . . . UT

k . . . UT
kþm�, which spans the truncated space

SpanfUj : k �mpjpk þmg. Then, the following explicit formulas can be used:

YU
k � Yk=Uk and Y?k � Yk � Yk=Uk,

where Yk=Uk ¼ EðYkU
T
k Þ½EðUkU

T
k Þ�
yUk ð30Þ

and superscript y denotes the Moore–Penrose pseudo-inverse. The effect of these approximations on
asymptotic properties can be analyzed with arguments similar to those in Refs. [19,20]; this will be reported
elsewhere. The choice of integer parameters in subspace methods is analyzed in Ref. [28].
4.1.2. Empirical estimates

In Section 2 and Eq. (30), everything is based on true covariance matrices and on projections which again
involve true covariances. The implementation consists in approximating the true covariances by their

corresponding empirical forms. Generically, for a given N-size sample, referring to Eq. (9), RWZ
i is replaced bybRWZ

i 91=ðN � iÞ
PN�i

j¼1 Wjþi Z
T
j . Similarly, for any projection, Z=U is replaced by its empirical counterpartbZ=U, which, by definition, is obtained using empirical covariance estimates.

Moreover, the argument in Section 2.1 needs to be slightly adjusted to accommodate the following two
practical facts, namely: (i) because of the empirical covariance estimates, the factorization in Eq. (2) is only
approximate, and (ii) only a finite amount of Ri’s are available. Hence the Hankel matrix in Eq. (3) is
truncated to p block-rows and q block-columns. Therefore, the factorization of Hankel matrix Hp;qðRÞ is only
approximate. This means that

Hp;qðRÞ ¼ GpðH;FÞ XqðF;GÞ þ residual, (31)

where Gp and Xq are the truncated observability and controllability matrices, respectively. A standard way to

obtain such a factorization consists in performing the singular value decomposition (SVD) of an empirical

Hankel matrix cH9Hank bRWZ

i

� �
, and its truncation at the desired model order. This yields, in the left factor,

an estimate bG for the observability matrix G:

cH � UDVT ¼ ðU1 U0Þ
D1 0

0 D0

 !
VT

1

VT
0

 !
, (32)

bG ¼ U1D
1=2
1 ; bX ¼ D1=2

1 VT
1 . (33)

An estimate of H is then found in the first block-row of bG, and an estimate of F is obtained solving Eq. (4) in

the LS sense, from which the estimated eigenstructure ðbl; bFlÞ can be deduced, as in Eq. (38). In the output-only
case, this is known under the name of balanced realization (BR) algorithm [29]. It easily extends to the input/
output one [30]. Our experience is that selecting q ¼ pþ 1 in Eq. (31) is relevant [9]. Choosing pbq yield a
better LS estimate for F. When p increases, the modal estimates should stabilize after a reasonable value.
Plotting the estimates versus p provides an information on the minimal choice for p. Increasing q is not useful
unless one wants to obtain very high order stabilization diagrams. Choosing qbp is not useful, since the

observalibity matrix is derived from the left factor of the SVD of cH.
3How to handle the presence of sinusoidal components for the input excitation ðVkÞ is described in Refs. [17,9].
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4.1.3. Weighting matrices

If we compute and truncate the SVD of a weighted empirical Hankel matrix cHW9W1
cHWT

2 , with W1 and
W2 two known invertible matrices, then the factors in Eq. (33) write: bG ¼W�11 UW D1=2

W andbX ¼ D1=2
W VT

W ðW
T
2 Þ
�1. A classical approach [31–33,21] is to normalize the data such that every singular

value lies between 0 and 1, and thus represents the cosine of the angle between the subspaces of the future and
the past data. This normalization helps avoiding numerical problems by balancing the effects of the main
modes and the less energetic ones. In the output-only case, a usual way to proceed is to choose W1 and W2 as
the inverses of the empirical covariances of the future and past output measurements. Then, the weighted
empirical Hankel matrix cHW has norm 1. This approach is known as the canonical variate analysis (CVA)
and is particularly useful when the order of the process ðXkÞ is unknown. Adapting this idea to the input/
output method in Section 2.2 is easy.

4.2. Implementation issues—polyreference LSCF algorithms

The input/output polyreference LSCF algorithm of Section 3.1 uses non-parametric transfer function
estimates as primary data, whereas its output-only counterpart in Section 3.2 requires empirical estimates of
output spectra or output half-spectra. Extensive discussions on how to obtain these empirical estimates are
available in the literature [34–36]. For instance, a popular transfer function estimate is the so-called ‘‘H1’’
estimate. It assumes noise-free input measurements and estimates the transfer function as the ratio of the
cross-spectrum estimate between input and output and the power spectrum of the inputs. These spectra are
obtained as non-parametric estimates such as the weighted averaged periodogram (also known as modified
Welch’s periodogram). A discussion on (half) spectrum estimates in a modal analysis context can be found in
Ref. [37].

4.3. Implementation issues—stabilization diagrams

A typical problem in estimating a parametric model from data is the determination of the model order. For
the present eigenstructure identification problem, the dimension n of the matrix F should be estimated. In the
subspace algorithms of Section 2, this would amount to estimating p in Eq. (31) with q ¼ pþ 1. In the
polyreference LSCF algorithms of Section 3, this would amount to estimating the denominator polynomial
order p. Formal procedures estimate models of different orders and compare these models according to a
quality criterion such as Akaike’s Final Prediction Error or Rissanen’s Minimum Description Length criterion
[24]. However, practical experience with the application of system identification methods to structural
dynamics data learned that it is a good idea to over-specify the model order; to compute the poles from the
model; and to eliminate spurious numerical poles afterwards.

The so-called stabilization diagram [38,39] is a very practical tool to achieve this goal. To construct such a
stabilization diagram, a repeated analysis of the same data set is performed, each time for a different model
order. The pole values from each analysis are combined in a single diagram: the pole frequencies (y-axis) are
plotted as functions of the model order (x-axis). The pole is indicated by a symbol in this diagram. Poles
corresponding to the physical system appear at nearly identical frequency locations for every analysis, which is
readily visible in the diagram. To point out that the frequency (resp. damping value and eigenvector) of a pole
falls within certain bounds of the result obtained at a one-order lower model, specific symbols are used. The
spurious numerical poles will not stabilize at all during this process and can be sorted out of the modal
parameter data set more easily. Such stabilization diagrams are displayed in Section 5.

4.4. Industrial testing requirements

What is important, in view of the practical applicability of the various methods to full-scale problems, is the
way they are able to cope with the constraints and requirements of the industrial testing practice. These include:
�
 The use of large numbers of response transducers: this may range from 8 to 16 responses in a flutter test,
128 or more sensors in a car road test, to a few hundreds in a laboratory vibration test, such as an aircraft
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ground vibration test. This is useful for obtaining the mode-shapes, but may decrease the quality of the
estimated modes.

�
 The subdivision of a test in ‘‘patches’’ or sensor groups, leading to non-simultaneously measured data. This
may require to use multi-patch identification algorithms [20].

�
 Sensitivity to data preprocessing: re-sampling, re-synchronization, band-filtering, etc. The effect of filtering
has been partially addressed in Ref. [40].

�
 The non-whiteness of the (unknown) excitation: e.g. there is no guarantee at all that the atmospheric
turbulences can be considered as white noise. As explained above, only Algorithm A2 is robust to that.

�
 The non-stochastic nature of the excitation: sweeps, or impulses, through aircraft control surfaces, etc.
Large size models should be handled using few sensors at a time.

�
 The superposition of large levels of harmonic components: e.g. helicopter rotor frequencies, car
engine harmonics, turbine shaft or gear speeds, etc. These harmonics will most likely appear as system
modes.

�
 Large data sample sizes, often contaminated with large measurement errors. The algorithms of Section 2
deal with sample errors.

�
 Large model sizes.

�
 Robustness to model inconsistencies: small variations in system behavior during the test or in-between
subsequent ‘‘patches’’. This may also require online monitoring with a smaller sample size and sliding
window.

�
 Robustness to non-stationary excitation. This has been investigated in Refs. [19,20] for output-only
subspace methods, and will be addressed elsewhere for input/output ones.

�
 The ease of order selection, including the generation of non-physical poles. This has been investigated in
Ref. [39].

�
 The computational efficiency, especially in view of large data sample sizes, large sensor counts, and large
model orders. Large sample sizes increase the quality of subspace-based estimates, and decrease the gap
between input–output and output-only algorithms. Large sensor counts and large model orders should not
be considered together.

�
 The efficiency in estimating damping ratios. This issue is known to be more difficult than for frequencies
[41].

�
 The capability to generate confidence intervals. Theoretical confidence intervals can be obtained from
Refs. [22,42]. Empirical confidence intervals are obtained from stabilization diagrams. However, in a real
experiment, the usefulness of confidence intervals may be limited, because the bias between the estimated
and true values is difficult to estimate [46].
The answers to these questions are essential in the assessment of the practical applicability of the proposed
methods. The next subsection contains a discussion of the problem of in-flight data analysis. More industrial
examples can be found in the literature [9,6].
5. In-flight data example

We now report on identification results obtained with the algorithms of Sections 2 and 3 on real in-flight
measurements provided by Avions Marcel Dassault within the Eurêka project FLITE. The data were over-
sampled by a factor of 10; i.e. the sampling frequency being about 10 times the maximum frequency of
interest. Successive data sets are available, and thus the evolution of the modal characteristics with the aircraft
modifications, such as decreasing fuel mass in the tanks, and with different flight conditions (altitude and
speed), can be tracked. The experiment involves one input (a pilot driven excitation) and 12 output sensors.
Input and output time histories and spectra are displayed in Fig. 1.

The subspace-based modal analysis algorithms of Section 2 have been run using the Scilab Modal toolbox,
which contains all these algorithms, among others [43,44]. The polyreference LSCF algorithms of Section 3,
implemented under the name of PolyMAX, have been run using the LMS Test.Lab toolbox [45].
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Fig. 1. Time histories and spectra: (a) 20 000 samples of input time history; (b) 20 000 samples of typical output time history; (c) lower part

of input spectrum; (d) lower part of typical output spectrum.
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5.1. Results with the subspace-based algorithms

We focus on the comparison of the output-only method with some of the input/output methods described in
Section 2. All the methods have similar computational burden. They have been tested with different sample
sizes: 5000, 10 000, 15 000 and 20 000 sample points.

It turns out that, for the present example, most input/output methods suffer from poor results, especially
Algorithm A1. Because the observed artificial input is not white, it is intuitively natural that, for the present

example again, the combined methods A3 and A4 do not perform as well as expected. These combined
methods should be used preferably in experimental situations where the controlled input has better excitation
properties. In the present example, the degree of correlation between the measured input and output signals is
low, and some sensors are not well positioned for some modes. That is why we now focus on the merits of the
output-only method (Algorithm A5) and the best input/output method (Algorithm A2).
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In Figs. 2–7, the frequencies are displayed based on a classical stabilization diagram procedure and the
alignments of the damping coefficients and of the modal assurance criterion (MAC) values are shown. The
MAC is defined as the squared correlation coefficient between two modal vectors:
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Fig. 2. Subspace algorithm—frequency stabilization diagram, 4 modes pointed out: (a) input/output; (b) output-only. X -axis: frequency,

the range is about 25Hz. Y -axis: number of block-rows in H, the range is about 40. The key for damping coefficient d is: 5 : d46%, 	 :
4%odp6%, E : 2%odp4%, 
 : 1%odp2%, � : 0:1%odp1%, þ : dp0:1%.
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Fig. 3. Subspace algorithm—a closer look at 2 out of the 4 modes of Fig. 2: (a) input/output; (b) output-only. X -axis: frequency, the range

is about 10Hz. Y -axis as in Fig. 2.
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Fig. 4. Subspace algorithm—a closer look at mode 1 of Fig. 3: (a) damping coefficient with input/output; (b) damping coefficient with

output-only; (c) MAC value with input/output; (d) MAC value with output-only. X -axis: as Y -axis in Fig. 2. Y -axis: the range is about

10% for (a) and (b), and 2 for (c) and (d).
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Fig. 5. Subspace algorithm—a closer look at mode 2 of Fig. 3: (a) damping coefficient with input/output; (b) damping coefficient with

output-only; (c) MAC value with input/output; (d) MAC value with output-only. X and Y -axes: as in Fig. 4.
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Note that there is no guarantee that the data delivered by the limited number of sensors enable the
estimation of uncorrelated mode vectors and thus that all modes can be distinguished.

5.1.1. Input/output versus output-only

Both stabilization diagrams obtained with the same sample size (10 000) in the frequency range of interest
are displayed in Fig. 2. It clearly appears that the input/output method yields more stable stabilization
diagrams than the output-only approach. This appears still more clearly when zooming in the frequency band,
as in Fig. 3. In addition to estimating the frequencies, we are also interested in good estimates of the damping
coefficients and the mode-shapes. This can be evaluated by the quality of the damping alignment and of the
MAC alignment. (Note that the latter is meaningful, because we are using enough sensors.) This is done for
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Fig. 6. Subspace algorithm—A5 (output-only), sample size effect for mode 4 of Fig. 2: (a) damping coefficient with 5000 samples;

(b) damping coefficient with 10 000 samples; (c) MAC value with 5000 samples; (d) MAC value with 10 000 samples. X and Y -axes: as in

Fig. 4.
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Fig. 7. Subspace algorithm—input effect on mode 3 of Fig. 2; (a) Algorithm A5: (b) Algorithm A2; (c) Algorithm A3; (d) Algorithm A4.

X -axis and key: as in Fig. 2. Y -axis: the range is about 0.5Hz for each plot.
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two specific modes in Figs. 4 and 5. Comparing the quality of the stabilization diagrams of each method
provides a good information on the superiority of the input/output approach.

5.1.2. Sample size effect

Both methods get better stabilization diagram as the size of the sample used for the identification increases.
The input/output results are better than the output-only ones, but the difference in the performances of the
input/output and output-only methods decreases when the sample size increases. An example of how the
output-only estimates improves when using higher sample sizes is displayed in the damping and MAC
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diagrams in Fig. 6. However, it appears that, when processing small records, the input/output method is better
than the output-only one.

The subspace methods are only supposed to converge when the sample size goes to infinity and the variance
for the output-only method will in general be higher than for the input/output one. However, results obtained
from a single experiment should be distinguished from asymptotic properties provided by a statistical analysis.
It may happen indeed that good estimates can be obtained with the output-only method, which performs
sometimes better than its input/output counterpart.

5.1.3. Merits of using the input

In the results above, we have withdrawn all the input/output approaches, except for Algorithm A2, because
they gave worse stabilization diagrams. Nonetheless, for some modes, it may happen that these methods yield
better estimation results. An example of such a situation is displayed in Fig. 7, where it can be seen that, for

that particular mode, the combined approaches Algorithms A3 and A4 give the best (albeit not really good)
estimates. For all the other modes, the input/output approaches except for Algorithm A2 gave significantly
worse results looking at all frequencies, damping coefficients and MAC’s altogether.

This suggests that the input/output subspace Algorithms A1, A3 and A4 in Section 2 may have
better performance in other applications, when the input signal has better properties, most likely in strictly
controlled experiments as in laboratory setups. From a theoritical point of view, using input will always
improve the methods, as long as the input signal is close to the assumptions. The subspace output-only
Algorithm A5 has been proved to be robust to non-stationary excitation [19]. Consistency and asymptotic
normality have been proved for a class of similar subspace methods in Ref. [42]. However, no theoritical
consistency result is available when the identification algorithm handles a model structure (order) which is not
the true one.

5.2. Results with the polyreference LSCF algorithms

Both the input/output and output-only versions of the polyreference LSCF method have been applied to
data records of different lengths: 10 000, 15 000, 20 000 samples. When processing the time data into FRF’s,
the frequency resolution was kept constant (0.1Hz). So the number of averages depend on the data length:
respectively, 7, 11, 15 averages for 10 000, 15 000, 20 000 samples. A Hanning window was used and an overlap
between the data segments of 50%.

In the output-only case, the cross spectra between the outputs and two selected reference outputs served
as primary data. In the input/output case, the FRF’s between the single input and all the outputs served
as primary data. In order to obtain models with the same number of modes, the maximum denomi-
nator polynomial order in the input/output case was chosen to be twice the order in the case of the output-
only data.

5.2.1. Input/output versus output-only

Although the stabilization quality is good in both cases of Fig. 8, it seems that more stable poles are found
when including the input information. When looking at the frequency and damping evolution as a function of
the model order as displayed in Figs. 9 and 10, a positive effect of using the input information is visible: the
variation of the output-only poles is larger. From these pictures, it is also clear that the input/output and
output-only pole estimates do not coincide. This is probably due to the (slight) coloring of the inputs. A
coloring of the inputs may be the cause of the fact that poles estimated from the transfer function between
input and output are not the same as the poles only identified from the outputs and assuming a white noise
input.

5.2.2. Sample size effect

Changing the sample size is not changing the aspect of the stabilization diagrams dramatically (see Fig. 8).
From Figs. 9 and 10, it can be concluded that the frequency and damping variations as a function of model
order slightly decreases when more samples are used.
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Fig. 8. LSCF algorithm—frequency stabilization diagrams, sample size effect: (a) input/output data, 10 000 samples; (b) input/output

data, 20 000 samples; (c) output-only data, 10 000 samples; (d) output-only data, 20 000 samples. X -axis: the range is about 20Hz. Y -axis:

order of polynomial A.
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6. Further comments and conclusions

We have discussed two classes of eigenstructure identification methods, the subspace and polyreference
LSCF methods, each working with either input/output or output-only data.

We have presented the practical capabilities of both classes of methods for non-stationary aircraft
structures. For the subspace-based algorithms, the experimental results show that the input/output method
performs better than the output-only one on real data. For long samples, the loss in accuracy becomes
negligible. For small sample sizes, the additional value of using inputs—when available—may be significant.
For the polyreference LSCF methods, similar conclusions can be drawn.
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Fig. 9. LSCF algorithm—a closer look at the frequencies of two modes of Fig. 8, sample size effect: (a) first mode, 10 000 samples; (b) first

mode, 20 000 samples; (c) second mode, 10 000 samples; (d) second mode, 20 000 samples. þ: Input/output, 	: output-only. X -axis: as

Y -axis in Fig. 8. Y -axis: the range is about 1Hz.
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The lesson from this paper is that, when easily available, input sensor data should be used. Of course, when
inputs are not measured, only the output-only methods can be used, and our study demonstrates that this a
reasonable approach. In some cases, using input measurements or not may result from a trade-off between
sensors cost and increased estimation accuracy.

As for the subspace-based methods in Section 2, Algorithm A2 is preferable when the input is available or
the sample size is short; Algorithm A5 when the sample size increases or no input is available; the other
algorithms should not be considered unless U is white.

Concerning the polyreference LSCF methods discussed in Section 3, experience has shown that the method
that identifies a RMFD model yields very clear stabilization diagrams: in the most typical situation more
outputs than inputs (or references) are available, so a RMFD stabilization diagram encompasses a large
amount of polynomial orders (and thus lines in the diagram) for a certain number of poles; and it turns out
that the identified poles remain very stable when increasing the polynomial order.
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Fig. 10. LSCF algorithm—the damping coefficients for the two modes in Fig. 9: (a) first mode, 10 000 samples; (b) first mode, 20 000

samples; (c) second mode, 10 000 samples; (d) second mode, 20 000 samples. X -axis and key: as in Fig. 9. Y -axis: the range is about 2%.
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Appendix. State-space model for structural analysis

The use of state-space representations for modal analysis is well known [4,5,8]. For the sake of
completeness, we briefly recall the main equations and parameters. We assume that the behavior of the system
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can be described by a stationary linear dynamical system, and that, in the frequency range of interest, the input
forces can be modeled as a non-stationary white noise. Consequently, the relevant model is the matrix
differential system:

M €ZðtÞ þ C _ZðtÞ þ KZðtÞ ¼ BUðtÞ þ nðtÞ;

YðtÞ ¼ LZðtÞ þ �ðtÞ;

(
(34)

where t denotes continuous time, M;C;K are the mass, damping and stiffness matrices respectively; (high
dimensional) vector Z collects the displacements of the degrees of freedom of the structure; vector U contains
the known input, assumed to be de-correlated from both n and � (and thus not a feedback); the unknown
external force n is modeled as a stationary white noise4 with covariance matrix Qn; measurements are collected
in the (often, low dimensional) vector Y; matrix L states where the sensors are located and matrix B where the
forces are applied; and � is a white measurement noise, de-correlated from n (and U).

The mode-frequencies or eigenfrequencies denoted generically by m, and the mode-shapes or eigenvectors
denoted generically by cm, are solutions of

detðMm2 þ Cmþ KÞ ¼ 0; ðMm2 þ Cmþ KÞCm ¼ 0; cm ¼ LCm. (35)

Sampling the model in Eq. (34) at rate 1=t yields the discrete time model in state space form

Xk ¼ FXk�1 þDUk þ Vk;

Yk ¼ HXk�1 þ ek;

(
(36)

where the state, input and output are:

Xk ¼
ZðktÞ
_ZðktÞ

" #
; Uk ¼

0

UðktÞ

" #
; Yk ¼ YðktÞ, (37)

the state transition, the state input gain and the observation matrices are:

F ¼ eLt with L ¼
0 I

�M�1K �M�1C

� �
; D ¼

0 0

0 B

� �
; H ¼ ½L 0�

and where state noise Vk contains an unknown, Gaussian, zero-mean, white noise Vk, with covariance matrix:
Qk9EðVk VT

k Þ, where Eð:Þ denotes the expectation operator. Known input U, state X and observed output Y
have dimensions s; n ¼ 2m and r, respectively, with r (often much) smaller than n in practice. The assumptions
on the known input Uk and the unknown noises Vk and ek are further discussed in Section 2.2.

The eigenstructure ðl;FlÞ of the state transition matrix F results from:

detðF� lIÞ ¼ 0; FFl ¼ lFl (38)

and the modal parameters defined in Eq. (35) are then deduced as: etm ¼ l; cm ¼ jl9HFl. The frequency and
damping coefficient are recovered from a given eigenvalue l through:

Frequency ¼
a

2pt
; Damping ¼

100jbjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ; a ¼ arctan
ImðlÞ
ReðlÞ

���� ����; b ¼ ln jlj.

Eigenvectors are real if C ¼ aMþ bK, the simplest form of proportional damping. Because of the structure of
the state in Eq. (37), the l’s and jl’s are pairwise complex conjugate. It is assumed that the system has no
multiple eigenvalues. In addition, 0 is not an eigenvalue of state transition matrix F. The collection of pairs
ðl;jlÞ form a canonical parameterization5 of the pole part of the system in Eq. (36), referred to as the system
eigenstructure.
4The non-stationary case is addressed in Refs. [19,20].
5A parameterization invariant w.r.t. changes in the state basis.
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