
Data Mining MPSoC Simulation Traces to Identify
Concurrent Memory Access Patterns

Sofiane Lagraa1,2, Alexandre Termier1 and Frédéric Pétrot2
1LIG, 2TIMA, CNRS/Grenoble-INP/UJF

Abstract—Due to a growing need for flexibility, massively
parallel Multiprocessor SoC (MPSoC) architectures are currently
being developed. This leads to the need for parallel software, but
poses the problem of the efficient deployment of the software
on these architectures. To address this problem, the execution
of the parallel program with software traces enabled on the
platform and the visualization of these traces to detect irregular
timing behavior is the rule. This is error prone as it relies
on software logs and human analysis, and requires an existing
platform. To overcome these issues and automate the process, we
propose the conjoint use of a virtual platform logging at hardware
level the memory accesses and of a data-mining approach to
automatically report unexpected instructions timings, and the
context of occurrence of these instructions. We demonstrate the
approach on a multiprocessor platform running a video decoding
application.

I. INTRODUCTION

Most integrated devices today include several if not many,
processors, and even though they raise predictability issues,
come equipped with caches. These MultiProcessor System
on Chip (MPSoC) are fully programmable elements, thus,
even when confined to a given application domain, they
target potentially quite different applications. This trend is
likely to continue and increase due to the technological and
economical issues of VLSI integration, and several industrial
initiatives have started in that direction [7]. Due to either the
hardware complexity, which makes the lack of observability
an obstacle, or the lack of availability of the hardware, as
it is being developed concurrently with the software [12],
virtual prototyping is nowadays commonly used to validate
the software integration on the hardware before it is actually
there. This hardware/software integration consists in writing
parallel software and deploying it on the complex and often
heterogeneous architectures of the integrated device in an opti-
mized way. However, because of the system final requirements
(power, latency, throughput, area, flexibility, time to market),
computing and interconnect architectures are very complex,
software is organized in stack that can be partly legacy,
and includes operating systems or virtual machines. Hard-
ware/software interaction is therefore very complex and often
not analysable at design time because of the dynamicity of
the current applications and architectures. Given this context,
there is a dramatic need for tools that will ease this integration
and optimization process. Assuming the use of standard APIs
for parallel programming, functional validation can be done
on a multiprocessor machine, but spotting the parallel code

inefficiencies can only be done with an appropriate virtual
platform. In this paper, we focus on the detection of one
such inefficiency: concurrent accesses to memory segments
leading to high latencies and low throughputs. The memory
accesses of a given execution are dumped, producing a huge
amount of traces. We then rely on advanced data-mining
techniques which allow to automatically identify and report
access patterns whose latency deviate significantly from the
average behavior of the traces. This method allows to help
developers to extract automatically the parts of the traces
exhibiting contention and mining them in order to discover
both frequent interactions between several processors and the
patterns that create this contention.

The rest of the paper is organized as follows. Section II
briefly presents the background on MPSoC simulation and
related works on using data mining techniques for mining
traces. Section III formally defines the traces we consider and
states our problem of mining “contention patterns”. We detail
our approach in Section IV. In Section V, we show through
an experimental study that our approach helps to discover a
complex contention pattern in a video decoding application.
Section VI concludes and gives some future research direc-
tions.

II. CONTEXT AND RELATED WORKS

MPSoC become more and more complex according to
the evolution of: number of processors, memory architec-
ture, interconnect system. Due to the increase in hardware
complexity, monitoring, debugging and optimizing get more
difficult. Thus, simulation and tracing tools for MPSoC soft-
ware development have become a necessity. For simulating
single or multi processor architectures running multi-threaded
programs, the use of trace simulators offers some signifi-
cant advantages over execution driven tools. By employing
traces, researchers get more flexibility to perform simula-
tion experiments and capture an intrinsic behavior. In [9]
the authors present a trace system that consists in tracing
hardware events that are produced by instrumented models of
multiprocessor platform components. The component models
are instrumented in a non-intrusive way so that their behavior
in simulation is not modified. Using this trace results allow
to run precise analysis of the software that is executed on the
platform.

The use of data mining to analyze execution traces is
relatively recent, especially in the SoC community. In [5], the
authors proposed an approach that can automatically extract978-3-9815370-0-0/DATE13/ c©2013 EDAA

relationship among several signals from simulation traces.
The authors experimented it on Advanced Micro-controller
Bus Architecture (AMBA). In [11], the authors developed a
framework for mining kernel trace data in order to isolate
processes responsible for systemic problems that are elusive
to standard tools such as top. In [20], the authors developed
an efficient sequence mining algorithm that can discover short
sequences of instruction responsible for inefficiencies. The
data mining technique they propose is less robust to noise
in the trace, coming from example from different schedulings.
In [17], [3], [15], the authors detect congestion patterns, with
goals similar to ours. However, their method is limited to
detect congestion only in NoC routers. Their work is based
on metrics and does not consider execution traces.

The originality of our approach compared to the related
works is that first, it targets explicitly MPSoCs and/or multi-
core processors and addresses the delicate problem of memory
contention. Second, it relies on a completely automatic data
mining approach that both finds contention points across
multiple cores and presents explicitly what happens frequently
at these points. Third, we provide a framework adapted to
instruction-level traces (instead of process level, in [11]).

III. TRACE DEFINITIONS

The traces considered in this paper are execution traces
of applications running in a simulated MPSoC environment.
These traces are collected with a tool presented in [9]. We first
give definitions and notations used throughout this paper, and
then give more specific details about our traces.

We trace the CPU memory access (fetch, load/store, load-
link/store-conditional) that we call events. For each event
corresponds a trace event e = (ts, cpuid, latency, s). A trace
event consists of a timestamp ts ∈ [0, tmax], a CPU identifier
cpuid ∈ {1, ..., k}, a latency latency ∈ N+ and s ⊆ TS
where TS is a set of trace symbols containing instruction
address, data address and memory access type that has been
performed by CPU cpuid at time ts with a latency latency.
The execution trace ET = {e1, ..., en} is the ordered set of
events produced by all the CPUs of the MPSoC. The ordering
is on timestamps: for all i, j ∈ [1, n] with i < j we have
ei.ts ≤ ej .ts. We also note ∀i ∈ [1, n] ET [i] = ei.

In our case, a trace event has the fixed form represented by
the following table:

CPU Cycle Program Instruction Data Access
ID Number Counter Type Address Latency
1 212305 0x10009d60 fetch 0x10009d60 28

It consists of, in order of occurrence, the global date at
which the event occurred in cycles since the power-up of
the system, which CPU initiated the transaction, the program
counter of the instruction that produced the access, the trans-
action type which can be instruction fetch, load/store, load-
link/store-conditional pairs, and finally the memory access
latency by the CPU.

Our goal in this paper is to discover in the trace contention
between several cores during execution. There is a contention

where either a memory unit or one or more links of the MPSoC
platform are accessed simultaneously by more processors
than they have been designed to satisfy, leading to delays
in response time and increasing the memory access latency
from the processor to the memory [13]. Due to the exhaustive
nature of our traces, the accesses leading to contention are
captured in the trace. A contention pattern is a set of co-
occurring events i.e. whose timestamps differ by at most ω
cycles, that are each on a different CPUs that access a similar
resource (a memory address), and where at least one of the
events exhibits an unusually long latency, indicating contention
on the resource. A contention pattern is frequent if it occurs in
the trace more than a predefined minimum support threshold
ε times.

Problem statement: Given an execution trace ET and two
thresholds ε and ω, our goal is to discover automatically the
frequent contention patterns. If the ε threshold is set suffi-
ciently high, the frequency of a contention pattern indicates
that it is not a rare and difficult to predict situation, but a
misuse of the resources that come from the application design,
and that should be fixed to improve overall performances.

IV. CONTENTION PATTERN DISCOVERY

Discovering contention patterns is a multi-step process. As
we detect contention through instruction latency value, the first
step is to determine what is an unusually high latency. This
information can of course be given in input, however we show
a simple method to determine it semi-automatically. Then the
execution trace must be filtered to keep only events that are
around high latency events, and this filtered execution trace
requires further preprocessing in order to be fed to a pattern
mining algorithm that will discover the contention patterns.

A. Long latencies determinations

The latencies will the analysed through simple statistical
techniques. Let L denote the list of all non-trivial (i.e. not
cache hits) latencies found in the execution trace, whatever
the CPU: L = {e.latency | e ∈ ET}. Without domain
knowledge, the basic assumption that we make is that most
memory accesses are done without contention. The median of
the latency values in L is thus supposed to be representative of
the normal access latency. In order to allow for some variations
in the latency value, we only consider as unusual latency
values that are in the upper quartile, i.e. the highest 25% of
the latency values. Q3(L) denotes the lowest latency of the
upper quartile. This is a standard statistical way to identify
high values in a dataset [14]. Hence for latencies, the set
LH of high latency values contains all latencies above Q3(L),
LH = {l | l ∈ L ∧ l ≥ Q3(L)},

B. Slicing the execution traces into contention windows

By having identified high latencies, the execution trace can
be filtered to focus on events having these latencies and their
immediate surroundings. The output of this filtering step is
a sequence of contention windows. A contention window is
a slice of an execution trace having a duration ω, and that

contains one or more high latency events. It thus give us the
context of occurrence of high latency events.

For constructing the windowed events trace, our solution is
presented in Algorithm 1. It receives in input a contention
window duration ω, the execution trace ET , and a set of
high latency events HL defined by: HL = {e | e ∈
ET∧e.latency ∈ LH}. HL is sorted on increasing timestamp
in order of events, as well as is ET . The algorithm outputs the
set WT of contention windows. It’s principle is as follows:
for each high latency event eH ∈ HL increasing according to
the timestamp order (line 3), all the events from the execution
trace ET that surround it (at most −ω/2 cycles before or ω/2
cycles after) are inserted into the current window (lines 4-5). If
one of these events is a high latency event, it is removed from
HL (lines 6-8) to avoid making a near-duplicate window in the
next iteration of the for all (line 2). Our algorithm authorizes
some overlap between windows, but it will be limited to at
most ω/2 cycles for a couple of overlapping windows.

Algorithm 1 Windowed events trace
Require: duration ω, execution trace ET , high latency events

HL
Ensure: Windowed trace WT

1: n← 0
2: for all eH ∈ HL do
3: WT [n]← ∅
4: while ET [i].ts ≥ eH .ts − ω/2 AND ET [i].ts ≤

eH .ts + ω/2 do
5: WT [n]←WT [n] ∪ {ET [i]}
6: if ET [i] ∈ HL then
7: HL ← HL \ {ET [i]} {Avoid some overlapping

windows}
8: end if
9: i← i + 1

10: end while
11: n← n + 1
12: end for
13: return WT

Fig.1 shows an example of the windowed execution trace
on 4 CPUs. The window 1 is constructed according to the first
high latency event encountered in any of the CPUs. Here its
C on CPU0. The window 1 contains the events of all CPUs
occurring from (−ω

2) before C to (+ω
2) after C. Here a second

high latency event occurs in this window (event A on CPU1).
The window 2 is constructed according to the high latency
event encountered in any of the CPUs after exiting window 1.
Here for example lets consider its D on CPU1. The window 2
contains the events of all CPUs occurring from (−ω

2) before D
of CPU1 to (+ω

2) after D of CPU1. We also see that window
2 overlaps partially window 1.

C. Mining the frequent contention patterns

There exists many different algorithms for mining patterns
in data. In our case, the most important information is the
frequent co-occurrence of set of instructions, memory address,

A B C A D F B X

C P U _ 0

A B A A D F B Y

C P U _ 1

A B D A D F B Y

C P U _ 2

A B D A D F B Y

C P U _ 3

w /2 w /2

window 1
window 2

Time

Fig. 1. The windowed events trace

memory access types represented by the repetition of the
set of trace symbols over several CPUs. Our assumption
is that due to the way contention windows were selected,
any set of events appearing frequently in these windows is
suspicious and have a high chance to be involved, directly or
indirectly, in the contention that drives up the latencies. The
data mining technique used to discover such sets of frequently
occurring events is called frequent itemset mining algorithm
[2], [18]. In this technique, the first input is a multiset of
transactions D = {t1, .., tp} defined over an alphabet of items
Σ = {i1, .., iq}, where ∀ti ∈ D ti ⊆ Σ. The second input
is a minimum support threshold ε ∈ [0, p]. Frequent itemset
mining algorithms then extract all the frequent itemsets, i.e.
all the itemsets is ⊆ Σ that appear in more than ε transactions
of D. More formally, is must satisfy support(is) ≥ ε, where
support(is) = |{ti | ti ∈ D ∧ is ⊆ ti}|.

In order to exploit this technique, we transform the set of
windows WT into a set of transactions D. This is presented in
Algorithm 2. Each window w ∈ WT becomes a transaction
(lines 2-5), i.e. a set of items. We thus lose the sequencing
of events inside a window, for the data mining algorithm all
the events of a single window are considered simultaneous.
This is not a problem, as inside a window we are interested in
the co-occurrence of different events and not in their precise
sequencing at the cycle scale.

Algorithm 2 Windowed events transactions
Require: Windowed trace WT
Ensure: Transactions dataset D

1: for all w ∈WT do
2: D[i]← ∅
3: for all e ∈ w do
4: D[i]← D[i] ∪ {e.cpuid_e, e}
5: end for
6: end for
7: return D

Pattern mining algorithms are complex algorithms that
explore a large combinatorial space i.e the algorithms have

exponential time complexity according to the number of items
with the exacts solutions. In order to do so efficiently, they
exploit several properties of sets over the alphabet Σ, and
of the frequency definition. Changing any of these properties
prevents from using the most efficient algorithms. Thus, in
order to mine complex data while keeping good scale up
properties, a delicate problem is to find an alphabet Σ that
allows to find informative patterns while fitting with the pattern
mining framework defined above. In our case, the alphabet Σ
of transaction items should at least contains all the possible
trace symbols TS. But consider the case where two CPUs
CPU1 and CPU2 make the same memory access, represented
by a ∈ TS, in a single contention window. The associated
transaction is a set and not a multiset, so it will only be the
singleton {a}. This will not allow to discover any contention:
a single CPU issuing access a would have given the same
transaction. Our solution is to prefix each trace event with the
CPU that issued it: here this will give {CPU1_a,CPU2_a}
such as all CPUs of the platform here CPU1, CPU2 are
in transaction, and it gets possible to find contention pat-
terns. Now consider the case where we have two transactions
t1 = {CPU1_a,CPU2_b} and t2 = {CPU1_b, CPU2_a}.
There is no itemset common to both t1 and t2, as they
contain completely different items: the algorithm cannot see
their similarity and does not extract any frequent pattern.
Our solution is to keep also the original event with its CPU
prefix (line 4). This gives: t1 = {CPU1_a,CPU2_b, a, b}
and t2 = {CPU1_b, CPU2_a, b, a}, with a common pattern
being to have simultaneously the events a and b. We thus have
Σ = TS ∪ ({CPU1, ..., CPUk} × TS).

Once we have the transactions, we can use a state of the
art frequent itemset mining algorithm. We use LCM [18], the
most efficient one according to the FIMI contest [1]. The
resulting frequent itemsets are the contention patterns that we
are looking for.

V. EXPERIMENTAL RESULTS

This section presents the experimentations and important
results of our proposed method to extract contentions patterns
from traces using the approach defined in Section IV. First,
we present the simulation environment and architecture of the
simulation platform. Second, we present how our approach
helps the developer to discover important contention patterns
in a video decoding application.

A. Simulation environment and Hardware architecture

Our experimentations are done on a simulated MPSoC
architecture implemented using the SoCLib [16] infrastruc-
ture, which is a set of interoperable, VCI/OCP compliant,
hardware component models in SystemC. We use the CABA
(Cycle Accurate, Bit Accurate) simulation models, that in-
clude processors, caches, memories, and so on. The traces
were generated using a non intrusive simulation-based trace
system for MPSoC software proposed in [9]. The processor
simulation is done using Instruction Set Simulators (ISS). The
software that runs on this platform for our experiments is a

parallel Motion-JPEG decoder on top of a operating system for
embedded system that includes a Pthread library. The hardware
platform is a shared memory multiprocessor that contains n
MIPS32 processors such as n = {1, 4, 8}, interfaced with
one data cache and one instruction cache. It also contains
one memory and others peripherals components: a timer, an
interrupt controller, a frame buffer, a block device, a tty. We
perform three simulations on different platforms: platform 1,
platform 2 and platform 3 contains 1, 4 and 8 processors,
respectively. These three platforms should exhibit different
contention levels, and thus help us validate our approach of
contention pattern discovery. The simulation generates trace
files for each CPUs of the simulated platform. These trace
files are very large, often hundreds of gigabytes depending on
the video duration decoded and the number of processors in
the simulated platform.

B. Results

The first criterion taken into consideration when the perfor-
mances of the parallel systems are analysed is the speed up
used to express how many times a parallel program works
faster than a sequential one. The speed up of the video
decoding application results are 3.3 and 4.5 corresponding
for 4, and 8 cores in a platform, respectively. It is just
acceptable for 4 cores and bad for 8 cores, hence the video
decoding application considered does not scale well with the
number of cores. We verified that this bad scalability is not
due to a lack of work or a load unbalance issue. Having
eliminated these reasons for lacking of parallel scalability,
the remaining reason is likely to be contention that slows
down memory accesses and thus prevents the application to
reach the desired speed up. It is thus justified to apply our
approach in order to automatically detect the parts of the trace
where contention occurs, and to understand through contention
patterns the reasons for this contention. First, we explain what
preprocessing was necessary on trace in order to apply our
approach.
Trace preprocessing: The raw traces, as output by the simula-
tor, contain for each trace event information that are not useful
for our analysis, so we dispose of them. There are no function
names, but only the PC address of the executed instruction:
using the symbols table of the executable, we determine
using well-known techniques [4] the function to which this
instruction belongs and replace the PC by the function name.
To be able to use the pattern mining algorithm, we discretized
continuous numeric attributes into bins of numeric intervals
in order to regroup events exhibiting similar values. As an
example, the memory access latencies are discretized by bins
of 10 from 0 to 250 i.e. all latencies between 0 and 10 are
represented by the bin lat_0_10.

The first step of our approach compute the high latency
values for each trace (trace for 1, 4 and 8 CPUs). The high
latency thresholds in different platforms using 1, 4 and 8 CPUs
are 9.65, 12 and 15 respectively. However, as the number of
CPUs increases the number of the high latency thresholds also
increases.

The second step of our approach exploits these thresholds
in order to compute the windows identifying the parts of the
traces exhibiting contention. We set the window duration to
ω = 200 cycles.

Fig. 2. Latency versus Time

We graphically illustrate our notion of high latency con-
tention windows with a small portion of the trace for 4
CPUs, where we plotted for each event its latency value,
and differentiated the CPUs. The resulting graph is shown
in Figure 2. We can observe in the region highlighted by
a rectangle that latencies get much higher than in the other
regions of the graph: there must be contention in this period,
and it covers around a hundred of contention windows.

Over all the traces, the number of contention windows found
and the percentage of the trace they cover is summarized in
Table I.

TABLE I
CONTENTION WINDOWS

Platform Nb of windows Coverage of trace
1 CPU 86 843 1.20%
4 CPUs 925 951 16.97%
8 CPUs 1 686 785 36.79%

As expected, there are few windows with high latencies for
the platform with 1 CPU. However, as the number of CPUs
increases the number of these windows also increases, and it
covers a significant fraction of the execution time. This is in
line with the speed up results, and confirms that contention is
a problem for our experiments with 4 and 8 CPUs.

In order to better understand the reasons for contention, we
plot in Figure 3 the frequency of apparition of instructions in
the contention windows for 4 CPUs platform. More precisely,
x-axis is the program counter identifying instructions, and y-
axis is the frequency of apparition of each instruction over

all contention windows. As instructions can be related to
functions, this figure indicates which functions are the most
responsible for contention. Three highly frequent groups arise
that we identified with the corresponding function names: there
are memset, idct and memcpy functions. The figure shows
that contention is mostly due to idct and memcpy. However,
this figure does not indicate the interactions between idct and
memcpy in contention windows.

Fig. 3. Memory access frequency

In order to understand such interactions, we apply the
pattern mining algorithm to the contention windows converted
to transactions with a minimum support threshold of ε = 65%:
we are interested in interactions between functions, memory
locations and CPUs that occur in more than 65% of contention
windows, i.e. very frequently in potential the parts of the traces
exhibiting contention. We focus on platform with 4 and 8
processors, which exhibit high levels of contention. The most
interesting contention patterns discovered for these simulation
platforms are presented in Table II.

TABLE II
FREQUENT PATTERNS

Platform Frequent Pattern Support
CPU[0,3] [0x10009ee4, 0x10009f78] idct

[0x10016b50, 0x10016f2c] memcpy 72 %
4 CPUs lat_10_20 lat_20_30

CPU[0,7] [0x10009b10, 0x1000a224] idct
[0x10016ab0, 0x10016e8c] memcpy 88 %

8 CPUs lat_10_20 lat_20_30

The pattern of the platform using 4 CPUs shows a concur-
rent memory access pattern that creates a contention implying
all 4 CPUs and occurring in 72 % of contention windows.
This pattern shows a frequent interaction between the functions
idct and memcpy, and more specifically between the loops of
idct located in address interval [0x10009ee4, 0x10009f78] and
the loops of memcpy located in address interval [0x10016b50,
0x10016f2c]. The pattern also shows that the usual laten-
cies around these interactions are between 10 and 30 cycles
(lat_10_20, lat_20_30). Having in mind that the high latency
threshold is Q3 = 12 for the 4 CPUs trace, this corresponds
well to contention latencies.

The pattern for the 8 CPUs platforms is the same as
on the 4 CPUs platform, with different addresses due to a
different executable. However these addresses correspond to
the same assembler instructions than previously: this enforces

the importance of the idct/memcpy interaction. In the 8 CPUs
platform the pattern has an even higher support of 88 %,
whereas there are more contention windows in this case:
this pattern is clearly the main responsible for most of the
contention and thus the lack of scalability when the number
of cores increase. This pattern thus helps the application devel-
oper to know that the idct function, which performs the inverse
discrete cosine transformation, has negative interactions with
memcpy, a function for copying data from one address to
another. It even pinpoints the specific assembler instructions
of both functions that are the most impacted: the developer,
which is more likely to work on idct than memcpy, will know
immediately which loop of idct he/she has to work on.

Discussion:
Our approach is more accurate than the existing current

works [17], [3], [15] because it identifies the frequent con-
current memory access patterns, extracts from the execution
traces the patterns that create a contention and generates a
compact and readable output that can be analyzed by the
software developers. Our tool helps the developers to highlight
concurrent memory access patterns and the impact on the
parallel scalability. In the experimentations, we saw, firstly,
the high frequency interactions between idct and memcpy
functions in a parallel platform. These interactions lead to
contention in different platforms. However, it’s difficult to
find such interactions with the existing profiling tools [8],
[10]. Secondly, memcpy is having a major impact on the
parallel scalability of a video decoding application. Thus,
the developer can optimize his program with the following
possible solutions:

• Using software (or hardware) based prefetching caches
or non-blocking caches techniques. These effective tech-
niques allow to decrease memory access latency [6].

• In [19], a dedicated hardware accelerator was proposed
that works in conjunction with caches found next to
modern-day microprocessors, to speed up the commonly
utilized memcpy operation.

• The memcpy function can be put between a lock/unlock
pair to serialise the memory access and ensures that
when one CPU is executing memcpy, no contention will
be created. As such, serialization can be detrimental
to performance, it can be activated only when idct is
executing the loops identified in the previous frequent
pattern and deactivated the rest of the time.

• Refactor the communication scheme of the whole appli-
cation.

VI. CONCLUSION AND FUTURE WORK

The automatic identification of parallel application con-
tentions is a major issue for the optimization of application
deployed in MPSoCs, as it is one of the key to enable
good scalability. Using the trace generation capabilities of
nowadays well accepted virtual platforms, we have presented
an automatic approach based on data mining that when given
only two thresholds, can automatically discover contention
patterns. We have shown by experiments on a video decoding

application that the patterns extracted are interesting and can
provide information that will help the application developer to
understand the reasons of the contention.

To the best of our knowledge, this is the first work reporting
the use of data mining on MPSoC traces to identify the
patterns that create contentions in multithreaded applications.
Our results advocate that such approaches are of interest and
that they can allow developers to save a lot of time during the
optimization of their applications, a task that is very difficult
to do manually or with pure visualization tools.

Our future plan consists on mining other characteristics than
memory access latencies, i.e. interrupt latencies or spinlock
stalls to identify other costly application behaviours.

REFERENCES

[1] Workshop on frequent itemset mining implementations (fimi’04). 2004.
http://fimi.ua.ac.be/fimi04/.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In VLDB, pages 487–499, 1994.

[3] N. Alfaraj, J. Zhang, Y. Xu, and H. J. Chao. Hope: Hotspot congestion
control for clos network on chip. In NOCS, pages 17–24, 2011.

[4] R. M. Balzer. Exdams: extendable debugging and monitoring system.
In Proceedings of the 1969 Spring Joint Computer Conference, AFIPS
’69 (Spring), pages 567–580. ACM, May 1969.

[5] P.-H. Chang and L.-C. Wang. Automatic assertion extraction via
sequential data mining of simulation traces. In ASP-DAC, pages 607–
612, 2010.

[6] T.-F. Chen and J.-L. Baer. Reducing memory latency via non-blocking
and prefetching caches. In Proceedings of the fifth international
conference on Architectural support for programming languages and
operating systems, ASPLOS-V, pages 51–61, New York, NY, USA,
1992. ACM.

[7] F. Flamand. Strategic directions towards multicore application specific
computing. In Proceedings of the Design, Automation and Test in Europe
Conference, page 1266, Nice, France, Apr. 2009. Keynote speach.

[8] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a call graph
execution profiler. SIGPLAN Not., 39(4):49–57, Apr. 2004.

[9] D. Hedde and F. Pétrot. A non intrusive simulation-based trace system
to analyse multiprocessor systems-on-chip software. In International
Symposium on Rapid System Prototyping, pages 106–112, 2011.

[10] Intel Corporation. Using intel vtune’s counter monitor. January 2005.
[11] C. LaRosa, L. Xiong, and K. Mandelberg. Frequent pattern mining for

kernel trace data. In ACM Symposium on Applied Computing, pages
880–885, 2008.

[12] J.-J. Lim, J. Menon, and D. Palmer. A distributed development
environment for embedded software. Softw., Pract. Exper., 23(11):1235–
1248, 1993.

[13] P. Malani, Y. Tan, and Q. Qiu. Resource-aware high performance
scheduling for embedded mpsocs with the application of mpeg decoding.
In ICME, pages 715–718, 2007.

[14] K. Potter. Methods for presenting statistical information: The box
plot. Hans Hagen, Andreas Kerren, and Peter Dannenmann (Eds.),
Visualization of Large and Unstructured Data Sets, GI-Edition Lecture
Notes in Informatics (LNI), pages 97–106, 2006.

[15] R. S. Ramanujam and B. Lin. Destination-based adaptive routing on 2d
mesh networks. In ANCS, page 19, 2010.

[16] SoCLib Consortium. A library of cycle accurate system simulation
models. http://www.soclib.fr, 2010.

[17] L. Tedesco, T. R. da Rosa, F. Clermidy, N. Calazans, and F. G. Moraes.
Implementation and evaluation of a congestion aware routing algorithm
for networks-on-chip. In SBCCI, pages 91–96, 2010.

[18] T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2: Efficient mining
algorithms for frequent/closed/maximal itemsets. In FIMI, 2004.

[19] S. Wong, F. Duarte, and S. Vassiliadis. A hardware cache memcpy
accelerator. In In Proc. IEEE International Conference in Field Pro-
grammable Technology, pages 141–147, 2006.

[20] J. Zou, J. Xiao, R. Hou, and Y. Wang. Frequent instruction sequential
pattern mining in hardware sample data. In ICDM, pages 1205–1210,
2010.

