PGLCM: Efficient Parallel Mining of Closed Frequent Gradual Itemsets

Trong Dinh Thac DO*T, Anne Laurent” and Alexandre Termier*
*LIG, CNRS UMR 5217
Grenoble University, Grenoble, France
Email: dot@imag.fr, Alexandre.Termier @imag.fr
YLIRMM, CNRS UMR 5506
University Montpellier 2, Montpellier, France
Email: laurent@ lirmm.fr

Abstract—Numerical data (e.g., DNA micro-array data, sen-
sor data) pose a challenging problem to existing frequent
pattern mining methods which hardly handle them. In this
framework, gradual patterns have been recently proposed to
extract covariations of attributes, such as: “When X increases,
Y decreases”. There exist some algorithms for mining frequent
gradual patterns, but they cannot scale to real-world databases.
We present in this paper GLCM, the first algorithm for
mining closed frequent gradual patterns, which proposes strong
complexity guarantees: the mining time is linear with the
number of closed frequent gradual itemsets. Our experimental
study shows that GLCM is two orders of magnitude faster than
the state of the art, with a constant low memory usage. We
also present PGLCM, a parallelization of GLCM capable of
exploiting multicore processors, with good scale-up properties
on complex datasets. These algorithms are the first algorithms
capable of mining large real world datasets to discover gradual
patterns.

Keywords-Data mining; frequent pattern mining; gradual
itemsets; parallelism;

I. INTRODUCTION

Frequent pattern mining is the component of data mining
focused on extracting patterns that occur frequently in
data. These patterns can be seen as abstractions of the
contents of large datasets, potentially providing insightful
information. Most of the works on frequent pattern mining
have focused on categorical data, either mere sets (frequent
itemset mining) [1], or more complex data having a structure
of sequence [2], tree [3] or graph [4]. Few of these works
have focused on numerical data. There have been some
works on quantitative itemset mining, where items can have
numerical values [5]. These works focused on discretizing
numerical data in order to handle them the same way as
categorical data. Thus, only a small part of the information
present in the numerical data was exploited. Despite some
improvements [6], [7] over original works on quantitative
association rule mining, analyzing numerical data remained
marginal in the field of frequent pattern mining.

However, most corporate data and many scientific datasets
have many attributes which are numerical: sales numbers,
prices, ages, expression level of a gene, quantity of light
received by a sensor, etc.

Recently, a new pattern mining field has emerged for
analyzing such data: mining of gradual patterns. Gradual
patterns can be expressed as covariations of several at-
tributes, for example: “the higher the age, the higher the
salary, the lower the free time”. An algorithm based on
Apriori has been proposed [8] for mining gradual patterns.
This algorithm, as the original Apriori, can mine simple
datasets, but it does not scale on large real-world datasets.

Apriori is the pioneer of all algorithms for mining frequent
itemsets, however state-of-the-art algorithms considerably
outperform it. One of the major steps was the works of
Pasquier et al. [9], which showed that it was sufficient to
mine closed frequent itemsets, with run time improvements
over an order of magnitude in many cases. Later, the
FIMI'04 workshop [10] made a competition between all
closed frequent itemset mining algorithms. The winner was
the LCM algorithm [11].

LCM is based on a theoretical improvement: its authors
showed that a closed frequent itemset could be computed
by extension of a unique other closed frequent patterns. The
closed frequent itemsets are thus the nodes of a covering
tree, over which efficient depth first search strategies can be
applied, with a very low memory usage.

Our goal is to exploit the principles giving the good per-
formances of LCM in order to compute efficiently gradual
itemsets over large real-world databases. The contribution of
this paper is threefold:

« We show that likewise itemsets, it is possible to build a
covering tree over the search space of closed frequent
gradual itemsets.

o« We present an algorithm and an implementation for
mining efficiently closed frequent gradual itemsets,
based on the principle of the LCM algorithm. This
algorithm, GLCM, has the same strong complexity
guarantees as LCM: its time complexity is linear with
the number of closed frequent gradual itemsets, and its
memory complexity does not depend on this number.
We experimentally show that our algorithm signifi-
cantly improves the state of the art.

o Last, we show a simple parallelization of our algorithm,
using the Melinda library [12]. We experimentally

tid | age | salary | loans | cars

t1 | 22 2,500 | O 3

ta | 35 3,000 | 2 1

t3 | 33 4,700 | 2 1

ta | 47 3900 | 1 2

ts | 53 3,800 | 2 2
Table 1

EXAMPLE DATASET

show that the parallel version can take advantage of
recent multicore processors and handle large real-world
datasets.

It is especially interesting to note that despite LCM proven
efficiency, algorithms based on its principle have mostly
remained theoretical (for example [13]). By showing how
to design and implement an efficient algorithm with this
principle, we hope to help the diffusion of the ideas found
in LCM, which are still the key to efficient pattern mining
algorithms.

The paper is organized as follows: in Section II, we
present in detail the concept of gradual patterns and related
works. In Section III, we recall the base principles of LCM,
show how they can be applied to gradual patterns, and
present our algorithm and its parallelization. Section IV
presents detailed experiments both about the sequential and
the parallel version of our algorithm. We conclude and give
directions for future research in Section V.

II. GRADUAL ITEMSETS AND RELATED WORKS

As described above, gradual itemsets (also known as
gradual patterns) refer to patterns like “the higher the age,
the higher the salary”. They can be compared to fuzzy
gradual rules that have first been used for command systems,
for instance for braking systems: “the closer the wall, the
stronger the brake force”. However, in this framework, rules
are provided by human experts. More recently, it has been
shown that such rules can be mined [14], [15], [8], and
can even benefit from the new multicore architectures [16].
In order to tackle the problem of the number of patterns
generated by the approach, [17] introduces closed gradual
itemsets.

In this framework, the authors deal with gradual items,
gradual itemsets and closed gradual itemsets as defined
below.

A. Preliminary Definitions

A dataset is a set of tuples R defined over the schema
S={nL,...,.I,}.

Table I shows an example dataset where S =
{age, salary,loans, cars}.

A gradual item is a pair (4, v) of an item (attribute) i € S
and a variation v € {1,]} where 1 stands for a positive
(ascending) variation and | for a negative (descending)
variation.

A gradual itemset is defined as a non-empty set of gradual
items. For instance, the gradual itemset P, = {(age,?
), (salary, 1)} means “the higher the age, the higher the
salary”.

The evaluation of the support of such gradual itemsets
has been defined in different manners depending on the
authors. [15] is based on regression, while [14], [18] and
[19] consider the number of tuples that are concordant and
discordant, in the idea of exploiting the Kendall’s tau ranking
correlation coefficient [20]. In [8], the authors consider
another definition of the support based on the maximum
proportion of tuples that can be ordered according to the
gradual itemset.

In this framework, let us consider a gradual itemset
P = {(ikl,vkl), ceey (ikj,vkj)} where {kl, ceey k’j} -
{1,...,n} and the k1, ..., k; are all distinct. Two tuples ¢ and
t' can be ordered with respect to P if all the values of the
corresponding items from the gradual itemset can be ordered
to respect the respective variation: for every | € [k, k;],
t.dy; <.y if vy =1 and t.4; > t'.4; if v; =]. The fact that ¢
precedes t’ in the order induced by P is denoted ¢t <p t'.

For instance, from Table I, it can be seen that ¢; and 5
can be ordered with respect to P as t1.age < ty.age AND
t1.salary < to.salary: we have t1 <p to.

Let L = {t1,...,tm } be a list of tuples from R and P be
a gradual itemset. L respects P if Vi € [1,m — 1] we have
t; <p t;11. Let Lp be the set of lists of tuples that respect
P.

The formal definition of the support of P is
support(P) = %ﬁl('”), i.e. it is the size of the longest

list of tuples that respects P. Note that the support of an
itemset containing a single item is always 100% as it is
always possible to order all the tuples by one column.

The rest of this paper is based on this definition of support.

From the implementation point of view, it seems that [8]
is the most efficient one so far. It deals with binary matrices
to represent how tuples are ordered (adjacency matrix) with
regard to a gradual itemset. As shown below, this repre-
sentation is very efficient, especially as it allows to apply
AN D binary masks for joining gradual itemsets represented
by their matrices. However, as the problem is similar to
determining the longest path in a graph, it can be time
consuming. Moreover, managing all the matrices can lead
to performance degradation due to memory consumption.

For instance, Table II reports the way the information is
stored in main memory and then processed for computing
the support and joining itemsets. In this matrix, it can be
seen that ¢, precedes to, t4 and t5 (value 1 in the matrix) but
not ¢; and t3. We have here: support({(age,?), (salary,t
)}) = 3/5 as Py is supported by the maximum ordered lists
of tuples < t1,t2,t4 > and < t1,t2,t5 >.

t1 to t3 tq ts

t1 1 1 1 1 1

to 0 1 0 1 1

ts 0 0 1 0 0

ta 0 0 0 1 0

ts 0 0 0 0 1
Table II

BINARY MATRIX CORRESPONDING TO {(age, 1), (salary, 1)}

B. Closed Gradual Itemsets

Closed itemsets have been studied for many years as they
represent one of the keys to manage huge databases and to
reduce the number of patterns without loss of information.
Generally speaking, p is said to be closed if there does not
exist any p’ such that p C p’ and support(p) = support(p’)

Two closure operators have been defined in [17] for closed
gradual itemsets: g and f. Given an ordered list of tuples S,
f returns the gradual itemset (all the items associated with
their respective variations) respecting all sequences in S.
Given a gradual itemset P, g returns the set of the maximal
lists of tuples which respect the variations of all gradual
items in P.

For instance, f(< t1,t5,t5 >)
)} and g({(age,1), (salary, 1)})
t1,t,t5 >}

Provided these definitions, a gradual itemset p is said to be
closed if f(g(p)) = p. The closure of p is denoted Clo(p).

Compared to the context of classical items, the main issue
here is to manage the fact that g does not return a set of
tuples but it returns a set of lists of tuples that can be ordered.

As far as we know, these definitions have not been
included by the authors within the mining process, but rather
as a post-processing step which is not efficient. Indeed, it
does not allow to benefit from the runtime and memory
reduction and thus does not provide any added value for
running the algorithms on huge databases. We thus propose
below a novel approach to cope with this.

{(loans, 1), (cars, |
{< tlatQatél >, <

III. EFFICIENTLY MINING GRADUAL ITEMSETS

In this section, we present our algorithms for mining effi-
ciently closed frequent gradual itemsets. We first explain the
principle of the LCM algorithm for mining closed frequent
itemsets. We show how we could adapt this algorithm to
gradual itemsets, and we give complexity results on the
new algorithm. We then present a parallelization of this
algorithm.

A. LCM principle

LCM is the most efficient algorithm for computing closed
frequent itemsets, as shown by the results of the FIMI’04
competition [10]. It is the only such algorithm to exhibit
a complexity which is linear with the number of closed
frequent itemsets to find, hence its name: Linear time Closed
itemset Miner. This result comes from an important theoret-
ical advance: the authors of LCM could prove that there

existed a covering tree over all the closed frequent itemsets,
and the edges of this tree could be computed efficiently at
runtime. The closed frequent itemsets can thus be discovered
with a depth first algorithm, without maintaining a special
storage space for the previously obtained patterns: a closed
frequent itemset can be outputted as soon as it is discovered.
This is not the case for most other closed frequent itemset
mining algorithms, which have to keep in memory all the
previously found frequent itemsets, to avoid duplications and
for some algorithms such as [21] check closure. The closed
frequent itemsets can thus only be outputted at the end of
computation, and the memory usage can be very important.

LCM is a depth first search algorithm. Each node of the
search tree either corresponds to a closed frequent itemset
or to an empty leaf. The pseudo-code of LCM is given in
Algorithm 1 (coming from [22]).

Algorithm 1 Algorithm LCM

1: Input: 7 :transaction database, e:minimum support
2: Output: Enum_ClosedPatterns(_L) ;

3: Function Enum_ClosedPatterns(P:closed frequent

pattern)
4: if P is not frequent then
5: return ;
6: end if
7. output P ;
8: for ¢ = core_i(P) + 1 to |Z| do
9. Q=Clo(PU1);
10: if P(i—1)=Q(i — 1) then
11: Enum_ClosedPatterns(Q) ;
122 end if
13: end for

Each recursive iteration represents a node of the search
tree. Its input is a closed frequent pattern. If this pattern is
not frequent (line 5), then we are at the end of a branch. Else,
the pattern if frequent and the main goal of the iteration is
to compute all its direct descendants in the search tree.

This is done with an operation called prefix preserving ex-
tension (ppc-extension). Let P be a closed frequent itemset.
For an item ¢ € P, we define P(i) = {j | j € P and j < i}.
Let core_i(P) be the minimum index ¢ such that 7 (P (7)) =
T (P) (with core_i(L) = 0). Then an itemset Q is called a
ppc-extension of P if

(i) @ =Clo(PU{i}) for some i € T

(ii) i ¢ P and i > core_i(P)
(iii) P(1 —1) = Q(i — 1), i.e. P and @ share the same
(i — 1)-prefix.

The authors of LCM have shown that for any closed
frequent itemset () # L, there exist only one closed frequent
itemset P such that @ is a ppc-extension of P (Theorem 2
in [22]). This is the interest of ppc-extension: it is the very

1246

245 246 256

Figure 1.

operation that allows the building of a covering tree of closed
frequent itemset. Here P will be the unique father of @, and
1 is the root of the covering tree.

In Algorithm 1, ppc-extension is performed in lines 8-
10. For a closed frequent itemset P, all its possible ppc-
extensions) are searched. First, all the ¢ satisfying condition
(ii) are iterated over in line 8. () is computed according to
condition (i) in line 9. And condition (iii) is checked in line
10. In line 11, @ is a ppc-extension of P, so a new recursive
iteration (i.e. a new node of the search tree) is built with Q).

Example: Let us consider the following transaction
database:

Transaction id | Transaction items
t1 1,2,3,4,5,6
to 2,3,5
ts 2,5
tq 1,2,4,5,6
ts 2,4
te 1,4,6
tr 3,4,6

With ¢ = 3, the depth first search performed by LCM is
shown in Figure 1'.

By definition core_i(l) = 0, so any item can be used
to extend L. This is shown by the arcs outgoing from
1, each labelled with the item used for extension. We
explain here the branch for item 1. In the case of item
1, Clo({1}) = {1,4,6}, which is our leftmost node for
depth 1. It is frequent in the database, so we circle it in the
figure as a solution, and the iteration continues. We have
to compute core_i({1,4,6}). Removing 6 from {1,4,6}
gives the itemset {1,4}, and Clo({1,4}) = {1,4, 6}, hence
core_i(P) < 4. Removing 4 and 6 from {1,4,6} gives the
itemset {1}, and we already know that Clo({1}) = {1, 4, 6}.
1 is the smallest item ¢ such that Clo(P(i)) = Clo(P), thus
core_i({1,4,6}) = 1. The item 1 is boxed in the figure.

IThe interested reader will have noticed that it is the same example
database as in [22]. However the support value is 3 here instead of 2 in
[22], hence the difference in output.

Example of LCM execution, circled itemsets are the closed frequent itemsets, boxed items are core_i values.

Possible extensions for {1,4,6} are 2, 3 and 5. The
corresponding itemsets are represented below {1,4,6} in
the figure, however they are not frequent so the function
immediately returns. The itemsets are not circled in this case,
to show that they are not closed frequent itemsets.

B. Adapting LCM principle to gradual itemsets

In order to mine closed frequent gradual itemsets with an
algorithm similar to LCM, we need to be able to build a
covering tree over all the closed frequent gradual itemsets.
As seen before, we thus need to redefine ppc-extension for
closed frequent gradual itemsets.
We first give the definition of core_i for gradual itemsets.
The definition is almost identical to the itemset case: let
P be a closed gradual itemset , for an item z we have
P(z) = {(y,v) | (y,v) € P and y < x}. core_i(P) is the
minimum item ¢ such that (i,v) € P and g(P(i)) = g(P),
with core_i(L) = 0.
We then give the definition of ppc-extension: the closed
gradual itemset () is a ppc-extension of P if
(i) @ = Clo(PU{(i,v)}) for some (i,v), with ¢ € Z and
ve{tl}

(i) (i,v) satisfies (i,v) ¢ P and (¢,—w) ¢ P and i >
core_i(P) (with = 1=] and — |=1),

i) Pi—1)=Q(—1)

Our ppc-extension for gradual itemsets verifies the same
theorem than ppc-extension for itemsets:

Theorem 1: Let @ # L be a closed gradual itemset.Then,
there is just one closed gradual itemset P such as @ is a
ppc-extension of P.

Skech of proof The proof of this theorem follows exactly
the same steps as the proof in [22]. This proof mainly resorts
to the properties of the closure operators f and g, which are
the same for any closure operators. For gradual itemsets,
the properties of monotonicity, extensivity and idempotency
have been proven in [17].

A property that is often used in the proof of [22] is,
when adapted to gradual itemsets: let P be a gradual itemset
and (i,v) € P be a gradual item. Then g(P U {(i,v)}) =
g(P)Ng({(i,v)}). This property is not demonstrated in [17],
however it comes from Theorem 1 in [8], where the set of
sequences output by g is encoded into a binary matrix. [

Thanks to the ppc-extension for gradual itemsets, we can
write a mining algorithm similar to LCM. We present our
GLCM algorithm in Algorithm 2.

For simplicity (and performance) reasons, we have de-
cided to represent gradual items as integers, instead of pairs.
A gradual item (7, v) will be encoded by the integer enc(i, v)
such as:

. 27 if (4,v) = (¢,7
enc(i, v) = { 2%i4+1 if Ew§ - Ewg

The even integers representing positive (ascending) varia-
tions and the odd integers representing negative (descending)
variations. With this encoding, we force the items of Z to
be [0,n — 1], with a renaming if necessary.

With such a coding of gradual items, ppc-extension for
gradual itemsets is even closer of ppc-extension for itemsets:
point (i) and (iii) are strictly identical, where ¢ stands for the
encoding of a gradual item and core_zi is applied on encoded
gradual itemsets and returns itself an integer code instead of
an item. To avoid confusion with item 0, we fix core_i(L) =
—1. For point (ii), we have to check the (encoded) value of
core_i. If it is an even value of the form enc(i,v) = 2i, it
means that the gradual itemset P contains (4, 7). It would not
make sense to try to extend P with enc(i,v) +1=2i+ 1,
corresponding to the gradual item (i,]). In this case we
directly skip to enc(i,v)+2, i.e. (i+1,7). This verification
is handled in lines 18-22 of Algorithm 2. Lines 23-27 show
the ppc-extension itself, and are very similar to LCM.

The differences between LCM and GLCM lie first in a
small optimization specific to gradual itemset in lines 14-15.
Any gradual itemset, representing co-variations items, has a
symmetric gradual itemset where the items are the same and
the variations are all reversed. For example, the symmetric
of {(1,1),(2.4), (3. 1)} is {(1,4),(2,1),(3,1)}. supported
by the same tid sequences but in the reverse order. It is
redundant to compute a gradual itemset and its opposite,
so we arbitrarily decided to compute only gradual itemsets
whose first variation is ascending, they represent themselves
and their opposite as well.

The computation of support in line 11 is standard for
gradual itemsets: we compute the longest transaction se-
quence supporting P. More interesting is the computation
of closure, shown in Algorithm 3. As a pre-processing,
at the initialization of the algorithm we compute for each
gradual item the sequence of tuples corresponding to the
order for that item (line 3 in Algorithm 2). We then encode
this sequence in a binary matrix in the same way as [8]:
columns and lines represent tids. If a transaction ¢; is before

Algorithm 2 Algorithm GLCM
1: Input: 7 :transaction database, c:minimum support

2: for all gradual item (i,v) € Z x {1,]} do
3 Lepe(i,y < tid sorted in v order of item 7 value
4 Bepe(iw) < bitmap matrix associated to Leye(i o)
5: end for

6: B+ {Bl, ...,BQXm}
7

8

9

: for all gradual item encoding e € [0,2 x |Z| — 1] do
. GlemLoop({e}, T, B,¢)
: end for

10: Function GlcmLoop(P:closed gradual itemset,
T,B,¢)

11: if computeLongestPath(P, T, B) < ¢ then

12: return ;

13: end if

14: if P[0] is odd then

15: return ; / Symmetrical itemset has already been
tested

16: end if

17: output P ;

18: if (core_i(P) is odd) or (core_i(P) = —1) then

19: k= core_i(P)

20: else

21: k=core_i(P)+1

22: end if

23: fore=k+1to2x|Z|—1do

24: Q=Clo(PU{e},B);

25: if P(e—1) = Q(e — 1) then

26: GlemLoop(Q, T, B,¢) ;

27: end if

28: end for

a transaction t; in the sequence, then there is a 1 in the
corresponding binary matrix. This is a matrix encoding for
graphs, where the graph is simply the sequence of tids.

Example: Let us consider a gradual itemset P supported
by two lists of tuples tids: < t1,t3,to > and < t5,t3,t4 >.
Then the binary matrix Bp encoding these sequences is
shown below:

Transaction id | ¢1 | &2 | t3 | ta | t5
t1 1 1 1 010
to 0 1 000
ts 0 1 1 1 0
ta 0|00 1 0
ts 0|0 1 1 1

The binary matrices contain all the necessary information
to make the computations of the f and g closure functions,
as shown in Algorithm 3.

Di Jorio et al. [8] have shown that given two gradual
patterns P and () and their respective binary matrix rep-
resentations Bp and Bg, the binary matrix of P U () was

Algorithm 3 Functions Clo and G

1: Function Clo(P, B)
2: return F(G(P,B),B) ;

3: Function F(BM, B)

4 P+

5. for all gradual item encoding e € [1,2 x |Z| — 1] do
6: tmp<— BM&B,

7. if tmp = BM then

8 PuU={e}

9: end if

10: end for

11: return P ;

12: Function G(P, B)

13: BM <+ BP[O]

14: for all gradual item encoding e € P do
15: BM & = B,

16: end for

17: return BM ;

Bpug = Bp AND Bg. This is exactly what we need for
closure function g: we give it a gradual pattern P as input,
and want all the transaction sequences supporting P. By
ANDing all the binary matrices of the items in P (lines 13-
16), we obtain the binary matrix of P, Bp. This matrix
encodes the graph representing the order between tuples
supporting P. To get the actual sequences, we would have
to find all the longest pathes in this graph. However as the
result of g is directly passed to f, and that f can directly
work with the matrix Bp, we can avoid this step.

f itself takes a set of sequences of tid, here encoded
in a binary matrix BM. It has to check for each item if
the variations of this item are compatible with each of the
input sequences. This comes to check if all the 1 in the
input matrix BM can be found in the matrix of item 7, B;
(remember that if Blz,y] = 1, it means that ¢, < t, for
the gradual itemset associated to B). We thus AND BM
and B; for each item ¢, and keep only the items ¢ such that
BM AND B; = BM.

The use of binary matrices has the advantage to avoid
costly computations with sequence and graph structures, and
lead to compact structures thanks to bitmap representation.

Complexity: The GLCM algorithm makes a depth first
exploration of a covering tree over all the closed frequent
gradual itemsets. Like LCM, it’s complexity is thus linear
in the number of closed frequent gradual itemsets to find.

For each closed frequent gradual itemset, the complexity
of support computation comes to find the longest path in a
graph, which as been proven to be linear in the number
of nodes of the graph for directed acyclic graphs, i.e.
O(||T]]) in our case. The complexity of closed frequent

itemset computation is thus, like LCM, dominated by closure
computation. Analyzing Algorithm 3 shows that f and g
both loop on the items, and make binary matrix computa-
tions inside the loops. The time complexity of Clo is thus
O(|Z| x ||T||?). Closure operation is embedded in a loop
on items in GlemLoop, so the overall time complexity per
closed frequent gradual itemset is O(|Z|? x ||T]|[?). The
space complexity mainly depends on the storage of the initial
database and of the binary matrices for items, this gives a
space complexity of O(||T| + |Z| x ||T]]?).

GLCM inherits from LCM its good complexity properties.
Especially, its space complexity do not depend on the num-
ber of closed frequent gradual itemsets to find. This allow in
practice to run with a very low and near constant memory
usage, whereas other algorithms can use exponentially more
memory.

C. Parallelization

The existing work for discovering frequent gradual item-
sets, Grite [8], has been parallelized as the Grite-MT algo-
rithm in order to exploit multicore processors, with good
results [16].

We also give a simple parallelization for the GLCM
algorithm in this paper, which is based on the works for par-
allelizing LCM [12]. The authors have defined a parallelism
environment, Melinda, that simplifies the parallelization of
existing sequential algorithms by relieving the algorithm
designer of the burden of manual thread synchronization
while being efficient for recursive algorithm.

Melinda is based on the Linda approach [23]. It consists of
a shared memory space, called TupleSpace. All the threads
can access the TupleSpace, and either deposit or retrieve a
data unit called Tuple, via the two primitives get(Tuple)
and put(Tuple). All the synchronizations for accessing the
TupleSpace are handled by Melinda.

PGLCM is the parallel implementation of GLCM, using
Melinda, shown in Algorithm 4. In PGLCM, the tuples
correspond to recursive calls. A tuple will thus simply be
a closed gradual itemset P that would normally have been
passed in parameter to GlcmLoop. The other arguments of
GlcmLoop are constants after initialization, so for sake of
efficiency they are treated as global variables accessible by
all threads and do not need to be passed in the tuples.

Instead of recursive calls (lines 8 and 26 of GLCM),
PGLCM only creates a new tuple in the TupleSpace: put(P)
(lines 8 and 27 in PGLCM). This means that there is new
node of the covering tree to explore.

The threads themselves execute the code of Algorithm 5.

As soon as a thread is idle, it asks for a tuple in order to
work on a new node of the search tree (line 2 of Algorithm
5). Melinda enforce locality properties, so a thread of a given
processor is most likely to receive tuples that it has put
before, and whose corresponding data will already be in the
cache of the processor.

Algorithm 4 Algorithm PGLCM

1: Input: 7 :transaction database, e:minimum support, N
: number of threads

2: for all gradual item (i,v) € Z x {1,]} do

3: Lepe(iw) < tid sorted in v order of item 7 value
4: Bepe(iw) ¢ bitmap matrix associated t0 Lepc(s,v)
5: end for

6: B+ {Bl, ---aBQ><|I\}

7: for all gradual item encoding e € [0,2 x |Z| — 1] do
s put({e})

9: end for

10: wait for all threads to complete

11: Function PGlemLoop(P:closed gradual itemset)

12: if computeLongestPath(P, T, B) < ¢ then

13: return ;

14: end if

15: if P[0] is odd then

16: return ; // Symmetrical itemset has already been
tested

17: end if

18: output P ;

19: if (core_i(P) is odd) or (core_i(P) = —1) then

20: k= core_i(P)

21: else

22: k=core_i(P)+1

23: end if

24: fore=k+1to2x|Z|—1do

25: Q= Clo(PU{e},B);

26: if P(e—1)=Q(e—1) then

27: put(Q) ;
28: end if
29: end for

Algorithm 5 Function threadFunction()

1: while get(tuple) do
2: P« tuple.pattern;
32 PGlemLoop(P) ;
4: end while

When there are no more tuples in the TupleSpace and no
thread working, Melinda sends a termination signal, and the
program stops.

IV. EXPERIMENTS

We present in this section an experimental study on the
execution time and memory consumption of GLCM and
PGLCM. We first present comparative experiments between
our new algorithms and the current state of the art, Grite (se-
quential) [8] and Grite-MT (parallel) [16]. The comparison is
“unfair”: GLCM/PGLCM compute only the closed frequent
gradual itemsets, whereas Grite/Grite-MT compute all the

frequent gradual itemsets. However, there exist no algorithm
(before GLCM) for mining closed frequent gradual itemsets.
The experiments in the paper defining the notion of closure
for gradual itemsets [17] rely on a post-processing of the
results of Grite, which takes even more time than running
Grite alone.

Thus, our experiments reflect the fact that up to now the
only way to get gradual itemsets was to use Grite/Grite-MT,
and we show the advantage of using our approach instead.

The comparative experiments are based on synthetic
datasets produced with the same modified version of IBM
Synthetic Data Generator for Association and Sequential
Patterns as the one used in [8], [16].

All the experiments are conduced on a 4-socket server
with 4 Intel Xeon 7460 with 6 cores each, for a total of
24 cores. The server has 64 GB of RAM. We compare our
C++ implementation of GLCM/PGLCM with the original
C++ implementation of Grite/Grite-MT.

A. Comparative experiments: sequential

The first experiment compares the run time and memory
usage for GLCM and Grite. The dataset used, C1000A20,
has 1000 transactions and 20 items. Figure 2 shows the
execution time for both programs when varying the support,
with a logarithmic scale for time. Figure 3 shows the
memory usage.

C1000A20

10000

1000

100 |

.
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
Support threshold

Figure 2. Time vs support, sequential

The execution time results show that GLCM is two orders
of magnitude faster that Grite for handling this small dataset:
for the lowest value it answers in 29s, while Grite needs 1
hour and 40 minutes. Both programs have a low memory
usage on this small dataset. As expected GLCM memory
usage is constant whatever the support value, while for lower
support values Grite increases its memory usage, because it
depends on the number of frequent gradual itemsets to find.

B. Comparative experiments: parallel

The next experiment compares the scaling capacities of
PGLCM and Grite-MT on several cores, for the dataset

C1000A20

:
Grite 4‘7
alom -

Memory (MB)

L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Support threshold

Figure 3. Memory vs support, sequential

C500AS50 with 500 transactions and 50 items. This dataset
is more difficult than the previous one, as the complexity
lies in the number of items which determines the number of
(closed) frequent gradual itemsets.

Figure 4 shows the execution time for both algorithms
w.r.t. the number of threads, with a logarithmic scale for
time. Figure 5 shows the speedup w.r.t. sequential execution
for both algorithms. Last, Figure 6 shows the memory
consumption.

C500A50, support=0.9
10000

N

1000 £

Time(s)

100 |

Number of threads

Figure 4. Time vs #threads

In this experiment with a more complex dataset, PGLCM
is again two orders of magnitude faster than Grite-MT. With
all 24 threads, PGLCM completes execution near instantly
in 1.4s, while Grite-MT needs 335s. The memory usage does
not change much whatever the number of threads for both
programs. Grite-MT exhibits a better speedup than PGLCM
on this experiment. However, the run times for PGLCM get
very low with more than 8 threads: they are between 1 and
2 seconds. There may not be enough work for PGLCM to
exploit all 24 threads.

We thus did the same experiment with C800A100, a more

C500A50, support=0.9
T

Speedup
N

Grite MT ——
PGLCM -->¢--
y=x -

.
0 4 8 12 16 20 24
Number of threads

Figure 5. Speedup

C500A50, support=0.9

Memory (MB)

IRV VAR S >< ,,,,,,,,,,,,,,,
SR

15

10|

5 .]

_ smMsE
% 4 8 12 s ™ 2
Number of threads
Figure 6. Memory vs #threads

complex dataset with 800 transactions and 100 items. Grite-
MT could not run for this dataset: it filled up the 64 GB of
RAM of our machine and could not complete. This excessive
memory consumption was already mentioned in [16], and
comes from the fact that memory complexity in Grite/Grite-
MT, like in Apriori, depends on the number of frequent
gradual itemsets to find. PGLCM does not have this problem,
we thus report its run time in Figure 7, the speedup in Figure
8 and the memory consumption in Figure 9.

For this more complex problem the run time with 24 cores
is 48s, so there is enough computation to keep the program
busy. The speedups are far better in this case, with an
excellent speedup of 22.15 for 24 threads. The granularity of
our parallelization is well adapted to complex datasets. For
further works, it could be interesting to be able to decompose
the computations in lower granularity tasks when faced with
simpler datasets such as C500A50.

C. Using PGLCM to mine real-world data

We have also run experiments on a real dataset of DNA
micro-arrays describing gene expressions in the framework

Time (s)

Speedup

Memory (MB)

1200

1000

800

600

400 |

200 -

C800A100, support=0.85

PELCM ——

0 4 8 12 16 20 24
Number of threads

Figure 7. Time vs #threads

C800A100, support=0.85

L L
4 8 12 16 20 24
Number of threads

Figure 8. Speedup

C800A100, support=0.85

PGLCM —|—

L
4 8 12 16 20 24
Number of threads

Figure 9. Memory vs #threads

of breast cancer. The data are described over 4,408 genes
which correspond to the items, there are 108 transactions.
This dataset is very complex, and up to now no algorithm
was able to process it in order to extract gradual patterns.
We could run PGLCM with 24 threads on this dataset. The
run times for different support value are presented in Figure
10. Memory consumption remained constant at 17 GB.

14408, 24 cores

PGLCM ——

Time (hour)

0
065 07 075 08 085 09 095
Support threshold

Figure 10. Time vs support, 24 threads

This dataset is much more complex than the synthetic
datasets presented before: this time PGLCM needed nearly
16 hours to give results for the lowest support value tested.
However, the important point is that for the first time
gradual itemsets could be mined from this gene expression
dataset. Correlation between expression values of genes is
very important to determine gene regulations, our algorithms
thus opens the way for new methods for analyzing gene
expression data, and many other numerical datasets.

V. CONCLUSION AND PERSPECTIVES

We have presented in this paper GLCM, the first algorithm
for directly mining closed frequent gradual itemsets. Such
gradual itemsets allow to find covarations between numerical
attributes, with many applications to real data.

Our algorithm is based on the ppc-extension idea devel-
oped in the LCM algorithm, and which is currently the
most efficient way to mine closed patterns, with a time
complexity linear in the number of results to find and a
memory complexity constant w.r.t. the number of results to
find.

We also parallelized our algorithms in order to exploit the
computing power of recent multicore processors.

Our experimental study have shown that our approach,
either sequential or parallel, is two orders of magnitudes
faster than the state of the art. Our parallel algorithm
scales well with the number of available cores for complex
datasets, where such computing power is really needed.
The low memory requirements of our algorithm allow it
to handle large real world datasets, which could not be

handled by existing algorithms due to memory saturation.
Our algorithms thus removed the lock that prevented the
use of gradual patterns analysis in realistic applications.

Our work opens several perspectives. An immediate per-
spective is to cooperate with practitioners having large
numerical datasets, in order to help them extracting and
analyzing gradual datasets. Reporting the results of such
experiments will allow to show the practical interest of
gradual pattern and hopefully lead to further research in the
field of gradual pattern mining.

Other perspectives lie in the improvement of our algo-
rithms. Currently, our algorithm always uses the same binary
matrices whatever the gradual itemset under consideration.
However [8] has shown that the binary matrices could be
reduced: some transactions never appear in the support
of a pattern, so the corresponding lines and columns can
be suppressed from the corresponding binary matrix. This
optimization would not reduce the theoretical complexity,
however the FIMI workshop results [10], [22] showed that
reducing databases was one of the keys for reducing practical
run time.

ACKNOWLEDGMENT

The authors would like to thank Benjamin Négrevergne
for providing them the Melinda library.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining asso-
ciation rules,” in Proceedings of the 20th VLDB Conference,
1994, pp. 487-499.

[2] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,
and M. Hsu, “Prefixspan: Mining sequential patterns by
prefix-projected growth,” in ICDE, 2001, pp. 215-224.

[3] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and
S. Arikawa, “Efficient substructure discovery from large semi-
structured data,” in In Proc. of the Second SIAM International
Conference on Data Mining (SDM2002), Arlington, VA, Avril
2002, pp. 158-174.

[4] A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based
algorithm for mining frequent substructures from graph data,”
in PKDD, 2000, pp. 13-23.

[5] R. Srikant and R. Agrawal, “Mining quantitative association
rules in large relational tables,” in SIGMOD Conference,
1996, pp. 1-12.

[6] Y. Aumann and Y. Lindell, “A statistical theory for quantita-
tive association rules,” J. Intell. Inf. Syst., vol. 20, no. 3, pp.
255-283, 2003.

[7] T. Washio, Y. Mitsunaga, and H. Motoda, “Mining quantita-
tive frequent itemsets using adaptive density-based subspace
clustering,” in /CDM, 2005, pp. 793-796.

[8] L. Di Jorio, A. Laurent, and M. Teisseire, “Mining frequent
gradual itemsets from large databases,” in Int. Conf. on
Intelligent Data Analysis, IDA’09, 2009.

[9] N. Pasquier, Yves, Y. Bastide, R. Taouil, and L. Lakhal,
“Efficient mining of association rules using closed itemset
lattices,” Information Systems, vol. 24, pp. 25-46, 1999.

[10] B. Goethals, “Fimi repository website,”
http://fimi.cs.helsinki.fi/, 2003-2004.

[11] T. Uno, M. Kiyomi, and H. Arimura, “Lcm ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets,” in
FIMI, 2004.

[12] B. Negrevergne, A. Termier, J.-F. Mehaut, and T. Uno, “Dis-
covering closed frequent itemsets on multicore: Parallelizing
computations and optimizing memory accesses,” in The 2010
International Conference on High Performance Computing &
Simulation (HPCS 2010), 2010, pp. 521-528.

[13] H. Arimura and T. Uno, “An output-polynomial time algo-
rithm for mining frequent closed attribute trees,” in 15th
International Conference on Inductive Logic Programming
(ILP’05), 2005.

[14] E. Berzal, J.-C. Cubero, D. Sanchez, M.-A. Vila, and J. M.
Serrano, “An alternative approach to discover gradual de-
pendencies,” Int. Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems (IJUFKS), vol. 15, no. 5, pp. 559—
570, 2007.

[15] E. Hiillermeier, “Association rules for expressing gradual
dependencies,” in Proc. of the 6th European Conf. on Prin-
ciples of Data Mining and Knowledge Discovery, PKDD’02.
Springer-Verlag, 2002, pp. 200-211.

[16] A. Laurent, B. Négrevergne, N. Sicard, and A. Termier, “Pgp-
mc: Towards a multicore parallel approach for mining gradual
patterns,” in DASFAA (1), 2010, pp. 78-84.

[17] S. Ayouni, A. Laurent, S. B. Yahia, and P. Poncelet, “Mining
closed gradual patterns,” in 10th International Conference on
Artificial Intelligence and Soft Computing, ICAISC 2010, ser.
LNCS, vol. 6113, 2010, pp. 267-274.

[18] T. Calders, B. Goethals, and S. Jaroszewicz, “Mining rank-
correlated sets of numerical attributes,” in KDD ’06: Proceed-
ings of the 12th ACM SIGKDD international conference on
Knowledge Discovery and Data mining, 2006, pp. 96-105.

[19] A. Laurent, M.-J. Lesot, and M. Rifgi, “Graank: Exploiting
rank correlations for extracting gradual dependencies,” in
Proc. of FQAS’ 09, 2009.

[20] M. Kendall and B. Babington Smith, “The problem of m
rankings,” The annals of mathematical statistics, vol. 10,
no. 3, pp. 275-287, 1939.

[21] C. Lucchese, S. Orlando, and R. Perego, “Parallel mining
of frequent closed patterns: Harnessing modern computer
architectures,” in /CDM, 2007, pp. 242-251.

[22] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “An efficient
algorithm for enumerating closed patterns in transaction
databases,” in Discovery Science, 2004, pp. 16-31.

[23] D. Gelernter, “Multiple tuple spaces in linda,” in PARLE (2),
1989, pp. 20-27.

