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Abstract. In this paper, we investigate a principled approach for defin-
ing and discovering probabilistic mappings between two taxonomies. First,
we compare two ways of modeling probabilistic mappings which are com-
patible with the logical constraints declared in each taxonomy. Then we
describe a generate and test algorithm which minimizes the number of
calls to the probability estimator for determining those mappings whose
probability exceeds a certain threshold. Finally, we provide an experi-
mental analysis of this approach.

1 Introduction

The decentralized nature of the development of Web data management systems
makes inevitable the independent construction of a large amount of personalized
taxonomies used for annotating data and resources at the Web scale. Taxonomies
are hierarchical structures appropriate to data categorization and semantic an-
notation of resources. They play a prominent role in the Semantic Web since
they are central components of OWL [1] or RDF(S) [2] ontologies. A taxonomy
constrains the vocabulary used to express metadata or semantic annotations to
be classes that are related by structural relationships. Taxonomies are easy to
create and understand by humans while being machine interpretable and pro-
cessable thanks to a formal logical semantics supporting reasoning capabilities.

In this setting, establishing semantic mappings between taxonomies is the
key to enable collaborative exchange of semantic data.

In this work we focus on discovering mappings between populated taxonomies
like Web Directories or folksonomies used for example for organizing musical
songs. Web Directories like the Yahoo! Directory3 and the Google directory4

(see Figure 2) can be considered as taxonomies because they are hierarchical
structures categories organizing web pages. Folksonomies like those represented
in Figure 1 are small taxonomies created by final users and populated with
musical files, for example.

3 dir.yahoo.com
4 dir.google.com



(a) Taxonomy T1

(b) Taxonomy T2

Fig. 1. 2 Taxonomies and associated instances

Providing mappings between two taxonomies makes possible an exchange of
documents (instances) by querying one taxonomy with the vocabulary of the
other one. For instance, mappings between Yahoo! and Google directories allow
to query both of them for pages about “Autos” while covering both the pages
indexed by Yahoo! and those indexed by Google. With folksonomies of Figure 1, a
local query of songs about “XXth Vocal” may be completed by songs populating
the distant class XXth Opera thanks to a provided mapping representing the fact
that XXth Opera is included in XXth Vocal. We claim that such an application of
joint querying requires a grounded and semantic way for defining the mappings
and measuring their degree of confidence.

Manually finding such mappings is clearly not possible at the Web scale.
Therefore, the automatic discovery of semantic mappings is the bottleneck for
scalability purposes. Many techniques and prototypes have been developed to
suggest candidate mappings between several knowledge representations including
taxonomies, ontologies or schemas (see [3, 4] for surveys).



(a) Sample direc-
tory from Yahoo!

(b) Sample directory from Google

Fig. 2. Top levels of Yahoo! and Google directories

Particular focus and applications of the proposed approach

Most of the proposed approaches rely on evaluating the degree of similarity
between the elements (e.g., classes, properties, instances) of one ontology and the
elements of another ontology. Many different similarity measures are proposed
and often combined. Most of them are based on several syntactic, linguistic
or structural criteria to measure the proximity of the terms used to denote
the classes and/or their properties within the ontology. Some of them exploit
characteristics of the data declared as instances of the classes (e.g. [5–8]).

Almost all the existing matching systems return for every candidate pair of
elements a coefficient in the range [0,1] which denotes the strength of the se-
mantic correspondence between those two elements ([9–11]). Those coefficients
are the basis for yearly international comparative evaluation campaigns [12, 13].
Those approaches usually consider each candidate mapping in isolation. In par-
ticular, they do not take into account possible logical implications between map-
pings, which can be inferred from the logical inclusion axioms declared between
classes within each ontology. This raises a crucial issue: the similarity coeffi-
cients returned by the existing ontology or schema matching systems cannot be
interpreted as probabilities of the associated mappings. On the other hand, some
approaches for detecting semantic mappings by logical reasoning have been pro-
posed (e.g., [14]). By construction, such logical methods are limited to discover
mappings that are certain.

We claim that uncertainty is intrinsic to mapping discovery. It is first due to
the methods employed for detecting them. Another important reason is that the



mappings are usually interpreted as simple semantic relations such as subsump-
tion or equivalence relations between classes, which is often an oversimplification
of the complex overlapping relation existing in the reality between two classes
of different and independenty developed ontologies.

In this article, we focus on inclusion mappings. Inclusion mappings are of
primary importance for ontology alignment applications, but they have received
only little attention until now. In addition, inclusion mappings with a probabilis-
tic semantics are useful and easily interpretable by human or automatic systems,
because they combine several theoretical and practical advantages:

1. Inclusion mappings are more likely to happen than equivalences (theoret-
ically at least twice), and so our method discovers more information than
methods based on equivalences.

2. Inclusion mappings are logically weaker than equivalences but have a clear
logical semantic that is directly useful for integration and query rewriting
settings. For example, the inclusion mapping

Google/Software/Games ⊑ Yahoo/Entertainment

allows to make a query about Yahoo/Entertainment (or any of its super-
classes) and leads to answer this query by considering that all pages in the
category
Google/Software/Games should be in the answer. In this way, an alignment
between Yahoo! and Google directories constituted by inclusion mappings
may enable an access to all referenced pages of both Yahoo! and Google with
a single query. A large amount of relevant mappings (like the above mapping)
could not have been discovered by methods that return only equivalences.

3. The probabilities associated to mappings can be used by others systems
that require probabilities, for example in order to know what are the most
reliable knowledge. Properly handling uncertainty is a key point for the Se-
mantic Web due to the heterogeneous and unreliable nature of available
data. In particular, probabilistic inclusion mappings directly fit the frame-
work of probabilistic databases [16] and probabilistic reasoning [17]. These
works contribute to probabilistic query answering which constitutes a major
way to exchange data between heterogeneous schemas and ontologies.

4. In a probabilistic query answering setting, users can obtain probabilistic an-
swers to their queries, thanks to a probabilistic reasoning using probabilistic
mappings. From an user point-of-view, a probability has a well-understood
meaning when standing for confidence: a probability of 0.5 means there is
an even chance the mapping would be correct.

5. Probability theory is quite simple, general, popular and grounded for deal-
ing with uncertainty, and the generality and reusability is a key point in
computer science.

6. Finally, from a theoretical point of view in the ontology matching domain,
there is a need to better understand the fundations of the uncertainty in
data and schema integration ([15]).



Main points and organization of this article

In this paper, we propose an approach to discover automatically probabilistic
inclusion mappings between classes of taxonomies, in order to query multiple
folksonomies or Web Directories in a way that is grounded, robust and easily
interpretable.

First, we investigate and compare two instance-based ways of modeling prob-
abilistic mappings which are compatible with the logical constraints declared in
each taxonomy. In those two probabilistic models, the probability of a mapping
relies on the joint probability distribution of the involved classes. They differ on
the property of monotony of the corresponding probability function with respect
to the logical implication.

For estimating the mappings probabilities, we follow a Bayesian approach to
statistics by exploiting the description of the instances categorized in each tax-
onomy as observations for the involved classes. The point is that to estimate the
joint probability distribution of two classes C1 and C2 of different taxonomies,
we have to determine among the instances that are declared in C1 the ones that
can be classified in C2 (based on their description), and similarly for the clas-
sification in C2 of instances that are declared in C1. Different classifiers can be
used for that purpose.

Based on the above probabilistic setting, we have designed, implemented and
experimented a generate and test algorithm for discovering the mappings whose
probability is greater than a given threshold. In this algorithm, the monotony
of the probability function is exploited for avoiding the probability estimation
of as many mappings as possible.

We have performed thorough experiments on controlled synthetic data to
measure the performances of such a systematic approach in fonction of the num-
ber of possible mappings and the number of instances per classes. We have also
performed qualitative experiments to measure the impact of the classifiers used
to estimate the probabilities on the precision and recall of the mappings returned
by our algorithm.

The paper is organized as follows. Section 2 presents the formal background
and states the problem considered in this paper. Section 3 is dedicated to the
definition and computation of mapping probabilities. In Section 4, we present
the algorithm that we propose for discovering mappings with high probabilities
(i.e., greater than a threshold). Section 5 surveys the quantitative and qualitative
experiments that we have done on synthetic controlled data. Finally, in Section
6, we compare our approach to existing works and we conclude.

2 Formal background

We first define taxonomies as a graphical notation and its interpretation in the
standard first-order logical semantics, on which the inheritance of instances is
grounded. Then, we define mappings between taxonomies as inclusion state-
ments between classes of two different taxonomies. Finally, we set the problem
statement of matching taxonomies that we consider in this paper.



2.1 Taxonomies: classes and instances

Given a vocabulary V denoting a set of classes, a taxonomy TV is a Directed
Acyclic Graph (DAG) where each node is labelled with a distinct class name
of V , and each arc between a node labelled with C and a node labelled by D
represents a specialization relation between the classes C and D.

Each class in a taxonomy can be associated with a set of instances which
have an identifier and a content description modeled with an attribute-value
language.

By a slight abuse of notation, we will speak of the instance i to refer to the
instance identified by i.

Figure 1 shows two samples of taxonomies related to the Music domain. Bold
arrows are used for representing specialization relations between classes, and
dashed arrows for membership relation between instances and classes. In both
taxonomies, some instances, with attribute-value description denoted between
brackets, are associated to classes. For example, #102 is an instance identifier
and [Wagner, Tristan und Isold, ...] its associated description.

The instances that are in the scope of our data model can be web pages
(whose content description is a set of words) identified by their URL, RDF
resources (whose content description is a set of RDF triples) identified by a URI,
or audio or video files identified by a signature and whose content description
may be attribute-value metadata that can be extracted from those files.

We consider only boolean attribute-value description. Such a description
could be obtained by discretization of attribute-value pairs given in a more
complex language, like in Figure 1 where textual values are used. We con-
sider that, possibly after a preprocessing which is out of the scope of this pa-
per, the instances are described in function of a fixed set of boolean attributes
{At1, . . . , Atm}. Then, for an instance i, its description, denoted descr(i), is a
vector [a1, . . . , am] of size m such that for every j ∈ [1..m], aj = 1 if the attribute
Atj belongs to the content description of i, and aj = 0 otherwise.

Taxonomies have a logical semantics which provides the basis to define for-
mally the extension of a class as the set of instances that are declared or can be
inferred for that class.

2.2 Logical semantics

There are several graphical or textual notations for expressing the specialization
relation between a class C and a class D in a taxonomy. For example, in RDF(S)
[2] which is the first standard of the W3C concerning the Semantic Web, it is
denoted by (C rdfs:subclassOf D). It corresponds to the inclusion statement
C ⊑ D in the description logics notation.

Similarly, a membership statement denoted by an isa arc from an instance i
to a class C corresponds in the RDF(S) notation to (i rdf :type C), and to C(i)
in the usual notation of description logics.

All those notations have a standard model-theoretic logical semantics based
on interpreting classes as sets: an interpretation I consists of a non empty do-
main of interpretation ∆I and a function .I that interprets each class as a non



empty subset of∆I , and each instance identifier as an element of∆I . The classes
declared in a taxonomy are interpreted as non empty subsets because they are
object containers. According to the unique name assumption, two distinct iden-
tifiers a and b have a distinct interpretation (aI 6= bI) in any interpretation
I.

I is a model of a taxonomy T if:

– for every inclusion statement E ⊑ F of T : EI ⊆ F I ,
– for every membership statement C(a) of T : aI ∈ CI .

An inclusion G ⊑ H is inferred by a taxonomy T (denoted by T |= G ⊑ H) iff
in every model I of T , GI ⊆ HI .

A membership C(e) is inferred by T (denoted by T |= C(e)) iff in every
model I of T , eI ∈ CI .

Let D be the set of the instances associated to a taxonomy T . The extension
of a class C in T , denoted by Ext(C, T ), is the set of instances for which it
can be inferred from the membership and inclusion statements declared in the
taxonomy that they are instances of C:

Ext(C, T ) = {d ∈ D/ T |= C(d)}

2.3 Mappings

The mappings that we consider are inclusion statements involving classes of two
different taxonomies T1 and T2. To avoid ambiguity and without loss of gener-
ality, we consider that each taxonomy has its own vocabulary: by convention
we index the names of the classes by the index of the taxonomy to which they
belong. For instance, when involved in a mapping, the class XXth Opera of
the taxonomy T2 of Figure 1 will be denoted by XXth Opera2 while the class
XXth V ocal of the taxonomy T1 will be denoted by XXth V ocal1.

Mappings between T1 and T2 are of the form A1 ⊑ B2 or A2 ⊑ B1 where A1

and B1 denote classes of T1 and A2 and B2 denote classes of T2.
For a mapping m of the form Ai ⊑ Bj , its left-hand side Ai will be denoted

lhs(m) and its right-hand side will be denoted rhs(m).
A mapping Ai ⊑ Bj has the same meaning as a specialization relation be-

tween the classes Ai and Bj , and thus is interpreted in logic in the same way, as
a set inclusion. The logical entailment between classes extends to logical entail-
ment between mappings as follows.

Definition 1 (Entailment between mappings). Let Ti and Tj be two tax-
onomies. Let m and m′ be two mappings between Ti and Tj: m entails m′ (de-
noted m � m′) iff every model of Ti , Tj and m is also a model of m′.

It is straightforward to show that � is a (partial) order relation on the set
M(Ti, Tj) of mappings between the two taxonomies Ti and Tj . If m � m′, we
will say that m is more specific than m′ (also that m entails m′) and that m′ is
more general than m (also that m′ is an implicate of m).



The following proposition characterizes the logical entailment between map-
pings in function of the logical entailment between the classes of their left hand
sides and right hand sides.

Proposition 1. Let m and m′ be two mappings between two taxonomies. Let Ti
be the taxonomy of lhs(m), and Tj the taxonomy of rhs(m).

m � m′ iff

– lhs(m) and lhs(m′) are classes of the same taxonomy Ti, and
– Ti |= lhs(m′) ⊑ lhs(m) , and
– Tj |= rhs(m) ⊑ rhs(m′)

Fig. 3. 2 mappings between T1 and T2

For example, two mappings between taxonomies T1 and T2 of Figure 1 are
illustrated in Figure 3:

– the mapping XXth Opera2 ⊑ XXth V ocal1 is more specific than the map-
ping XXth Opera2 ⊑ XXth Century1,

– and the mapping
RecentClassical2 ⊑ XXth Instrumental1 is more specific than the map-
ping Ravel2 ⊑ Classical Music1.

2.4 Problem statement

Among all possible mappings between two taxonomies, we want to determine
those that are the most probable given the descriptions of the instances associated
to each class of the taxonomies. More precisely, the main problem addressed
in this paper is the design of an efficient generate and test algorithm which
minimizes the number of calls to the probability estimator for determining those
mappings whose probability exceeds a certain threshold. The mappings returned
by this algorithm will be said probabilistically valid (valid for short).



Two subproblems are emphasized. The first subproblem to handle is the choice
of an appropriate probabilistic model for defining the probability of a mapping. As
mentioned in the introduction, a probabilistic semantics of mappings cannot be
independent of the logical semantics. In particular, it is expected that a mapping
logically entailed by a mapping with a high probability (i.e., whose probability
exceed a threshold) will also get a high probability. The second subproblem is
then to find a good probability estimator to compute mapping probabilities, given
two taxonomies and the description of their instances.

3 Mapping probabilities: models and estimation

3.1 Modeling probabilistic mappings

We have considered two relevant probabilistic models for modeling uncertain
mappings. They are both based on the discrete probability measure defined on
subsets of the sample set representing the set of all possible instances of the two
taxonomies. From now on, we will denote Pr(E) the probability for an instance
to be an element of the subset E.

The first model defines the probability of a mapping Ai ⊑ Bj as the condi-
tional probability for an instance to be an instance of Bj knowing that it is an
instance of Ai. It is the natural way to extend the logical semantics of entailment
to probabilities.

The second model comes directly from viewing classes as subsets of the sam-
ple space: the probability of Ai ⊑ Bj is the probability for an element to belong
to the set Ai∪Bj , where Ai denotes the complement set of Ai in the sample set.

These two models are described in the following definition.

Definition 2 (Two probabilities for a mapping). Let m be a mapping of
the form Ai ⊑ Bj.

– Its conditional probability, denoted Pc(m), is defined as: Pc(m) = Pr(Bj |Ai).
– Its union set probability, denoted Pu(m), is defined as: Pu(m) = Pr(Ai ∪

Bj).

The following proposition states the main (comparative) properties of these
two probabilistic models. In particular, they both meet the logical semantics for
mappings that are certain, and they can both be equivalently expressed using
joint probabilities.

Proposition 2. Let m be a mapping between two taxonomies Ti and Tj. The
following properties hold:

1. Pu(m) ≥ Pc(m).
2. If m is a certain mapping (i.e., Ti Tj |= m):

Pc(m) = Pu(m) = 1.
3. Pu(m) = 1 + Pr(lhs(m) ∩ rhs(m))− Pr(lhs(m))

4. Pc(m) =
Pr(lhs(m)∩rhs(m))

Pr(lhs(m))



They differ on the monotony property w.r.t the (partial) order � correspond-
ing to logical implication (cf. Definition 1): Pu verifies a property of monotony
whereas Pc verifies a property of weak monotony as stated in the following the-
orem.

Theorem 1 (Property of monotony). Let m and m′ two mappings.

1. If m � m′ then Pu(m) ≤ Pu(m
′)

2. If m � m′ and lhs(m) = lhs(m′) then Pc(m) ≤ Pc(m
′)

The proof [18] results from Proposition 1 and Proposition 2 which relate
mappings with the classes of their left hand sides and right hand sides for logical
entailment and probabilities respectively, and from considering (declared or in-
herited) class inclusions within each taxonomy as statements whose probability
is equal to 1.

3.2 Bayesian estimation of mappings probabilities

As shown in Proposition 2, the computation of Pu(m) and Pc(m) relies on com-
puting the set probability Pr(lhs(m)) and the joint set probability Pr(lhs(m)∩
rhs(m)). These values are unknown and must be estimated. They are the (un-
known) parameters of the underlying Bernoulli distributions modeling the mem-
bership function to a set as a random variable taking only two possible values
0 or 1. Following the Bayesian approach to statistics [19], we model these (un-
known) parameters as continuous random variables, and we use observations to
infer their posterior distribution from their prior distribution. In the absence of
any particular knowledge, the prior distribution is usually set to the uniform
distribution. In probability theory, a natural way of estimating the value of a
parameter modeled by a random variable is to take its expected value. All this is
summarized in the following definition.

Definition 3 (Bayesian estimator of Pr(E)).
Let E be a subset of the sample set Ω. Let O be a sample of observed elements
for which it is known whether they belong or not to E. The Bayesian estimator
of Pr(E), denoted P̂ r(E), is the expected value of the posterior distribution of
Pr(E) knowing the observations on the membership to E of each element in O,
and setting the prior probability of a random set to 1

2
, and of the intersection of

two random sets to 1

4
.

Setting the prior probabilities to 1

2
and 1

4
depending on whether E is a class

or a conjunction of classes corresponds to the uniform distribution of instances
among the classes.

Let Êxt(E,O) be the set of observed instances of O that are recognized to be
instances of E. According to a basic theorem in probability theory (Theorem 1,
page 160, [19]), if the prior distribution of the random variable modeling Pr(E)
is a Beta distribution of parameters α and β, then its posterior distribution is
also a Beta distribution the parameters of which are: α+|Êxt(E,O)| and β+|O|.



The Beta distribution is a family of continuous probability distributions pa-
rameterized by two parameters α and β which play an important role in Bayesian
statistics. If its two parameters are equal to 1, it corresponds to the uniform dis-
tribution for the associated random variable. Its expected value is: α

α+β
.

In our setting, the set O is the union of the two (possibly disjoint) sets Oi and
Oj of instances observed in two distinct taxonomies Ti and Tj . This raises the

issue of computing the set Êxt(E,Oi ∪Oj), specially when E is the conjonction
of a class Ci of the taxonomy Ti and a class Dj of the other taxonomy Tj . In
this case:
Êxt(Ci ∩Dj ,Oi ∪ Oj) = Êxt(Ci,Oi ∪ Oj) ∩ Êxt(Dj ,Oi ∪ Oj)

Since the two taxomomies have been created and populated independently
by different users, the only information that can be extracted from those two
taxonomies are the extensions of each class within each taxonomy: Ext(Ci, Ti)
and Ext(Dj , Tj).

By construction, it is likely that their intersection contains very few instances
or even no instance at all. Therefore, we use automatic classifiers to compute
Êxt(E,O). The machine learning community has produced several types of clas-
sifiers that have been extensively (theoretically and experimentally) studied (see
[20] for a survey) and have been made available through open source platforms
like Weka [21]. They are based on different approaches (e.g., Naive Bayes learn-
ing, decision trees, SVM) but they all need a training phase on two sets of
positive and negative examples. Let C be a classifier. Let E be a class of one of
the two taxonomies that we denote by Ti, the other one being denoted Tj . For

computing Êxt(E,O) we follow the same approach as [5]:
- C is trained on the descriptions of the elements of the two sets Ext(E, Ti)

and Oi\Ext(E, Ti) taken as the sets of of positive and negative examples respec-
tively,

- C is then applied to each instance of Oj to recognize whether it belongs to
E or not.

As a result, the following theorem provides a simple way to compute the
Bayesian estimations P̂u(m) and P̂c(m) of the two probabilities Pu(m) and Pc(m)
defined in Definition 2.

Theorem 2 (Estimation of mapping probabilities).
Let m : Ci ⊑ Dj be a mapping between two taxonomies Ti and Tj. Let O be

the union of instances observed in Ti and Tj. Let N = |O|, Ni = |Êxt(Ci,O)|,

Nj = |Êxt(Dj ,O)| and Nij = |Êxt(Ci ∩Dj,O)|.

– P̂u(m) = 1 +
1+Nij

4+N
− 1+Ni

2+N

– P̂c(m) =
1+Nij

4+N
× 2+N

1+Ni

It is worth comparing the (Bayesian) ratios 1+Ni

2+N
and

1+Nij

4+N
appearing in the

formulas for computing P̂u(m) and P̂c(m) in Theorem 2 with the corresponding

ratios Ni

N
and

Nij

N
that would have been obtained by following the standard



(frequency-based) approach of statistics (as it is the case for instance in [5]).
The corresponding ratios converge to the same expected value when there are
many instances, but the Bayesian ratios are more robust to a small number of
instances. In contrast with the frequency-based approach, they are defined even
in the case where no instance is observed: their respective values (i.e., 1

2
and

1

4
) in this particular case correspond to the probability of random sets and the

joint probability of of two random sets respectively for a uniform distribution of
instances in the sample set.

4 Discovery process of probabilistic mappings

Given two taxonomies Ti and Tj (and their associated instances), letM(Ti, Tj) be
the set of all mappings from Ti to Tj (i.e., of the form Ci ⊑ Dj). The ProbaMap
algorithm determines all mappings m of M(Ti, Tj) that verify two probabilistic-

based criterion of P̂u(m) ≥ Su and P̂c(m) ≥ Sc, where Su and Sc are two
thresholds in [0, 1].

Candidate mapping generation The principle of ProbaMap algorithm is to
generate mappings from the two sets of classes in the two taxonomies ordered
according to a topological sort [22]. Namely, (see the nested loops (Line 4) in
Algorithm 1) it generates all the mappings Ci ⊑ Dj by enumerating the classes
Ci of Ti following a reverse topological order and the classes Dj of Tj following
a direct topological order. The following proposition is a corollary of Proposition
1.

Proposition 3. Let Ti and Tj two taxonomies.
Let ReverseTopo(Ti) be the sequence of classes of Ti resulting from a reverse
topological sort of Ti. Let Topo(Tj) be the sequence of classes of Tj resulting
from a topological sort of Ti. Let m : Ci ⊑ Dj and m′ : C′

i ⊑ D′
j two mappings

from Ti to Tj. If m
′ is an implicant of m (i.e., m′ � m), then Ci is before C′

i in
ReverseTopo(Ti) or Ci = C′

i and Dj is before D′
j in Topo(Tj).

This proposition ensures that the mappings are generated in an order that re-
spect the logical implication, according to the knowledge of the taxonomies.

Pruning the candidate mappings to test Based on the monotony prop-
erty of the probability function Pu (Theorem 1), every mapping m′ implicant
of a mapping m such that Pu(m) < Su verifies Pu(m

′) < Su. Therefore, in
ProbaMap, we prune the probability estimation of all the implicants of every m
such that P̂u(m) < Su. We shall use the notation Implicants(m) to denote the
set of all mappings that are implicants of m. Similarly, based on the property
of weak monotony of the probability function Pc (Theorem 1), when a tested

candidate mapping m is such that P̂c(m) < Sc we prune the probability esti-
mation of all the implicants of m having the same left-hand side as m. We shall
denote this set: Implicantsc(m). Based on Proposition 1, Implicants(m) and



Implicantsc(m) can be generated from Ti and Tj .

The ProbaMap Algorithm The resulting ProbaMap algorithm is described
in Algorithm 1, in which

– primitive functions like Implicants and Implicants c returns the impli-
cants of the mapping in argument and the implicants having the same class
at the left-hand side.

– Topo andReverseTopo return the sequences of classes of a taxonomy that
respect the logical implication order (respectively in the direct and reverse
directions).

– exti and extj represent the two maps that store the extension of each class
of respectively Ti and Tj , or the extensions obtained by classification when
it is enabled.

Algorithm 1 returns mappings directed from Ti to Tj . In order to obtain all
valid mappings, it must be applied again by swapping its inputs Ti and Tj .

Algorithm 1 ProbaMap

Require: Taxonomies (DAG) Ti, Tj , thresholds Sc, Si, Instances maps exti, extj

Ensure: return {m ∈M(Ti, Tj) such that P̂i(m) ≥ Si and P̂c(m) ≥ Sc}
1: MV al ← ∅
2: MNV al ← ∅
3: for all Ci ∈ ReverseTopo(Ti) do
4: for all Dj ∈ Topo(Tj) do
5: let m = Ci ⊑ Dj

6: if m 6∈MNV al then

7: if P̂i(m,exti, extj, Ti, Tj) ≥ Si then

8: if P̂c(m, exti, extj , Ti, Tj) ≥ Sc then

9: MV al ←MV al ∪ {m}
10: else

11: MNV al ← MNV al∪Implicants c(m, Tj) {Pruning using the weak
monotony}

12: end if

13: else

14: MNV al ← MNV al∪Implicants(m, Ti, Tj) {Pruning using the strong
monotony}

15: end if

16: end if

17: end for

18: end for

19: return MV al

The discovered valid mappings are stored in the set MNV al. Mappings that
are pruned are stored in the set MNV al. The nested loops in Line 4 in Algorithm



1 generate all the mappings Ci ⊑ Dj from the most general to the most specific
mapping. Based on this, Proposition 3 shows that this algorithm maximizes the
number of pruning.

When a mapping is generated and if it is not already pruned, it is firstly
tested with regard to Pi(m) ≥ Si in Line 7, then if it is positive, it is tested
with Pc(m) > Sc in Line 8. In the case Pi(m) < Si, all the implicants of m are
marked as pruned (Line 14), thanks to the strong monotony property of Pi. If
Pi(m) ≥ Si but Pc(m) < Sc, then the property of weak monotony conducts to
prune all the implicants of m with the same left-hand side, in Line 11 and they
are added to MNV al. Hence, MNV al set is kept up to date by containing all the
pruning mappings from the beginning.

The general structure for the implementation of ProbaMap is pictured in
Figure 4.

1. Computation of the transitive logical closure of the two taxonomies and their
instances given as input. (in order to obtain quickly the class extensions and
to optimize the pruning process)

2. Automatic classification step in order to merge the instances of the two
taxonomies. This step has been detailed in section 3.4. It can be disabled by
the user.

3. Core of ProbaMap: generation-and-test of candidate mapping, according to
the two thresholds as input parameters.

The output is directly the set of mappings from the first taxonomy to the second
one for which Pu and Pc both exceed their respective thresholds Su and Sc. We
insist on the fact that, once the parameters are set, the discovery process is fully
automatic.

As many matching methods provide equivalences as their results, we can
add a postprocessing for ProbaMap in order to obtain equivalences logically
implied by the inclusion mappings discovered. In this case, the thresholds Su

and Sc should be lowered with respect to the discovery of pure implications,
because equivalences are stronger relations than implicants, and then less likely
to happen.

5 Experiments

We have performed three series of experiments :

1. on controlled synthetic data

2. on OAEI directory benchmark

3. on Web Directories, with a comparison with the method SBI [7]

This section is structured according to these three series.



Fig. 4. Structure of ProbaMap

5.1 Experiments on synthetic data

For the purpose of systematic testing of our approach in various conditions, we
have evaluated Algorithm 1 on synthetic data on which we can control important
parameters and guarantee structural or distributional properties.

Different analysis have been conducted. We have measured the impact of the
probabilistic models and of the thresholds involved in the validity criteria on
the precision of the results and on the pruning ratio. The pruning ratio is the
ratio of mappings that are pruned by adding in lines 14 and 11 Implicant(m)
(or Implicantc(m)) to the set MNV al of unvalid mappings without estimating
their probabilities.

We have also measured the qualitative and quantitative impact of the choice
of a classifier. Automatic classification is at the core of the estimation of P̂u and
P̂c with the computation of Êxt(Ci ∩ Dj ,O) (see Theorem 2). For evaluating
the quality of our results, we use the standard criteria of precision and recall
[23]. Recall is the ratio of returned results that are expected w.r.t. all expected
results. Precision is the ratio of returned results that are expected w.r.t. all
returned results.

In order to measure the robustness we have tested the robustness of Algo-
rithm 1 to noisy data.

Finally, we have conducted experiments on real-world data to check the scal-
ability of the Algorithm 1 on large taxonomies and to make qualitative measure-
ments.

We first describe the principles and the process of the data generator on which
we have conducted the different experiments. Then we describe the experimental



protocol that we have followed. Finally, we summarize the main experimental
results that we have obtained on synthetic and real-world data.

Synthetic data generation is divided into three steps : generation of tax-
onomies with fixed sizes, generation of the expected mappings to discover, and
population of each class by generating a fixed number of instances and associated
description.

Generation of taxonomies. Given constraints on number of classes n1 and n2,
we generate the structure of the two respective taxonomies T1 and T2 as a forest
of general trees (unconstrained in-degrees) by using a Boltzmann sampler for
unlabelled trees described in [24]. We use a reject method to get random forests
with n1 and n2 nodes. This method is simple and efficient while guaranteeing
an uniform distribution among the trees with the same number of nodes. Then,
we label each node by a distinct class name.

In our experiments, we set n1 = n2 so the two taxonomies have the same
size, which is the unique parameter of the taxonomies generation.

Mappings generation. We initialize the generation of mappings to be discov-
ered MG with a set MS of seed mappings, whose size is either fixed or randomly
chosen between 1 and the common size of the taxonomies.

Each mapping m ∈ MS is generated by a random choice for the two classes
lhs(m) and rhs(m) in T1 and T2, or in T2 and T1, depending on the mapping
direction which is randomly chosen too. We reject mappings which logically
entail class inclusions that are not entailed within each taxonomy (i.e., we forbid
generated mappings to modify the knowledge of each taxonomy).

The set MG of all mappings to discover will then be the set of mappings
that can be logically entailed by MS and the two taxonomies.

Following [25], the computation of precision and recall will be based on MG.
Let R be the result of Algorithm 1. The recall is the proportion of mappings of
MG actually returned by Algorithm 1:

Recall =
MG ∩R

MG

The precision is the proportion of returned mappings that are actually in MG:

Precision =
MG ∩R

R

Instances and description generation. For this step, we consider the two
taxonomies and the mappings between them as a whole DAG of classes. The
acyclicity of that graph is guaranteed by the constraints imposed in the produc-
tion of the set MG of generated mappings described above.

We first generate a set of boolean attributes sufficient to associate a mini-
mal intentional description of each class respecting the semantic partial order �
conveyed by the above DAG structure. Then, we use this intentional knowledge



to generate accordingly the description of the instances with which we populate
each class in the taxonomies.

Generation of the intentional description of classes:
We traverse the DAG of classes according to a reverse topological order [22]
starting from the most general classes that constitute the level 0, and we iterate
the following process for generating the intention of classes as sets of attributes:

- For each class C0
i of level 0, we generate a disjoint set of distinct attributes

At0i and we set the intention of C0
i , denoted Int(C0

i ), to be A0
i .

- For each class Cj
i of level j (according to the reverse topogical order),

we generate a set Atji of novel attributes (disjoint from the set of existing at-

tributes) with a size fixed to the out degree of Cj
i in the DAG of classes, and

we set Int(Cj
i ) to be Atji ∪

⋃
Int(Cj−1

ik
), where the Cj−1

ik
are the successors of

Cj
i in the DAG.

Population of classes:
Let {At1, . . . , Atm} be the set of attributes generated at the previous step. We
populate each class with nP instances, and we associate to them descriptions
that respect the corresponding intentional description, as follows: For each class
C, each of its instances is described by a boolean vector [a1, . . . , am] obtained
by:

- setting to 1 each ai such that the corresponding attribute Ati is in the
intention of the class C,

- randomly setting the other values aj to 0 or 1.

This way, by construction, all the instances in the extension of a class have
in common that all the attributes in Int(C) are present in their description.

In Section 5.1 we will use an oracle classifier which classifies an instance i
in the class C iff all the attributes of the intention Int(C) of the class C are
present in the description of i.

The results of data generation can be summarized into a table Tdata with
m + nC columns where m is the number of generated attributes and nC is the
number of generated classes, and each tuple [a1, . . . am, c1, . . . , cnc

] concatenates
the description [a1, . . . am] of an instance in terms of attributes, and its catego-
rization [c1, . . . , cnc

] with respect to the classes: for each i ∈ [1..nC ] ci is equal
to 1 if i ∈ Ext(C) and to 0 if it is not the case.

Connection with Armstrong relations. Data generation in our context rep-
resents quite challenging issue when compared to other synthetic data genera-
tion, such as functional Armstrong relation for functional dependencies5 [26], or
transactional databases for frequent itemsets [27].

5 An Armstrong relation for a set of functional dependencies is a relation that satisfies
each dependency implied by the set and does not satisfy any dependency that is not
implied by it.



Roughly speaking, we borrow the same principles than those developed for
Armstrong relations [28]. Each generated mapping should be satisfied by the
generated data, and each mapping that is not generated should be contradicted
by the generated data.

With regard to the Armstrong relations, our generation tackles additional
issues. Firstly, the structure may be generated whereas Armstrong relations
suppose the structure (schemas) given. Secondly, for relational databases, it is
enough to generates two tuples that contradict one dependency for ensuring
that the dependency is not satisfied. In our case where mapping probabilities
are estimated from statistics on class extensions, the amount of instances that
contradict a mapping has a strong impact on its validity, then we can not only
generate one instance for each mapping to be contradicted.

Experimental protocol We first explain the goals of the successive experi-
ments that we have performed.

For an overview of the complete setting, the connection between ProbaMap
and the generator is pictured in Figure 5. Distinguishing between the parameters
of ProbaMap (two thresholds for Pc and Pu and the kind of classifier) and thoses
of the generator is a key point.

Fig. 5. Structure of ProbaMap

The first goal is to analyze the impact on the precision of the thresholds
Sc, Su, with the purpose to fix appropriate thresholds for the next experiments.



The second goal is to analyze the impact of the probabilities P̂c and P̂u on
the pruning ratio of the algorithm. The purpose is to determine among three
validity criteria the one offering the best performances : using Pu alone, using
Pc alone, or using both of them.

The third goal is to analyse and compare the impact both on precision/recall
and on total running time of three real classifiers (Naive Bayes, C4.5 and SVM)
for estimating the probabilities. The purpose is to determine the classifier offering
the best tradeoff between quality of results and running time. Note that we do
not take the learning time of classifiers into account because we consider that
this task can be precomputed for each taxonomy.

The last goal with synthetic data is to analyse the robustness of the approach
to noisy data.

For all the experiments on synthetic data presented in this section, each
point is obtained by averaging the results of 100 runs. For each run, a new
synthetic dataset is generated with the appropriate parameters. Note that in our
experiments we generate taxonomies with few dozens of classes. The number of
random taxonomies of such sizes can be counted in billions. Thus, averaging over
100 runs for a point does not prevent from local variations, leading to curves
that are not smooth.

Our algorithm is written in Java and compiled using Sun Java version 1.6.
We run all the tests on a quad-core Intel Q6700 Xeon at 2.66 GHz with 4 GB of
memory. The OS is Ubuntu Linux 8.10. For all the experiments measuring run
times, only one instance of our program and the OS are running on the machine,
to avoid memory contention effects with other programs that would affect the
results.

Experimental results Impact of thresholds on precision

We compare the influence of the thresholds Sc and Su associated to prob-
abilities P̂c and P̂u on the quality of the results returned by Algorithm 1. For
doing so, we run the algorithm with the validity criterion: P̂c ≥ Sc and P̂u ≥ Su.

In this experiment, the computation of probabilities is performed using the
oracle classifier. The parameters in the synthetic generator are defined such that
|M(T1, T2)| = 320. We set the number of seed mappings |MS | = 4. Note that
by logical entailment the total number |MG| of mappings to be discover may be
much greater. For each couple of threshold (Sc, Su) ∈ [0.78 : 0.995]2, we compute
the precision and the recall of the results of Algorithm 1. We observed that the
recall remains constant at 1.0 independently of values of Sc and Su. This is
because thanks to the oracle classifier, estimated probabilities for the mappings
of MG are very close to 1, and superior to all experimented thresholds, leading
to a perfect recall. Thus, we only show the results for precision in Figure 6.

The figure shows the contours of the different precision levels, from a precision
of 0.93 to a precision of 0.99. From the shape of these contours, it is clear that
both P̂c and P̂u have an influence on precision. As the relation P̂u ≥ P̂c holds
(Proposition 2), under the diagonal P̂u has no influence on precision.
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The probability P̂c is more discriminant than P̂u. The figure shows that P̂c

influences the precision for a large range of values of the threshold Sc, while P̂u

only has an influence for very high values of Su. We have observed the estimated
probabilities for different mappings, and found that there is an important gap in
the values of P̂c between valid and invalid mappings. This gap is much smaller
for P̂u. P̂u giving higher probability values to invalid mappings, this explains
why it can only have an influence on precision at very high Su values.

Based on the curve of Figure 3, we fix the thresholds at (Sc = 0.83, Su = 0.96)
for experiments where the classifier used to estimate the probabilities is the
oracle. This gives a good precision of 0.95, and maps to a region where P̂u has
an influence on the quality of results.

For the experiments in which a real classifier is used to estimate the probabili-
ties, we fix the thresholds at (Sc = 0.85, Su = 0.90) to be tolerant to classification
errors.

Impact of probabilities on pruning ratio
We now study the impact of three probabilistic criteria for testing the validity

of a mapping on the pruning ratio performed by Algorithm 1 :

1. using only Pu by setting Sc = 0 (bypass)
2. using only Pc by setting Su = 0 (bypass)
3. using both Pu and Pc

Figure 7 shows the ratio of pruning made by the algorithm using the different
validity criteria, w.r.t. a naive approach not doing any pruning.

The validity computation using only P̂u is the one that prunes the least
mappings, computing probabilities for about 40% of all mappings of M(Ti, Tj).

Both P̂c and P̂c and P̂u does more prunings and obtain a significant reduction of
the search space. Combining P̂u and P̂c obtains slightly better results than using
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P̂c alone, so for the remainder of this experiments section, we use P̂c ≥ Sc and
P̂u ≥ Su as validity criterion. It allows to compute the probabilities for only 20%
of the mappings of M(Ti, Tj), when the number of candidate mappings is high.
For example, a search space of 3500 mappings is pruned up to 22% by combining
Pc and Pu, that implies that there are only 770 examinated mappings for which
Pu and Pc are estimated.

Impact of the classifiers

In this subsection, we replace the oracle classifier with a real classifier. We
compare the results given by three well-known classifiers: Naive Bayes [20], C4.5
[29] and SVM [30]. We use the Weka implementation of these classifiers and have
interfaced it with our code.

The comparisons of running times are shown in Figure 8 and in log scale in
Figure 9.

A first conclusion is that the running times are polynomial in the number
of mappings, and are very similar, with Naive Bayes being slightly slower than
C4.5 and SVM.

Comparisons for precision and recall are shown in respectively Figure 10 and
Figure 11.

Naive Bayes has both the worst recall and the worst precision, the choice is
thus between C4.5 and SVM. They seem to have similar results. However, the
learning time of SVM (not shown here) is much longer than the learning time of
C4.5. We thus choose C4.5 for further experiments, and analyse the impact of
the number of instances per class on the classification performance of Algorithm
1 with C4.5.

We vary the number of instances per class nP between 10 and 450. The
results for computation time, precision and recall are shown in Figures 12, 13,
and 14



 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000  2500  3000

C
om

pu
ta

tio
n 

tim
e 

(s
)

Candidate mappings number

Computation time (s) w.r.t. candidate mappings number 
  200 ins/class -  100 runs/pt

Naive Bayes
C4.5
SVM

Fig. 8. Computation time (s) for different classifiers

-1

 0

 1

 2

 3

 4

 5

 5.5  6  6.5  7  7.5  8

lo
g(

co
m

pu
ta

tio
n 

tim
e)

log(candidate mappings number)

Computation time (s) w.r.t. candidate mappings number - Logarithmic scale
  200 inst/class -  100 runs/pt

Naive Bayes
C4.5
SVM

Fig. 9. Computation time in log scale for different classifiers



 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  500  1000  1500  2000  2500  3000

P
re

ci
si

on
 

Candidate mappings number

Precision  w.r.t. candidate mappings number
 200 inst/class - 100 runs/pt

NB
C4.5
SVM

Fig. 10. Precision for different classifiers

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  500  1000  1500  2000  2500  3000

R
ec

al
l

Candidate mappings number

Recall  w.r.t. candidate mappings number
  200 inst/class - 100 runs/pt

NB
C4.5
SVM

Fig. 11. Recall for different classifiers

In this experiment, the number of classes and of mapping is constant, hence
the number of classifications to perform is linear in the number of instances. The
C4.5 algorithm takes linear time in the number of instances. In fact, all instances
are classified into each class at the beginning of ProbaMap, this is also perfectly
coherent. This linearity is also the case for Algorithm 1, as shown by Figure 9.
Increasing the number of instances per class only increases slightly precision,
whereas it strongly improves recall. The most important point to note is that
excellent values of precision and recall are obtained with as few as 50 instances
per class, as expected, with a use of Bayesian approach of statistics.

Robustness to noisy data

In order to test the robustness to noise of our algorithm, we define a new
parameter θ corresponding to the quantity of noise to inject in the synthetic
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data. Each dataset produced by the synthetic data generator goes through a
step of noise application, where each boolean corresponding to the value of an
attribute for an instance can be reversed with a probability θ. The new dataset
is then processed as usual by Algorithm 1.

The variations of precision and recall for values of θ ∈ [0; 0.3] are show in
Figure 15.
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The figure shows that recall gracefully degrades when noise increases. At 10%
noise, the recall is nearly unaffected, at a value of 0.95. Values of noise superior
to 15% have a more significant impact and lead to poor recall.



Precision, however, exhibits a different behavior. It first increases with noise,
before abruptly decreasing for more than 24% of noise.

In order to understand this phenomenon, we have investigated in details the
classifier results and the values of probabilities given to mappings. We found
that for 0% noise, there are invalid mappings that are incorrectly given too high
probabilities, and that appear as valid. This explains the non-perfect 0.88 preci-
sion value. The probability values for these mappings are close to the threshold.
Increasing noise makes the classifiers more selective, and tends to decrease the
values of all probabilities. So the probabilities of these invalid mappings go below
the threshold for a moderate amount of noise, whereas the probabilities of valid
mappings remain above the threshold. Thus the precision increases.

5.2 Real-world OAEI data

We have made experiments on the directory set of OAEI [12, 13] contest. This
set is constituted by two large taxonomies of respectively 2857 and 6628 classes.
For the contest, due to scalability issues, the taxonomies are split into the set of
their branches, a small subset of which is given to the competitors for mapping
alignment. In contrast, our algorithm is able to handle the two whole taxonomies,
thus taking advantage of the complete structure of the taxonomies. It is impor-
tant to note that without pruning, this would lead to a search space of 30 million
mappings.

For compensating the absence of available instances for these taxonomies, we
use a method inspired by [14] to automatically populate the classes with synsets6.
We follow a similar method to Ctx-Match [14]. Intuitively, the principle of this
population is based on associating each class C with a set of WordNet synsets
(atomistic semantic unit in this thesaurus) that reflect the right meaning of the
label of C in the context where it appears, i.e. the labels of the ancestor classes
of C in its taxonomy. This help to disambiguate the meaning of a word: for
instance, the label “Arizona” can correspond to a state of the U.S.A. or to a
snake. If the Arizona class is a child class of “Animals”, the label “Animals” can
be used to guess that “Arizona” means the snake species.

On the two whole taxonomies, the population phase produces about 30000
instances and takes 5 hours while the mapping discovery algorithm itself only
takes 11 minutes. These are very reasonable computational times for handling
30 million possible mappings.

For evaluating the precision of the set of mappings discovered by our al-
gorithm, we could only compute a lower bound based on the partial reference
provided by OAEI. The results are promising, as for the thresholds Su and Sc

respectively set to 0.9 and 0.8 we obtained a lower bound of precision of 67%7.

6 In WordNet, a synset is a semantic unit, 2 synonyms correspond to the same synset.
7 Fore more details, see http://disi.unitn.it/~pane/OAEI/2009/directory/result/



5.3 Comparative analysis on collected Web Directories

In this section, we test ProbaMap on part of Internet directories from Yahoo!
and Google (actually based on Dmoz) that are rooted with similar or very close
label. These sub-directories are considered as taxonomies, and URLs referenced
inside each class of the taxonomy as instances.

The main difference with the sequence of experiments in the previous sec-
tion is that the dataset contains original instances that are collected with their
taxonomies, avoiding to process an artificial population.

We compare our approach to the SBI algorithm of Ichise et al. [7, 31], which
is dedicated to the discovery of mappings between Internet directories, and the
integration of such directories.

Internet directories are trees of categories, which can be seen as taxonomies,
categories being the classes. Each category contains a set of links (i.e. URLs
to web sites), which can be seen as the instances of the class. Each link comes
with a small text summary, whose words can be seen as instance attributes for
classification.

Our datasets are corresponding locations in the Yahoo! and Google directo-
ries, that have also been used in the experiments of [7, 31]:

– Yahoo! : Recreation / Automotive & Google : Recreation / Autos

– Yahoo! : Recreation / Outdoors & Google : Recreation / Outdoors

– Yahoo! : Computers and Internet/Software&Google : Computers/Software
– Yahoo! : Arts / Visual Arts / Photography&Google : Arts / Photography

The data from the directories was collected in June 2010, so is different from
the data of [31] and [7] which was collected in Fall 2001.
Table 1 shows for each dataset the number of classes and instances in each class,
and the number of instances shared between the Yahoo! and the Google direc-
tories. Two instances are considered shared if they correspond to the same URL
in both directories. For a fair comparison, we have implemented both ProbaMap
and the SBI algorithm in Java.

Yahoo! Google shared
classes instances classes instances instances

Autos 947 4406 967 6425 837

Outdoors 2428 5511 1441 13863 623

Software 323 2390 2395 30140 572

Photography 168 1851 321 3852 286
Table 1. Statistics on data collected from subdirectories on Yahoo! and Google

Experimental protocol An overview of the setting used for the comparative
experiment is pictured in Figure 16.



Fig. 16. Setting used for the comparative experiment between SBI and ProbaMap

SBI takes as input one source taxonomy, one target taxonomy, and the in-
stances declared for each class of both taxonomies. For each class Cs of the
source taxonomy, SBI returns a rule Cs → Cpredicted

t associating Cs to a target

class Cpredicted
t in the target taxonomy.

In order to fit the evaluation framework of SBI, we added a postprocessing
to ProbaMap to obtain a similar form of results, i.e. a set of unique rules for
each class of the source taxonomy.

The complete process is the following:

1. Application of ProbaMap on T1 and T2
2. For each class C1 of T1,

among all C2 for which the two mappings C1 ⊑ C2 and C2 ⊑ C1 have been
discovered,
select the class C2 for which min(P̂c(C1 ⊑ C2), P̂c(C2 ⊑ C1)) has the highest
value.

3. For each class C1 of T1, if there is no rule for C1, associate to C1 the rule of
its closest ancestor in T1

In this way we obtain an unique rule C1 → C2 for each class of T1, like the
SBI system.

As there are a good proportion of shared instances for each directory that
makes the classification step not mandatory, we can and we will compare SBI
against both ProbaMap versions with and without the classification step. For the
version without classification, preliminary tests lead to set Sc = 0.6 and Su = 0.9.
SVM is set to be the default classifier by using the SMO implementation in weka.
When using classification, because of the small values of the joint probabilities



of classes, we set Su = Sc = 0. In this case, the postprocessing step is modified
to take into account the probabilities Pc and Pu of the reverse mappings.

Comparative qualitative evaluation The goal of our experiments is to com-
pare the quality of Internet directories alignment for ProbaMap and SBI.

For the discovery of mappings, ProbaMap and SBI receive a “training” set of
instances which is a subset of the shared and annotated instances. The test set
used for evaluation of the discovered mappings is constituted by the remaining
instances among the shared ones. In the case where ProbaMap is set to use
classification, the training set is extended with all the non shared instances.
The ratio of the number of shared instances used for training among all shared
instances is a controlled variable on the experiments we have conducted.

The classification is performed using the SVM implementation SMO [30] in
Weka [21], where the classification attributes for an instance are the words of its
summary. The experiments on controlled data have shown that SVM and C4.5
are comparable in quality but that C4.5 is faster than SVM. Nevertheless, we
have conducted this experiment with SVM which is expected to perform better
on sparse data.

The evaluation is done by using the test set of instances. Each instance of
this set belongs to a class Cs of the source taxonomy. Hence, we can compare:

– the class Cpredicted
t of the instance, predicted by the output rule Cs →

Cpredicted
t

– the class Ct in which the instance is declared in the target taxonomy (each
instance of the test set is common to the two taxonomies)

The accuracy measures the ratio of the instances in the test set for which
Cpredicted

t = Ct . Accuracy is a standard micro-averaged evaluation measure
which is based on instances, whereas recision and recall are macro-averaged
measures based on mappings themselves. As there is no reference of mappings
provided for the considered Yahoo! and Google subdirectories, but a sufficient
proportion of instances are shared by them, we use the accuracy criterion to
evaluate ProbaMap in this experiment. This enables also to fit the evaluation
framework of SBI (described in [31]).

Ratio of shared instances provided
for training

SBI ProbaMap ProbaMap + classif

0.5 0.23 0.28 0.36

0.9 0.29 0.33 0.40
Table 2. Averaged accuracy for SBI and ProbaMap

Results The averaged results in Table 2 show that ProbaMap outperforms
SBI in average, and that ProbaMap with classification outperforms ProbaMap
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Fig. 17. Comparative accuracy results (1)
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Fig. 18. Comparative accuracy results (2)



without classification. The average is computed on the four directories of the
Table 1 and for each direction of alignment.

In particular, ProbaMap with classification significantly outperforms ProbaMap
without Classification (about 10% better) and SBI (about 20% better) for the
datasets Autos and Photography, whatever the size of the training set.

For the directories Software and Outdoors, ProbaMap without classifica-
tion and SBI both provide lower results. SBI performs a little better (no more
than 5%). In these two cases, there are initially few instances by class, and
then the classification step allows to improve the results : ProbaMap with clas-
sification outperforms SBI on the Software directory up to 60% of instances
for the training set, whereas ProbaMap without classification does not. For the
Outdoors results pictured in Figure 18(a), ProbaMap with classification is bet-
ter for a small training set (≤ 20% of the shared instances). The reason is that,
for this particular dataset, a very small ratio of instances is classified and then
the extensions of classes do not change much after the classification step.

We have also checked that all these results both for ProbaMap and ProbaMap
with classififcation are rougly better in average than the results of a modified
version of SBI using Naive Bayes classification so-called SBI-NB [31]. More pre-
cisely, both versions of Probamap perform better for 6 of the 8 tested directories.
Note however that we are provided results for SBI-NB with an old dataset col-
lected in 2004, so the comparison is not totally fair.

Finally, SBI and ProbaMap (without classification) both take a few seconds
on each of the directories of Figure 1). The version of ProbaMap with classifi-
cation requires additionnal time (several minutes) for classifying each instance
into each class, but this significantly improves the quality of the results.

These experiments show that the mapping discovery method that we propose
gives good results on real-world datasets, and can take advantage of classification
techniques to compensate small training set sizes. This is an important quality
for real world taxonomies built by different people, that are unlikely to have
many instances in common.

6 Related work and conclusion

As outlined in the introduction, semantic mappings are the glue for data inte-
gration systems. A wide range of methods of schema/ontology matching have
been developed both in the database and the semantic web communities [32].
One of the principles widely exploited is terminological comparison of the labels
of classes with string-based similarities or lexicon-based similarities (like Word-
Net) (e.g., TaxoMap [33], H-MATCH [11]) . Another widely used principle is
structure comparison between labeled graphs representing ontologies (e.g., OLA
[9]), based on similarity flooding [34]. The underlying idea is that two elements
of two distinct ontologies are similar when their adjacent elements are similar.
This is applied by spreading similarities in the spirit of how IP packets flood the
network in broadcast communication.



A category of methods (e.g., FCA-merge [35], [6]) are called “extensional”
because they are instance-based: they rely on instances of classes to compute
matches between them. It is shown in [36] that the reliability of instance-based
methods depends on the applications and on the kind of correspondences that
are considered. The instance-based method SBI [7] with which we have compared
our method is based on the computation of the Fleiss Kappa coefficients that
are symmetric and then they cannot be interpreted as probabilities on inclusion
mappings.

Most of the instance-based methods make use of classifiers using a corpus
of labelled instances (e.g., LSD [8], SemInt [37], GLUE [5],[38]). It should be
pointed out that GLUE discovers symmetric correspondences that have no for-
mal semantics. The associated confidence value for each discovered correspon-
dence are not real probabilities as they are based on similarities like the Jaccard
similarity. In contrast, we consider mappings that denote inclusions between
classes of different taxonomies, and we define a formal probabilistic semantics
for these inclusion mappings.

sPLmap [38] is an approach for schema matching, and oPLmap [39] is a
variant for ontology matching, that rely on classifiers and deal with probabili-
ties. sPLMap finds the best set of mappings M between two schemas S, T that
maximizes the probability that the tuples in the rewritten schema S using M
(denoted SM ) are plausible in T and vice versa. At the end, each returned map-
ping is associated with a probability based on the conditional probability for-
mula. In contrast with our work, sPLmap computes probabilities by combining
scores provided by several weighted classifiers (working on text or data values of
tuples).

Other approaches have been investigated with machine learning techniques
using a corpus of schema matches (e.g., [40],[41]). The work introduced in [41]
uses classifiers directly on correspondences, by representing each correspondence
in a vector space constructed from instances features. A training set of true
correspondences should be provided. Then, for a tested correspondence between
two classes A and B, the similarities between (i) the instances of A, (ii) the
instances of B, and (iii) the instances of all examples correspondences allow to
give to the tested correspondence a position in the correspondence space. Hence
the classifier can be used to determine if the tested correspondence is relevant
or not, according to its position in the correspondence space and the learned
examples.

In fact, most of the existing matchers combine these elementary approaches
in different ways (e.g., COMA++ [42] and COMA [43], Cupid [10], H-MATCH
[11], Lily [44], S-Match [45], Clio [46]).

In [47], an extension of existing matching methods is proposed by considering
the k ranked best alignments. The top-k alignment ranking is combined with the
schema to match in order to generate the final alignment that globally maximizes
its score.

It is standard practice for ontology and schema matchers to associate num-
bers with the candidate mappings they propose. The uncertainty is intrinsic to



correspondences discovery because two classes or properties (for example) in-
dependently created are unlikely to exactly match. As stated in [15], there is
still a need to better understand the foundations of modeling uncertainty that
is primary important for improving the detection of correspondences causing
inconsistencies, e.g., via probabilistic reasoning, or to identify where the user
feedback is maximally useful, and for improving the quality of the interpretation
of correspondences.

However, those uncertainty coefficients do not have a probabilistic meaning
and are just used for ranking. In contrast, our approach promotes a probabilistic
semantics for mappings and provides a method to compute mapping probabil-
ities based on the descriptions of instances categorized in each ontology. It is
important to note that even if we use similar classification techniques as [5], we
use them for computing true probabilities and not similarity coefficients.

The most distinguishing feature of our approach is that it bridges the gap
between logic and probabilities by providing probabilistic models that are con-
sistent with the logical semantics underlying ontology languages. Therefore, our
approach generalizes existing works based on algebraic or logical representation
of mappings as a basis for reasoning (e.g., Ctx-Match [14], Clio [46]). The work
in [48] introduces a framework for modeling and evaluating automatic seman-
tic reconciliation. It provides a formal model for semantic reconciliation and
theoretically analyses the factors that impact the effectiveness of matching algo-
rithms. The proposed formal model borrows from fuzzy set theory for handling
uncertainty by combinations of similarity measures and good properties. This
work is not connected probability but is complementary to the approach in this
thesis.

The mappings that are returned by our algorithm can be exploited for map-
ping validation by probabilistic reasoning in the line of what is proposed in [49].
More generally, our approach is complementary of the recent work that has been
flourishing on probabilistic databases [50, 51]. In particular, it fits into the gen-
eral framework set in [16] for handling uncertainty in data integration, for which
it provides an effective way for computing mapping probabilities. ProbaMap can
be generalized to perform without instances at all, by using techniques that lead
to correctly estimate P (A1) and P (A1 ∩ B2) (for a mapping A1 ⊑ B2). Such
a generalization should take care that the distributions of A and of A ∩ B are
considered and estimated in a probabilistic framework. For example, a linguis-
tic resource can be used for estimating thoses probabilities by taking the labels
of A and B and returning probabilities for A and A ∩ B, not only coefficients.
This requires that the techniques to obtain such probabilities from the linguistic
resource should respect some properties that fit with the probability theory.

The experiments that we have conducted on both real-world and controlled
synthetic data have shown the feasibility and the scalability of our approach.
In contrast with our approach that prunes the search space by an appropriate
ordering for generating and testing the mappings, a lot of existing approaches
compute a similarity matrix for all pairs of classes. The ordering used in SBI is
not logically consistent. Several complex matching system use the logical consis-



tency as a filter or a way to check their results, but not for pruning the search
space. Up to now, the OAEI context does not focus on scalability, except for
isolate cases like the anatomy 2006 8 dataset which contains large ontologies in
the anatomy domain. Methods like PRIOR [52] and H-MATCH [53] has shown
good performances on this dataset. The PRIOR system makes use of information
retrieval techniques, by indexing a profile for each class (or any ontology entity),
and by using a query answering algorithm to rank and find the best matches
for a particular class by making a query about its own profile. Note that the
anatomy dataset does not contain any instance.

Another possible approach investigated in [54] for handling large taxonomies
is based on partitioning. Our approach is scalable while keeping the whole logical
structure, which can be potentially lost by partitioning taxonomies.

Perspectives
We envision two main perspectives. First, we will study a setting for prob-

abilistic query answering, in the spirit of probabilistic databases [16]. In such
a setting, probabilities of mappings will be used by the query answering algo-
rithm to give some probability values for each answer. In particular, it should be
interesting to focus on reasoning-based query algorithm like in the Somewhere
[55] setting. There are existing works on introducing probabilities in logic and
inference process. Probability Logic [17] fits our proposed model in the way that
the classical implication and the conditional are both present in the language.
Probabilistic description logics ([56], [49]) are also based on conditional formu-
las too. Based on inference rules and their properties about probabilities, such
probabilistic and logical framework can be extended to do probabilistic reasoning
involving probabilistic mappings.

Our second pespective tackles the central issue in ontology matching (see
[15]), that is to provide a formal semantics to coefficients returned as out-
put of existing alignment methods. The idea is to design and implement a
post-processing step in order to transform the returned coefficients into coef-
ficients that can be interpreted as probabilities, i.e. that respect the property of
monotony (Theorem 1). For this purpose, we plan to use the similarity flood-
ing principle [34], in the spirit of N2R [57] and OLA [9]. Coefficients for map-
pings are initialized by those returned by the existing method to postprocess.
The properties of monotony are then translated into strong influences between
coefficients of mappings connected by an entailment relation. These influences
between mappings coefficients are finally modeled by (non-linear) equations in-
volving the maximum function. Like in N2R, the main issue would be to find an
iterative algorithm ensured to converge towards a fixpoint that is the solution
of the equation system.
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