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Abstract—Hybrid systems modelers have become the corner
stone of embedded system development, with Simulink a de facto
standard and Modelica a new player. Such tools still raise a
number of issues that, we believe, require more fundamental
understanding. In this paper we propose using non standard
analysis as a semantic domain for hybrid systems — non standard
analysis is an extension of classical analysis in which infinitesimals
(the ε and η in the celebrated generic sentence ∀ε∃η . . . in college
maths) can be manipulated as first class citizens. This allows us
to provide a denotational semantics and a constructive semantics
for hybrid systems, thus establishing simulation engines on a firm
mathematical basis. In passing, we cleanly separate the job of
the numerical analyst (solving differential equations) from that
of the computer scientist (generating execution schemes).1

I. INTRODUCTION

Hybrid systems modelers have become in the last two
decades the corner stone of complex embedded system de-
velopment, for computer controlled systems. Simulink2 has
become the de facto standard for physical system modeling
and simulation. Noticeably, by building on top of the success
of Simulink, The Mathworks was able to take over the market
of embedded systems design, for many sectors. This speaks for
itself regarding the importance of such tools. In this paper we
focus on general modelers, aimed at modeling and simulation
of any type of hybrid system and we refer the reader to [10] for
an overview of all tools related to hybrid systems analysis. Be-
sides Simulink with its state-based extension Stateflow, several
such hybrid systems modelers have been developed. Scicos3

is a freeware developed by Ramine Nikoukhah at INRIA [19],
[17]. Modelica4 is a non-proprietary, object-oriented, equation
based language to conveniently model complex multi-physics
systems. In Modelica, equations have no pre-defined causality.
Hybrid systems modelers raise a number of difficult issues:
• Since simulations use a single, global, solver, the choice

and tuning of the integration method is global to the
system. This may cause undesirable interactions between
sub-systems that seemingly should not interact [2].

• Zero-crossings, which trigger mode changes, can involve
a combination of complex operations whose scheduling
may be delicate.

• How discrete is the semantics of the discrete part of a
hybrid system modeler? Often, discrete and continuous

1This work was supported by the INRIA “Action d’envergure”
SYNCHRONICS.

2http://www.mathworks.com/products/simulink/
3http://www-rocq.inria.fr/scicos/
4http://www.modelica.org/

are not cleanly separated [2].
• What are the consequences for compilation of Modelica’s

“acausal” approach?
Overall, we think that, with the exception of [18], no funda-
mental answer has been provided to the difficulty raised by
the following justified although contradictory requirements:
(a) The semantic function, mapping a hybrid systems speci-

fication to its executable mathematical model (its opera-
tional semantics), should be statically defineable.

(b) Computers can only run according to discrete steps, hence
discretizing must be part of defining the semantic map.

(c) To achieve high computational quality with high flexibil-
ity, the discretization scheme must be fixed adaptively, at
run time [18].

To reconcile requirements (a)–(c), we first propose us-
ing non standard analysis as a semantic domain for hybrid
systems. Second, we develop a comprehensive constructive
semantics for hybrid systems. — the constructive semantics
was first proposed by G. Berry [7] as a mathematical theory
on which to build synchronous languages’ compilers.

The paper is organized as follows. Background on non
standard analysis is provided in section II. Our mathematical
formalism for hybrid systems specification is introduced in
section III, we call it SIMPLEHYBRID. Section IV is the core
of our paper; a denotational semantics is given based on non
standard analysis; then, a constructive semantics is provided.
Related work is analysed in section V. More results can be
found in the extended version of this paper [2].

II. BACKGROUND ON NON-STANDARD ANALYSIS

The key difficulty in reconciling requirements (a)–(c) is
to give proper semantics to the inherently continuous time
statement: ẏ = x. In non-standard analysis, this statement
means, by definition of the derivative of a function: ∀∂ ' 0,
∀t ∈ R+,

1
∂ (yt+∂ − yt) = xt, where expression “∂ ' 0” is a

non-standard expression that reads: “∂ is infinitesimal”.
Non-standard analysis has been proposed by Abraham

Robinson in the 60’s to allow handling explicitly “infinites-
imals” in analysis [1], [16]. Robinson’s approach is ax-
iomatic, in that he proposes enriching the basic ZFC (Zermelo-
Fraenkel) framework with three more axioms. There has
been much debate in the community of mathematicians as to
whether it is worth considering non-standard analysis instead
of sticking with the traditional one. We won’t enter this debate.
One important thing for us, however, is that it allows using

http://www.mathworks.com/products/simulink/
http://www-rocq.inria.fr/scicos/
http://www.modelica.org/


non-standard discretization of continuous dynamics “as if”
it was operational. To our surprise, such an idea is indeed
not new. Bliudze and Krob [9], [8] have used non-standard
analysis as a mathematical support for defining a system theory
for hybrid systems. The formalization they propose closely
mimics that of Turing machines. The introduction to non-
standard analysis in [8] is very pleasant and we take the
liberty to borrow it. This presentation was originally due to
Lindstrøm, see [15]. Its interest is that it does not require any
fancy axiomatic material but only makes use of the axiom of
choice — actually a weaker form of it.

The goal is to augment R∪ {±∞} by adding, to each x in
this set, a bunch of elements that are “infinitesimally close”
to it, call ?R the resulting set. Another requirement is that all
operations and relations defined on R should extend to ?R. A
first idea is to represent such additional numbers as convergent
sequences of reals.5 For example, elements infinitesimally
close to the real number zero are the sequences un = 1/n,
vn = 1/

√
n and wn = 1/n2. Observe that the above three

sequences can be ordered: vn > un > wn > 0. How can this
be made systematic? We explain it next.

A. Ultrafilters, ultraproducts, and the Transfer Principle

For I an arbitrary set, a filter F over I is a family of subsets
of I such that:

1) the empty set does not belong to F ,
2) P,Q ∈ F implies P ∩Q ∈ F , and
3) P ∈ F and P ⊂ Q ⊆ I implies Q ∈ F .

Consequently, F cannot contain both a set P and its comple-
ment P c. A filter that contains at least one of the two for any
subset P ⊆ I is called an ultra-filter. At this point we recall
Zorn’s lemma, known to be equivalent to the axiom of choice:

Lemma 1 (Zorn’s lemma): Any partially ordered set
(X,≤) such that any chain in X possesses an upper bound
has a maximal element.
It is easily seen that a filter F over I is an ultra-filter if
and only if it is maximal with respect to set inclusion. By
Zorn’s lemma, any filter F over I can be extended to an
ultra-filter over I . Now, if I is infinite, the family of sets F =
{P ⊆ I | P c is finite} is a free filter, meaning it contains no
finite set. It can thus be extended to a free ultra-filter over I:

Lemma 2: Any infinite set has a free ultra-filter.
Every free ultra-filter F over I uniquely defines, by setting
µ(P ) = if P ∈ F then 1 else 0, a finitely additive measure6

µ : 2I 7→ {0, 1} such that

µ(I) = 1 and µ(P ) = 0 whenever P is finite.

Now, fix an infinite set I and a finitely additive measure µ over
I as above. Let X be a set and consider the Cartesian product

5Indeed, the proposed construction bears some resemblance with the
construction of R as the set of equivalence classes of Cauchy sequences in Q
modulo the equivalence relation (un) ≈ (vn) iff limn→∞(un − vn) = 0.

6Observe that, as a consequence, µ cannot be sigma-additive (in contrast
to probability measures or Radon measures) in that it is not true that
µ(

S
n An) =

P
n µ(An) holds for an infinite denumerable sequence An of

pairwise disjoint subsets of N.

XI = (xi)i∈I . Say (xi) ∼ (x′i) iff µ{i ∈ I | xi 6= x′i} = 0.
Relation ∼ is an equivalence relation whose equivalence
classes are denoted by [xi] and we define

?X = XI/ ∼ (1)

X is naturally embedded into ?X by mapping every x ∈ X
to the constant tuple such that xi = x for every i ∈ I .
Any algebraic structure over X (group, ring, field) carries
over to ?X by almost pointwise extension. In particular, if
[xi] 6= 0, meaning that µ{i | xi = 0} = 0 we can define
its inverse [xi]−1 by taking yi = x−1

i if xi 6= 0 and yi = 0
otherwise. This construction yields µ{i | yixi = 1} = 1,
whence [yi][xi] = 1 in ?X. The existence of an inverse for any
non-zero element of a ring is indeed stated by the following
first order formula: ∀x(x = 0 ∨ ∃y(xy = 1)). More generally:

Lemma 3 (Transfer Principle): Every first order formula is
true over ?X iff it is true over X.

B. The sets ?R and ?N of non-standard reals and integers

We just apply the above general construction to X = R and
I = N and we denote by ?R the result, which is then a field
according to the transfer principle. By the same principle, ?R
is totally ordered by [un] ≤ [vn] iff µ{n | vn > un} = 0.
For u an arbitrary sequence of real numbers, let lim(u) ⊆
R =def R ∪ {−∞,+∞} denote the (possibly empty) set of
all limit points of sequence u: for x ∈ lim(u), let vk = unk

be a subsequence of u converging to x. If lim(u) 6= ∅,
there exists exactly one limit point x ∈ lim(u) such that
µ{nk} = 1, and any other limit point yields a µ-measure 0
for the corresponding subsequence.7 Call x the standard part
of [xn] and we write x = st([xn]). Infinite x ∈ ?R have no
standard part in R. It is also of interest to apply the general
construction (1) to X = I = N, which results in the set ?N of
non-standard integers. ?N differs from N by the addition of
infinite integers, which are equivalence classes of sequences
of integers whose essential limit is +∞.

C. Integrals and differential equations

Any sequence (gn) of functions gn : R 7→ R pointwise
defines a function [gn] : ?R 7→ ?R by setting

[gn]([xn]) = [gn(xn)]

A function ?R → ?R which can be obtained in this way is
called internal. Properties of and operations on ordinary func-
tions extend pointwise to internal functions of ?R→ ?R. For
g : R→ R, its non-standard version is the internal function
?g = [g, g, g, . . .]. The same notions apply to sets. An internal
set A = [An] is called hyperfinite if µ{n | An finite} = 1; the
cardinal |A| of A is defined as [|An|].

Now, consider an infinite number N ∈ ?N and the set

T =
{

0, 1
N ,

2
N ,

3
N , . . .

N−1
N , 1

}
(2)

7So far this was a bit of hand waving. To prove this, let x = sup{x ∈ R |
[x] ≤ [xn]}, where [x] denotes the constant sequence equal to x. Since [xn]
is finite, x exists and we only need to show that [xn] − [x] is infinitesimal.
If not, then there exists y ∈ R, y > 0 such that either [y] < [xn]− [x] or
[y] < [x]− [xn], a contradiction. The unicity of x is clear.



By definition, if N = [Nn], then T = [Tn] with

Tn =
{

0, 1
Nn
, 2

Nn
, 3

Nn
, . . . Nn−1

Nn
, 1
}

hence |T | = [|Tn|] = [Nn + 1] = N + 1. Next, consider an
internal function g = [gn] and a hyperfinite set A = [An]. We
can then define the sum of g over A by∑

a∈A g(a) =def

[∑
a∈An

gn(a)
]

If t is as above and f : R→ R is a standard function, we get∑
t∈T

1
N

?f(t) =
[∑

t∈Tn

1
Nn
f(tn)

]
(3)

Now, f continuous implies
∑

t∈Tn

1
Nn
f(tn)→

∫ 1

0
f(t)dt, so,∫ 1

0
f(t)dt = st

(∑
t∈T

1
N

?f(t)
)

(4)

Under the same assumptions, for any t ∈ [0, 1],∫ t

0
f(u)du = st

(∑
u∈T,u≤t

1
N

?f(t)
)

(5)

Now, consider the ODE with initial condition

ẋ = f(x, t), x(0) = x0 (6)

where f : Rm × [0, 1]→ Rm is bounded and continuous.
Rewriting (6) in integral form x(t) = x0 +

∫ t

0
f(x(u), u)du

and then using (5), we get

x(t) = st
(
x0 +

∑
u∈T,u≤t

1
N

?f(x(u), u)
)

(7)

Set in (7) ∂ = 1/N which is > 0 and infinitesimal, so that
T = {tn = n∂ | n = 0, . . . , N}. Then, the expression in
parentheses at the right hand side of (7) is the piecewise
constant right continuous function ?x(t), t ∈ [0, 1] such that,
for n = 1, . . . , N :{

?x(tn) = ?x(tn−1) + ∂ × f(?x(tn−1), tn−1)
?x(t0) = x0

(8)

Formula (8) can be seen as a non-standard operational se-
mantics for the ODE (6). In particular, the following holds:

Principle 1 (Standardisation Principle): Non-standard dy-
namical system (8) can always be considered, for any non-
standard function f : ?R 7→ ?R. If, however, f is internal and
ODE (6) has a unique solution, then (7) holds, meaning that
the standardisation of dynamical system (8) is solution of (6).

D. Non-Standard Analysis as a semantic domain
Using non-standard analysis has the following advantages:
1) We will be able to use a time set T that is both dense

in R and discrete in that each instant in T possesses a
unique previous and next instant — e.g., in formula (8).

2) Since T is discrete, we can specify dynamical systems
over T in full generality, without the need for referring
to any kind of smoothness condition — e.g., as in (8).

3) Did the problem with the smoothness condition miracu-
lously disappear? Not quite so. But it is postponed to the
very end, at run time, thanks to Standardisation Principle
1: if the considered hybrid system has a unique solution
in the usual mathematical sense, then the standardisation
of our operational semantics does compute it.

III. THE SIMPLEHYBRID FORMALISM8

In this section we develop a small “mathematical language”
for hybrid systems, we call it SIMPLEHYBRID. Primitives of
SIMPLEHYBRID are equations of the following form:

Eq1 : y = f(x, ẋ)
Eq2 : y = last (x)
Eq3 : τ = up(z)
Eq4 : y = pre (x) init y0
Eq5 : u = [z] every [τ ] init u0

Eq6 : ẏ = x init y0 resetu

(9)

In (9) symbols u, x, y, z denote variables taken from an
underlying set X of variables, and symbol τ denotes a clock
variable taken from an underlying set T of clock variables.
Symbols y0 and u0 denote values. Finally, dotted variables ẋ
and ẏ indicate derivatives. Hybrid systems are specified via
conjunctions of equations of the form Eq1–Eq6.

In the following we give an informal explanation of the
above primitives, without expliciting the needed continuity
or smoothness assumptions for them to make sense. The
corresponding precise meaning will be given in the next
section. In the sequel, a clock is a subset of R+. We identify
clock variable τ with the boolean predicate it defines:

τt = if t ∈ τ then T else F (10)

Eq1 means ∀t ∈ R : yt = f(xt, ẋt).
Eq2 means yt = xt− =def lims↗t xs, i.e., yt is the left-limit

of xs when s approaches t from below.
Eq3 defines the clock τ such that, using convention (10):

τt = [zt− < 0] ∧ [zt ≥ 0]. Thus τ selects the instants
t at which zt crosses zero from below, we call such a
clock a zero-crossing. We will need to consider tuples
[τ ] =def (τ1 . . . τk) of zero-crossings.9

For each signal x, we assume a clock τx, the clock of x, such
that x is guaranteed constant on the complement of τx.

Definition 1: A signal is typed discrete if either it has been
declared so, or if its clock is some zero-crossing. Otherwise it
is typed continuous.
The following operators define or involve discrete signals:
Eq4 assumes x discrete and defines y as the delayed version

of x by setting τy = τx and the nth new value for y equal
to the n−1st one of x; an initial condition y0 is provided.

Eq5 For u a signal, u0 ∈ Rn a value, and [τ ] = (τ1 . . . τk) and
[z] = (z1 . . . zk) two matching10 tuples of zero-crossings
and signals, Eq5 states that u has clock τ =

⋃k
i=1 τi —

hence u is discrete — and, for every t ∈ τ , ut = zt

holds, and ut = u0 for t < t1, the first instant of τ . Note
that we do not require that z is discrete.

Eq6 For y, x two signals, y0 a value, and u a discrete signal,
Eq6 states that ODE ẏt = xt holds with initial condition

8The term “simple” refers to the fact that DAE are not supported. The study
of formalisms à la Modelica is deferred to a subsequent paper.

9The use of brackets in [τ ] is not to be confused with its use in Section II.
10Say that two tuples (u1 . . . uk) and (v1 . . . vl) are matching if they

possess identical number of components: k = l.



y0 and this ODE is reset to the value given by u at each
instant of the discrete clock of u.

As said before, hybrid systems are specified in SIMPLEHY-
BRID via sets of equations of the form Eq1–Eq6, taken con-
junctively. For example, composing ODE Eq6 with statement
x = f(y, v) of the form Eq1, and reset Eq5, yields the ODE

ẏ = f(y, v) init y0 reset [z] every [τ ] (11)

which means that ODE ẏt = f(yt, vt) holds with initial
condition y0 and this ODE is reset to a value given by zi

each time zero-crossing τi occurs. It is easily checked that
generic form (11) for a SIMPLEHYBRID equation is closed
under parallel composition, and that SIMPLEHYBRID allows
to encode hybrid automata with their locations [2].

IV. A SEMANTICS OF SIMPLEHYBRID

Throughout this section we fix a basic infinitesimal base
step ∂. Following [9], as our universal time base we replace
R+ by the non-standard set

T = {tn = n∂ | n ∈ ?N}

For t ∈ T, define
•t = max {s | s ∈ T, s < t}
t• = min {s | s ∈ T, s > t} (12)

We thus have •tn = tn−1 and t•n = tn+1. The key fact about
T is that for every u ∈ R+ there exists a unique t ∈ T such
that •t < u ≤ t and t − u is infinitesimal. Thus T is, at the
same time, dense in R+, and can still be handled as if it was
discrete and totally ordered.

A. Non-standard semantics

We assume an underlying set T of clock variables. Elements
and subsets of T are generically denoted by τ and T , respec-
tively. We identify τ with the boolean predicate it defines,
see (10). We assume an underlying set X of variables and,
a domain Dx for every x ∈ X . For X ⊆ X finite, a state
over X is an element s ∈ DX , where DX =

∏
x∈X Dx and

a behaviour over X is an element σ ∈ T → DX . We write
xt instead of σ → σ(t, x) and τt instead of σ → σ(t, τ).

A hybrid system is a tuple S = (X,T,Σ), where X ⊆ X
and T ⊆ T are finite and Σ is a set of behaviours over X∪T .
For Y ⊇ X ∪ T , we can lift Σ to Y , written Σ↑Y , by taking
all behaviours over Y whose projection over X ∪ T are in Σ.
Then, for Si = (Xi, Ti,Σi), i = 1, 2, we define the parallel
composition

S1 ‖S2 = (X, T, Σ1
↑X∪T ∩ Σ2

↑X∪T ), (13)

where X = X1 ∪X2 and T = T1 ∪ T2. The hybrid systems
we shall consider are the parallel composition of a finite set
of statements of one of the forms Eq1–Eq6. Call Clocks(S)
the (finite) set of all discrete clock variables involved in the
specification of S. A clock configuration for S is a map

κ : Clocks(S) 7→ {F, T}, (14)

assigning a truth value to each discrete clock variable of S.
Clock configurations are used to indicate the presence/absence
of each discrete clock of S at a given instant t. A clock
configuration κ for S is called reachable if there exists a
behavior σ and an instant t such that σ(t)(T ) = κ(T )
for every T ∈ Clocks(S). The non-standard semantics of
SIMPLEHYBRID is given in table I, second column.

B. Constructive semantics

As for any synchronous language, the constructive seman-
tics [7], [4] formalizes how the different actions should be
scheduled at a considered instant.

Scheduling constraints: Let ⊥ be a special value not be-
longing to any domain Dx, to be interpreted as “not evaluated
yet”.11 Define, for any x ∈ X , D⊥x = Dx∪{⊥}. Write x = >
to mean that x 6= ⊥. Let B be the following scheduling
constraint relating any two variables u and v with domains
D⊥u and D⊥v , respectively:

uB v =def [u = > ∨ v = ⊥] (15)

that is, u B v means [v = > ⇒ u = >]. It formalizes that
“v cannot be evaluated strictly before u”. In particular, for τ
any clock,

∀t ∈ τ ⇒ xt B yt =def [xt = >] ∨ [yt = ⊥] ∨ [τt = F]

where τt is defined in (10). Observe that statement v = f(u),
where f is a function, abstracts as u B v since v can be
substituted by its evaluation f(u) everywhere. Relation B
captures causality constraints within a system of equations.

The constructive semantics is obtained by abstracting, in
the non-standard semantics (second column of table I), any
statement of the form yt = exp where expression exp involves
variables xs, us, τs for s = •t, t, t•, by the scheduling con-
straints xs B yt, us B yt, or τs B yt, respectively. For example,
yt = f(xt) is abstracted as xt B yt.

Observe that the semantics of τ = up(z) corresponds to
a “weak preemption” in that the change in the sign of z
at instant t results in emitting a zero-crossing at the next
instant t•. Hence, no clock occurs on any consequent part of
a zero-time causality constraint. Therefore, preconditions such
as “∀t ∈ τ ⇒” in the mid column of table I do not impair the
validity of the above mentioned abstractions.

Pre- and post-variables: In writing the constructive seman-
tics, we would like to abstract away dummy time index t. To
this end, for each variable x ∈ X of the considered system
S, we augment X with the two auxiliary variables •x and
x•, such that •xt = x•t and x•t = xt• hold for every t.
Using these auxiliary variables and clock variables, time index
t can be abstracted away from the constructive semantics. As
an example, the constructive semantics for statement 2 writes
as •x B y, and the constructive semantics for Eq5 writes as

11This notation deviates from the historically established use of symbol ⊥
in synchronous languages to denote absence. Absence of a signal in a reaction
is a well defined status that is the result of evaluating the considered reaction.
“Absence” and “not evaluated yet” should therefore not be confused.



statement S non-standard semantics of S [[S]]: constructive semantics

Eq1 : y = f(x, ẋ) ∀t ∈ R+ ⇒ yt = f
“
xt,

xt−x•t
∂

”
on τy : xB y

Eq2 : y = last (x) ∀t ∈ R+ ⇒ yt = x•t on τy : •xB y

Eq3 : τ = up(z) τt• = [z•t < 0] ∧ [zt ≥ 0] on τy : z B τ•

Eq4 : y = pre (x) init y0

τy = τx discrete
∀t < min(τy) ⇒ yt = y0

∀t ∈ τy ⇒ yt = x•t

on τy : τy = τx discrete
on τy : •xB y

Eq5 : u = [z] every [τ ] init u0

τu = τ discrete
∀t < min(

S
i τui) ⇒ ut = u0

∀t ∈ τui \ (
S

j<i τuj ) ⇒ ut = zi,t

on [τ ] : [z] B u

Eq6 : ẏ = x init y0 reset u
∀t 6∈ τu ⇒ yt = y•t + ∂ × x•t

∀t ∈ τu ⇒ yt = ut
on τu then uB y else •xB y

Eq7 : S1 ‖S2

S1 = (X1,Σ1)
S2 = (X2,Σ2)

`
X,Σ1

↑X ∩ Σ2
↑X´ , X = X1 ∪X2 [[S1]] ‖ [[S2]]

Table I
Non-standard semantics (mid column) and constructive semantics (right column) of SIMPLEHYBRID.

“on τu then uB y else •xB y”. Using the above notations,
the constructive semantics is given in table I, last column.

Avoiding causality circuits: Using the above abstraction, for
each given clock configuration of S, the transitive closure of
relation B is a pre-order on X — by abuse of notation, we
call it also B. If S is such that B is a partial order for any
reachable clock configuration (see (14) and below), this means
that no causality circuit occurs in S and the different variables
can be evaluated according to any order compatible with B.

Since no clock occurs on any consequent part of a zero-
time causality constraint, the only possible cause of circuits in
relation B is via sets of statements of the form Eq1. We thus
formally justify here the rule that no delay-free, derivative-
free, data flow circuit should exist in the considered program.
If this condition is satisfied, topological sorting yields the due
scheduling. We assume this condition to be in force in the
remainder of this section.

Single assignment condition: Say that system S obeys the
single assignment condition if no variable of S sits on the left
hand side of two or more equations. The following holds:

Lemma 4: If S possesses no causality circuit and obeys
the single assignment condition, then it is deterministic and
partial order B at each clock configuration specifies all correct
schedulings for the execution of S.

V. RELATED WORK

Studies on hybrid systems modelers from a semantics point
of view are not so numerous. We discuss the few we consider

relevant for comparison. First of all, we recall the legacy
work [3]. In fact, the agenda presented in that paper closely
resembles the one we develop here. Except that, in [3] the
tool of non-standard analysis was not used. Consequently, [3]
suffers from some hand waving, as a careful reader can notice.

Perhaps the closest attempt similar to ours is the
work of the Ptolemy group, by Ed Lee and Haiyang
Zheng [13], [14], which studies the handling of discon-
tinuities in hybrid systems modelers. Consider the system
ẋ = f(x, u) reset v every up(g(x) ≤ 0). Then, in handling
this resetting mechanism, the following landmark values for
x must be considered: 1/ the first x where g(x) ≤ 0 holds
in the ODE; and 2/ the resetting value x′ = h(v) at the
same instant. From the mathematical viewpoint, the two values
for x occur at the same time, but they are clearly causally
ordered. Following the idea of tagged signals [12], this was
solved in [13], [14] by tagging events with an extended
time index taken from index set R+ × N equipped with the
lexicographic order, and the above two values for x would
get indexed as xt,0 and xt,1 = x′, respectively. Tag set
R+ × N is referred by the authors as the super-dense time.
This type of multi-dimensional time set was considered earlier
for discrete time systems models in the area of synchronous
languages [5], [6]. Our approach avoids using super-dense time
because non-standard index set T is both discrete and dense.
Existence of previous instant •t and next instant t• was used
in table I, replacing the multi-dimensional instants (t, 0) and
(t, 1) of [13], [14]. On another aspect, the work [13], [14]
is made complicated by issues of smoothness, Lipschitzness,



existence and uniqueness of solutions, Zenoness, etc (see
section 6 of [13] on “Ideal Sover Semantics” and section 7
of [14] on “Continuous Time Models”). In our approach those
issues do not disappear from the whole process, but they are,
sort of, postponed to run time, as wished in our introduction.

The work performed by P. Mosterman and his co-workers
at The Mathworks [18] is also very interesting, in its attempt
to establish the Simulink modeler on a solid semantic basis.
The contribution of the paper is to show how (a restricted
class of) variable step solvers can be given a functional stream
semantics [11]. To achieve this, the class of solvers is first
restricted to those relying on explicit schemes, as implicit ones
cannot be put in explicit functional form. The second difficulty
consists in the use of iterative solving in order to on-line adapt
the variable step size. This mechanism, again, does not have
a functional shape since several successive integrations with
different step sizes are compared, for a same time interval,
in order to select the appropriate step size. [18] proposes to
re-cast the above procedure to a functional form by replacing
a repeated integration with smaller step size, by its increment
with respect to the previous integration. If explicit schemes are
used, then an explicit form for this increment can be found and
added to the previous integration. Observe that this technique
requires using the mechanism of super-dense time since a same
time interval is processed several times until adequate step
size is found. While this indeed provides a hybrid systems
modeler with a stream semantics, this semantics is extremely
complex since it explicits the discretization method — in
particular, changing the latter changes the semantics. This
approach forbids using implicit schemes, although they are
valuable from the numerical analysis point of view. We also
believe that this method cannot easily support the kind of
clock configuration dependent causality analysis such as the
one provided by our constructive semantics.

VI. CONCLUSION

We have proposed a novel approach to give a semantics to
hybrid systems modelers. In doing so, we wanted:
• To keep the choice of integration method totally free;
• To ensure that hybrid systems are a conservative exten-

sion of discrete time systems;
• To give semantic support for the following:

– Scheduling the actions triggered by zero-crossings;
– Using typing to separate discrete from continuous;
– Rejecting programs with causality circuits;

More objectives are addressed in [2]. Achieving these objec-
tives was made possible thanks to the use of non-standard
analysis as our semantic domain. The key point is that non-
standard semantics allows cleanly separating the tasks of
the computer scientist (answering the above questions) from
that of the numerical analyst (tuning the solvers). Also, we
believe that non-standard semantics is not a fancy thing for
math addicts. It is rather a very natural way of viewing
continuous time and hybrid systems from the syntactic side,
as the computer scientist usually likes. While the first author

was aware of non-standard analysis since the mid eighties,
it is only the presentation [15] by Lindstrøm, as reported
in [8], that allowed the authors to become familiar with the
subject. In [2] we develop a small single-assignment language
for hybrid systems modelers, with minimal type system to
properly manage the discrete/continuous separation.

Next steps are the study of DAE compliant hybrid systems
modelers, such as Modelica, with the same objectives.
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