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Abstract. In this paper, we consider the problem for searching frequent
trees from a collection of tree-structured data modeling XML data. The
TreeFinder algorithm aims at finding trees, such that their exact or
perturbed copies are frequent in a collection of labelled trees. To cope
with the complexity issue, TreeFinder combines a pre-processing step
extracting candidate subsets of data with a propositional Frequent Item
Set algorithm, on one hand, and a generalization algorithm borrowed
to Inductive Logic Programming on the other hand. This way, the ad-
ditional complexity due to the tree-structured formalism only occurs in
the final step, during the generation of the tree solutions.

As a counterpart, TreeFinder is correct but not complete: it finds a
subset of the actually frequent trees. The default of completeness is ex-
perimentally investigated on artificial medium size datasets; it is shown
that TreeFinder reaches completeness or falls short to it for a range of
experimental settings.

1 Introduction

Discovery of frequent patterns in large data collections has been investigated in
a variety of settings. The simplest setting, which has been extensively studied,
comes from the market basket analysis. It consists in discovering frequent item
sets from databases storing customers transactions. The databases involved in
these applications are very large and an intensive work has been done for design-
ing fast algorithms for discovering frequent item sets [AS94,T0i96,HGNOO]. Those
algorithms handle boolean data. This work has been extended to the search of
frequent sequential patterns from series of transactions [AS95,SA96,MHV97],
and of frequent relational queries from relational databases [DTO01].

In this paper, we consider the problem for searching frequent trees from a
collection of tree-structured data modeling XML data. We present a method
that automatically extracts from a collection of labelled trees a set of frequent
trees occurring as common (exact or approximate) trees embedded in a sufficient
number of trees of the collection. By construction, this method provides (i) a
clustering of the input trees, and (ii) a characterization of each cluster by a set
of frequent trees. The important point is that we are not looking for an exact
embedding but for trees that may be approximately embedded in several input



trees. An approzimate tree inclusion preserves the ancestor relation but not nec-
essarily the parent relation. This point distinguishes our work from existing work
on DTD inference [PV00]. This choice is motivated by the need for robustness
regarding the possible variations in the label nesting of XML documents which
we still want to be recognized as having a similar tree structure.

The main motivating application of this work is the construction of a tree-
based mediated schema for integrating multiple and heterogeneous sources of
XML data. A data integration system enables users to pose queries through
a mediated schema, thus freeing them from having to interrogate each source
separately, and to deal with the heterogeneity of their schema. For example,
Xyleme [Xyl,Xyl01,ACVT00] is a huge warehouse integrating XML data of the
Web. In Xyleme, the mediated schema is a set of labelled trees (called abstract
trees). Each abstract tree is related to a given domain (e.g., culture, tourism),
and is an abstract merger of the concrete trees modeling the tree-structure of
the actual XML documents relative to that domain. The abstract trees are the
support of a visual query interface tool, based on forms, intended to be used by
end-users. Today, the abstract trees in the mediated schema in Xyleme are built
manually. To scale up to the Web, the challenge is to build them as automatically
as possible.

The paper is organized as follows. In Section 2, we start with a motivating
example. In section 3, we describe the formal background of our approach. In
Section 4, we describe our two-step method for discovering frequent trees, which
has been implemented in the TreeFinder system. In Section 5, we report pre-
liminary experimental results on medium-size artificial data. Finally, in Section
6 we compare our approach with related work and we draw some conclusions
and perspectives in Section 7.

2 Motivating example

Fig. 1 is an illustration of heterogeneous XML data structures with various
nesting of the labels.

The nesting of the Title node differs in trees D3 and D,. Similarly, the node
labelled with Model is the direct son of the node labelled with UsedCar in Dy,
while there is a node in between the corresponding nodes in D-.

Despite the variation in the structure, we want to group together:

- Dy, Dy and D), because the same tree P; (Fig. 2 (a)) is (exactly or ap-
proximately) included in Dy, Dy and D),

- D3 and Dy, because they have in common the tree P> (Fig. 2 (b)), even if
the embedding in D3 and D, is approximate.

The two trees P, and P, of Fig. 2 are the frequent trees corresponding to
the input trees of Fig. 1: they are common to several different trees in the input
collection.
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3 Formal background

In this section, we introduce an elementary tree model for XML data structure.
We further introduce the formal definitions of tree inclusion, (maximal) common
trees and frequent trees.

3.1 Modeling XML Data Structure

We model an XML data structure (e.g., a DTD) as a labelled tree. We ignore
ID-references and hyperlinks. Each node d has a label, written as label(d). We do
not distinguish between elements and attributes. They are all mapped to nodes
using the element or the attribute name as label. We do not consider semantic
heterogeneity of attribute and element names. We assume that all element or
attribute names modeling the same real world concept also carry the same label.
This can be achieved by a preprocessing function mapping element names that



are synonymous to a common label. We also ignore the possible problems of
polysemy (a same label denoting different concepts).

Definition 1 (Labelled trees). A labelled tree is a pair (t,label) where (i)
t is a finite tree whose nodes are in N, (ii) label is a labeling function that
assigns a label to each node in t.

The labels play the role of the begin-end tag in XML data models. We use
the current terminology about trees: root, children, descendant, leaf, subtree,
etc. We also use some functional notations such as: root(t) returns the root node
of the tree t, children(u) (resp. desc(u), anc(u)) returns the set of nodes that
are children (resp. descendants, ancestors) of node u, and label(t) returns the
set of labels of the nodes of the tree ¢.

Note that within a given tree, two different nodes may have the same label.

We consider that we are given a collection of labelled trees that constitute
the input set of trees to which our method applies for discovering frequent trees.

3.2 Tree inclusion

We consider three variations of the notion of tree inclusion. The most restricted
definition is that of subtree inclusion.

Definition 2 (Subtree inclusion).
Let t and t' be two labelled trees. We say that t is included as a subtree in t'
iff there exists a subtree of t' which is identical with t.

The subtree inclusion problem has been extensively studied (e.g., [RR92])
and is solvable in linear time. For instance, tree P; (Fig. 2 (a)) is included as a
subtree in tree Dy (Fig. 1 (a)), but it is not in tree Dy (Fig. 1 (b)).

However, as pointed out in the introduction, our aim is to find frequent tree
patterns in a set of trees. The above definition is too restricted since one would
typically like tree P; to be considered as present in Ds.

Therefore a relaxed inclusion definition, first proposed by [Kil92], based on an
injective mapping termed tree embedding and preserving the labels and ancestor
relation in the trees, is considered.

Definition 3 (Inclusion by tree embedding).

Let t and t' be two labelled trees. We say that t is included by embedding in
t' if there exists a mapping f from the nodes of t into the set of nodes of t' such
that f is injective and f strictly preserves the ancestor relation:

Y uin t, label(u) = label(f(u)) and Y u,v in t anc(u,v) < anc(f(u), f(v))

Ezample. According to that definition, tree Py (Fig. 2) is included in D5 and
D, (Fig. 1), but is not included in D} (Fig. 1): there exists no ancestor relation
between nodes Model and Year or Price in P;, while there exists one in D}.

A weaker order relation termed tree subsumption, is then defined on trees by
relaxing the inclusion definition above.



Definition 4 (Inclusion by tree subsumption).

Let t and t' be two labelled trees. We say that t is included by tree subsump-
tion in t' if there exists a mapping f from the nodes of t into the set of nodes
of t' such that f preserves the ancestor relation:

YV uin t, label(u) = label(f(u)) and Y u,v in t,anc(u,v) = anc(f(u), f(v))

The advantage of the above definition is the following: if we choose to rep-
resent labelled trees as relational formulas ([L1o87]), then tree subsumption is
equivalent to the #-subsumption relation defined by ([Plo70]). Let us first de-
scribe how labelled trees can be put in relational form.

3.3 Relational representation of labelled trees.

The relational representation that we consider for a labelled tree is a conjunction
of atoms noted Rel(t), describing the parent relation over the set of nodes of t.
We also introduce another relational representation noted Rel™(t), describing
the transitive closure of the parent relation, i.e. the ancestor relation.

Definition 5 (Relational description of labelled trees). Lett be a labelled
tree. Rel(t) is the conjunction of all atoms ab(u,v), such that u and v are nodes
in t, with label(u) = a, label(v) = b and u is the parent node of v.

Rel™(t) is the conjunction of atoms a*b(u,v), such that v and v are nodes in t,
with label(u) = a, label(v) = b and u is an ancestor node of v.

Fig. 3 illustrates the two encoding functions Rel and Rel™ for two labelled
trees.
Let us recall the definition of the #-subsumption.

Definition 6 (6-subsumption). Let C and C' be two first order logic formulas.
We say that C 0-subsumes C' if there exists a mapping 6 from the variables in C
onto the variables and constants in C' such that every atom in CO appears in C'.

The following proposition states the equivalence between inclusion by tree
subsumption (Definition 4) and é-subsumption.

Proposition 1. Let t and t' be two labelled trees. Then:
t is included by tree subsumption in t' iff Rel*(t) 0-subsumes Rel*(t')

The advantage of this relational representation is that, though #-subsumption
test is NP complete, efficient implementations have been proposed [MS01].

3.4 Common trees and frequent trees.

The following definition formally defines the notion of maximal (according to
tree inclusion) tree common to several trees. It relies on, and thus depends on,
the definition of tree inclusion that is considered.
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Definition 7 (Maximal common tree). Let t,t1,...,t, be labelled trees. We
say that t is a maximal common tree of ti,....,t, iff :

— Vi €[l.n] tis included in #;

— t 18 maximal for the previous property, i.e. if there is a labelled tree t' such as
t is included in ¢ and Vi € [1..n] t' is included in ¢; then t' is identical
tot.

For instance, tree P; (Fig. 2) is a maximal common tree of Dy, D and D)
(Fig. 1) w.r.t. tree subsumption (Definition 4), but not w.r.t. subtree inclusion
and inclusion by embedding (Definitions 2 and 3).

Let us now define the notion of frequent tree.

Definition 8 (Frequent tree). Let T be a set of labelled trees, and let t be a
labelled tree. Let € be a real number in [0, 1].
We say that t is a e-frequent tree of T iff:

- there exists | subtrees {t1,...,t;} in T such that t is mazimal common tree
Of {tl, ceey tl}.

- 1 is greater or equal to £.|T|.
The support set of t in T is the set of all trees t; such that t is included in t;.

For instance according to Definition 4 (but not to Definitions 3 and 2), the
two trees P; and P> (Fig. 2) are the 0.4-frequent trees w.r.t. the set of the trees
Dl, DQ, DI2, D3 and D4 (Flg 1)

Let F. denote the set of all e-frequent trees w.r.t. a set of trees T'; due to
monotonicity,

E>EI=>FEQF57

Maximal e-frequent trees are defined as the maximal elements (for tree in-
clusion) in F..

4 Overview of the TreeFinder system

Let T = {t1,t2,...,tn} be a set of labelled trees, let € be a frequency threshold.
The TreeFinder method for discovering e-frequent trees in 7 is a two-step algo-
rithm. The first step is described in Section 4.1. It is a clustering step that groups
input trees in which same pairs of labels occur together frequently enough in the
ancestor relation. This is realized by applying a standard algorithm computing
frequent item sets (e.g., Apriori [AS94]) to an appropriate abstraction of the
input trees. The second step is described in Section 4.2. It is a tree construction
step based on the computation of maximal trees that are common to all the
trees of each cluster. In Section 4.3, the trees that are returned as output of this
two-step algorithm are formally characterized w.r.t. to its input.



4.1 Clustering guided by co-occurence of labels pairs

Input: An abstraction of the input 7 = {¢1,t2,...,t,}, where each t; is viewed
as a transaction made of all the items [*m such that [ is the label of an ancestor
of a node labelled by m in t;. Each item [*m has a unique identifier. Let Z be
the set of those identifiers.

For example, the input transactions corresponding to trees of Fig. 1 are:

Dy = { Dealer*UsedCar, Dealer*NewCar, UsedCar*Model, UsedCar*Year,
UsedCar*Price, NewCar*Model, NewCar*Price, Dealer*Model,
Dealer*Year, Dealer*Price}

D, = { NetAds*UsedCar, UsedCar*Type, UsedCar*Model, UsedCar*Generallnfo,
GeneralInfo*Price, Generallnfo*Year, UsedCar*Price, UsedCar*Year,
NetAds*Model, NetAds*Price, NetAds*Year }

D), = { UsedCar*Model, Model*Year, Model*Price, UsedCar*Year,
UsedCar*Price }

D3 = { Book*Refs, Book*Price, Refs*Title, Refs* Author, Book*Title, Book* Author}

D, = {Book*List, Book*Title, List*Author, Book*Author }

This splitting of the trees in separate items corresponding to pairs of labels
breaks the tree structure but makes possible the use of a standard frequent item
sets algorithm for discovering frequent label pairs in the input trees. The co-
occurrence of same pairs of labels is considered as semantically significant if it
occurs frequently in the input data.

Clustering method: Many algorithms have been developped to compute
frequent item sets. So far, our implementation uses the simplest one: Apriori
[AS94]. We apply the Apriori algorithm to the set of transactions 7 over the
items 7 identifying the pairs of labels, with the frequency threshold (a.k.a min-
imum support) set to €.

Output: the support sets of the largest frequent item sets returned by the
Apriori algorithm. The support set of an item set s C Z, denoted support(s), is
the subset of 7 made of all the transactions including s. A frequent item set is
a subset of Z the support set of which has a size greater than e.|T].

For instance, the largest frequent item sets returned by the Apriori al-
gorithm applied with the frequency threshold 0.4 to the set of transactions
{D1, D2, D}, D3, Dy} , given previously and abstracting the trees of Fig. 1 are:

s1 = {UsedCar*Model, UsedCar*Year, UsedCar*Price}

s2 = {Book*Price, Book*Title, Book* Author}

The corresponding support sets, that are thus returned as output clusters, are:
support(s1) = {Dy, D2, D4}

support(sz) = {D3, Dys}.

4.2 Computation of maximal common trees

Input: This step takes as input the output of the previous clustering step, and
computes for each cluster the maximal trees that are common to (i.e. included



in) all the trees of the cluster From now on, the tree inclusion we consider is the
subsumption-inclusion (Definition 4).

Method: For each cluster {¢;,,%:,,...,t;, }, we compute the least general
generalization [Plo70] LGG(Rel™ (t1), ..., Rel™*(t,)) of the relational formulas en-
coding the trees.

The least general generalization of two relational formulas Rel(f1) and Rel(f2)
is the most specific formula which §-subsumes Rel(f1) and Rel(f2). From [Plo70]
it is shown that the least general generalization of two conjunctive formulas with
no function symbol is unique (up to variable renaming).

In the example of Fig. 3 :

LGG(R61+(T1), R6l+ (TQ)) = a*b(Ul, UQ)/\G,*C(Ul, Ug)/\a*d(Ul 5 U4)/\C*d(U3, U4)

Output: the set of trees resulting from the tree decoding of the least general
generalizers of the relational formulas encoding the trees for each cluster.

The subtle point is that from LGG(Rel* (t1), ..., Rel*(t,)), which is a con-
junction of atoms of the form I*m(U;, U;), modeling the ancestor relation, we can
reconstruct the atoms defining the underlying parent relation. This results from
the fact that, because of the tree structure of the inputs ¢1, ..., t,, the implicit
parent relation p whose transitive closure leads to LGG(Rel™ (ty), ..., Rel™ (t,,))
has necessarily a forest structure, and the corresponding explicit ancestor rela-
tion has a dag structure. It is the application of a traversal of that dag structure
in a topological order that makes possible to reconstruct the parent relation
from the ancestor relation which is stated in LGG(Rel™ (t), ..., Rel™(t,)). Let
star ' (LGG(Rel™ (t1),..., Rel™(t,))) be the resulting conjunction of atoms of
the form Im(U;, Uj).

In the example of Fig. 3 :
star~' (LGG(Rel*(T}), Rel*(Ty))) = ab(Uy, Us) A ac(Uy,Us) A cd(Us, Uy).

Fig. 4 illustrates the relational least general generalizer corresponding to our
example and its tree decoding.

LGG star~!
a*b(Ul, U2) ab(Ul Uz)
a*c(Ul, U3) ac(Ula Ug)
a*d(Us, Us) cd(Us, Us)

*d(Us, Us) >
Rel™(star "' (LGG(Rel™ (T}), Rel ™ (T»))))
Ui/a
U2/b U3/C

Us/d

Fig. 4. Relational LGG and its tree decoding
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4.3 Formal characterization of the TreeFinder results

The following proposition states that the results produced by TreeFinder are
correct. We also provide a sufficient condition for these results to be complete,
i.e. to include all the maximal frequent trees present in the input trees.

Proposition 2. Let T be a set of labelled trees, let € be a frequency threshold,
let fti, fta,..., fty be the trees obtained as output of the two-step TreeFinder
method applied to T :

- correctness: fty, fta, ..., ft, are e-frequent trees for T .

- sufficient condition for completeness: If T is such that the trees in
the support of each mazimal e-frequent trees have no label pair in common with
trees out of the support, then ft1, fta, ..., ft, are exactly the mazimal e-frequent

trees of T .

The following example shows that TreeFinder is not guaranteed to find the
maximal e-frequent trees in the general case.

Fig. 5 illustrates a case where TreeFinder applied with a frequency threshold
of 0.5 would find a single big cluster made of all the input trees (corresponding to
the maximal item set {a*b, a*c}, which appears in fact in all the transactions).
The result returned by TreeFinder would then be the two trees ft1, ft reduced
to one edge each, which are common to all the input trees: they are 1.0-frequent
trees and thus a fortiori 0.5-frequent trees. However, TreeFinder does not find
the unique 0.5-frequent tree whose root is labelled by a and has two children
labelled by b and ¢ respectively.

AANAYA
HERE

b c b c b

D Do D- Dy
Input trees of TreeFinder, threshold = 0.5

Support set :
@ {Di,Dy,Ds,D4}

b

C

Support set :
{D1, D2, D3, D4}

Support set :
{D1, D4}

b/a\c

Output of TreeFinder : two 1.0-frequent trees

Fig. 5.

0.5-frequent tree missed by TreeFinder

This example is illustrative of the fact that TreeFinder can fail to find all the
e-frequent trees in the data. We estimate this loss of completeness by comparison
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with the ideal algorithm, which we will refer to as AprioriTree. AprioriTree is
an extension of the levelwise algorithm Apriori to tree structures:

— Find the trees of size 1 (trees with one edge) that are common to more than
e x (number of input trees) input trees.
—1:=1
— While there exists frequent trees of size 4:
e generate candidate frequent trees of size i + 1 from the frequent trees
of size ¢ and those of size 1,
e test the inclusion of those candidate frequent trees in the input trees in
order to select those candidate frequent trees that are actually frequent.
o j:=i+1

AprioriTree is a naive method which is not tractable in practice because
clearly, it hardly scales up: first of all, the test step intensively relies on tree
subsumption, which is NP complete. Furthermore, the number of candidate trees
constructed from a frequent i-edge tree grows like i X e, where e is the number of
frequent edges; in contrast, the number of candidates constructed from a frequent
i-item set is e — ¢, where e is the number of frequent items.

We have implemented TreeFinder in C++, and its experimental validation
is detailed in the next section.

5 Experimental results

This section first details the experiment goals and the experimental setting used
for the empirical validation of TreeFinder. The results obtained are then re-
ported and discussed with regard to computational cost (section 5.3) and fre-
quent tree quality (section 5.4).

5.1 Experiment goals

A key criterion for data mining algorithms concerns their robustness and scalabil-
ity w.r.t. the characteristics of input data [AS94]. Therefore, the computational
cost of TreeFinder w.r.t. the number and size of input trees will be investigated
in section 5.3.

Another criterion regards the quality of the results provided by TreeFinder.
Let us consider as baseline algorithm AprioriTree.

Proposition 2 has given sufficient conditions for TreeFinder to find ex-
actly the same frequent trees as AprioriTree. In the general case however,
TreeFinder will miss some frequent trees as illustrated in Fig. 5.

The second experiment goal will thus be to estimate the percentage of fre-
quent frequent trees missed by TreeFinder, compared to the baseline algorithm.
This percentage, termed loss factor, will be investigated experimentally in section
5.4.

All experiments consider artificial medium-size datasets, according to the
following experimental setting.
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5.2 Experimental setting

As mentioned in the introduction, the mining of XML data raises two major
difficulties. The first one, not considered in the present paper, regards the po-
tential synonymy and polysemy of tags. The second difficulty, tackled in the
paper, concerns the tree-structure of the XML data.

As a preliminary investigation, we thus consider artificial XML data, gener-
ated from known target frequent trees using a randomized tree-structure gener-
ator. This generator' proceeds as follows:

— A set of target frequent trees P = {Pi,... Pk} is given by the user.

— A set of external labels £ is defined, disjoint (unless otherwise specified)
from the labels involved in the target frequent trees. The size L of L is a
user-supplied parameter of the generator.

— Each tree-document is recursively generated. Let u be the top node in the
node list (initialized at the root node). Two options are considered: with
probability p, a (perturbed) copy of one target frequent tree is inserted at
node u (see below the target frequent tree insertion). Otherwise (with prob-
ability 1 — p), the number of son nodes for the current node u is uniformly
selected in [0..B], where B is the maximum branching factor; the label for
the current node u is selected with uniform probability in £; u is removed
from the node list, and its son nodes are added to the node list.

— The insertion of a target frequent tree P, uniformly selected in P, proceeds
by copying at node u a perturbed copy of P. A number m of additional nodes
is randomly selected in [0, d], where 0 is the perturbation parameter. These
nodes are randomly inserted in the target frequent tree, and their labels are
randomly selected in L.

The parameters of the artificial tree generator are summarized in Table 1.

K number of target frequent trees
L number of external labels
p probability of including a target frequent tree in each node
¢ maximal number of nodes added to perturbate a target frequent tree
B maximal branching factor
D maximal tree depth
Table 1. Parameters of the artificial tree-structure generator

Due to the stochastic generation of the datasets, the reported results are
obtained by averaging the results obtained for ten independent runs (launched
with same parameter values and distinct random seeds).

! The generator is available at http://www.lri.fr/~termier/generator.tgz.
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5.3 Empirical study of computational cost

Various experiments consider up to 10,000 artificial tree-structured documents,
generated with the following parameters:

— The set of target frequent trees is displayed in Fig. 6.

— The total number of labels is set to 100. With no loss of generality, labels 1
to 13 denote the labels involved in the target frequent trees, and £ is made
of all labels 14...100. In these tests, the labels of the target frequent trees
are not disjoint from the external labels, so L = 100.

— The probability p of including a target frequent tree at each node is set to
0.2

— The maximal number § of perturbations is set to 25.

— The maximal branching factor is set to 5.

— The maximal tree depth is set to 3

2/1\3 5 /6/4\7\ 8 10 /1Tl\ 12
|

13
(a) P (b) P» (c) P3

Fig. 6. Target frequent trees

A first series of results, obtained with the frequency threshold 0.05 is dis-
played on Fig. 7.

The average computational complexity (Fig. 7 a) is dominated by the least
general generalization (LGG) computational complexity. The LGG thus is the
limiting factor; no results could be obtained for a number of trees greater than
8,000 due to memory saturation.

Similar results are obtained by varying the average tree size. For these tests
parameter p was set to 1.0, so trees were just perturbated target frequent trees,
and we varied the value of §. Actually, the FIS step only depends on the number
of edges in the target frequent trees. But the supports of frequent edge sets are
large, which implies that LGG considers many trees (Fig. 7 b).

Again, it can be seen that the limiting complexity factor is the LGG step.

5.4 Empirical study of T'reeFinder loss factor

The empirical study investigates the loss factor, measuring the percentage of
“true” frequent trees missed by TreeFinder.
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As noted earlier (Proposition 2), the loss factor is zero when the target fre-
quent trees do not overlap. The empirical study therefore considers five sets of
target frequent trees, with increasing overlapping edges. Practically, five series of
experiments are launched, corresponding to the five sets of four target frequent
trees displayed in Fig. 8.

— overlapg corresponds to the baseline case, with no overlap.

— overlap; involves a small overlap (P; and P» share edge 1 — 3); the overlap-
ping rate, defined as the average percentage of edges that a target frequent
tree shares with another target frequent tree, is 25%.

— overlaps involves a medium overlap (P; and P, share edge 1 —3; P, and P
share edge 1 — 4); similarly the overlapping rate is 50%,

— overlaps involves a moderate overlap (P; and P, share edge 1—3; P and P3
share edge 1 — 4; P3 and P, share edge 1 — 5); the overlapping rate is 75%.

— overlap, involves a large overlap (P; and P, share edge 1 — 3; P> and Ps
share edge 1 — 4; P; and Py share edge 1 — 5; P, and P, share edge 1 — 2);
the overlapping rate is 100%.

Overlap P P, Ps Py
overlapo : 1 4 7 10
2 35 68 911 12
overlap:

FAVAWAWAN
FAVAWAWAY
FAVAVAWAY
FAVAWAWAN

Fig. 8. Set of target trees with increasing overlap

overlapa

overlaps

overlapa

The other generator parameters are set as follows:

— The number L of external labels is set to 50.
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— The probability p of including a target frequent tree at each node is set to
0.4.

TreeFinder is run with frequency threshold € varying in 0.2, 0.1, 0.05.

Fig. 9 displays the loss factor for each frequency threshold € and for each
collection of target frequent trees.

The loss factor has been computed as follows. Ideally, it measures the per-
centage of frequent trees that would return AprioriTree, which are missed by
TreeFinder. However, because of the inherent complexity of AprioriTree, the
frequent trees occuring in the actual tree datasets cannot be extracted with rea-
sonable complexity. The number of such frequent trees is therefore approximated
during the generation step.

Practically, for a tree t, let Q(t) be the set of target frequent trees P; such
that ¢ includes (at least) one occurence of P;; Q(t) can easily be determined
since no destructive perturbations of target frequent trees are considered in the
generator.

For each such set of target frequent trees @ (with Q included in the set of
target frequent trees overlap; at hand), one might thus determine its support in
the generated input trees; if its support includes more than 100.e% of the input
data, Q is a frequent tree.

The number of such frequent trees is taken as a lower bound on the number
of actually frequent trees. For each frequency threshold ¢ and set of frequent
trees overlap;, the loss factor is defined as:

TF (g, overlap;)
L lap;) = 1 — Z-\5:00€aPi)
oss(e, overlapi) AT (e, overlap;)

where T'F(e, overlap;) denotes the (median) number of frequent trees actually
produced by T'reeFinder over 10 datasets independently generated according to
the target frequent tree set overlap;, and AT (e, overlap;) likewise is the lower
bound on the number of actually frequent trees, defined as above. The loss factor
so-computed thus corresponds to a pessimistic estimate.

As expected from Proposition 2, the loss factor is zero for non-overlapping
target frequent trees (Fig. 9). Two types of behavior are observed depending on
the frequency threshold.

For a small frequency threshold (¢ = 0.05), the loss factor degrades gracefully
as the overlapping rate increases from small to moderate; the loss is around 20%
for an overlapping rate of 75%.

For a larger frequency threshold (¢ = 0.1), the loss factor remains zero until
the overlapping rate becomes actually heavy (all target frequent trees share one
edge with another target frequent tree); then the loss factor abruptly rises up to
almost 80%. One interpretation for this fact is the following. As the overlapping
rate increases from overlaps to overlapy, a discontinuity occurs: all edges become
equally frequent; this entails that the edge sets can no longer be filtered out based
on the frequency threshold (TF (e = 0.1, overlaps) = TF (e = 0.05, overlaps)).
In the meanwhile, the number of frequent trees decreases as ¢ increases due to
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monotonicity (AT (e = 0.1,overlaps) < AT (e = 0.05, overlap,), which explains
why the loss factor is worse for € = 0.1 than for € = 0.05 in the case of overlap,.

This effect can be likened to the example case illustrated on Fig. 5: the more
overlap between the target frequent trees, the larger the support of any set of
frequent edges, the more general the frequent trees extracted through LGG from
their support, and the more likely specific trees are missed by TreeFinder.

It must be noted that for an even larger frequency threshold (¢ = 0.2) the
loss factor remains 0 in all the experiments.

w —= 072
S 04 0.1
)

0.3 —e— 005

oi 2 L/f/
.0 ——u—,—u/. ] . I R

overlap0  owerlapt  ovedap2  overlap3  overlapd

Fig. 9. Sensitivity analysis: TreeFinder Loss factor for £ = 0.05, 0.1 and 0.2 depending
on the overlapping rate between target frequent trees

6 Related Work

The extraction of frequent patterns from structured or semi-structured data
has attracted much interest recently, as more and more application domains
involve structured (e.g. bio-informatics, chemistry [DTO01]) or semi-structured
(text, Web pages [MSU'01]) data. The earliest work aiming at complex frequent
patterns to our best knowledge is [CH94], which gradually abstracts frequent
substructures from graphs using an MDL criterion. The major difference with
our approach is twofold. On the one hand, TreeFinder takes advantage of the
tree structure being simpler than that of graphs; typically, TreeFinder would
not extend to handle graph data, for the transitive closure of graphs will only
deliver coarse information (connex components) in the general case. On the other
hand, [CH94] can only consider frequent substructures in the graph which are
made of edges; if it were applied on trees (trees being a particular case of graphs)
it could only discover frequent trees in the sense of subtree inclusion (Definition
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2). Same remarks apply for more recent works concerned with graph mining,
AGM (Apriori-based Graph Mining) [TWMO00] and FREQT (Frequent Trees)
[AAKT02].

Another work aiming at frequent structured patterns is WARMR [DT01], tack-
ling First Order Logic expressions. Again the main difference is that WARMR is
designed for full-fleshed First Order Logic data, while T'reeFinder takes advan-
tage of the comparative simplicity of trees. Admittedly, TreeFinder as well as
WARMR cannot scale up beyond certain limits; but the computational explosion
should be delayed in TreeFinder compared to WARMR, for the test step (the
f-subsumption cost) is less expensive.

The closest work to ours is presented by [Zak01], which proposes two algo-
rithms, TreeMiner H and TreeMinerV, for mining frequent trees in a forest
(set of trees). Interestingly, these two algorithms also rely on subsumption in-
clusion. They propose a smart tree representation based on string encoding, to
facilitate the candidate checking (subsumption test) step. The main difference
with TreeFinder is that TreeFinder computes an approximation of the result
to ensure better scalability. The approximated result is a set of frequent trees
guaranteed to subsume the actual frequent trees of the input.

Note that the discovery of common tree structures has been tackled from
another perspective, that of DTD inference. For instance, [PV00] studies the
automatic inference of a unique DTD (tree grammar) from a set of XML data
(labelled trees). The problem considered in this work is different from ours since
the expected output tree structures must satisfy a subtree inclusion and no
approximation is allowed.

Likewise, approximate tree matching has been considered in the perspective
of answering XML queries (e.g.,[SN00,DR01,AYCS02]). [SNOO] is based on tree
embedding, the others use relaxation operators, some of which (e.g. node dele-
tion) correspond to tree embedding, some others (e.g. node unfolding [DRO1])
do not.

7 Discussion and Perspectives

Extending a previous work [TRS02], this paper presents the TreeFinder al-
gorithm, concerned with the discovery of frequent trees w.r.t. a set of trees.
Contrasting with [AAK'02], TreeFinder uses a relaxed inclusion test which
allows for detecting trees which are not present verbatim in the data. Therefore,
TreeFinder achieves a more flexible and robust tree-mining and can detect trees
that could not be discovered using a strict subtree inclusion.

The main limitation of TreeFinder is to be an approximate miner; in the
general case, it is only guaranteed to find a subset of the actual frequent trees. Its
performances were empirically validated on artificial medium-size data, demon-
strating that it reaches completeness (or falls short to it) in a range of problems.

The distinctive feature of TreeFinder is to involve a preliminary process
based on a flat boolean representation of the trees, coding the presence or ab-
sence of all possible label pairs (ancestor relations) in each tree. This way, stan-
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dard FIS algorithms can be applied to determine the frequent label pairs sets
(FLPS). Each FLPS is thereafter exploited in order to actually construct fre-
quent trees, through a least general generalization of the FLPS support trees.
Indeed, the LGG step is computationally expensive; however, it is done only once
for each FLPS. As a counterpart, this saves the subsumption tests undergone in
the candidate test step, the number and complexity of which are exponential in
the size of the frequent trees.

Ongoing work is concerned with investigating in more depth the loss factor
of TreeFinder, using WARMR to emulate AprioriTree. Further research will
investigate how the postprocessing of the frequent label pairs sets can be used
to refine their support sets, and further decrease the chance of missing frequent
trees.
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