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Abstract. Developing wide-area distributed applications requires jointly
analyzing functional and Quality of Service (QoS) aspects, such as timing
properties. Labelled transition systems and sequential trace semantics -
the common semantic domains - do not facilitate this kind of analysis
because they do not precisely express the causal relationships between
events. Asymmetric Event Structures (AES) provide an explicit repre-
sentation of the causal dependencies between events in the execution of a
system and allow for an elegant coding of preemption. Event structures
are, however, difficult to construct compositionally, because they cannot
easily represent fragments of a computation. The heaps we develop here
allow for such a representation, and easily generate AES. In this paper,
we develop a partial-order semantics in terms of heaps, for Orc, an or-
chestration language used to describe distributed computations over the
internet. We briefly show how Orc, and this new semantics, are used for
QoS studies of wide area orchestrations.

1 Introduction

Orchestrating Web services consists of a combination of different activities.
A primary concern is to ensure that the expected functionality is indeed

correctly implemented. This requires semantic studies for the formalisms used in
specifying the functional aspect of Web service orchestrations. Examples of such
studies include the translation of the industrial standard BPEL into WorkFlow
nets [18] (a special subclass of Petri nets) or the pi-calculus [14], from which
analysis techniques and tools for BPEL [13,2] were developed.

Another important, yet much less addressed task consists in ensuring that
the Web service orchestration offers the due Quality of Service (QoS). QoS pa-
rameters are not firmly established, but they typically include response time
(latency), availability, maximum allowed query rate (throughput), and security.
The Web Service Level Agreement (WSLA) framework [11] is a standard pro-
posed by IBM for QoS parameters in Web Services. When applied to the man-
agement of OEM/supplier cooperations, orchestrations must make precise the

? This work was partially funded by the ANR national research program DOTS (ANR-
06-SETI-003), DocFlow (ANR-06-MDCA-005) and the project CREATE ActivDoc.



duties and responsibilities of the different actors in such chains, via contracts [5].
Having contracts with each subcontractor, the orchestration can establish the
overall contract with its customers. This process is called contract composition.

We believe there is a need for semantic studies underpinning the design of
Web services orchestrations in all its aspects: functional, QoS, and contracts,
including contract composition. Developing such a holistic approach can become
quickly cumbersome if rich formalisms for describing Web services orchestra-
tions are considered, such as, e.g., BPEL. The functional semantics of BPEL is
in itself complex, due to the large number of features offered. Extending such
semantics to encompass QoS aspects can be cumbersome. Orc [12] has been re-
cently proposed as a small and elegant language for wide area computing and
Web services orchestrations. While keeping small, it offers the main features
required by wide area computing, namely: service call, parallel and sequential
composition, preemption, and recursion. Orc has been successfully used to model
typical workflow patterns defined by Van der Aalst et al [1,8].

This paper proposes the foundations for an Orc based design of Web services
orchestrations, including both functional and QoS aspects, and supporting con-
tract composition. An interleaving semantics, both operational and denotational,
was proposed for Orc in [12]. To prepare for a combined functional/QoS use, we
propose in this paper a partial order semantics that keeps track of causalities
and concurrency. This allows us to address all the aspects of QoS where causal-
ity and concurrency relating the different site calls matters. For example, if an
orchestration causally depends on a given site call, failure of this site to deliver
proper service causes failure of the orchestration. Another example is that of la-
tency: causal dependencies and concurrency between site calls and other events
are reflected into the dates of completion of these different events. Companion
paper [16] details the use of this semantics for QoS studies and contract composi-
tion, and describes the resulting TOrQuE tool (Tool for Orchestration Quality
of Service Evaluation).

The paper is organized as follows. Section 2 briefly introduces Orc and its
operational semantics. Asymmetric event structures and heap semantics of Orc
are described in Section 3, where its use in QoS studies is sketched. Related work
is given in Section 4.

2 Orc Overview

An Orc program consists of a set of definitions and a goal expression which is to
be evaluated. Orc assumes that basic services, like sequential computation and
data manipulation, are implemented by primitive sites. Orc provides constructs
to orchestrate the concurrent invocation of sites.

The syntax of Orc is given in the upper portion of figure 1. Orc defines three
basic operators. For Orc expressions f, g, “f | g” executes f and g in parallel.
“f >x> g” evaluates f first and for every value returned by f , a new instance
of g is launched with variable x assigned to this return value. “f where x :∈ g”
executes f and g in parallel. When g returns its first value, x is assigned to this



value and the computation of g is terminated. All site calls in f having x as a
parameter are blocked till x is defined (i.e, till g returns its first value).

f, g, h ∈ Expression ::= M(p) | E(p) | f
�
g | f >x> g | f where x :∈ g | ?k

p ∈ Actual ::= x | v
Definition ::= E(x) ∆ f

k fresh

M(v)
Mk(v)
−−−−→ ?k

(SiteCall)
f

a
−→ f ′ a 6= !v

f >x> g
a
−→ f ′ >x> g

(Seq1N)

?k
k?v
−−→ let(v) (SiteRet)

f
!v
−→ f ′

f >x> g
τ
−→ (f ′ >x> g) | [v/x].g

(Seq1V)

let(v)
!v
−→ 0 (Let)

f
a
−→ f ′

f where x :∈ g
a
−→ f ′

where x :∈ g
(Asym1N)

f
a
−→ f ′

f | g
a
−→ f ′ | g

(Sym1)
g

!v
−→ g′

f where x :∈ g
τ
−→ [v/x].f

(Asym1V)

g
a
−→ g′

f | g
a
−→ f | g′

(Sym2)
g

a
−→ g′ a 6= !v

f where x :∈ g
a
−→ f where x :∈ g′

(Asym2)

JE(x) ∆ f K ∈ D

E(p)
τ
−→ [p/x].f

(Def)

Fig. 1. The Syntax (top) Operational Semantics (bottom) of Orc

The operational semantics of Orc is given in Figure 1 [12], using SOS rules.
An Orc expression f can perform action a and transform itself into the expression
f ′, which is denoted by the transition f

a
→ f ′. The actions A and values V are

described by the following grammar:

a ∈ A ::= Mk(v) | k?v | !v | τ | τv

v ∈ V ::= x | vk | v

The actions A are the transition labels of the Orc operational semantics, except
for the τv action which is an intermediary action needed for creating heaps. The
x are variable names. They are placeholders for the value which will eventually
replace that variable in the expression. The return values vk are indexed by
call handles. They are placeholders for the values returned from site calls. The
ground values v are the constant values which are always available.

Observe the following. Due to rule (Def), recursive definitions are possible
in Orc. Also, rule (Asym1V) exhibits termination of g upon its first publication.



The CarOnLine toy example. CarOnLine is a composite service for buying
cars online, together with credit and insurance. A simplified schematic descrip-
tion of the service is given in figure 2. On receiving a car model as an input

Plus
AllCredit

request

response

sync

GarageA GarageB

Min

GoldInsureAllCredit

Min

InsurePlus InsureAll

Min

noyes
min > limit

Fig. 2. A simplified view of the CarOnLine orchestration. The calls to GarageA
and GarageB are guarded by a timer that returns a “Fault” message at timeout.

query, the CarOnLine service first sends parallel requests to two car dealers
(GarageA,GarageB), getting quotations for the car. We guard the calls to each
garage by a timer, which kills the waiting when timeout occurs. The best offer
(minimum price) is selected and credit and insurances are parallely found for
the offer. Two banks (AllCredit,AllCreditPlus) are queried for credit rates and the
one offering a lower rate is chosen. For insurance, if the car price of the best
offer is greater than a certain limit, any insurance offer by service GoldInsure is
accepted. If not, two services (InsurePlus,InsureAll) are parallely called and the
one offering the lower insurance rate is chosen. In the end, the (car-price,credit-

rate,insurance-rate) tuple is returned to the requestor.

The Orc program for CarOnLine is given in Figure 3. CarPrice parallelly
calls GarageA and GarageB for quotations. Calls to these garages are guarded
by a timer site Timer which returns a fault value T time units after the calls
are made. The let site simply returns the values of its arguments—sites can
only execute when all their parameters are defined and thus can be used to
synchronize parallel threads. The value returned by CarPrice (here the variable
p) is passed as argument to GetCredit and GetInsur which parallelly find credit
and insurance rates for the price.



CarOnline(car) =def CarPrice(car) >p> let(p, c, r)
where c :∈ GetCredit(p)

r :∈ GetInsur(p)

CarPrice(car) =def {GuardedMin(p1, p2)
where p1 :∈ GarageA(car) | T imer(T )

p2 :∈ GarageB(car) | T imer(T )}
>p> {if (p 6= Fault)) � let(p)}

GetCredit(p) =def Min(r1, r2)
where r1 :∈ AllCredit(p)

r2 :∈ AllCreditP lus(p)

GetInsur(p) =def {if (p ≥ limit) � GoldInsure(p)}
|

{if (p ≤ limit) � Min(ip, ia)
where ip :∈ InsureP lus(p)

ia :∈ InsureAll(p)}

Fig. 3. CarOnLine in Orc. GuardedMin takes the minimum of the values received
before timeout and otherwise returns Fault.

3 Event structure semantics of Orc

In this section we describe our partial order semantics. We first recall asymmetric
event structures, and then introduce heaps.

3.1 Asymmetric Event Structures

Following [19,3], an Asymmetric Event Structure (AES) is a model of computa-
tion consisting of a set of events and two associated binary relations, the causality

relation � and the asymmetric conflict relation ↗. If for events e and e′, e � e′

holds, then e must occur before e′ can occur. If e ↗ e′ holds, then the occurrence
of e′ preempts the occurrence of e in the future. Thus if both e and e′ occur in
an execution, e necessarily happens before e′. In this sense, ↗ can also be seen
as a “weak causality” relation.

Formally, an AES is a tuple G = (E,�,↗), where E is a set of events, and
� and ↗ are the causality and asymmetric conflict binary relations over E,
satisfying the following conditions:

1. � is a partial order, and bec =def {e′ ∈ E | e′ � e} is finite;
2. ∀e, e′ ∈ E:

e ≺ e′ ⇒ e ↗ e′ (1)

the restriction of ↗ to bec is acyclic (2)

#a({e, e′}) ⇒ e ↗ e′ (3)

where #a is the conflict relation, recursively defined by:

e0 ↗ e1 ↗ . . . en ↗ e0 ⇒ #a({e0, . . . , en}) (4)

[#a(A ∪ {e})] ∧ [e � e′] ⇒ #a(A ∪ {e′}) (5)



By abuse of notation, we write e#af to mean #a({e, f}). Condition (5) ensures
that a conflict with e is inherited by all the events caused by e. For G = (E,�,↗)
an AES, a configuration of G is a set κ ⊆ E of events such that

1. the restriction of ↗ to κ is well-founded;
2. {e′ ∈ κ | e′ ↗ e} is finite for every e ∈ κ;
3. κ is left-closed with respect to �, i.e., ∀e ∈ κ, e′ ∈ E, e′ � e implies e′ ∈ κ.

For our coding of Orc, we will need to label the events. Thus we shall consider
Labeled AES (LAES), which are tuples of the form G = (E,�,↗, λ), where
λ : E 7→ Λ, (Λ is a set of labels) is the labeling (partial) function.

Discussion. Although event structures are a convenient semantic domain for
complete programs, they cannot represent fragments thereof, which arise natu-
rally when constructing the behavior of a program from its sub-parts. By offering
the additional concept of place, Petri nets and their extensions make composition
and structural translation easier. Explicit encoding of places allows one fragment
to depend upon resources supplied by another fragment. Petri nets with read
arcs also allow us to elegantly code the preemption behaviour in Orc’s where
operator: the first “publish” event prevents all subsequent events from occur-
ing. To bypass the nontrivial construction of Petri nets supporting recursion, we
chose to generate directly a particular representation of unfoldings of nets with
read arcs, which we call heaps. Heaps can then be easily translated into event
structures and allow for easy coding into software.

3.2 Heaps

Heaps are sets of labeled events coded in a particular form, following an original
idea of Esparza et al. [10]. A heap event possesses a label—the Orc action it
represents—and is characterized by the conditions that enable its occurrence.
These enabling conditions can either be consumed by the event or can be read
and not consumed. Each condition, in turn, refers to the event that created it.
Marks are used to distinguish different conditions created by the same event.

More precisely, we are given two underlying sets A of labels and M of marks,
and a special element ? ∈ A, to be interpreted as the initialization action. Sets
E of all events and C of all conditions are inductively defined as follows:

– ⊥ = (∅, ∅, ?) ∈ E ;
– if f ∈ E and µ ∈ A, then c = (f, µ) ∈ C; µ is the mark of c;
– for c and c′ two subsets of C such that c ∩ c′ = ∅ and c ∪ c′ 6= ∅, then

e = (c, c′, a) ∈ E ; a is the label of e; •e =def c and e =def c′ are the set of
conditions consumed and read by e, and •e =def

•e ∪ e is the preset of e.

Definition 1. A heap is a tuple (E, C, S, A, M), where A ⊆ A, M ⊆ M, E ⊆
S ⊆ E, and C ⊆ C are such that ⊥ ∈ E and

e = (c, c′, a) ∈ E ⇒ c ∪ c′ ⊆ C and a ∈ A

c = (f, µ) ∈ C ⇒ f ∈ S and µ ∈ M



E is the set of events of the heap and S is its support. For f ∈ S, set f • =def

{c ∈ C | ∃µ ∈ M, c = (f, µ)}. Define the set of minimal conditions of E to be

minConds(E) =def {c ∈ C | c = (f, µ) for f 6∈ E}.

We identify the heap with its set of events E. Support S allows for conditions
to be caused by events not belonging to E. With this non classical notion of
support, heaps can model program fragments (unlike event structures).

Given a heap E we define the following relations between events in E (su-
perscript ∗ denotes transitive closure):

�E = / ∗ where / = {(f, e) | f• ∩ •e 6= ∅} ∪ {(e, e) | e ∈ E} (6)

↗′

E = ≺E ∪

{

(f, e)

∣

∣

∣

∣

∃e′ ∈ E, e1 :

[

(e′, -) ∈ •f ∩ •e1

∧ e1 �E e

]}

↗E = ↗′

E ∪ {(e, f) | e#a
Ef} (7)

where event variables e, e1 and f range over E, and the symmetric conflict re-
lation #a

E is deduced from ↗′

E via (4,5). The reason for the two-step definition
of ↗E is that the pair (�E ,↗′

E) satisfies conditions (1) and (2), but not nec-
essarily (3). The latter is enforced by second step in the definition, from ↗′

E to
↗E . Next, equip E with a labeling map

αE(e) =def a (8)

where event e = (•e, e, a). We shall denote by

min(E) = {e ∈ E | ∀f ∈ E : f �E e ⇒ f = e} (9)

the set of events e ∈ E that are minimal for the relation �E. For readability, we
omit the subscript E in the sequel. In the send heap in Figure 4, e � f1 holds,
where e is the event labelled Mk1 or k1?v1. Also e ↗ f1 holds for all events e in
the heap (except f1).

Definition 2. A configuration of a heap E is any finite subset κ of E with the

following properties:

1. the restriction of ↗ to κ is well-founded;
2. {e′ ∈ κ | e′ ↗ e} is finite for every e ∈ κ;
3. κ is left-closed with respect to �, i.e., ∀e ∈ κ, e′ ∈ E, e′ � e implies e′ ∈ κ;
4. for each event e belonging to κ, if f • ∩ •e 6= ∅ then f ∈ E.

Heap configurations represent self-enabled executions. By condition 3, condition
4 is equivalent to f ∈ κ. Conditions 1–3 coincide with those involved in the
definition of configurations for AES. Condition 4 is new; it amounts to requiring
that κ needs no external event from the support, for its enabling. Let Configs(E)
be the set of all configurations of heap E.

One may expect (E,�,↗, α) to be an LAES. This is not true in general. The
reason is that heaps can represent program fragments, whereas LAES don’t. In
this section we show how to extract from any heap E, an effective heap which
has a direct correspondence with an LAES.



Definition 3. Given a heap E, its effective heap G [E] is defined as:

G [E] =def

⋃

κ∈Configs(E) κ.

Say that heap E is effective if G [E] = E holds.

G [E] possesses a subset of E as its set of events. Generation of G [E] from a
heap E is by pruning and by Definition 2. This generation is constructive. The
introduction of effective heap G [E] is justified by the following result, where
symbols �,↗, and α are the restrictions, to G [E], of the relations and map
defined in (6), (7), and (8), respectively.

Theorem 1 ([17]). A [E] = (G [E] ,�,↗, α) is an LAES. Furthermore, G [E]
is the maximal subset of events of E that induces an LAES.

Heaps will be used to give the semantics of fragments of Orc programs, i.e.,
programs requiring a context. This allows for a structural construction of the
semantics of Orc. Effective heaps will represent Orc programs that are self-
enabled and can be executed.

Generic Operations on Heaps. We list here a few operations on heaps that
are useful for wide area computing. From now on, we specialize marks to being

lists, with the usual operations.

– Marking: Marking creates distinct copies of a heap. For a heap E and m a
mark, Em is the heap where symbol m has been appended to the mark µ(c)
of each condition c ∈ minConds(E). The recursive definitions of events and
conditions in E ensures that this operation creates a new instance of E.

– Disjoint Union: for E and F heaps, and left and right fixed marks:

E ] F =def Eleft ∪ F right

– Preemption: For a heap E and F ⊆ E, the preemption of E by F terminates
execution of E when any event in F occurs. Formally, stopF (E) is the heap
obtained by replacing each event e = (•e, e, a) of E by ϕ(e) as follows:

ϕ(e) =def

{

(•e ∪ {(⊥, stop)}, e, a) if e ∈ F .

(•e, e ∪ {(⊥, stop)}, a) if e /∈ F .
(10)

– Copy: For two heaps E and F , we define copyl(E, F ) to be a copy of E with
respect to context heap F . For a mark l, copyl(E, F ) is a fresh heap obtained
by changing all minimal conditions (e, µ) ∈ minConds(E) as follows:

(e, µ) =

{

(e, (µ, l)) if (e, µ) /∈ CF

(e, µ) if (e, µ) ∈ CF

(11)

where CF is the set of associated conditions of the context heap F . Intu-
itively, events in E may share conditions (and thus are related) with events
in the context heap F . The copy of E with respect to context F keeps these
conditions intact in the copy to preserve the relations between the copied
events and those in F .



3.3 The heap semantics of Orc

In this section, we construct the heap semantics of Orc in a structural way. Some
intermediate steps will require heaps that are not effective. Heaps of well formed
Orc expressions will all be effective, however, thus giving rise to an LAES.

– Free Variables: E(x) is the set of all events in heap E which depend on x.

E(x) = {e ∈ E | ∃e′ ∈ E, e′ �E e, α(e′) ∈ {Mk(x), !x, τx}}

Call x a free variable of E if E(x) is nonempty. Let E(x) be the events in E
that do not depend on x: E(x) = E − E(x).

– Publication events: !E is the set of publication events of heap E:

!E = {e | α(e) = !v}

– Preemption: Stopping E after the first value publication is defined as:

stop(E) =def stop!E(E)

– Send: For a publication event e = (•e, e, !v), define the τ(e) to be the event
obtained by changing the label of e as follows:

α(e) =

{

τx if α(e) = !x, for any variable x
τ otherwise

(12)

The heap send(E) is the heap E where all the publication events e in E are
replaced by τ(e). The publication events are still identifiable by their marks.

– Link: For a heap E, a context heap C, an event f not belonging to E, and
a value v,

link(f, v, x, E, C)

is a (non effective) heap in which variable x is bound to value v after external
event f . The context heap C identifies parts of E that are not affected by
the variable binding. link(f, v, x, E, C) is the heap obtained as follows:

1. Create E′ = copyf (E, C) a new copy of E with respect to context heap
C and marked with label f . In making this copy, each event e ∈ E has
a unique corresponding event e′ = ϕf (e) ∈ E′.

2. Change all e′ = (•e′, e′, a) ∈ E′ as below, where e = ϕ−1
f (e′):

e′ =

{

(•e′ ∪ {(f, e)}, e′, [v/x]a) if e′ ∈ min(E′)

(•e′, e′, [v/x]a) if e′ /∈ min(E′)
(13)

The substitution [v/x]a replaces the variable x by v in the action a. If the
variable x does not occur in a, the substitution leaves a unchanged. The heap
constructed here does not contain the event f referred by e′ ∈ min(E′).



– Receive: We next construct a (non effective) heap that can receive any value
published by another heap. If e is a publication event, τ(e) is the event e
with its action changed according to (12). We define

recvx(E, F, C) =
⋃

f∈ !E,α(f)= !v

link(τ(f), v, x, F, C)

Observe that, if !E is empty, this yields recvx(E, F, C) = ∅.
– Pipe: The pipe operator allows G to receive publications from F , subject to

a context C that identifies parts of G not affected by the communication.

pipex(F, G, C) = send(F ) ∪ recvx(F, G, C)

Heaps of Base Expressions. For Orc expression f , [f ] is its heap denotation.
In the following, symbol nil indicates the absence of mark.

[0] = ∅

[let(v)] = { ({c}, ∅, !v) }
where condition c = (⊥,nil)

[?k] = { e = ({c1}, ∅, k?vk), ({c2}, ∅, !vk) }
where condition c1 = (⊥,nil), c2 = (e,nil)

[M(v)] = { e = ({c1}, ∅, Mk(v)), f = ({c2}, ∅, k?vk), ({c3}, ∅, !vk) }
where condition c1 = (⊥,nil), c2 = (e,nil), c3 = (f,nil),
k is fresh.

[E(v)] = [[v/x]f ]
where E is an expression definition and E(x) ∆ f

Heaps for the Combinators.

[f | g] = [f ] ] [g]

[f >x> g] = pipex([f ] , [g] , ∅)

[g where x :∈ f ] = pipex(stop(F ), G(x), G(x)) ∪ G(x)

where F = [f ]
right

and G = [g]
left

Theorem 2 ([17]). Heaps of base expressions are all effective. If [f ] and [g] are

effective heaps, then so are their compositions via the above three combinators.

Recursive Definitions. The treatment of recursive definitions follows that
given in [12], except that the denotation of an expression f is the heap [f ] instead
of the set of traces 〈f〉. The heap for a recursive Orc definition f ∆ Exp(f) is the
limit of a series of increasing approximations 0 v Exp(0) v Exp(Exp(0)) v . . . .
To ensure existence of the limit, the least fixpoint of Exp, we show that the Orc
combinators are monotonic with respect to v. For F and G two heaps, define

F ≺ G if F ⊆ G and CF ∩ CG−F = ∅ (14)



Then for Orc expressions, f v g if [f ] ≺ [g]. The motivation for having the
second condition in (14) is that it is needed in the proof of Lemma 2 below.

Lemma 1 ([17]). Relation ≺ is a partial order on heaps.

Lemma 2 ([17]). The Orc combinators are monotonic in both arguments. In

particular, given f v g, then

f | h v g | h
f >x> h v g >x> h
h >x> f v h >x> g

f where x :∈ h v g where x :∈ h
h where x :∈ f v h where x :∈ g

Complete proofs of the theorems and lemmas is given in [17], along with a
correctness proof of this semantics, with respect to the semantics of Figure 1.

3.4 Examples

Figure 4 gives the intermediary and the final heap for the Orc expression

{let(1) � S(x)} where x :∈ {M | N}.

Note the two publications f1 and f2, by the parallel composition M | N . These
are made conflicting by the extra (shaded) condition created by the stop opera-
tor. We show in the middle two intermediate steps of the translation. Subexpres-
sion F = M | N has two emissions, by M and N respectively. By Rule (Asym1V)
of Figure 1, F , when used in the where context, must be terminated just af-
ter its first publication event f1 or f2. This is realized by the send(stop(F ))
mechanism; the shaded condition create asymmetric conflict causing the first
publication to preempt the other one.

The second heap named recvx(. . . ) properly puts G in the two conflicting
contexts of publication events f1 or f2. A dashed arrowhead to a minimal con-
dition of the heap from an event name states that the condition depends on
that external event. The external events here are e and f1, f2 in heaps G(x) and
send(stop(F )) respectively. When these heaps are combined in the right most
heap, these events become internal events, thus showing that the resulting final
heap is effective.

The CarOnLine toy example, continued. Figure 5 shows a diagram of the
event structure corresponding to the CarOnLine program written in Orc. The
event structure is generated by our tool and it collects all the possible executions
of CarOnLine, taking into account timers and other interactions between data
and control. Each execution has the form of a partial order and can be analysed
to derive appropriate QoS parameter composition, for each occurring pattern.
Each site call to a service M is translated into three events, the call (M), the
call return (?M) and the publish action (!), which lengthens the structure.
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[{let(1) � S(x)}

where x :∈ {M | N}]
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τ

G = [let(1) � S(x)]

F = [M | N ]

send(stop(F))

ττ

G

G(x)

G(x)

recvx(stop(F ), G(x), G(x))
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Fig. 4. Heap semantics of the Orc expression
{let(1) � S(x)} where x :∈ {M | N}. Solid/dashed arcs point back to con-
sumed/read conditions. Dashed arrow heads point back to causes not belonging
to the considered heap—this is the way program fragments are captured. The
red color refers to QoS aspects, see Section 3.5.

3.5 QoS studies on Orc

Having the event structure semantics of Orc allows us to address all the aspects
of QoS where causality relating the different site calls matters. As an example,
we focus on latency, depicted in red in Figure 4. We assign to web service calls M ,
N and S a latency represented by variables δM , δN and δS respectively. Given
outcomes for δM , δN , and δS , we get the overall latency δE for the orchestration
E = {let(1) � S(x)} where x :∈ {M | N}, by using its heap in Figure 4.
This heap exhibits two maximal configurations, which correspond to M or N
publishing first : these two publish events (the shaded τ events) are in conflict.
The resolution of this conflict is driven by the actual value for δM and δN : for
e.g, if δM < δN , Sk3 will occur (but Sk4 will not). For each configuration, we add
the latencies along each causality path, and consider the maximum latency of all
the incoming paths at a synchronization event. Here, when δM < δN , the overall
latency will thus be δM + δS . An important fact is that latency and conflict



mutually interact: who publishes first has a consequence on which configuration
is actually executed, which in turn has a consequence on the overall latency.
Note that this analysis also supports the use of timeouts in the orchestration to
guard the waiting for answers to site calls.

4 Related Work

Closest to our present study is the work [15], where Orc expressions are trans-
lated to colored Petri net systems [4]. Bruni, Melgratti and Tuosto [7] link the Orc
language to Petri nets and the join calculus. Together with the event structure
semantics for nominal calculi given in Bruni, Melgratti and Montanari [6], this
yields a chain of transformations that yield an event structure semantics for suit-
able Orc programs. However, [6] focusses on the subclass of persistent grammars,
which avoids the use of asymmetric conflicts. We consider asymmetric conflict as
central for dealing with orchestration dynamics; in fact, preemption-based con-
structs such as timeouts, races etc. inevitably lead to asymmetric conflicts not
covered by prime event structures, see figure 4. For an approach that focuses on
temporal properties without partial orders nor performance evaluation, see [9],
where a Timed Automaton semantics of Orc is given and used for verification
purposes using the Uppaal tool.

Our work is unique in that it provides a direct coding of a wide area com-
puting language into asymmetric event structures. This is of immediate use in
QoS studies, as the latter builds on timed and/or probabilistic enhancements of
partial order models [15,16].

5 Conclusion

We have presented a partial order semantics for Orc, a structured orchestration
language with support for termination and recursive process instantiation. The
semantics uses heaps to encode sets of interrelated events because they simplify
manipulation of the fragments of program behavior that arise when analyzing the
sub-expressions of a program. These fragments are composed to create effective
heaps, from which more traditional asymmetric event structures are derived.

The heap semantics provides a model of true concurrency and also directly
support analysis of non-functional properties of Orc programs. In [16] some of
the authors develop a theory of “soft” contracts in which Service Level Specifi-
cations (SLS) are expressed in terms of probability distributions on QoS param-
eters. Monte-Carlo simulations of the orchestration provide a simple approach
to compose these probabilistic contracts. Each simulation is an execution of the
orchestration’s heap in which latencies of the calls to services are drawn from
the corresponding contract’s probability distribution. Using the technique given
in section 3.5 to compose latencies, the empirical probability distribution for the
overall orchestration latency is derived.
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Fig. 5. A labelled event structure collecting all possible executions of CarOnLine, as

generated by our tool. The three dangling arcs from the shaded places are followed by

copies of the boxed net.
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