
TreeFinder: a First Step towards XML DataMiningAlexandre Termier, Marie-Christine Rousset, Mi
hèle Sebag{termier, m
r, sebag}�lri.frLRI - CNRS UMR 8623, Université Paris-Sud, 91405 OrsayAbstra
t. In this paper, we 
onsider the problem for sear
hing frequenttrees from a 
olle
tion of tree-stru
tured data modeling XML data. TheTreeF inder algorithm aims at �nding trees, su
h that their exa
t orperturbed 
opies are frequent in a 
olle
tion of labelled trees. To 
opewith the 
omplexity issue, TreeF inder 
ombines a pre-pro
essing stepextra
ting 
andidate subsets of data with a propositional Frequent ItemSet algorithm, on one hand, and a generalization algorithm borrowedto Indu
tive Logi
 Programming on the other hand. This way, the ad-ditional 
omplexity due to the tree-stru
tured formalism only o

urs inthe �nal step, during the generation of the tree solutions.As a 
ounterpart, TreeF inder is 
orre
t but not 
omplete: it �nds asubset of the a
tually frequent trees. The default of 
ompleteness is ex-perimentally investigated on arti�
ial medium size datasets; it is shownthat TreeF inder rea
hes 
ompleteness or falls short to it for a range ofexperimental settings.1 Introdu
tionDis
overy of frequent patterns in large data 
olle
tions has been investigated ina variety of settings. The simplest setting, whi
h has been extensively studied,
omes from the market basket analysis. It 
onsists in dis
overing frequent itemsets from databases storing 
ustomers transa
tions. The databases involved inthese appli
ations are very large and an intensive work has been done for design-ing fast algorithms for dis
overing frequent item sets [AS94,Toi96,HGN00℄. Thosealgorithms handle boolean data. This work has been extended to the sear
h offrequent sequential patterns from series of transa
tions [AS95,SA96,MHV97℄,and of frequent relational queries from relational databases [DT01℄.In this paper, we 
onsider the problem for sear
hing frequent trees from a
olle
tion of tree-stru
tured data modeling XML data. We present a methodthat automati
ally extra
ts from a 
olle
tion of labelled trees a set of frequenttrees o

urring as 
ommon (exa
t or approximate) trees embedded in a su�
ientnumber of trees of the 
olle
tion. By 
onstru
tion, this method provides (i) a
lustering of the input trees, and (ii) a 
hara
terization of ea
h 
luster by a setof frequent trees. The important point is that we are not looking for an exa
tembedding but for trees that may be approximately embedded in several input



2trees. An approximate tree in
lusion preserves the an
estor relation but not ne
-essarily the parent relation. This point distinguishes our work from existing workon DTD inferen
e [PV00℄. This 
hoi
e is motivated by the need for robustnessregarding the possible variations in the label nesting of XML do
uments whi
hwe still want to be re
ognized as having a similar tree stru
ture.The main motivating appli
ation of this work is the 
onstru
tion of a tree-based mediated s
hema for integrating multiple and heterogeneous sour
es ofXML data. A data integration system enables users to pose queries througha mediated s
hema, thus freeing them from having to interrogate ea
h sour
eseparately, and to deal with the heterogeneity of their s
hema. For example,Xyleme [Xyl,Xyl01,ACV+00℄ is a huge warehouse integrating XML data of theWeb. In Xyleme, the mediated s
hema is a set of labelled trees (
alled abstra
ttrees). Ea
h abstra
t tree is related to a given domain (e.g., 
ulture, tourism),and is an abstra
t merger of the 
on
rete trees modeling the tree-stru
ture ofthe a
tual XML do
uments relative to that domain. The abstra
t trees are thesupport of a visual query interfa
e tool, based on forms, intended to be used byend-users. Today, the abstra
t trees in the mediated s
hema in Xyleme are builtmanually. To s
ale up to the Web, the 
hallenge is to build them as automati
allyas possible.The paper is organized as follows. In Se
tion 2, we start with a motivatingexample. In se
tion 3, we des
ribe the formal ba
kground of our approa
h. InSe
tion 4, we des
ribe our two-step method for dis
overing frequent trees, whi
hhas been implemented in the TreeF inder system. In Se
tion 5, we report pre-liminary experimental results on medium-size arti�
ial data. Finally, in Se
tion6 we 
ompare our approa
h with related work and we draw some 
on
lusionsand perspe
tives in Se
tion 7.2 Motivating exampleFig. 1 is an illustration of heterogeneous XML data stru
tures with variousnesting of the labels.The nesting of the Title node di�ers in trees D3 and D4. Similarly, the nodelabelled with Model is the dire
t son of the node labelled with UsedCar in D1,while there is a node in between the 
orresponding nodes in D2.Despite the variation in the stru
ture, we want to group together:- D1, D2 and D02, be
ause the same tree P1 (Fig. 2 (a)) is (exa
tly or ap-proximately) in
luded in D1, D2 and D02,- D3 and D4, be
ause they have in 
ommon the tree P2 (Fig. 2 (b)), even ifthe embedding in D3 and D4 is approximate.The two trees P1 and P2 of Fig. 2 are the frequent trees 
orresponding tothe input trees of Fig. 1: they are 
ommon to several di�erent trees in the input
olle
tion.



3DealerUsedCarModel Year Pri
e NewCarModel Pri
e NetAdsUsedCarTypeModel GeneralInfoPri
e Year
UsedCarModelYear Pri
e(a) D1 (b) D2 (e) D02BookRefsTitle AuthorPri
e BookListAuthor Title(
) D3 (d) D4Fig. 1. Various tree-stru
turesUsedCarModel Year Pri
e BookAuthor Title(a) P1 (b) P2Fig. 2. Frequent trees3 Formal ba
kgroundIn this se
tion, we introdu
e an elementary tree model for XML data stru
ture.We further introdu
e the formal de�nitions of tree in
lusion, (maximal) 
ommontrees and frequent trees.3.1 Modeling XML Data Stru
tureWe model an XML data stru
ture (e.g., a DTD) as a labelled tree. We ignoreID-referen
es and hyperlinks. Ea
h node d has a label, written as label(d). We donot distinguish between elements and attributes. They are all mapped to nodesusing the element or the attribute name as label. We do not 
onsider semanti
heterogeneity of attribute and element names. We assume that all element orattribute names modeling the same real world 
on
ept also 
arry the same label.This 
an be a
hieved by a prepro
essing fun
tion mapping element names that



4are synonymous to a 
ommon label. We also ignore the possible problems ofpolysemy (a same label denoting di�erent 
on
epts).De�nition 1 (Labelled trees). A labelled tree is a pair ht; labeli where (i)t is a �nite tree whose nodes are in N , (ii) label is a labeling fun
tion thatassigns a label to ea
h node in t.The labels play the role of the begin-end tag in XML data models. We usethe 
urrent terminology about trees: root, 
hildren, des
endant, leaf, subtree,et
. We also use some fun
tional notations su
h as: root(t) returns the root nodeof the tree t, 
hildren(u) (resp. des
(u), an
(u)) returns the set of nodes thatare 
hildren (resp. des
endants, an
estors) of node u, and label(t) returns theset of labels of the nodes of the tree t.Note that within a given tree, two di�erent nodes may have the same label.We 
onsider that we are given a 
olle
tion of labelled trees that 
onstitutethe input set of trees to whi
h our method applies for dis
overing frequent trees.3.2 Tree in
lusionWe 
onsider three variations of the notion of tree in
lusion. The most restri
tedde�nition is that of subtree in
lusion.De�nition 2 (Subtree in
lusion).Let t and t0 be two labelled trees. We say that t is in
luded as a subtree in t0i� there exists a subtree of t0 whi
h is identi
al with t.The subtree in
lusion problem has been extensively studied (e.g., [RR92℄)and is solvable in linear time. For instan
e, tree P1 (Fig. 2 (a)) is in
luded as asubtree in tree D1 (Fig. 1 (a)), but it is not in tree D2 (Fig. 1 (b)).However, as pointed out in the introdu
tion, our aim is to �nd frequent treepatterns in a set of trees. The above de�nition is too restri
ted sin
e one wouldtypi
ally like tree P1 to be 
onsidered as present in D2.Therefore a relaxed in
lusion de�nition, �rst proposed by [Kil92℄, based on aninje
tive mapping termed tree embedding and preserving the labels and an
estorrelation in the trees, is 
onsidered.De�nition 3 (In
lusion by tree embedding).Let t and t0 be two labelled trees. We say that t is in
luded by embedding int0 if there exists a mapping f from the nodes of t into the set of nodes of t0 su
hthat f is inje
tive and f stri
tly preserves the an
estor relation:8 u in t; label(u) = label(f(u)) and 8 u; v in t an
(u; v)() an
(f(u); f(v))Example. A

ording to that de�nition, tree P1 (Fig. 2) is in
luded in D2 andD1 (Fig. 1), but is not in
luded in D02 (Fig. 1): there exists no an
estor relationbetween nodes Model and Year or Pri
e in P1, while there exists one in D02.A weaker order relation termed tree subsumption, is then de�ned on trees byrelaxing the in
lusion de�nition above.



5De�nition 4 (In
lusion by tree subsumption).Let t and t0 be two labelled trees. We say that t is in
luded by tree subsump-tion in t0 if there exists a mapping f from the nodes of t into the set of nodesof t0 su
h that f preserves the an
estor relation:8 u in t; label(u) = label(f(u)) and 8 u; v in t; an
(u; v) =) an
(f(u); f(v))The advantage of the above de�nition is the following: if we 
hoose to rep-resent labelled trees as relational formulas ([Llo87℄), then tree subsumption isequivalent to the �-subsumption relation de�ned by ([Plo70℄). Let us �rst de-s
ribe how labelled trees 
an be put in relational form.3.3 Relational representation of labelled trees.The relational representation that we 
onsider for a labelled tree is a 
onjun
tionof atoms noted Rel(t), des
ribing the parent relation over the set of nodes of t.We also introdu
e another relational representation noted Rel+(t), des
ribingthe transitive 
losure of the parent relation, i.e. the an
estor relation.De�nition 5 (Relational des
ription of labelled trees). Let t be a labelledtree. Rel(t) is the 
onjun
tion of all atoms ab(u; v), su
h that u and v are nodesin t, with label(u) = a, label(v) = b and u is the parent node of v.Rel+(t) is the 
onjun
tion of atoms a*b(u; v), su
h that u and v are nodes in t,with label(u) = a, label(v) = b and u is an an
estor node of v.Fig. 3 illustrates the two en
oding fun
tions Rel and Rel+ for two labelledtrees.Let us re
all the de�nition of the �-subsumption.De�nition 6 (�-subsumption). Let C and C0 be two �rst order logi
 formulas.We say that C �-subsumes C0 if there exists a mapping � from the variables in Conto the variables and 
onstants in C0 su
h that every atom in C� appears in C0.The following proposition states the equivalen
e between in
lusion by treesubsumption (De�nition 4) and �-subsumption.Proposition 1. Let t and t0 be two labelled trees. Then:t is in
luded by tree subsumption in t0 i� Rel�(t) �-subsumes Rel�(t0)The advantage of this relational representation is that, though �-subsumptiontest is NP 
omplete, e�
ient implementations have been proposed [MS01℄.3.4 Common trees and frequent trees.The following de�nition formally de�nes the notion of maximal (a

ording totree in
lusion) tree 
ommon to several trees. It relies on, and thus depends on,the de�nition of tree in
lusion that is 
onsidered.



6

Ti Rel(Ti) Rel+(Ti)U1/aU2/b U3/aU4/
U5/d
ab(U1; U2)aa(U1; U3)a
(U3; U4)
d(U4; U5) a*b(U1; U2)a*a(U1; U3)a*
(U1; U4)a*d(U1; U5)a*
(U3; U4)a*d(U3; U5)
*d(U4; U5)

U 01/aU 02/fU 04/b U 03/
U 05/d U 06/e
af(U 01; U 02)a
(U 01; U 03)fb(U 02; U 04)
d(U 03; U 05)
e(U 03; U 06)

a*f(U 01; U 02)a*
(U 01; U 03)a*b(U 01; U 04)a*d(U 01; U 05)a*e(U 01; U 05)f*b(U 02; U 04)
*d(U 03; U 05)
*e(U 03; U 06)Fig. 3. Two example trees T1 and T2, and their relational en
oding



7De�nition 7 (Maximal 
ommon tree). Let t; t1; :::; tn be labelled trees. Wesay that t is a maximal 
ommon tree of t1; :::; tn i� :� 8i 2 [1::n℄ t is in
luded in ti� t is maximal for the previous property, i.e. if there is a labelled tree t0 su
h ast is in
luded in t0 and 8i 2 [1::n℄ t0 is in
luded in ti then t0 is identi
alto t.For instan
e, tree P1 (Fig. 2) is a maximal 
ommon tree of D1, D2 and D02(Fig. 1) w.r.t. tree subsumption (De�nition 4), but not w.r.t. subtree in
lusionand in
lusion by embedding (De�nitions 2 and 3).Let us now de�ne the notion of frequent tree.De�nition 8 (Frequent tree). Let T be a set of labelled trees, and let t be alabelled tree. Let " be a real number in [0; 1℄.We say that t is a "-frequent tree of T i�:- there exists l subtrees ft1; :::; tlg in T su
h that t is maximal 
ommon treeof ft1; :::; tlg.- l is greater or equal to ":jT j.The support set of t in T is the set of all trees ti su
h that t is in
luded in ti.For instan
e a

ording to De�nition 4 (but not to De�nitions 3 and 2), thetwo trees P1 and P2 (Fig. 2) are the 0:4-frequent trees w.r.t. the set of the treesD1, D2, D02, D3 and D4 (Fig. 1).Let F" denote the set of all "-frequent trees w.r.t. a set of trees T ; due tomonotoni
ity, " > "0 =) F" � F"0Maximal "-frequent trees are de�ned as the maximal elements (for tree in-
lusion) in F".4 Overview of the TreeFinder systemLet T = ft1; t2; : : : ; tng be a set of labelled trees, let " be a frequen
y threshold.The TreeF inder method for dis
overing "-frequent trees in T is a two-step algo-rithm. The �rst step is des
ribed in Se
tion 4.1. It is a 
lustering step that groupsinput trees in whi
h same pairs of labels o

ur together frequently enough in thean
estor relation. This is realized by applying a standard algorithm 
omputingfrequent item sets (e.g., Apriori [AS94℄) to an appropriate abstra
tion of theinput trees. The se
ond step is des
ribed in Se
tion 4.2. It is a tree 
onstru
tionstep based on the 
omputation of maximal trees that are 
ommon to all thetrees of ea
h 
luster. In Se
tion 4.3, the trees that are returned as output of thistwo-step algorithm are formally 
hara
terized w.r.t. to its input.



84.1 Clustering guided by 
o-o

uren
e of labels pairsInput: An abstra
tion of the input T = ft1; t2; : : : ; tng, where ea
h ti is viewedas a transa
tion made of all the items l*m su
h that l is the label of an an
estorof a node labelled by m in ti. Ea
h item l*m has a unique identi�er. Let I bethe set of those identi�ers.For example, the input transa
tions 
orresponding to trees of Fig. 1 are:D1 = { Dealer*UsedCar, Dealer*NewCar, UsedCar*Model, UsedCar*Year,UsedCar*Pri
e, NewCar*Model, NewCar*Pri
e, Dealer*Model,Dealer*Year, Dealer*Pri
e}D2 = { NetAds*UsedCar, UsedCar*Type, UsedCar*Model, UsedCar*GeneralInfo,GeneralInfo*Pri
e, GeneralInfo*Year, UsedCar*Pri
e, UsedCar*Year,NetAds*Model, NetAds*Pri
e, NetAds*Year }D02 = { UsedCar*Model, Model*Year, Model*Pri
e, UsedCar*Year,UsedCar*Pri
e }D3 = { Book*Refs, Book*Pri
e, Refs*Title, Refs*Author, Book*Title, Book*Author}D4 = {Book*List, Book*Title, List*Author, Book*Author }This splitting of the trees in separate items 
orresponding to pairs of labelsbreaks the tree stru
ture but makes possible the use of a standard frequent itemsets algorithm for dis
overing frequent label pairs in the input trees. The 
o-o

urren
e of same pairs of labels is 
onsidered as semanti
ally signi�
ant if ito

urs frequently in the input data.Clustering method: Many algorithms have been developped to 
omputefrequent item sets. So far, our implementation uses the simplest one: Apriori[AS94℄. We apply the Apriori algorithm to the set of transa
tions T over theitems I identifying the pairs of labels, with the frequen
y threshold (a.k.a min-imum support) set to ".Output: the support sets of the largest frequent item sets returned by theApriori algorithm. The support set of an item set s � I, denoted support(s), isthe subset of T made of all the transa
tions in
luding s. A frequent item set isa subset of I the support set of whi
h has a size greater than ":jT j.For instan
e, the largest frequent item sets returned by the Apriori al-gorithm applied with the frequen
y threshold 0:4 to the set of transa
tionsfD1; D2; D02; D3; D4g , given previously and abstra
ting the trees of Fig. 1 are:s1 = {UsedCar*Model, UsedCar*Year, UsedCar*Pri
e}s2 = {Book*Pri
e, Book*Title, Book*Author}The 
orresponding support sets, that are thus returned as output 
lusters, are:support(s1) = fD1; D2; D02gsupport(s2) = fD3; D4g.4.2 Computation of maximal 
ommon treesInput: This step takes as input the output of the previous 
lustering step, and
omputes for ea
h 
luster the maximal trees that are 
ommon to (i.e. in
luded



9in) all the trees of the 
luster From now on, the tree in
lusion we 
onsider is thesubsumption-in
lusion (De�nition 4).Method: For ea
h 
luster fti1 ; ti2 ; : : : ; ting, we 
ompute the least generalgeneralization [Plo70℄ LGG(Rel+(t1); :::; Rel+(tn)) of the relational formulas en-
oding the trees.The least general generalization of two relational formulasRel(f1) andRel(f2)is the most spe
i�
 formula whi
h �-subsumes Rel(f1) and Rel(f2). From [Plo70℄it is shown that the least general generalization of two 
onjun
tive formulas withno fun
tion symbol is unique (up to variable renaming).In the example of Fig. 3 :LGG(Rel+(T1); Rel+(T2))= a*b(U1; U2)^a*
(U1; U3)^a*d(U1; U4)^
*d(U3; U4).Output: the set of trees resulting from the tree de
oding of the least generalgeneralizers of the relational formulas en
oding the trees for ea
h 
luster.The subtle point is that from LGG(Rel+(t1); :::; Rel+(tn)), whi
h is a 
on-jun
tion of atoms of the form l*m(Ui; Uj), modeling the an
estor relation, we 
anre
onstru
t the atoms de�ning the underlying parent relation. This results fromthe fa
t that, be
ause of the tree stru
ture of the inputs t1, ..., tn, the impli
itparent relation p whose transitive 
losure leads to LGG(Rel+(t1); :::; Rel+(tn))has ne
essarily a forest stru
ture, and the 
orresponding expli
it an
estor rela-tion has a dag stru
ture. It is the appli
ation of a traversal of that dag stru
turein a topologi
al order that makes possible to re
onstru
t the parent relationfrom the an
estor relation whi
h is stated in LGG(Rel+(t1); :::; Rel+(tn)). Letstar�1(LGG(Rel+(t1); :::; Rel+(tn))) be the resulting 
onjun
tion of atoms ofthe form lm(Ui; Uj).In the example of Fig. 3 :star�1(LGG(Rel�(T1); Rel�(T2))) = ab(U1; U2) ^ a
(U1; U3) ^ 
d(U3; U4).Fig. 4 illustrates the relational least general generalizer 
orresponding to ourexample and its tree de
oding.LGG star�1a*b(U1; U2)a*
(U1; U3)a*d(U1; U4)
*d(U3; U4) ab(U1; U2)a
(U1; U3)
d(U3; U4)Rel�1(star�1(LGG(Rel+(T1); Rel+(T2))))U1/aU2/b U3/
U4/dFig. 4. Relational LGG and its tree de
oding



104.3 Formal 
hara
terization of the TreeFinder resultsThe following proposition states that the results produ
ed by TreeF inder are
orre
t. We also provide a su�
ient 
ondition for these results to be 
omplete,i.e. to in
lude all the maximal frequent trees present in the input trees.Proposition 2. Let T be a set of labelled trees, let " be a frequen
y threshold,let ft1; ft2; : : : ; ftn be the trees obtained as output of the two-step TreeF indermethod applied to T :- 
orre
tness: ft1; ft2; : : : ; ftn are "-frequent trees for T .- su�
ient 
ondition for 
ompleteness: If T is su
h that the trees inthe support of ea
h maximal "-frequent trees have no label pair in 
ommon withtrees out of the support, then ft1; ft2; : : : ; ftn are exa
tly the maximal "-frequenttrees of T .The following example shows that TreeF inder is not guaranteed to �nd themaximal "-frequent trees in the general 
ase.Fig. 5 illustrates a 
ase where TreeF inder applied with a frequen
y thresholdof 0:5 would �nd a single big 
luster made of all the input trees (
orresponding tothe maximal item set {a*b, a*
}, whi
h appears in fa
t in all the transa
tions).The result returned by TreeF inder would then be the two trees ft1; ft2 redu
edto one edge ea
h, whi
h are 
ommon to all the input trees: they are 1:0-frequenttrees and thus a fortiori 0:5-frequent trees. However, TreeF inder does not �ndthe unique 0:5-frequent tree whose root is labelled by a and has two 
hildrenlabelled by b and 
 respe
tively.ab 
 eab a
 fab a
 agb 
D1 D2 D3 D4Input trees of TreeF inder, threshold = 0.5ab Support set :fD1; D2; D3; D4g a
 Support set :fD1; D2; D3; D4g ab 
 Support set :fD1; D4gOutput of TreeF inder : two 1:0-frequent trees 0:5-frequent tree missed by TreeF inderFig. 5.This example is illustrative of the fa
t that TreeF inder 
an fail to �nd all the"-frequent trees in the data. We estimate this loss of 
ompleteness by 
omparison



11with the ideal algorithm, whi
h we will refer to as AprioriT ree. AprioriT ree isan extension of the levelwise algorithm Apriori to tree stru
tures:� Find the trees of size 1 (trees with one edge) that are 
ommon to more than"� (number of input trees) input trees.� i := 1� While there exists frequent trees of size i:� generate 
andidate frequent trees of size i+ 1 from the frequent treesof size i and those of size 1,� test the in
lusion of those 
andidate frequent trees in the input trees inorder to sele
t those 
andidate frequent trees that are a
tually frequent.� i := i+ 1AprioriT ree is a naive method whi
h is not tra
table in pra
ti
e be
ause
learly, it hardly s
ales up: �rst of all, the test step intensively relies on treesubsumption, whi
h is NP 
omplete. Furthermore, the number of 
andidate trees
onstru
ted from a frequent i-edge tree grows like i�e, where e is the number offrequent edges; in 
ontrast, the number of 
andidates 
onstru
ted from a frequenti-item set is e� i, where e is the number of frequent items.We have implemented TreeF inder in C++, and its experimental validationis detailed in the next se
tion.5 Experimental resultsThis se
tion �rst details the experiment goals and the experimental setting usedfor the empiri
al validation of TreeF inder. The results obtained are then re-ported and dis
ussed with regard to 
omputational 
ost (se
tion 5.3) and fre-quent tree quality (se
tion 5.4).5.1 Experiment goalsA key 
riterion for data mining algorithms 
on
erns their robustness and s
alabil-ity w.r.t. the 
hara
teristi
s of input data [AS94℄. Therefore, the 
omputational
ost of TreeF inder w.r.t. the number and size of input trees will be investigatedin se
tion 5.3.Another 
riterion regards the quality of the results provided by TreeF inder.Let us 
onsider as baseline algorithm AprioriT ree.Proposition 2 has given su�
ient 
onditions for TreeF inder to �nd ex-a
tly the same frequent trees as AprioriT ree. In the general 
ase however,TreeF inder will miss some frequent trees as illustrated in Fig. 5.The se
ond experiment goal will thus be to estimate the per
entage of fre-quent frequent trees missed by TreeF inder, 
ompared to the baseline algorithm.This per
entage, termed loss fa
tor, will be investigated experimentally in se
tion5.4.All experiments 
onsider arti�
ial medium-size datasets, a

ording to thefollowing experimental setting.



125.2 Experimental settingAs mentioned in the introdu
tion, the mining of XML data raises two majordi�
ulties. The �rst one, not 
onsidered in the present paper, regards the po-tential synonymy and polysemy of tags. The se
ond di�
ulty, ta
kled in thepaper, 
on
erns the tree-stru
ture of the XML data.As a preliminary investigation, we thus 
onsider arti�
ial XML data, gener-ated from known target frequent trees using a randomized tree-stru
ture gener-ator. This generator1 pro
eeds as follows:� A set of target frequent trees P = fP1; : : : PKg is given by the user.� A set of external labels L is de�ned, disjoint (unless otherwise spe
i�ed)from the labels involved in the target frequent trees. The size L of L is auser-supplied parameter of the generator.� Ea
h tree-do
ument is re
ursively generated. Let u be the top node in thenode list (initialized at the root node). Two options are 
onsidered: withprobability p, a (perturbed) 
opy of one target frequent tree is inserted atnode u (see below the target frequent tree insertion). Otherwise (with prob-ability 1� p), the number of son nodes for the 
urrent node u is uniformlysele
ted in [0::B℄, where B is the maximum bran
hing fa
tor; the label forthe 
urrent node u is sele
ted with uniform probability in L; u is removedfrom the node list, and its son nodes are added to the node list.� The insertion of a target frequent tree P , uniformly sele
ted in P , pro
eedsby 
opying at node u a perturbed 
opy of P . A numberm of additional nodesis randomly sele
ted in [0; Æ℄, where Æ is the perturbation parameter. Thesenodes are randomly inserted in the target frequent tree, and their labels arerandomly sele
ted in L.The parameters of the arti�
ial tree generator are summarized in Table 1.K number of target frequent treesL number of external labelsp probability of in
luding a target frequent tree in ea
h nodeÆ maximal number of nodes added to perturbate a target frequent treeB maximal bran
hing fa
torD maximal tree depthTable 1. Parameters of the arti�
ial tree-stru
ture generatorDue to the sto
hasti
 generation of the datasets, the reported results areobtained by averaging the results obtained for ten independent runs (laun
hedwith same parameter values and distin
t random seeds).1 The generator is available at http://www.lri.fr/�termier/generator.tgz.



135.3 Empiri
al study of 
omputational 
ostVarious experiments 
onsider up to 10,000 arti�
ial tree-stru
tured do
uments,generated with the following parameters:� The set of target frequent trees is displayed in Fig. 6.� The total number of labels is set to 100. With no loss of generality, labels 1to 13 denote the labels involved in the target frequent trees, and L is madeof all labels 14 : : : 100. In these tests, the labels of the target frequent treesare not disjoint from the external labels, so L = 100.� The probability p of in
luding a target frequent tree at ea
h node is set to0:2� The maximal number Æ of perturbations is set to 25.� The maximal bran
hing fa
tor is set to 5.� The maximal tree depth is set to 312 3 45 6 7 8 91013 11 12(a) P1 (b) P2 (
) P3Fig. 6. Target frequent treesA �rst series of results, obtained with the frequen
y threshold 0:05 is dis-played on Fig. 7.The average 
omputational 
omplexity (Fig. 7 a) is dominated by the leastgeneral generalization (LGG) 
omputational 
omplexity. The LGG thus is thelimiting fa
tor; no results 
ould be obtained for a number of trees greater than8,000 due to memory saturation.Similar results are obtained by varying the average tree size. For these testsparameter p was set to 1:0, so trees were just perturbated target frequent trees,and we varied the value of Æ. A
tually, the FIS step only depends on the numberof edges in the target frequent trees. But the supports of frequent edge sets arelarge, whi
h implies that LGG 
onsiders many trees (Fig. 7 b).Again, it 
an be seen that the limiting 
omplexity fa
tor is the LGG step.5.4 Empiri
al study of TreeF inder loss fa
torThe empiri
al study investigates the loss fa
tor, measuring the per
entage of�true� frequent trees missed by TreeF inder.



14

a) Varying tree number, random tree size

b) Varying tree size, 1000 treesFig. 7. S
alability tests results



15As noted earlier (Proposition 2), the loss fa
tor is zero when the target fre-quent trees do not overlap. The empiri
al study therefore 
onsiders �ve sets oftarget frequent trees, with in
reasing overlapping edges. Pra
ti
ally, �ve series ofexperiments are laun
hed, 
orresponding to the �ve sets of four target frequenttrees displayed in Fig. 8.� overlap0 
orresponds to the baseline 
ase, with no overlap.� overlap1 involves a small overlap (P1 and P2 share edge 1� 3); the overlap-ping rate, de�ned as the average per
entage of edges that a target frequenttree shares with another target frequent tree, is 25%.� overlap2 involves a medium overlap (P1 and P2 share edge 1� 3; P2 and P3share edge 1� 4); similarly the overlapping rate is 50%,� overlap3 involves a moderate overlap (P1 and P2 share edge 1�3; P2 and P3share edge 1� 4; P3 and P4 share edge 1� 5); the overlapping rate is 75%.� overlap4 involves a large overlap (P1 and P2 share edge 1 � 3; P2 and P3share edge 1� 4; P3 and P4 share edge 1� 5; P4 and P1 share edge 1� 2);the overlapping rate is 100%.Overlap P1 P2 P3 P4overlap0 : 12 3 45 6 78 9 1011 12overlap1 : 12 3 13 4 56 7 89 10overlap2 : 12 3 13 4 14 5 67 8overlap3 : 12 3 13 4 14 5 15 6overlap4 : 12 3 13 4 14 5 15 2Fig. 8. Set of target trees with in
reasing overlapThe other generator parameters are set as follows:� The number L of external labels is set to 50.



16� The probability p of in
luding a target frequent tree at ea
h node is set to0:4.TreeF inder is run with frequen
y threshold " varying in 0:2; 0:1; 0:05.Fig. 9 displays the loss fa
tor for ea
h frequen
y threshold " and for ea
h
olle
tion of target frequent trees.The loss fa
tor has been 
omputed as follows. Ideally, it measures the per-
entage of frequent trees that would return AprioriT ree, whi
h are missed byTreeF inder. However, be
ause of the inherent 
omplexity of AprioriT ree, thefrequent trees o

uring in the a
tual tree datasets 
annot be extra
ted with rea-sonable 
omplexity. The number of su
h frequent trees is therefore approximatedduring the generation step.Pra
ti
ally, for a tree t, let Q(t) be the set of target frequent trees Pi su
hthat t in
ludes (at least) one o

uren
e of Pi; Q(t) 
an easily be determinedsin
e no destru
tive perturbations of target frequent trees are 
onsidered in thegenerator.For ea
h su
h set of target frequent trees Q (with Q in
luded in the set oftarget frequent trees overlapi at hand), one might thus determine its support inthe generated input trees; if its support in
ludes more than 100:"% of the inputdata, Q is a frequent tree.The number of su
h frequent trees is taken as a lower bound on the numberof a
tually frequent trees. For ea
h frequen
y threshold " and set of frequenttrees overlapi, the loss fa
tor is de�ned as:Loss("; overlapi) = 1� TF ("; overlapi)AT ("; overlapi)where TF ("; overlapi) denotes the (median) number of frequent trees a
tuallyprodu
ed by TreeF inder over 10 datasets independently generated a

ording tothe target frequent tree set overlapi, and AT ("; overlapi) likewise is the lowerbound on the number of a
tually frequent trees, de�ned as above. The loss fa
torso-
omputed thus 
orresponds to a pessimisti
 estimate.As expe
ted from Proposition 2, the loss fa
tor is zero for non-overlappingtarget frequent trees (Fig. 9). Two types of behavior are observed depending onthe frequen
y threshold.For a small frequen
y threshold (" = 0:05), the loss fa
tor degrades gra
efullyas the overlapping rate in
reases from small to moderate; the loss is around 20%for an overlapping rate of 75%.For a larger frequen
y threshold (" = 0:1), the loss fa
tor remains zero untilthe overlapping rate be
omes a
tually heavy (all target frequent trees share oneedge with another target frequent tree); then the loss fa
tor abruptly rises up toalmost 80%. One interpretation for this fa
t is the following. As the overlappingrate in
reases from overlap3 to overlap4, a dis
ontinuity o

urs: all edges be
omeequally frequent; this entails that the edge sets 
an no longer be �ltered out basedon the frequen
y threshold (TF (" = 0:1; overlap4) � TF (" = 0:05; overlap3)).In the meanwhile, the number of frequent trees de
reases as " in
reases due to



17monotoni
ity (AT (" = 0:1; overlap4) < AT (" = 0:05; overlap4), whi
h explainswhy the loss fa
tor is worse for " = 0:1 than for " = 0:05 in the 
ase of overlap4.This e�e
t 
an be likened to the example 
ase illustrated on Fig. 5: the moreoverlap between the target frequent trees, the larger the support of any set offrequent edges, the more general the frequent trees extra
ted through LGG fromtheir support, and the more likely spe
i�
 trees are missed by TreeF inder.It must be noted that for an even larger frequen
y threshold (" = 0:2) theloss fa
tor remains 0 in all the experiments.

Fig. 9. Sensitivity analysis: TreeF inder Loss fa
tor for " = 0:05, 0:1 and 0:2 dependingon the overlapping rate between target frequent trees6 Related WorkThe extra
tion of frequent patterns from stru
tured or semi-stru
tured datahas attra
ted mu
h interest re
ently, as more and more appli
ation domainsinvolve stru
tured (e.g. bio-informati
s, 
hemistry [DT01℄) or semi-stru
tured(text, Web pages [MSU+01℄) data. The earliest work aiming at 
omplex frequentpatterns to our best knowledge is [CH94℄, whi
h gradually abstra
ts frequentsubstru
tures from graphs using an MDL 
riterion. The major di�eren
e withour approa
h is twofold. On the one hand, TreeF inder takes advantage of thetree stru
ture being simpler than that of graphs; typi
ally, TreeF inder wouldnot extend to handle graph data, for the transitive 
losure of graphs will onlydeliver 
oarse information (
onnex 
omponents) in the general 
ase. On the otherhand, [CH94℄ 
an only 
onsider frequent substru
tures in the graph whi
h aremade of edges; if it were applied on trees (trees being a parti
ular 
ase of graphs)it 
ould only dis
over frequent trees in the sense of subtree in
lusion (De�nition



182). Same remarks apply for more re
ent works 
on
erned with graph mining,AGM (Apriori-based Graph Mining) [IWM00℄ and FREQT (Frequent Trees)[AAK+02℄.Another work aiming at frequent stru
tured patterns isWarmr [DT01℄, ta
k-ling First Order Logi
 expressions. Again the main di�eren
e is thatWarmr isdesigned for full-�eshed First Order Logi
 data, while TreeF inder takes advan-tage of the 
omparative simpli
ity of trees. Admittedly, TreeF inder as well asWarmr 
annot s
ale up beyond 
ertain limits; but the 
omputational explosionshould be delayed in TreeF inder 
ompared to Warmr, for the test step (the�-subsumption 
ost) is less expensive.The 
losest work to ours is presented by [Zak01℄, whi
h proposes two algo-rithms, TreeMinerH and TreeMinerV , for mining frequent trees in a forest(set of trees). Interestingly, these two algorithms also rely on subsumption in-
lusion. They propose a smart tree representation based on string en
oding, tofa
ilitate the 
andidate 
he
king (subsumption test) step. The main di�eren
ewith TreeF inder is that TreeF inder 
omputes an approximation of the resultto ensure better s
alability. The approximated result is a set of frequent treesguaranteed to subsume the a
tual frequent trees of the input.Note that the dis
overy of 
ommon tree stru
tures has been ta
kled fromanother perspe
tive, that of DTD inferen
e. For instan
e, [PV00℄ studies theautomati
 inferen
e of a unique DTD (tree grammar) from a set of XML data(labelled trees). The problem 
onsidered in this work is di�erent from ours sin
ethe expe
ted output tree stru
tures must satisfy a subtree in
lusion and noapproximation is allowed.Likewise, approximate tree mat
hing has been 
onsidered in the perspe
tiveof answering XML queries (e.g.,[SN00,DR01,AYCS02℄). [SN00℄ is based on treeembedding, the others use relaxation operators, some of whi
h (e.g. node dele-tion) 
orrespond to tree embedding, some others (e.g. node unfolding [DR01℄)do not.7 Dis
ussion and Perspe
tivesExtending a previous work [TRS02℄, this paper presents the TreeF inder al-gorithm, 
on
erned with the dis
overy of frequent trees w.r.t. a set of trees.Contrasting with [AAK+02℄, TreeF inder uses a relaxed in
lusion test whi
hallows for dete
ting trees whi
h are not present verbatim in the data. Therefore,TreeF inder a
hieves a more �exible and robust tree-mining and 
an dete
t treesthat 
ould not be dis
overed using a stri
t subtree in
lusion.The main limitation of TreeF inder is to be an approximate miner; in thegeneral 
ase, it is only guaranteed to �nd a subset of the a
tual frequent trees. Itsperforman
es were empiri
ally validated on arti�
ial medium-size data, demon-strating that it rea
hes 
ompleteness (or falls short to it) in a range of problems.The distin
tive feature of TreeF inder is to involve a preliminary pro
essbased on a �at boolean representation of the trees, 
oding the presen
e or ab-sen
e of all possible label pairs (an
estor relations) in ea
h tree. This way, stan-



19dard FIS algorithms 
an be applied to determine the frequent label pairs sets(FLPS). Ea
h FLPS is thereafter exploited in order to a
tually 
onstru
t fre-quent trees, through a least general generalization of the FLPS support trees.Indeed, the LGG step is 
omputationally expensive; however, it is done only on
efor ea
h FLPS. As a 
ounterpart, this saves the subsumption tests undergone inthe 
andidate test step, the number and 
omplexity of whi
h are exponential inthe size of the frequent trees.Ongoing work is 
on
erned with investigating in more depth the loss fa
torof TreeF inder, using Warmr to emulate AprioriT ree. Further resear
h willinvestigate how the postpro
essing of the frequent label pairs sets 
an be usedto re�ne their support sets, and further de
rease the 
han
e of missing frequenttrees.A
knowledgementsThe authors wish to thank Jér�me Azé and Jér�me Maloberti, LRI, who kindlygave respe
tively their implementation of Apriori, and of least general generali-sation.Referen
es[AAK+02℄ Tatsuya Asai, Kenji Abe, Shinji Kawasoe, Hiroki Arimura, HiroshiSakamoto, and Setsuo Arikawa. E�
ient substru
ture dis
overy from largesemi-stru
tured data. In Pro
. Se
ond SIAM International Conferen
e onData Mining, pages 158�174, 2002.[ACV+00℄ V. Aguiléra, S. Cluet, P. Veltri, D. Vodislav, and F. Wattez. Querying theXML Do
uments on the Web. In Pro
. of the ACMSIGIR Workshop onXML and I. R., Athens, July 28, 2000.[AS94℄ Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for miningasso
iation rules. In Pro
eedings of the 20th VLDB Conferen
e, Santiago,Chile, 1994.[AS95℄ R. Agrawal and R. Srikant. Mining sequential patterns. In Pro
. of EleventhInternational Conferen
e on Data Engineering, pages 3�14, 1995.[AYCS02℄ S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern relaxation. In Pro
.of the EDBT 2002 Conferen
e, 2002.[CH94℄ Diane J. Cook and Lawren
e B. Holder. Substru
ture dis
overy using min-imum des
ription length and ba
kground knowledge. Journal of Arti�
ialIntelligen
e Resear
h, 1:231�255, 1994.[DR01℄ C. Delobel and M-C. Rousset. A uniform approa
h for querying large tree-stru
tured data through a mediated s
hema. In Pro
. of the 2001 Int. Work-shop on Foundations of Models for Information Integration, September 2001.[DT01℄ L. Dehaspe and H. TT Toivonen. Relational Data Mining, 
hapter Dis
overyof Relational Asso
iation Rules, pages 189�212. Springer-Verlag, 2001.[HGN00℄ Jo
hen Hipp, Ulri
h Güntzer, and Gholamreza Nakhaeizadeh. Algorithmsfor asso
iation rule mining � a general survey and 
omparison. SIGKDDExplorations, 2(1):58�64, July 2000.



20[IWM00℄ Akihiro Inoku
hi, Takashi Washio, and Hiroshi Motoda. An apriori-basedalgorithm for mining frequent substru
tures from graph data. In Prin
iplesof Data Mining and Knowledge Dis
overy, pages 13�23, 2000.[Kil92℄ P. Kilpeläinen. Tree Mat
hing Problemas with Appli
ations to Stru
turedText Databases. PhD thesis, University of Helsinki, 1992.[Llo87℄ J.W. Lloyd. Foundations of logi
 programming. Springer-Verlag, 2nd edition,1987.[MHV97℄ H. Mannila, H.Toivonen, and A.I. Verkamo. Dis
overy of frequent episodesin event sequen
es. Data Mining and Knowledge Dis
overy, 1(3):259�289,1997.[MS01℄ J. Maloberti and M. Sebag. Theta-subsumption in a 
onstraint satisfa
tionperspe
tive. In Pro
. of the ILP'01 Conferen
e, pages 164�178, 2001.[MSU+01℄ T. Miyahara, T. Shoudai, T. U
hida, K. Takahashi, and H. Ueda. Dis
overyof frequent tree stru
tured patterns in semistru
tured web do
uments. InSpringer-Verlag, editor, Pro
. 5th Pa
i�
-Asia Conferen
e on Advan
es inKnowledge Dis
overy and Data Mining, pages 47�52, 2001.[Plo70℄ G. Plotkin. A note on indu
tive generalisation. Ma
hine Intelligen
e, 5:153�163, 1970.[PV00℄ Yannis Papakonstantinou and Vi
tor Vianu. DTD inferen
e for views ofXML data. In Symposium on Prin
iples of Database Systems, pages 35�46,2000.[RR92℄ R. Ramesh and L.V. Ramakrishnan. Nonlinear pattern mat
hing in trees.Journal of the ACM, 39(2):295�316, April 1992.[SA96℄ R. Srikant and R. Agrawal. Mining sequential patterns: Generalizationsand performan
e improvements. In Pro
. of 5th International Conferen
eon Extending Database Te
hnology, pages 3�17, 1996.[SN00℄ T. S
hlieder and F. Naumann. Approximate tree embedding for queryingXML data. In ACM Sigir Workshop on Information Retrieval, July 2000.[Toi96℄ Hannu Toivonen. Sampling large databases for asso
iation rules. In T. M.Vijayaraman, Alejandro P. Bu
hmann, C. Mohan, and Nandlal L. Sarda,editors, In Pro
. 1996 Int. Conf. Very Large Data Bases, pages 134�145.Morgan Kaufman, 09 1996.[TRS02℄ Alexandre Termier, Marie-Christine Rousset, and Mi
hèle Sebag. MiningXML data with frequent trees. In DBFusion'02 Workshop, 2002.[Xyl℄ Xyleme.http://www.xyleme.
om.[Xyl01℄ Lu
ie Xyleme. A dynami
 warehouse for XML data of the web. IEEE DataEngineering Bulletin, 2001.[Zak01℄ Mohammed Zaki. E�
iently mining frequent trees in a forest. Te
hni
alReport 01-7, Renselaer Polyte
hni
 Institute, 2001.


