
Enhancing the Analysis of Large Multimedia Applications Execution Traces with
FrameMiner

C. Kamdem K.∗†, L. C. Fopa∗†
∗University of Grenoble

LIG
681 rue de la passerelle

38400 Saint Martin d’H̀eres
France

{surname.name}@imag.fr

N. Ibrahim∗, A. Termier∗, M.-C. Rousset∗
†University of Yaounde I

LIRIMA, Equipe IDASCO
Facult́e des Sciences

Département d’Informatique
BP 812 Yaound́e, Cameroun

UMI 209 UMMISCO
BP 337 Yaound́e, Cameroun

T. Washio‡
‡Institute of Scientific and Industrial Research

Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, 567 Japan

washio@ar.sanken.osaka-u.ac.jp

Abstract—The analysis of multimedia application traces can
reveal important information to enhance program comprehen-
sion. However traces can be very large, which hinders their
effective exploitation. In this paper, we study the problemof
finding a k-golden set of blocks that best characterize data.
Sequential pattern mining can help to automatically discover
the blocks, and we calledk-golden set, a set of k blocks that
maximally covers the trace. These kind of blocks can simplify
the exploration of large traces by allowing programmers to
see an abstraction instead of low-level events. We propose
an approach for mining golden blocks and finding coverage
of frames. The experiments carried out on video and audio
application decoding show very promising results.

Keywords-Data mining; Trace Analysis; Program Comprehen-
sion; Software Engineering;

I. I NTRODUCTION

The use of embedded systems like smartphones, tablets
and controllers has been expanded in many fields of our
everyday life. This situation increases the needs to develop
applications for these systems. One of the most used are
multimedia applications in which video and audio decoding
are the important tasks. A multimedia decoding is the
process of rendering images and sounds on a screen, and
the result must be of good quality, without interruption
between images or any delay between picture and sound.
This process deals with computations overframes. A frame
is an image rendered during a known time interval. An
anomaly or an unusual execution in an application decoding
video (or audio) can waste a lot of time and a lot of
money in industry. Increasingly, the analysis techniques of
applications use execution traces, which are chronological
sequences of couples made up by a timestamp and an event,
to efficiently uncover bugs causing such faulty behaviors
([1]–[3]); however, the challenge in this case is the size of
these traces that can easily reach gigabytes for only few
minutes of decoding (for instance, the tool Parallel MJPEG
[4] can produce a trace file of 7 Gigabytes for less than 5
minutes of video decoding).

To analyse traces of finished events, and fix bugs, program-
mers use several tools such as trace visualizers ([5,6]) and
techniques such as tracepoints on the execution traces. One
problem is thatit is difficult to know where and what to
look within a trace in order to detect particular behaviour
or observe something interesting, because of the amount
of data. Various studies have examined the techniques to
reduce the volume of traces ([7,8]) which propose sampling
methods. These techniques can obtain a reduced execution
trace but not always representative of the entire trace [9].
Pirzadeh et al. introduced in [2] that, the general consensus
in the trace analysis community is to emphasise the work
towards effective trace abstraction techniques, such as [10].
For reducing the volume of events in a trace to be analysed
by the programmer, we propose to abstract series of low-
level events asblocksthat are meaningful to the programmer,
and then to further abstract the trace as series of blocks. Fig.
1 illustrate a real trace with frames and blocks. The candidate
blocks that can serve for rewriting traces into series of blocks
can be provided by the user or automatically discovered by
some given measures. In our proposed algorithmFrameM-
iner, the candidate blocks are automatically discovered by
mining the frames in the trace file. The candidate blocks are
then obtained as the result of a sequence mining algorithm
returning the set of consecutive events that occur frequently
in the set of frames in a trace file, where the frames can be
easily identified because they are delimited by twostart and
end events.
The problem is then to rewrite each frame into a short
description with a minimum set of blocks. In fact, this
problem is an optimization problem to findk blocks that
provide the best coverages of a set of frames. For this
purpose it is first interesting to see how a single frame can
be covered with blocks. That is the reason why we will
consider a frame as granularity level, and each block ought
to have a meaning in the frame decoding process.
In our proposed algorithmFrameMiner, this NP-hard prob-

GetFrame
exitGet
CS_I:Produc
Interrupt_Period
exitI
Interrupt_soft
exitS
exitIT
CheckData
FillJob
CS_VGA
CS_I:produc
GetFrame
exitGet
Interrupt_Hand
exitI
exitIt
Interrupt_Soft
Interrupt_Period
exitI
Interrupt_soft
exitS
exitIT
CS_I:produc
CheckData
FillJob
CS_MTU
Interrupt_Hand

B1

B2

B3

B1

B2

B3

9.5054
9.5073
9.5081
9.5083
9.5084
9.5086
9.5102
9.5127
9.5154
9.5260
9.5715
9.5845
9.5974
9.6012
9.6125
9.6155
9.6234
9.6315
9.6405
9.6483
9.6514
9.6622
9.6715
9.6811
9.6898
9.6932
9.6987
9.7001

Frame 1

Frame 2

Figure 1. A real trace with thestart eventGETFRAME, the end event,
FILL JOB and blocksB1, B2, B3

lem is solved using a greedy algorithm to find approximately
largest coverages of frames using predefined number, k, of
blocks calledgolden blocks. We have conducted preliminary
experiments on a set of frames coming from a trace of a
SoC multimedia video decoding program and obtained their
promising quantitative and qualitative results.
This paper is organized as follows: Section II states the
problem and briefly gives some notations and important
definitions. In Section III, we present our greedy algorithmat
the core ofFrameMiner. Section IV reports on experiments
done on SoC multimedia video decoding program, followed
by a discussion. Section VI is an overview of the related
work. We end in Section VII by a conclusion and future
work.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section we give the notations and definitions neces-
sary to model our problem.

A. Notations

Let Σ be a set of events. Ablock is a non empty sequence
of events. Atimestamped eventis a pair(t, e) wheret ∈ N,
is a timestamp ande is an event.Framesare sequences of
timestamped events and atrace is a sequence of frames
ordered by timestamps. The size of a sequenceS, denoted
by ‖S‖, is the total number of events that it contains.
Example: For the trace in Fig. 2,‖F1‖ = 4. B2 = 〈B,D〉
is a block of two eventsB andD.

(a) - A trace with 3
framesF1, F2, F3

(b) - The frameF1 with 3
blocks: B1 = 〈A〉, B2 =

〈B,D〉, B3 = 〈C〉

Figure 2. Example of trace, frames and blocks

B. Definitions

The first definition that we introduce is the occurrence time
of a block in a frame.
Definition 1: Let B = 〈e1B , . . . , e

v
B〉 be a block and letF =

〈(t1, e1F), . . . , (tn, e
n
F)〉 be a frame.B occurs inF (denoted

B ⊑ F) between timestampsi and i+ v iff:

∀j ∈ [i, i+ v], e
j
F = e

j−i+1
B .

i is then called the occurrence time ofB in F .
Example: In Fig.2(a),B1 = 〈B,D〉 occurs inF1 between
timestamps 2 and 3; it occurs inF2 between 6 and 7.

As we said before, our granularity level is a frame, so we
don’t need to have a block greater than a frame, in order to
avoid an overlap between frames. We then define the notion
of local coverage of a frameby a sequence of blocks.
Definition 2: Given a frameF , a sequence of blocksC =
〈B1, . . . , Bm〉 is a local coverage ofF , if and only if all
blocks in C occur in F in non-overlapping manner, and by
following the order in C.
More strictly, for eachBi, let φi be the occurrence time of
Bi in F , the following relation holds:

∀i ∈ [1,m− 1], φi + ‖Bi‖ ≤ φi+1

Example: In Fig.2(b), C = 〈B1, B2〉 occurs in non-
overlapping manner and by following this order inF1, and
so it is a local coverage ofF1.

With the above definition, acoverageover a set of frames
is dependant oflocale coverageof each frame of the set.
We define acoverageover F = {F1, . . . , Fl} using a set
of candidate blocksS as a set of the local coverages of the
frames.
Definition 3: Let S be a set of candidate blocks
{B1, . . . , Bn} andF = {F1, . . . , Fl} be a set of frames.
A coverage ofF using S is a set{C1, . . . , Cl} such that
∀i ∈ [1, l], Ci is a local coverage ofFi using blocks inS.
Note that in the above definition, there may exist frames
Fi such as their local coverageCi is the empty sequence.

These frames cannot be covered with blocks inS at all.

The covering degree of a coverage is the proportion of the
number of events in the frames of a trace file that are covered
by the blocks in the coverage.
Definition 4: Let C = {C1, . . . , Cl} be a coverage of a set
of framesF = {F1, . . . , Fl}.The covering degree ofC over
F is defined as follows:

coverDegree(C,F) =

∑l

i=1

∑vi
j=1 ‖B

i
j‖

∑l

j=1 ‖Fi‖

whereBi
j is the j-th block in the i-th local coverageCi in

C.
Example: For a given set of candidate blocksS =
{〈A,B〉, 〈B,D〉, 〈D,C〉}, a coverage ofF = {F1, F2, F3}
in Fig.3 is C = {C1, C2, C3}, with C1 = 〈〈B,D〉〉,
C2 = 〈〈B,D〉〉, andC3 = 〈〈D,C〉〉. Its covering degree
coverDegree(C,F) is 2+2+2

10 = 0.6

Figure 3. A set of frames with a coverage:{〈〈B, D〉〉, 〈〈B,D〉〉,
〈〈D,C〉〉}

A set of candidate blocksS may lead to many coverages
of a set of frames. We define the coverage rank ofS on
F as the maximum degree of all the coverages that can be
built from the setS.

Definition 5: Let S be a set of blocks,F be a set of frames
and{C1, . . .Cp} be the set of all coverages ofF using blocks
in S, the coverage rankof S on F is defined as follows:

coverRank(S,F) = Max
i∈[1,p]

coverDegree(Ci,F)

Example: The coverage rank of S on the set
of frames of Fig. 3 is 0.8 with the coverage
{〈〈A,B〉, 〈D,C〉〉, 〈〈B,D〉〉, 〈〈D,C〉〉}

Remark: ∀ S,F , 0 ≤ coverRank(S,F) ≤ 1

Given a set of framesF , we can compare the coverage
ranks of differentS having a fixed sizek, and choose
S maximizing the coverage rank. Such a set of blocks,

with sizek are calledk-golden set, and their elements, the
golden blocks. The golden blocks in ak-golden setprovide
the maximum power of coverage on the set of frames for
any combination ofk blocks.

Definition 6: In a family {S1, . . . , Sq} of sets
of blocks where all sets have an identical
size k, a k-golden set is a set Si, satisfying
coverRank(Si,F) = Max

j∈[1,p]
coverRank(Sj ,F).

Example: Assuming that〈C〉, 〈A,B〉, 〈B,D〉, and〈D,C〉
are frequent consecutive events for the set of frames in Fig.
3, let us consider the following sets consisting of 3 blocks:
S1 = {〈C〉, 〈B,D〉, 〈D,C〉}, and S2 = {〈C〉, 〈A,B〉, 〈D,C〉},

S3 = {〈C〉, 〈A,B〉 〈B,D〉}, and S4 = {〈D,C〉, 〈A,B〉 〈B,D〉}

coverRank(S1,F) = 0.8; coverRank(S2,F) = 0.9;
coverRank(S3,F) = 0.7; coverRank(S4,F) = 0.8. S2

is then the3-golden set.

C. Problem statement

Though our proposed framework is generic so that it can
treat blocks provided from a trace data under various mea-
sures, we assume here that the blocks we are looking for
are frequents, since in the context of multimedia application
debugging, particularly video decoding, a frame decoding
generally follows the same procedure.
Given a setS of candidate blocks (obtained by a frequent
sequence mining algorithm [11]–[13] applied on a set of
frames in a trace file), the problem addressed in this paper
is to find a k-golden setof blocks that provide the best
coverage of the frames in the trace file. This problem can be
seen as a submodular function maximization problem [14]
which has been studied in particular for resource allocation.
More precisely, it is a monotone submodular maximization,
max{f(S) : |S| ≤ k}, wheref is the function of coverRank
(section II-B, Def. 6), which is a submodular function of a
subset of the blocks setS . This problem is known to be
NP-Hard. But it was proven that the lower bound of any
local optimum f, any local optimum coverRank in our case,
provided by a simple greedy search, is not less than 63%
of the global maximum, and it is reported in many studies
that the greedy algorithm provides nearly optimum values
in various problems [15]–[18].
In the next section, we provide a greedy algorithm that
we have implemented in FrameMiner to compute an ap-
proximated golden blocks. We compare its results with a
baseline algorihm that computes an exact solution but with
an exponential time computation.

III. C OVERAGE WITH GOLDEN BLOCKS INFRAMEM INER

A naive idea to obtain the golden set is to first generate all
sets consisting of k blocks respectively, and then find among
them the set that maximizes thecoverRank. The algorithm

Algorithm 1 BaselineFrame
Input : A given set of blocksS , the set of framesF , the
constraintk
Output : The complete set ofk-golden sets

1: SS ← {Si|Si ⊆ S , |Si| = k} {where |Si| means the
number of blocks inSi}

2: max← 0
3: G← {∅}
4: for eachSi ∈ SS do
5: d← coverRank(Si,F)
6: if d > max then
7: G← {Si}
8: max← d

9: else if d = max then
10: G← G ∪ {Si}
11: end if
12: end for
13: return G

for this simple method, termedBaselineFrame, is presented
in Algorithm 1.
Although BaselineFrame Algorithm is simple and ensures
that we obtain all exact solutions, it has an exponential time
complexity : the number of subsets inSS in line 1 is Ck

n

where|S| = n. Therefore, we introduce a greedy algorithm
depicted in Algorithm 2 to avoid this costly enumeration of
all subsets candidates.

Algorithm 2 GreedyFrame
Input : A given set of blocksS , the set of framesF , the
constraintk
Output : An approximatedk-golden setSa

1: Randomly pick a blockb in S

2: Sa ← {b}
3: S ← S − {b}
4: while |Sa| 6= k do
5: b← argmaxb∈S (coverRank(Sa ∪ {b},F))
6: Sa ← Sa ∪ {b}
7: S ← S − {b}
8: end while
9: return Sa

Algorithm 2 first randomly pick a blockb in S (line 1) and
initializes the solutionSa with this block.b is then excluded
from S to avoid duplicating blocks in the result. At each
iteration, the algorithm looks for the best blockb such that
the obtained set covers the maximum number of events in
the frames (line 5). This block is added to the solutionSa

in line 6 and excluded from future choices in line 7. The
algorithm stops when the solution hask blocks, and returns

the solution found.
In this algorithm, a problem could be the quality of the
solution found. The algorithm has onlyk iterations, but there
is no guarantee that it finds an optimal solution. The result
is only an approximation of a golden set. However, in case
of submodular functions it has been proven [14] that ifSopt

is a k-golden set, then the following inequality holds :

coverRank(Sa) ≥ (1 −
1

e
)coverRank(Sopt)

This means that thecoverRank of Sa is guaranteed to be
more than63% of the coverRank of Sopt. Moreover, as
mentioned before, many past work pointed that the greedy
algorithm provide a solution having the nearly optimum
value in many problems. Accordingly, the resultant setSa is
expected to achieve a reasonable coverage w.r.t. to its much
lower computational cost.
The complete mining algorithm of FrameMiner, starting
from the set of frames, the predefined sizek and a threshold
ε, is described in Algorithm 3.

Algorithm 3 FrameMiner
Input : A set of framesF , the constraintk, a minimum
support thresholdε
Output : An approximatedk-golden setSa

1: S ← profspan(F , ε)
2: Sa ← GreedyFrame(S ,F , k)
3: return Sa

FrameMiner starts by computing all the frequent sequential
patterns occurring in the frames with a classical sequence
mining algorithm (hereprofspan [12]), with an user-
defined minimum support thresholdε. The patterns obtained
are the blocks that are given as input toGreedyFrame,
which returns as output an approximatedk-golden set.

IV. EXPERIMENTS

We have performed preliminary experiments of our
FrameMiner tool on a real trace of an embedded multimedia
application. The computer used for the experiments has an
Intel Xeon X4760 processor at 2.66 GHz and 64 Gigabytes
of RAM. Our trace comes from an execution of a video and
audio decoding test application, run on a Linux distribution.
This trace was recently used by Lopez et al. [19], it is a
real trace but of small size (240 frames). This small size
helped us to conduct a first series of qualitative experiments
to assess the interest of golden patterns. A preprocessing
step is first applied to split the raw trace into frames with
the two givenstart and end events; After this first step of
preprocessing, the dataset contained240 frames with123575
events. At the end of this step some frames were strictly
identical, they were grouped together in order to reduce the
amount of redundant information. The non-redundant frame

set obtained has99 frames and1974 events. We then applied
FrameMiner on non-redundant frame set, with a support
threshold of20% and different values ofk. The frequent
sequence mining step, using theprofspanalgorithm, returned
95 frequent sequences with a20% support threshold.
In the rest of this section, the quality of our approximation
of golden patterns withgreedyFrame is evaluated. Then
a subjective assessment of the interest of golden patterns
is presented, and a quantitative measure of the amount of
information reduction is shown.

Qualitative assessment: To evaluate the quality of
the golden set approximation found bygreedyFrame,
we compared it with the optimal solution found by
baselineFrame. Due to the exponential computation time
of baselineFrame, it couldn’t compute optimal solutions
on the frame set having99 frames. We thus considered two
smaller samples of20 and30 frames. Usingprofspan with
20% threshold, the first sample gave16 frequent patterns,
and the second sample gave18 frequent patterns. Table I
below shows coverRank of the4-goldenset and6-golden
set, for approximated and optimal solution, on first samples.
For the overall set of99 frames, optimal4-goldenset and
6-goldenset are only presented forgreedyFrame, as they
couldn’t be computed bybaselineFrame. The table shows
also the lower bound claimed.

Table I
COVERRANK OF GOLDEN SETS AND APPROXIMATED GOLDEN SETS

Nb. frames k Optimal FrameMiner Lower bound

Set of 20 frames 4 0.776 0.556 0.489
6 0.858 0.830 0.540

Set of 30 frames
4 0.710 0.533 0.447
6 0.812 0.720 0.511

Set of 99 frames
4 N/A 0.527 N/A
6 N/A 0.656 N/A

For each set of frames in Table I, we performed ten
executions ofFrameMinerand the value represented is the
lowest value obtained for all executions. We observed in the
experiments that, the approximated value obtained is always
much better than the lower bound. By example, for 30
frames, k = 6, the coverRank of the approximated solution
is 0.72, which is greater than> 0.63 ∗ optimal = 0.511.
Figure 4 compares the computation time ofgreedyFrame
and baselineFramefor k = 4 and k = 6. Overall, the
running time grows with the number of frames and the
constraintk. For example, with a set of30 frames, for
k = 4, baselineFrame takes6.2s against0.13s in average
for greedyFrame; fork = 6, baselineFrame takes17.2s
against 0.17s in average for greedyFrame. With these
results, we observe that the approximated solution is almost
90% of the optimal solution, with an execution two to three
orders of magnitude faster.

Subjective ranking: To evaluate the usefulness of the
golden blocks obtained, we subjected95 frequent patterns
to expert determination, without revealing which one were
golden blocks. The expert is a programmer of multimedia
applications on SoC and he is familiar with our dataset.
He had to classify the patterns into three categories.Rank
A are very interesting patterns that the programmer would
like to see.Rank Bare somewhat interesting patterns, the
programmer might use it in debugging.Rank Ccorresponds
to uninteresting patterns, the programmer would not use it in
debugging. Figure 5 shows the proportion of each of these
rank for all frequent patterns on the left, and only for golden
blocks on the right.

Figure 5. Subjective ranking of golden blocks

We are able to view that the expert finds more than50% of
golden blocks very or somewhat interesting. With the95
frequent patterns, he found67.1% of uninteresting patterns.
The percentage of interesting patterns was enriched in
golden blocks, confirming the interest of our method.

Reduction: Our method significantly reduce the amount
of trace to observe. After a rewriting of the overall non-
redundant frame set of99 frames, a programmer has only
502 eventsto observe instead of1974. This represents a
70% reduction in the information to handle. As an example,
Fig. 6 shows three frames and their rewriting with golden
blocks. In this rewriting, gray boxes represent golden blocks,
and white ones represent “gaps”, i.e. part of the frame which
was not covered by golden blocks.
With Figure 6, programmer can more quickly see that,
frames 6(a) and 6(b) are similar, but in 6(b), an event
occurs between thestart block [GetFrame,exitGet]
and theinterruptblock[Interrupt_period, exitI,
Interrupt_soft, exitS, exitIT]. In 6(c), an
interrupt block is expected after thestart block,
but the “gap“ allows to observe interruption called
[Interrupt_Handler], which is particular in this con-
text. In visualization before golden blocks, it was not easy
to make a difference between what was interesting to look
or not. Even less between which event or block is expected
or not. The programmer can now focus on ”blocks” instead
of individual events. It has fewer areas of traces to observe
and may plan to analyse only areas not covered by golden
blocks.

10-1

100

101

102

103

 0 20 40 60 80 100

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of frames

k=4

greedyFrame
baselineFrame

(a)

10-1

100

101

102

103

 0 20 40 60 80 100

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of frames

k=6

greedyFrame
baselineFrame

(b)

Figure 4. Computation times ofgreedyFrame andbaselineFrame for k = 4 andk = 6

V. D ISCUSSION

Figure 5 shows that golden blocks are interesting pat-
terns for understanding application behaviour. Several pat-
terns have been saidunexpectedby the expert, it was
in fact patterns containing events not being directly re-
lated to the decoding but to the scheduling done by the
operating system. These last could be considered noise.
According to the expert, the golden blocks found rep-
resent different phases of the video decoding. We can
cite few golden blocks such asstart decoding framerep-
resented by the block[GetFrame, exitGet], which
represents a call to the user function of video decod-
ing start, or thekeys interrupt[Interrupt_period,
exitI, Interrupt_soft, exitS, exitIT]. The
expert says that these interruptions are necessary during the
processing of the frame.
As much as the golden blocks are important, as much as
the ”gaps” are, in the context of trace analysis. Indeed, the
rewriting of all the frames helps to quickly find blanks.
In theory, these empty blocks mark a fairly uncommon se-
quence, probably of interest in order to investigate potential
dysfunctions. For example, through our rewriting, the pro-
grammers were able to search a ”gap“ when they expected
a precise sequence. They therefore found that it occurred
two particular interruptions[Interrupt_timer] and
[Interrupt_Handler] that they were not expecting.

VI. RELATED WORK

Existing work on execution traces addressed several issues
such as reducing the volume of data by abstraction or by
division of the trace. Pirzadeh et al. in [2] use analysis of ex-
ecution traces to understand behavioural aspects of complex
software systems. They can divide the content of a trace into
meaningful trace segments called execution phases, and their
slicing is done using Gestalt laws. Kim et al. studied in [20]
the problem of finding a minimum set of signature patterns

such that each object in datasets has at least one signature
pattern that explains all data. The signature patterns, which
are a kind of discriminative patterns, can be mainly used in
hardware design as a verification methodology. The authors
assume that signature patterns are infrequent and propose a
novel pattern enumeration method. In the other hand, traces
need to be visualized in order to be analysed. Several works
like [5,21] and [6], present various tools in this direction.
However, the programmer has to go through a series of pages
in order to find a specific information. Our work divides
an input trace into relevant blocks, mutually independents,
without any information on some execution part, unlike
[2,10]. The visualization step becomes now easier to manage
through information grouping, and the analysis is improved.
Other authors such as Hoffman et al. in [10] use more
formal abstraction techniques and build views that represent
various levels of abstraction in the executing program; these
views are linked each other. In a context of interprocess
communication traces, authors in [22] focus on detecting
communication patterns and then propose an abstraction of
traces. As said before, one have to deal with huge volume of
traces and the size explosion problem was largely described
in [1]. Different techniques to reduce traces were proposed,
as those in [7,8], and Pirzadeh in [9] introduces a notion of
trace size reduction to obtain a representative sample of the
original trace; however the last approach does not take into
account the sequentiality of events, essential to understand
multimedia application traces. The same author gives an idea
in [23] to mimic the psychological processes in order to deal
with huge volume of visual data. The abstraction that we
realised will also reduce the amount of traces, and contrary
to [20], we assume that the blocks that we are looking for,
result of a sequential pattern mining algorithm.

VII. C ONCLUSIONS AND FUTURE WORK

In this work, we presented an original approach for automat-
ically detecting golden blocks, which are frequent sequences

 GetFrame

 exitGet

Interrupt_period

 exitI

 Interrupt_soft

 exitS

 exitIT

 CheckData

 CS_I:Produc

 FillJob

 GetFrame
 exitGet

Interrupt_Period|exitI
Interrupt_soft|exitS

 exitIt

 CheckData
FillJob

(a)

 GetFrame
 exitGet

Interrupt_Period|exitI
Interrupt_soft|exitS

 exitIt

 CheckData
FillJob

 GetFrame

 exitGet

Interrupt_period

 exitI

 Interrupt_soft

 exitS

 exitIT

 CheckData

 CS_I:Produc

 FillJob

(b)

 GetFrame
 exitGet

 GetFrame

 exitGet

 Interrupt_Hand

 exitI

 exitI
 exitIT

 Interrupt_soft

 exitS

 exitIT

 CheckData

 CS_I:Produc

 FillJob

 Interrupt_Period

 exitI

 Interrupt_soft

 exitIT

Interrupt_Period|exitI
Interrupt_soft|exitS

 exitIt

 CheckData
FillJob

(c)

Figure 6. Initial frame and rewriting with golden blocks

having an important coverage in an execution trace. We
argue that these blocks can greatly simplify trace exploration
and thus debugging through trace analysis of embedded
systems.
We formally define the problem of finding golden blocks and
show that computing an exact solution is computationally
expensive. We thus provide an efficient greedy algorithm
that computes an approximation of the golden blocks. Ex-
perimental results show that the automatically found blocks
are interesting for experts. The rewriting of frames using
these blocks allows a significant reduction of the execution
trace volume.
In future work, we are thinking on using semantic to
automatically label these golden blocks. By that mean, we
can refer to ontologies for describing the trace abstractions,
as well as automatic detection of faults. Several metrics will
be taken into account like duration of events. In this paper
we focused on single core traces, but we plan to apply our
methods to multi-core traces.

ACKNOWLEDGMENTS

This work is supported by French FUI project SoCTrace.

REFERENCES

[1] A. Hamou-lhadj and T. C. Lethbridge, “A Survey of Trace
Exploration Tools and Techniques,” 2004, pp. 1–14.

[2] H. Pirzadeh and A. Hamou-Lhadj, “A Novel Approach Based
on Gestalt Psychology for Abstracting the Content of Large
Execution Traces for Program Comprehension,” in2011 16th
IEEE International Conference on Engineering of Complex
Computer Systems. Ieee, Apr. 2011, pp. 221–230.

[3] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van
Wijk, and A. van Deursen, “Understanding Execution Traces
Using Massive Sequence and Circular Bundle Views,”15th
IEEE International Conference on Program Comprehension
(ICPC ’07), pp. 49–58, 2007.

[4] X. gurin, “Approche Efficace de Développement de Logiciel
Embarqué pour des Systèmes Multiprocesseurs sur Puce,”
Ph.D. dissertation, 2010.

[5] B. D. O. Stein, “Pajé trace file format,” 2003.

[6] Z. Weg and R. Henschel, “Introducing OTF / Vampir /
VampirTrace,”Memory.

[7] P. Dugerdil, “Using trace sampling techniques to identify
dynamic clusters of classes,” inProceedings of the 2007 con-
ference of the center for advanced studies on Collaborative
research - CASCON ’07. New York, New York, USA: ACM
Press, 2007, p. 306.

[8] A. Chan, R. Holmes, G. C. Murphy, and A. T. T. Ying, “Scal-
ing an object-oriented system execution visualizer through
sampling,” in Proceedings of the 11th IEEE International
Workshop on Program Comprehension, ser. IWPC ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp.
237–.

[9] H. Pirzadeh, S. Shanian, A. Hamou-Lhadj, and A. Mehrabian,
“The Concept of Stratified Sampling of Execution Traces,”
in 2011 IEEE 19th International Conference on Program
Comprehension. Ieee, 2011, pp. 225–226.

[10] K. J. Hoffman, P. Eugster, and S. Jagannathan, “Semantics-
aware trace analysis,” inACM SIGPLAN Notices, vol. 44,
no. 6, May 2009, p. 453. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1543135.1542527

[11] Q. Zhao and S. S. Bhowmick, “Sequential Pattern Mining:A
Survey,” Database, no. 2003118, 2003.

[12] J. Zou, J. Xiao, R. Hou, and Y. Wang, “Frequent Instruction
Sequential Pattern Mining in Hardware Sample Data,”2010
IEEE International Conference on Data Mining, pp. 1205–
1210, Dec. 2010.

[13] T. Ball, B. Laboratories, and L. Technologies, “The Concept
of Dynamic Analysis,”Analysis.

[14] L. W. Gi. NEMHAUSER* and M. L. FISHER, “An analysis
of approximations for maximizing submodular set functions,”
vol. 14, pp. 265–294, 1978.

[15] A. Kulik, H. Shachnai, and T. Tamir, “Maximizing
submodular set functions subject to multiple linear
constraints,” inProceedings of the twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, ser. SODA ’09.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2009, pp. 545–554. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1496770.1496830

[16] J. Vondrak, “Optimal approximation for the submodular
welfare problem in the value oracle model,” inProceedings
of the 40th annual ACM symposium on Theory of computing,
ser. STOC ’08. New York, NY, USA: ACM, 2008,
pp. 67–74. [Online]. Available: http://doi.acm.org/10.1145/
1374376.1374389

[17] G. Goel and A. Mehta, “Online budgeted matching in random
input models with applications to adwords,” inProceedings
of the nineteenth annual ACM-SIAM symposium on Discrete
algorithms, ser. SODA ’08, 2008, pp. 982–991.

[18] M. Streeter and D. Golovin, “An online algorithm for maxi-
mizing submodular functions,” 2007.

[19] P. L. Cueva, A. Bertaux, A. Termier, J. Mehaut, and M. San-
tana, “Debugging Embedded Multimedia Application Traces
through Periodic Pattern Mining,” inProceedings of Interna-
tional Conference on the Embedded Software.

[20] H. Kim, S. Im, T. Abdelzaher, J. Han, D. Sheridan, and
S. Vasudevan, “Signature Pattern Covering via Local Greedy
Algorithm and Pattern Shrink,”2011 IEEE 11th International
Conference on Data Mining, pp. 330–339, Dec. 2011.

[21] “Visual trace explorer.” [Online]. Available: http://vite.gforge.
inria.fr/

[22] L. Alawneh and A. Hamou-Lhadj, “Pattern Recognition
Techniques Applied to the Abstraction of Traces of Inter-
Process Communication,” in2011 15th European Conference
on Software Maintenance and Reengineering. Ieee, Mar.
2011, pp. 211–220. [Online]. Available: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5741263

[23] H. Pirzadeh and A. Hamou-lhadj, “A Software Behaviour
Analysis Framework Based on the Human Perception Sys-
tems (NIER Track),” pp. 948–951.

