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Abstract. Numerical data (e.g., DNA micro-array data, sensor data) pose a challeng-
ing problem to existing frequent pattern mining methods which hardly handle them. In
this framework, gradual patterns have been recently proposed to extract covariations
of attributes, such as: “When X increases, Y decreases”. There exist some algorithms
for mining frequent gradual patterns, but they cannot scale to real-world databases.
We present in this paper GLCM, the first algorithm for mining closed frequent gradual
patterns, which proposes strong complexity guarantees: the mining time is linear with
the number of closed frequent gradual itemsets. Our experimental study shows that
GLCM is two orders of magnitude faster than the state of the art, with a constant
low memory usage. We also present PGLCM, a parallelization of GLCM capable of
exploiting multicore processors, with good scale-up properties on complex datasets.
These algorithms are the first algorithms capable of mining large real world datasets
to discover gradual patterns.
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1. Introduction

Frequent pattern mining is the component of data mining focused on extracting
patterns that occur frequently in data. These patterns can be seen as abstractions
of the contents of large datasets, potentially providing insightful information.
Most of the works on frequent pattern mining have focused on categorical data,
either mere sets (frequent itemset mining) (Agrawal et Srikant, 1994), or more
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complex data having a structure of sequence (Pei et al, 2001), tree (Asai et
al, 2002) or graph (Inokuchi et al, 2000). Few of these works have focused on
numerical data. There have been some works on quantitative itemset mining,
where items can have numerical values (Srikant et Agrawal, 1996). These works
focused on discretizing numerical data in order to handle them the same way
as categorical data. Thus, only a small part of the information present in the
numerical data was exploited. Despite some improvements (Aumann et Lindell,
2003; Washio et al, 2005) over original works on quantitative association rule
mining, analyzing numerical data remained marginal in the field of frequent
pattern mining.

However, most corporate data and many scientific datasets have many at-
tributes which are numerical: sales numbers, prices, ages, expression level of a
gene, quantity of light received by a sensor, etc.

Recently, a new pattern mining field has emerged for analyzing such data:
mining of gradual patterns. Gradual patterns can be expressed as covariations
of several attributes, for example: “the higher the age, the higher the salary, the
lower the free time”. An algorithm based on Apriori has been proposed (Di Jorio
et al, 2009) for mining gradual patterns. This algorithm, as the original Apriori,
can mine simple datasets, but it does not scale on large real-world datasets.

Apriori is the pioneer of all algorithms for mining frequent itemsets, however
state-of-the-art algorithms considerably outperform it. One of the major steps
was the works of Pasquier et al. (Pasquier et al, 1999), which showed that it was
sufficient to mine closed frequent itemsets, with run time improvements over an
order of magnitude in many cases. Later, the FIMI’04 workshop (Goethals, 2003-
2004) made a competition between all closed frequent itemset mining algorithms.
The winner was the LCM algorithm (Uno et al, 2004).

LCM is based on a theoretical improvement: its authors showed that a closed
frequent itemset could be computed by extension of a unique other closed fre-
quent pattern. The closed frequent itemsets are thus the nodes of a covering tree,
over which efficient depth first search strategies can be applied, with a very low
memory usage.

Our goal is to exploit the principles giving the good performances of LCM
in order to compute efficiently gradual itemsets over large real-world databases.
The contribution of this paper is fourfold:

— We show that like for itemsets, it is possible to build a covering tree over the
search space of closed frequent gradual itemsets.

— We present an algorithm and an implementation for efficiently mining closed
frequent gradual itemsets, based on the principle of the LCM algorithm. This
algorithm, GLCM, has the same strong complexity guarantees as LCM: its
time complexity is linear in the number of closed frequent gradual itemsets, and
its memory complexity does not depend on this number. We experimentally
show that our algorithm significantly improves the state of the art.

— We also show a simple parallelization of our algorithm, using the Melinda
library (Negrevergne et al, 2010). We experimentally show that the parallel
version can take advantage of recent multicore processors and handle large
real-world datasets.

— Last, we show two real use cases of gradual pattern mining on movie rating
data and on financial data, in order to show the insights that can be gained
through gradual patterns.
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tid | age | salary | loans ars
t1 22 2,500
to 35 3,000

0
2
t3 33 4,700 1
1
3

ts | 47 | 3,900
ts | 53 | 3,800

Table 1. Example dataset

NN == WO

It is especially interesting to note that despite LCM proven efficiency, al-
gorithms based on its principle have mostly remained theoretical (for example
Arimura and Uno, 2005). By showing how to design and implement an efficient
algorithm with this principle, we hope to help the diffusion of the ideas found in
LCM, which are still the key to efficient pattern mining algorithms.

The paper is organized as follows: in Section [2| we present in detail the
concept of gradual patterns and related works. In Section [3, we recall the base
principles of LCM, show how they can be applied to gradual patterns, and present
our algorithm and its parallelization. Section [] presents detailed experiments
both about the sequential and the parallel version of our algorithm. We conclude
and give directions for future research in Section

2. Gradual itemsets and related works

In this section, we formally define the notion of gradual itemset and their support
in data. We also present the notion of closed gradual itemest. These definitions
are then positioned w.r.t. the state of the art.

2.1. Preliminary Definitions

For the extraction of gradual itemsets, the datasets of interest are sets of numer-
ical transaction defined over a schema.

Definition 2.1 (Transaction, Dataset). Given a schema § = {I1,...,I,}
where the I,...,I, are attribute names, and a set of transaction identifiers
T = {tidy, ..., tid,, }, a transaction is a couple ¢ = (tidg, {({1,v1), .., (In,vn)})
associating a transaction identifier tid;, € T with a set of attributes-value cou-
ples, where each attribute of S is given a value in R.

A dataset D is a set of transactions tq, ..., t,,, where transaction t; has iden-
tifier tid, € T.

Table [1] shows an example dataset where S = {age, salary,loans,cars} and
T = {t1,...,t5} in the classical form of a table, where the transactions are the
rows and the attributes are the columns. For sake of readability, we denote by
tid.att the value for attribute att in transaction identified by tid. For example
ty.cars = 2.

We now define the notions of gradual item and gradual itemset, which express
monotonous variations of values of several attributes.

Definition 2.2 (Gradual item, gradual itemset). A gradual item is a pair
(7,v) of an item (attribute) ¢ € S and a variation v € {f,]} where 1 stands for
a positive (ascending) variation and | for a negative (descending) variation.
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Fig. 1. Exemple of ordering according to a gradual itemset.

A gradual itemset is a non-empty set of gradual items of the form P =
{(iky,vry), o5 (iky, vk, )} where {k1,...,k;} € {1,...,n} and the ky,...,k; are
all distinct.

In our example, the gradual itemset P, = {(age, 1), (salary,T)} means “the
higher the age, the higher the salary”.

Several ways of defining the support of such itemsets in the data have been
proposed, that are briefly reviewed at the end of this section. In this paper we use
the support definition of (Di Jorio et al, 2009), where the support of a gradual
itemset is based on the maximum number of transactions that can be ordered
w.r.t. this gradual itemset. In order to explain this definition, the order induced
by a gradual itemset is first presented.

Definition 2.3 (Gradual itemset induced order). Let P = {(ix,, vk, ), - -,
(ix;,vk,)} be a gradual itemset and D be a dataset. Two transactions ¢ and ¢’ of
D can be ordered w.r.t. P if all the values of the corresponding items from the
gradual itemset can be ordered to respect all the variations of the gradual items
of P : for every | € [k1,k;], t.4; < t'.q; if vy =1 and t.4; > t'.4; if v; =]. The fact
that ¢ precedes ¢’ in the order induced by P is denoted t <p t'.

For instance, from Table it can be seen that t; and t5 can be ordered
with respect to P = {(age, 1), (salary, 1)} as ti.age < ta.age AND ty.salary <
ta.salary: we have t1 <dp, to. This is illustrated in Figure

This order is only a partial order. For exemple consider ¢ and t3 of Table
: they can’t be ordered according to P;. Clearly, pattern P; is not relevant
to explain the variations between ¢, and t3, and more generally all transaction
pairs that it can’t order. Conversely, a gradual pattern is relevant to explain
(part of) the variations occurring in the transactions that it can order. The
support definition that we consider below goes further and focuses on the size
of the longest sequences of transactions that can be ordered according to a
gradual itemset. The intuition being that such patterns will be supported by long
continuous variations in the data, such continuous variations being particularly
desirable to extract in order to better understand the data.

Definition 2.4 (Support of a gradual itemset). Let L = (t;,,...,t;,) be a
sequence of transactions from D, with Vk € [l..p] i € [l..m] and Vk, k' €
[1..p] k £ k' = i) # ig. Let P be a gradual itemset. L respects P if Vk € [1,p—1]
we have t;, <p t;,,,. Let Lp be the set of lists of tuples that respect P.

The formal definition of the support of P is support(P) = %“(IL‘% ie. it
is the size of the longest list of tuples that respects P.
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Fig. 2. Partial ordering of transactions of Table [1| according to P;.

Note that the support of a gradual itemset containing a single gradual item
is always 100% as it is always possible to order all the tuples by one column.

As an exemple, consider again the transactions of Table [I] and the pattern
Py = {(age, 1), (salary, 1) }. The partial ordering of all transactions according to
the order induced by P is represented as a DAG (Directed Acyclic Graph) on
Figure 2| where an edge t; — t; indicates that ¢; <p, ;.

The longuest sequences of transactions that can be ordered according to P,
are (t1,to, t4) and (t1, ta, t5), both of size 3. Thus support(Py) = % = 0.6, meaning
that 60% of the input transactions can be ordered consecutively according to Pj.

2.2. Closed Gradual Itemsets

Closed itemsets (Pasquier et al, 1999) have been studied for many years as they
represent one of the keys to manage huge databases and to reduce the number
of patterns without loss of information. Closure is based on the mathematical
notion of Galois Connection. A practical definition is that p is said to be closed
if there does not exist any p’ such that p C p’ and support(p) = support(p’).

In order to define a Galois closure operator for gradual itemsets, a pair of
functions (f, ¢g) defining a Galois connection for gradual itemsets have been pro-
posed in (Ayouni et al, 2010).

Function f : Given £ a set of sequences of transactions from D, f returns
the gradual itemset P (all the items associated with their respective variations)
respecting all transaction sequences in L.

L)y =r

(i) L£: A set of sequences of transactions.
(ii) P: a gradual itemset, P is a set of pairs {(i1,v1), ..., (in,vs)} with i € S and
ve {f i}
(iii) (¢,v) satisfies VL € L, Vti, t; € L and k < I we have t; <p t; if v =1 with
t; <p tk ifv :J(.
For example, f({< t1,t4,t5 >, < t1,t4,t2 >}) = {(loans,?1), (cars,|)} be-
cause for each item:
— 1(age T or }): t1 94 <ts (22 < 47 < 53) but not 1 <ty <ta (47 > 35).
— 2(salary 1 or |): neither ¢, <t4 <t5 nor t5 <ty <ty (2,500 < 3,900 but 3,900 >
3,800).
— 3(loans 1): t1 <9ty <ts (0 <1< 3)and t1 <ty <te (0 <2< 3).
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— 4(cars \I,) ts <ty <ty (2:2<3) and to <ty <ty (1 <2<3).

Function ¢ : Given a gradual itemset P, g returns the set of the maximal
sequences of transactions £ which respects the variations of all gradual items in
P.

9(P) =L
(i) P: a gradual itemset, P is a set of pairs {(i1,v1), ..., (in,vn)} with ¢ € S and

ve {t 4.
(ii) £: A set of maximal sequences of transactions.

(iii) all L € £ (L has maximal number of tuples) satisfies Vi, t; € L, k < [ and
V(i,v) we have t, <p t; if v =1 and ; <p ty, if v =].

For example, g({(age,?), (salary,T)}) = {< t1,ta,ts4 >, < t1,ta,t5 >} be-
cause with P = {(age, 1), (salary, 1)}, we have t1 4p to <p t4 ((22 < 35 < 47) for
(age, 1), (2,500 < 3,000 < 3,900) for (salary,t)) and ¢1 <p ta <p ts ((22 < 35 <
53) for (age, 1), (2,500 < 3,000 < 3,800) for (salary,t)) are the two maximal
lists of ordered tuples.

Provided these definitions, a gradual itemset p is said to be closed if f(g(p)) =
p. We define the closure operator Clo of a gradual itemset as Clo(p) = f(g(p))-
By definition Clo(p) is a closed pattern.

Compared to the context of classical items, the main issue here is to manage
the fact that g does not return a set of tramsactions but it returns a set of
sequences of transactions.

In (Ayouni et al, 2010), these definitions have not been included by the au-
thors within the mining process, but rather as a post-processing step which is
not efficient. Indeed, it does not allow to benefit from the runtime and memory
reduction and thus does not provide any added value for running the algorithms
on huge databases. We thus propose below a novel approach to cope with this.

2.3. Related works

As described above, gradual itemsets (also known as gradual patterns) refer to
patterns like “the higher the age, the higher the salary”. They can be compared
to fuzzy gradual rules that have first been used for command systems some
years ago (Dubois et al, 1992; Dubois et al, 1995; Dubois et al, 1996; Dubois
et al, 2003), for instance for braking systems: “the closer the wall, the stronger
the brake force”. Whereas such fuzzy gradual rules are expressed in the same
way as the gradual itemsets that we defined, the main difference is that fuzzy
gradual rules were not discovered automatically from data. They were designed
by human experts and provided as input to expert systems.

Recent works in the pattern mining field have shown that it was feasible to
mine automatically such rules from raw data (Berzal et al, 2007; Hiillermeier,
2002; Di Jorio et al, 2009). Many gradual itemsets are output by such methods,
so (Ayouni et al, 2010) proposed to mine only closed gradual itemsets in order to
reduce the size of the output without loss of information. This preliminary work
didn’t exploit closure properties to improve the mining algorithm and reduce
execution time. However mining gradual itemsets is a costly task in terms of
computation time. It was proposed (Laurent et al, 2010) to exploit the parallel
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processing capabilities of multicore architectures in order to reduce computation
time. The main contribution of the present work is to provide a first algorithm
that exploits the properties of closure to reduce the execution time, and that
also exploits parallel processing capabilities of multicore processors.

The evaluation of the support of gradual itemsets has been defined in different
manners depending on the authors. (Hillermeier, 2002) is based on regression,
while (Berzal et al, 2007) and (Laurent et al, 2009) consider the number of
transactions that are concordant and discordant, in the idea of exploiting the
Kendall’s tau ranking correlation coefficient (Kendall et Babington Smith, 1939).
This means that given a gradual itemset P, all pairs of transactions (¢;,t;) will
be compared according to the order induced by P, and the support will be based
on the proportion of these pairs that satisfy ¢; <p t;.

In contrast, our definition of support is the one proposed in (Di Jorio et
al, 2009) and is based on the length of the longest sequence of transactions that
can be ordered consecutively according to a gradual itemset P. The interest of
this definition is that such sequences of transactions can then be easily presented
to the analyst, allowing to isolate and reorder a part of the data and to label
it with a description in terms of co-variations (the gradual itemset being this
description).

3. Efficiently mining gradual itemsets

In this section, we present our algorithms for mining efficiently closed frequent
gradual itemsets. We first explain the principle of the LCM algorithm for mining
closed frequent itemsets. We show how we could adapt this algorithm to gradual
itemsets with the algorithm GLCM, and we give complexity results on the new
algorithm. We then present PGLCM, a parallelization of GLCM, and explain
our parallelization strategy.

3.1. LCM principle

LCM is the most efficient algorithm for computing closed frequent itemsets, as
shown by the results of the FIMI’04 competition (Goethals, 2003-2004). It is
the only such algorithm to exhibit a complexity proven linear with the number
of closed frequent itemsets to find, hence its name: Linear time Closed itemset
Miner. This result comes from an important theoretical advance: the authors of
LCM could prove that there existed a covering tree over all the closed frequent
itemsets, and the edges of this tree could be computed efficiently at runtime.
The closed frequent itemsets can thus be discovered with a depth first algorithm,
without maintaining a special storage space for the previously obtained patterns:
a closed frequent itemset can be outputted as soon as it is discovered. The only
other algorithm adopting a similar approach is DCI-Closed (Lucchese et al, 2004),
earlier algorithms had to keep in memory the previously found frequent itemsets,
to avoid duplications, which could lead to very important memory usage.

LCM is a depth first search algorithm. Each node of the search tree either
corresponds to a closed frequent itemset or to an empty leaf. The pseudo-code
of LCM is given in Algorithm [1| (coming from (Uno et al, 2004)).

Each recursive iteration represents a node of the search tree. Its input is a
closed frequent pattern. If this pattern is not frequent (line 5), then we are at the
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1246

Fig. 3. Example of LCM execution, circled itemsets are the closed frequent itemsets, boxed
items are core_i values.

Algorithm 1 Algorithm LCM

1: Input: 7 :transaction database, e:minimum support
2: Output: Enum,ClosedPatterns(J_);

3: Function Enum_ClosedPatterns(P:closed frequent pattern)
4: if P is not frequent then

5. return ;

6: end if

7: output P ;

8: for i = core_i(P) + 1 to |Z| do
90 Q=Clo(PUi);

10: if P(i-1)=Q(i-1) then

11: Enum_ClosedPatterns(Q) ;
12:  end if

13: end for

end of a branch. Else, the pattern if frequent and the main goal of the iteration
is to compute all its direct descendants in the search tree.

This is done with an operation called prefiz preserving extension (ppc-extension).
Let P be a closed frequent itemset. For an item ¢ € P, we define P(i) ={j | j €
P and j < i}. Let core_i(P) be the minimum index ¢ such that 7 (P(i)) = T (P)
(with core_i(L) = 0), where T(P) = {t € T | P C t}. Then an itemset @ is
called a ppc-extension of P if

(i) @ = Clo(P U {i}) for some i € T
(ii) ¢ & P and i > core_i(P)
(iii) P(i—1)=Q(i — 1), i.e. P and Q share the same (i — 1)-prefix.

The authors of LCM have shown that for any closed frequent itemset Q) # L,
there exist only one closed frequent itemset P such that ) is a ppc-extension of
P (Theorem 2 in (Uno et al, 2004)). This is the interest of ppc-extension: it is
the very operation that allows the building of a covering tree of closed frequent
itemset. Here P will be the unique father of @), and L is the root of the covering
tree.

In Algorithm [I] ppc-extension is performed in lines 8-10. For a closed frequent
itemset P, all its possible ppc-extensions @) are searched. First, all the ¢ satisfying
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condition (ii) are iterated over in line 8. ) is computed according to condition (i)
in line 9. And condition (iii) is checked in line 10. In line 11, @ is a ppc-extension
of P, so a new recursive iteration (i.e. a new node of the search tree) is built
with Q.

Ezample: Let us consider the following transaction database:

Transaction id | Transaction items
t1 1,2,3,4,5,6
to 2,3,5
t3 2,5
tq 1,2,4,5,6
ts 2.4
te 1,4,6
tr 3,4,6

With € = 3, the depth first search performed by LCM is shown in Figure @

By definition core_i(L) = 0, so any item can be used to extend L. This
is shown by the arcs outgoing from 1, each labelled with the item used for
extension. We explain here the branch of item 1. In the case of item 1, Clo({1}) =
{1,4,6}, which is our leftmost node for depth 1. It is frequent in the database,
so we circle it in the figure as a solution, and the iteration continues. We have to
compute core_i({1,4,6}). Removing 6 from {1, 4,6} gives the itemset {1,4}, and
Clo({1,4}) = {1,4,6}, hence core_i(P) < 4. Removing 4 and 6 from {1,4,6}
gives the itemset {1}, and we already know that Clo({1}) = {1,4,6}. 1 is the
smallest item ¢ such that Clo(P(i)) = Clo(P), thus core_i({1,4,6}) = 1. The
item 1 is boxed in the figure.

Possible extensions for {1,4,6} are 2, 3 and 5. The corresponding itemsets
are represented below {1, 4,6} in the figure, however they are not frequent so the
function immediately returns. The itemsets are not circled in this case, to show
that they are not closed frequent itemsets.

3.2. Adapting LCM principle to gradual itemsets

In order to mine closed frequent gradual itemsets with an algorithm similar to
LCM, we need to be able to build a covering tree over all the closed frequent grad-
ual itemsets. As seen before, we thus need to redefine core_i and ppc-extension
for closed frequent gradual itemsets.

Definition 3.1. Let P be a closed gradual itemset, for an item x € S we have
P(x) = {(y,v) | (y,v) € Pand y < x}. core_i(P) is the minimum item 4 such
that (i,v) € P and g(P(i)) = g(P), with core_i(L) = 0.

Definition 3.2. The closed gradual itemset @ is a ppc-extension of P if

(i) Q@ = Clo(PU{(¢,v)}) for some (i,v), with : € Z and v € {1,!},
(ii) (i,v) satisfies (i,v) € P and (i,—v) € P and i > core_i(P) (with = =] and

- | = ,

(iii) P(i—1)=Q(i —1)

1 The interested reader will have noticed that it is the same example database as in (Uno et
al, 2004). However the support value is 3 here instead of 2 in (Uno et al, 2004), hence the
difference in output.
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Our ppc-extension for gradual itemsets satisfies the following theorem.

Theorem 1. Let Q # L be a closed gradual itemset.Then, there is just one
closed gradual itemset P such that @ is a ppc-extension of P.

To prove the theorem, we state several Lemmas, which are adaptations to gradual
itemsets of Lemmas for standard itemsets given in the proof given in (Uno et
al, 2004).

From (Di Jorio et al, 2009; Ayouni et al, 2010), the following property holds
for closed gradual patterns.

Property 3.1. For any gradual item (i,v) ¢ P, we have g(P U {(i,v)}) =
9(P) N g({(i,v)}).

This property is used to state the following lemmas.

Lemma 1. Let P and Q; P C Q be gradual patterns having g(P) = ¢(Q).
Then, for any gradual item (i,v) € P; g(P U {(i,v)}) = g(Q U {(i,v)}).

Proof. g(P U {(i,v)}) = g(P) N g({(i,v)}), 9(Q U {(i,v)}) = 9(Q) N g({(i,v)})
(Property B.1). And g(P) = g(Q). So g(PU{(i,v)}) = g(QU{(i,v)}). O

Lemma 2. Let P be a closed gradual pattern and @ = Clo(P U {(i,v)}) be a
ppc-extension of P. Then, i is the core index of Q.

Proof. Since by definition i > core_i(P), we have g(P) = g(P(i)). From lemma
g(P(i) U {(i,v)}) = g(P U{(i,v)}). Hence by applying f on both side of
the equality one have f(g(P(i) U{(i,v)})) = f(g(P U{(i,v)})), which can be
rewriten as Clo(P(i) U {(i,v)}) = Clo(P U {(i,v)}). As Clo(P U {(i,v)}) = Q
(by definition of Q) and @ = Clo(Q) (by idempotence of Clo), we can write
Clo(P(i) U {(i,0)}) = Clo(Q).
So corei(Q) <i. We have P(i—1) =Q(i—1) = Clo(Q(i— 1)) = Clo(P(i —
1)) = P # Q. So core=i(Q) > i — 1. Together with core_i(Q) < i, we have
core_i(Q) = i.

Lemma 3. Let Q # L be a closed gradual pattern, and P = Clo(Q(core_i(Q) —
1)). Then, @ is a ppc-extension of P.

Proof. Since g(P) = g(Q(core_i(Q) — 1)), for some (i,v) with ¢ € 7 and v €
[, 4} we have (P U (i, )) = g(Qleore(@) — 1) U (i,0) = g(@(core-i(Q))).
This implies Q = Clo(P U {(i,v)}) = condition (i) of ppc-extension is satisfied.
P = Clo(Q(core-i(Q) — 1)) = core_i(P) <1i— 1. Thus, @Q satisfies condition (ii)
of ppc-extension. Since P C @ and Q(i — 1) C P, we have Pli—1)=Q>G —1).
Thus, @ satisfies condition (iii) of ppc-extension. [

Proof of Theorem [1]

Proof. Assume that P is a a closed gradual pattern, and @ is a ppc-extension
of P. Let P = Clo(Q(core-i(Q) — 1)). P' is another closed gradual pattern,
P’ # P and @ is also a ppc-extension of P’. From condition (i) of ppc-extension,
Q = Clo(P' U{(i,v)}). And from lemma[2] i = core_i(Q). From condition (iii)
of ppc-extension, P'(i — 1) = Q(i — 1) = P(i — 1). Hence Clo(P'(i — 1)) =
Clo(Q(i — 1)) = P # P’, and core_i(P") > i. This violates condition (ii) of
ppc-extension, and is a contradiction. [



PGLCM: Efficient Parallel Mining of Closed Frequent Gradual Itemsets 11
3.3. The GLCM algorithm

Thanks to the ppc-extension for gradual itemsets, we can write a mining algo-
rithm similar to LCM. We present our GLCM algorithm in Algorithm

For simplicity (and performance) reasons, we have decided to represent grad-
ual items as integers, instead of pairs. A gradual item (i,v) will be encoded by
the integer enc(i,v) such as:

. 21 if (¢,v) = (4,1
ene(i,v) = { 2i+1 i g% = E¢§

The even integers representing positive (ascending) variations and the odd
integers representing negative (descending) variations. With this encoding, we
force the items of Z to be [0,n — 1], with a renaming if necessary.

With such a coding of gradual items, ppc-extension for gradual itemsets is
even closer to ppc-extension for itemsets: point (i) and (iii) are strictly identical,
where i stands for the encoding of a gradual item and core_i is applied on encoded
gradual itemsets and returns itself an integer code instead of an item. To avoid
confusion with item 0, we fix core_i(L) = —1. For point (ii), we have to check
the (encoded) value of core_i. If it is an even value of the form enc(i,v) = 2i, it
means that the gradual itemset P contains (i, 1). It would not make sense to try
to extend P with enc(i,v) +1 = 2i+ 1, corresponding to the gradual item (i, ).
In this case we directly skip to enc(i,v) + 2, i.e. (i + 1,1). This verification is
handled in lines 18-23 of Algorithm 2] Lines 23-27 show the ppc-extension itself,
and are very similar to LCM.

The differences between LCM and GLCM lie first in a small optimization
specific to gradual itemset in lines 14-15. Any gradual itemset, representing co-
variations items, has a symmetric gradual itemset where the items are the same
and the variations are all reversed. For example, the symmetric of {(1,7), (2,]),
(3,1} is {(1,4), (2,1), (3,)}, supported by the same tid sequences but in the
reverse order. It is redundant to compute a gradual itemset and its opposite, so
we arbitrarily decided to compute only gradual itemsets whose first variation is
ascending, they represent themselves and their opposite as well.

The computation of support and of closure rely on an efficient exploitation
of binary matrices, they are thus explained in details in the next subsection.

3.4. Computation of Support and Closure with Binary
Matrices

Computing support and closure with the support definition given in Section [2]
are complex operations, that need to be performed as efficiently as possible.
To perform these operations we exploit the method introduced in (Di Jorio et
al, 2009), which is based on binary matrices and can be implemented very effi-
ciently. One binary matrix is contructed per gradual itemset P. It represents the
adjacency matrix of a graph where the nodes are the transactions, and where
there is an edge between nodes n, and n; representing transactions ¢, and t;
iff the ordering t, <p t; holds. Such matrix thus represents all the transaction
sequences for the order induced by the gradual itemset P, which are necessary
for computing support and closure of P.

Support computation: Computing the support of a gradual itemsets boils
down to : 1) compute the graph of the order induced over transactions by the
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Algorithm 2 Algorithm GLCM

Require: 7: transaction database, £: minimum support
Ensure: All closed frequent gradual itemsets are output

1: for all gradual item (i,v) € Z x {1,]} do
2 Lepei,w) < tid sorted in v order of item ¢ value
3 Bepe(i,w) < bitmap matrix associated to Leypc(i,v)
4: end for

5: B« {Bl, ...,ng‘ﬂ}
6

7

8

: for all gradual item encoding e € [0,2 x |Z| — 1] do
GlemLoop({e}, T, B, ¢)
: end for

9: Function GlemLoop(P:closed gradual itemset, T, B, ¢)
10: if computeSupport(P,T,B) < € then

11:  return ;

12: end if

13: if PJ0] is odd then

14:  return ; // Symmetrical itemset has already been tested
15: end if

16: output P ;

17: if (core_i(P) is odd) or (core_i(P) = —1) then

18: k= core_i(P)

19: else

20:  k=corei(P)+1

21: end if

22: fore=k+1to2x|Z|—1do

23: Q= Clo(PU{e},B) ;

24:  if P(e—1) =Q(e —1) then

25: GlemLoop(Q, T, B,¢) ;

26: end if

27: end for

gradual itemset ; 2) compute the length of the longuest path in this graph. Both
operations can be done conveniently by using binary matrices.

The adjacency matrix of the graph is explicitely constructed. It exploits the
property that performing a logical AND between the binary adjacency matrices
of two gradual itemsets gives the binary adjacency matrix of the union of these
gradual itemsets.

Exemple : Consider the example dataset of Table [l The binary adjacency
matrices of the 1-gradual itemsets P11 = {(age, 1)} and Pis = {(salary, 1)} are
given as BMp,, in Table[2land BMp,, in[3] One can easily verify that BMp, =
BMp,, ANDBMp,, where BMp, is the binary adjacency matrix of pattern P; =
{(age, 1), (salary, 1)}, shown in Figure (a), represented in graphical forma in
Figure [4{(b).

In this matrix, it can be seen that:

- t1 precedes to, t3, t4 and ts5.

- t9 precedes t4 and t5.
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t1 to ts3 tg s tp, to tz3 tg ts
t1 1 1 1 1 1 t1 1 1 1 1 1
to 0 1 0 1 1 to 0 1 1 1 1
t3 0 1 1 1 1 t3 0 0 1 0 0
ta 0 0 0 1 1 ta 0 0 1 1 0
ts 0 0 0 0 1 ts 0 0 1 1 1
Table 2. Binary matrix corresponding to Table 3. Binary matrix corresponding to
{(age, 1)} {(salary, 1)}
ti s 13 ta ts
t1 1 1 1 1 1
to 0 1 0 1 1
t3 0 0 1 0 0
ta 0 0 0 1 0
ts 0 0 0 0 1
(a)

(b)

Fig. 4. Binary matrix(a) and graph(b) corresponding to {(age, 1), (salary, 1)}

This gives support({(age, 1), (salary,1)}) = 3/5 with the longest path <
t1,ta,t4 > and < tq1,to,t5 >.

In the pseudo-code of Algorithm [2] all the binary matrices of 1-gradual item-
sets are computed inside the first loop line 4 and stored in B in line 6.

The computation of the support itself is a computation of longest path in the
graph of the order induced by the gradual itemset. In general this problem is NP-
hard, but here as the graph represents a partial order, it is by definition a DAG
(directed acyclic graph) so the longuest path can be found in linear time by using
a topological sort algorithm. This is the purpose of function computeSupport,
line 11 of Algorithm [2]

The pseudo code of computeSupport is shown in Algorithm [3] it has been
first presented in (Di Jorio et al, 2009). The first step of the algorithm is to
compute the binary matrix of the order induced by the gradual pattern P, this
is done in lines 1-4 by ANDing all the binary matrices of the gradual items of P,
that are stored in set B. Then a topological sort is performed, is specificity being
that to each vertex of the graph (i.e. each transaction), the algorithm computes
the longest path from this vertex to a descendant leaf in the sorted DAG and
stores it in the table FreMap. The table is initialized in lines 6-8, and the
recursive computation of node depths is performed in lines 9-11 by calling for each
transaction the recursive function computeSupportLoop. computeSupportLoop
traverses the graph and gives a longest path size of 1 to the leaves. For the internal
nodes, their longest path size is the longest path size of their child having the
longest path, plus one.
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t1 to t3 tg ts te tr
t1 1 1 1 1 1 0 1
to 0 1 0 1 1 0 0
t3 0 0 1 1 1 0 1
ta 0 0 0 1 1 0 0
ts 0 0 0 0 1 0 0
te 0 0 0 1 1 1 0
tr 0 0 0 0 0 0 1

Table 4. Binary matrix corresponding to the set of transaction sequences in
Figure 5]

Once FreMap is complete, the support is simply the maximal value in
FreMap.

Algorithm 3 Algorithm computeSupport

Require: Gradual itemset P, Transaction database T, Set of binary matrices
of gradual items B.
Ensure: The support of P is returned.

BM <+ Bp[o]

for all gradual item encoding e € P do
BM & = B,

end for

FreMap: list of all transactions in 7 together with their support.

for all transaction ¢; in 7 do
FreMaplt;] = —1

end for

for all transaction ¢ in 7 do
ComputeSupportLoop(t, BM, FreMap)

end for

return maz(FreMap)

_ ==
Mo

13: Function computeSupportLoop(¢: a transaction in 7, BM, FreMap)

14: Children < getChildren(t, BM)
15: if |Children| = 0 then
16:  FreMap[t|=1; // tis a leaf

17: else

18:  for all ¢; € Children do

19: if FreMap[t;] = —1 then

20: computeSupportLoop(t;, BM, FreMap)

21: end if

22: FreMap[t] = maz(FreMaplt], FreMap[t;] + 1)
23:  end for

24: end if

For example, we have the list of transaction sequences represented by the
graph in Figure [5| and the binary matrix representing in Table [4] (corresponding
to BM in the code). The FreMap is initialized with seven transaction together
with the support —1. We execute the algorithm with all transactions and begin
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o ®

Fig. 5. An example of set of transaction sequences.

SERENE AL AL AL tlt |ttt |t]|t
4 33|27 |49 4|3 | 8|24 3|1
(a) (b)

Fig. 6. The list of transactions together with their support.

with ¢1. Then the algorithm calls itself recursively on all children of ¢; (t2 and
t3). It continues until we meet the first ”leaf” (t5). We assign FreMaplts] = 1
and FreMaplts] is updated to 2. After executing the ComputeSupportLoop for
t1, we have the FreMap in Figure @(a). And the final result is shown in Figure
@(b), from which the the support value of 4 is deduced.

Closure computation:

The computation of closure, presented in Algorithm [4] exploits further the
properties of binary matrices explained above. The Clo function just consists
in composing f and g function, as explained in Section [2] The g function has
to return all the (maximal) sequences of transactions supporting input gradual
itemset P. In line 13-16 we just compute the binary matrix BM corresponding
to the order induced by P, in the same way as for support computation: this
matrix contains the longest transaction sequences. Note that to ease understand-
ing of support computation and closure computation independently, the code to
compute BM is duplicated in Algorithm [4] and Algorithm [3] In practice, our
implementation does this computation only once, during support computation.

To get the actual longest sequences that are the expected result of g, we would
have to find all the longest pathes in the graph represented by BM. However as
we are only interested in the result of Clo, this intermediary computation can
be avoided with the way we compute f.

f takes a set of sequences of transactions, here encoded in a binary matrix
BM. Tt has to check for each item of Z x {t, ]} if the variations of this item are
compatible with each of the input sequences. This comes to check if all the 1 in
the input matrix BM can be found in the matrix of gradual item ¢, B; (remember
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Dataset Percentage of equal values
C1000A20 (synthetic) 8.8 %
C500A50 (synthetic) 0.24 %
Microarray (real, biology) 8.75 %
Stock (real, finance) 124 %

Table 5. Equal values in our datasets

that if Blz,y| = 1, it means that t, <t, for the gradual itemset associated to B).
We thus AND BM and B; for each gradual item 4, and keep only the gradual
items ¢ such that BM AND B; = BM.

Algorithm 4 Functions Clo and G
Require: Gradual pattern P, Set of binary matrices of gradual items B
Ensure: Returns the closure of P

1: Function Clo(P, B)
2: return F(G(P,B),B) ;

3: Function F(BM, B)

4 P+

5: for all gradual item encoding e € [1,2 x |Z| — 1] do
6: tmp<+ BM&B,

7. if tmp = BM then

8: PU= {6}

9: end if

10: end for

11: return P ;

12: Function G(P, B)

13: BM <+ BP[O]

14: for all gradual item encoding e € P do
152 BM & =B,

16: end for

17: return BM ;

The use of binary matrices has the advantage to avoid costly computations
with sequence and graph structures, and lead to compact structures thanks to
bitmap representation.

Problem of equal values:

In real data, values are not always strictly increasing or strictly decreasing.
There can be cases where several transactions have the same value for an at-
tribute. Consider Table [5] where we compute for four datasets (two synthetic,
two real-world, presented in details in Section , the percentage of values in
data that are equal for the same attribute across several transactions.

One can notice that this situation is quite common, especially in real datasets.
The problem with equal values is that if two transaction have the same value for
an attribute ¢ € Z, the means that at least for gradual itemsets (¢,1) and (3,J),
both t, <t, and t, <t, hold. We thus have a cycle in the graph of the order
induced by these gradual itemsets, and possibly of some of their super-itemsets.
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t1 ta t3 tg 5 e» 49
44 1 0 0 0 0
1 1 1 1 1 o e
5 01 1 1 1 1
t4 1 0 0 1 1
t5 1 0 0 1 1

Table 6. An example of equal values problem, gradual pattern: {(car,1)}.

Algorithm [3| for support computation cannot handle such situation as it expects
a DAG.

For instance, in Table [1| both #4 and t5 have 2 cars and both ¢, and t3 have
1 cars. The graph for the order induced by gradual pattern {(car,1)} and its
binary matrix are show in Table

Our solution to this problem is simple: for support computation only (i.e.
when constructing BM in Algorithm@, if two transactions t, and t, have equal
values for all attributes of the gradual itemset, then an order between ¢, and t,
is arbitrarily chosen.

This solution does not alter the soundness of result:

- If both ¢, and ¢, are not included in any longest path, they have no influence
on the final result

- If both ¢, and ¢, are included in a longest path, ¢1, ..., %z, ty, ..., tn, by assuming
ty < ty, the support is unchanged and remains the number of transactions in
the longest path (n).

- It can not be the case that ¢, is included in the longest path, t1,...,ts, ..., tn
but ¢, is not because all values of ¢, and ¢, are equal for all attributes of the
gradual pattern.

In the example of Table [I} both ¢4 and t5 have two cars and both t; and t3
have one car. We assume that ¢4 <t5 (but not t5 <t4) and to <tz (but not t3<ts).
The graph and corresponding binary matrix are shown in Table |7} the support
is 5 as expected.

There are no problem for closure computation with equal values, as the al-
gorithm does not assume any particular graph structure.

3.5. Complexity

The GLCM algorithm makes a depth first exploration of a covering tree over all
the closed frequent gradual itemsets. Like LCM, it’s complexity is thus linear in
the number of closed frequent gradual itemsets to find.

For each closed frequent gradual itemset, the complexity of support computa-
tion comes to find the longest path in a graph, which as been proven to be linear
in the number of nodes of the graph for directed acyclic graphs, i.e. O(||T]|) in
our case. The complexity of closed frequent itemset computation is thus, like
LCM, dominated by closure computation. Analyzing Algorithm @] shows that f



18 Do. et al

t1 1 0 0 0 0
to 1 1 1 1 1 e
t3 1 0 1 1 1
ta 1 0 0 1 1
ts 1 0 0 0 1

Table 7. Solution for Equal Value Problem.

and g both loop on the items, and make binary matrix computations inside the
loops. The time complexity of Clo is thus O(|Z| x ||T|?). Closure operation is
embedded in a loop on items in GlecmLoop, so the overall time complexity per
closed frequent gradual itemset is O(]Z|? x ||T||?). The space complexity mainly
depends on the storage of the initial database and of the binary matrices for
items, this gives a space complexity of O(||T|| + |Z| x ||T||?).

GLCM inherits from LCM its good complexity properties. Especially, its
space complexity do not depend on the number of closed frequent gradual item-
sets to find. This allow in practice to run with a very low and near constant
memory usage, whereas other algorithms can use exponentially more memory.

3.6. Parallelization

The existing work for discovering frequent gradual itemsets, Grite (Di Jorio et
al, 2009), has been parallelized as the Grite-MT algorithm in order to exploit
multicore processors, with good results (Laurent et al, 2010).

We also give a simple parallelization for the GLCM algorithm in this paper,
which is based on the works for parallelizing LCM (Negrevergne et al, 2010).
The authors have defined a parallelism environment, Melinda, that simplifies
the parallelization of existing sequential algorithms by relieving the algorithm
designer of the burden of manual thread synchronization while being efficient for
parallelizing recursive algorithms.

Melinda is based on the Linda approach (Gelernter, 1989). It consists of a
shared memory space, called TupleSpace. All the threads can access the Tu-
pleSpace, and either deposit or retrieve a data unit called Tuple, via the two
primitives get(Tuple) and put(Tuple). All the synchronizations for accessing the
TupleSpace are handled by Melinda. The main difference with the original Linda
approach is that whereas Linda accepted tuples of heterogenous structure and
allowed retrieval of tuples through complex queries on tuple values, Melinda is
specialized for fixed-structure tuples and does not allow querying given ranges of
tuples. These restrictions make Melinda a very low overhead framework than can
handle millions of tuples, with a high throughput on tuple insertion/suppression.

Such properties are desirable for the parallelization strategy that we exploit
for PGLCM, which is the same as the one we used in previous works for PLCM.
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Our observation is that as the enumeration tree of a frequent pattern mining
algorithm is difficult to predict beforehand, hence the task decomposition must
be as dynamic as possible to avoid load unbalance issues. We consider that an
elementary task is the execution of the function PGlem Loop for a pattern given
in input, without the recursive calls it generates. This decomposition is fine
grained enough to avoid any load unbalance issues in all the experiments that
we conducted, that are reported in Section

Algorithm 5 Algorithm PGLCM

Require: 7T: transaction database, £: minimum supportt, N: number of threads,
maxD: depth threshold
Ensure: All closed frequent gradual itemsets are output

for all gradual item (i,v) € Z x {1,]} do
Lene(iy < tid sorted in v order of item ¢ value
Bepe(i,vy ¢ bitmap matrix associated to Leyc(i,o)

end for

B+ {Bl, "'7B2><\I|}

for all gradual item encoding e € [0,2 x |Z] — 1] do
put(({e}), 1)

end for

wait for all threads to complete

10: Function PGlcmLoop(P:closed gradual itemset), d: depth
11: if computeSupport(P, 7, B) < € then

12: return ;

13: end if

14: if P0] is odd then

15:  return ; // Symmetrical itemset has already been tested
16: end if

17: output P ;

18: if (core_i(P) is odd) or (core_i(P) = —1) then

19: k= core_i(P)

20: else

21: k= corei(P)+1

22: end if

23: fore=k+1to2x|Z|—1do

24:  Q=Clo(PU{e},B);

25:  if P(e—1) = Q(e — 1) then

26: if d < maxD then

27: put((Q,d+1)) ; // Process children in parallel

28: else

29: GlemLoop(Q, T, B,e) // Switch to sequential execution
30: end if

31:  end if

32: end for

The corresponding implementation makes the algorithm PGLCM, whose
pseudo-code is shown in Algorithm [5| The main thread first performs the nec-
essary initializations in lines 1-4, as in GLCM, then for each gradual item it
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Algorithm 6 Function threadFunction()
1: while get(tuple) do
2: P« tuple.pattern;
3:  d < tuple.depth
4:  PGlemLoop((P,d)) ;
5: end while

pushes a tuple to the TupleSpace with put in lines 6-8. Worker threads execute
Algorithm [6]: when idle, they ask a tuple to the TupleSpace with get. Then they
extract the pattern from this tuple and call the function PGlemLoop with this
pattern.

After initialization, some of the individual gradual items will thus be assigned
to threads for processing (or all of them if |Z| < numT hreads). PGlemLoop does
the computation in the same way as GlemLoop presented in Algorithm [2] Note
that the parameters T, B and ¢ of Glem Loop are also given to PGlem Loop. They
are constant for all threads, thus have not been shown in Algorithm [] to improve
readability.

In line 27, instead of calling itself recursively, PGlcm Loop pushes the patterns
it computed into the TupleSpace. New tasks are thus available in the TupleSpace
to feed idle threads, allowing the complete computation of the enumeration tree.

When there are no more tuples in the TupleSpace and all threads are idle,
Melinda sends a termination signal, and the program stops.

Depth-based cutoff : The parallelization strategy that we exploit for PGLCM
is a classical strategy for tree-recursive algorithms. One of the issues of this strat-
egy is that because of combinatorial explosion, it may create too many tasks, in-
creasing the overheads of the underlying parallelism framework. Especially in our
case, for low minimal support values, there will be many patterns, most of them
being “deep” (in the enumration tree), corresponding to long, specialized pat-
terns, supported by few transactions. For such patterns, computing PGlem Loop
is very fast due to the little number of transactions involved, this time gets close
to Melinda’s overhead time.

The solution is to coarsen the granularity level by adding a cutoff based on
the depth in the enumeration tree, tracked by parameter d of PGlecmLoop : if
this depth is upper or equal to a threshold value maxD given in input, in line
29 of Algorithm [5] instead of putting tuples in the TupleSpace, a sequential call
to GlemLoop (Algorithm [2]) is performed. This means that we consider that it
is not necessary to create more parallel subtasks for the subtree of this pattern :
the enumeration subtree is computed sequentially, making a bigger task where
parallel frameword overheads are only paid once.

Locality issues : Another important issue for our parallelization strategy is
locality. When a pattern @Q is computed by PGlemLoop, this pattern is stored
in the cache of the processor, and all the elements of 7 and B that were used to
compute )’s support are also in cache. These elements are likely to be necessary
in order to compute the support of the patterns that are immediate children of
@ in the enumeration tree. However after processing @ its children are pushed
as tuples to the TupleSpace, and may be distributed to any idle thread, possibly
breaking the locality principle.

In practice, Melinda uses a simple an efficient technique to remember which
thread produced which tuple : the TupleSpace implementation is decomposed
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into several deques, and each deque corresponds to a physical core. When a
thread from this core makes a tuple request with get, it gets in priority tuples
from the deque of the core. Only if this deque is empty, are deques of other cores
examined for tuples. This method guarantees a best effort locality. More details
can be found in the description of Melinda given in (Negrevergne, 2011).

4. Experiments

We present in this section an experimental study on the execution time and
memory consumption of GLCM and PGLCM. We first present comparative ex-
periments between our new algorithms and the current state of the art, Grite (se-
quential) (Di Jorio et al, 2009) and Grite-MT (parallel) (Laurent et al, 2010). The
comparison is “unfair”: GLCM/PGLCM compute only the closed frequent grad-
ual itemsets, whereas Grite/Grite-MT compute all the frequent gradual itemsets.
However, there exist no algorithm (before GLCM) for mining closed frequent
gradual itemsets. The experiments in the paper defining the notion of closure for
gradual itemsets (Ayouni et al, 2010) rely on a post-processing of the results of
Grite, which takes even more time than running Grite alone.

Thus, our experiments reflect the fact that up to now the only way to get
gradual itemsets was to use Grite/Grite-MT, and we show the advantage of using
our approach instead.

The comparative experiments are based on synthetic datasets produced with
the same modified version of IBM Synthetic Data Generator for Association and
Sequential Patterns as the one used in (Di Jorio et al, 2009; Laurent et al, 2010).

All the experiments are conduced on a 4-socket server with 4 Intel Xeon 7460
with 6 cores each, for a total of 24 cores. The server has 64 GB of RAM. We
compare our C++ implementation of GLCM/PGLCM with the original C++
implementation of Grite/Grite-MT.

4.1. Comparative experiments: sequential

The first experiment compares the run time and memory usage for GLCM and
Grite. The dataset used, C1000A20, has 1000 transactions and 20 items. Figure
shows the execution time for both programs when varying the support, with
a logarithmic scale for time. The number of closed frequent gradual patterns
returned by GLCM is compared with the number of frequent gradual patterns
returned by Grite in Figure [§] The memory usage is shown in Figure [0}

The execution time results show that GLCM is two orders of magnitude faster
that Grite for handling this small dataset: for the lowest value it answers in 29s,
while Grite needs 1 hour and 40 minutes. This result directly comes from the
fact that there are two order of magnitude less closed frequent gradual patterns
than frequent gradual patterns. Both programs have a low memory usage on
this small dataset. As expected GLCM memory usage is constant whatever the
support value, while for lower support values Grite increases its memory usage,
because it depends on the number of frequent gradual itemsets to find.
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Fig. 8. Number of closed frequent gradual patterns vs number of frequent gradual patterns

4.2. Comparative experiments: parallel

The next experiment compares the scaling capacities of PGLCM and Grite-MT
on several cores, for the dataset C500A50 with 500 transactions and 50 items.
This dataset is more difficult than the previous one, as the complexity lies in
the number of items which determines the number of (closed) frequent gradual
itemsets.

For all parallel experiments, we exploit the depth cutoff method presented at
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Fig. 9. Memory vs support, sequential

the end of Section [3.6] Setting maxD = 4 gave us the best overall results so this
value is used for all experiments.

Figure [10] shows the execution time for both algorithms w.r.t. the number of
threads, with a logarithmic scale for time. Figure shows the speedup w.r.t.
sequential execution for both algorithms. Last, Figure shows the memory
consumption. The suuport threshold is fixed at 0.9, for this value there are 114
closed frequent gradual patterns outputted by PGLCM while Grite-MT outputs
378447 frequent gradual patterns (3 orders of magnitude more).

In this experiment with a more complex dataset, PGLCM is again two orders
of magnitude faster than Grite-MT. With all 24 threads, PGLCM completes ex-
ecution near instantly in 1.4s, while Grite-MT needs 335s. The memory usage
does not change much whatever the number of threads for both programs. Grite-
MT exhibits a better speedup than PGLCM on this experiment. However, the
run times for PGLCM get very low with more than 8 threads: they are between
1 and 2 seconds. There may not be enough work for PGLCM to exploit all 24
threads. More than a parallelism issue, this speedup difference comes from the
difference of the problems handled by Grite-MT and PGLCM : by focusing on
closed frequent gradual patterns PGLCM explores a far smaller search space
than Grite-MT, which has a lot more work computing all frequent gradual pat-
terns. This allows Grite-MT to give enough work to all the cores and have good
speedup, but with a poor execution time compared to PGLCM.

We did the same experiment with C800A100, a more complex dataset with
800 transactions and 100 items. Grite-MT could not run for this dataset: it filled
up the 64 GB of RAM of our machine and could not complete. This excessive
memory consumption was already mentioned in (Laurent et al, 2010), and comes
from the fact that memory complexity in Grite/Grite-MT, like in Apriori, de-
pends on the number of frequent gradual itemsets to find. PGLCM does not have
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this problem, we thus report its run time in Figure[13] the speedup in Figure[14]
and the memory consumption in Figure

For this more complex problem the run time with 24 cores is 48s, so there is
enough computation to keep the program busy. The speedups are far better in
this case, with an excellent speedup of 22.15 for 24 threads. The granularity of our
parallelization is well adapted to complex datasets. For further works, it could
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be interesting to be able to decompose the computations in lower granularity
tasks when faced with simpler datasets such as C500A50.
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4.3. Qualitative experiment: mining user data in MovieLens

The major interest of our gradual pattern definition is that it is well adapted to
discover some partial orderings on attributes on data in which no particular order
pre-exists. One such kind of data that receives a lot of attention nowadays is user
data, i.e. data produced by individual users, often in Web 2.0 applications. As
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Pattern Pattern description Support
ML,y {ageT, documentary’} 1,459
MLo {age®, documentary’, westernT} 880
MLg3 {age®, documentary’, romance'} 57
MLy {ageT, documentary?, children’st} 52

MLf-)\/[‘“e {ageT, mystery*} 66

ML} ale {age®, sci — fit} 57

MLEemale {ageT, sci — fit, mystery™} 58

Table 8. Some gradual patterns from MovieLens

a typical example, consider the MovieLensE| dataset, a real dataset consisting of
ratings of movies by users. The dataset information contains for each user basic
demographic information (age, gender) and for all movies rated by that user a
numerical rating in [1,5]. MovieLens also gives a genre for each movie, allowing
to regroup movies in genres such as Drama, Action,etc. From the MovieLens 1M
dataset (i.e. having 1 million ratings), we prepared an aggregated dataset where:

— each user is a transaction, there are 6,040 transactions
— there are 21 columns:

numerical user id

user age

total number of movies rated by user

average rating for user

average rating per genre for user (18 different genres)

We mined this dataset with PGLCM, for a minimal support threshold of 50. The
computation completed in 6 hours and outputted 13,775 patterns.

Tabld§| shows some of the discovered patterns.

Such patterns show that orderings could be found in parts of data, indicating
a trend that can help explain data’s content. For example, gradual pattern M L
indicates that the older the user, the higher he/she will rank documentaries, this
being valid on 24% of the users. This correlation between the age and the rating
of documentaries is thus quite strong, and helps to better interpret documentary
rankings. Gradual pattern M Lo shows that for 14% of the users considered,
together with documentaries’ rating the rating of western movies is also higher
for older people.

Due to the provided demographic data, it is even possible to separate the
dataset into male users (4,331 users) and female users (1,709 users), mine each
subdataset and search for a variant of discriminative patterns where opposite
variations would be found in the two datasets (Cheng et al, 2007). Among the

found patterns are MLMale M LMale and ML{*™¢: the male patterns show
that for a part of the male users, an increase in age is correlated with a lower
ranking for mystery or science fiction movies. On the other hand, both these
categories get an increase in ranking with age for female users. One tentative
explanation is that science fiction movies (and to a lesser extent mystery movies)
lead to very polarized rankings for young people; young men love them leading to
high ratings, while young women have no interest in them, leading to minimum

2 http://movielens.umn.edu/
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ratings. With age, this polarization tends to disappear, these movies becoming
movies “like the others”. This leads to reducing the average score for men and
increasing it for women.

This experiment shows one of the advantages of our approach: in the dataset
there was no a priori ordering of the users. The algorithm could take the dataset
without any order on the rows and discover “hidden” orderings.

4.4. Qualitative experiment: mining stock market data

We have run PGLCM on US Stock Market dataEI in order to find out interesting
knowledge and give potentially useful suggestions for people who intend to invest
in a company. We gather all stock price for some companies’ stock symbol and
combine them in a large dataset. The lines of the dataset represent the date
when the prices (in US Dollar) are retrieved. The first column stands for the
date and all next columns of the dataset stand for each Stock Symbol (around
300 Stock Symbols).

We are only interested in patterns where the ordering of supporting transac-
tions matches the temporal order. The date is thus given as a numerical attribute,
and we only mine patterns of the form {Date 1, *}, which guarantees the tem-
poral ordering of the transactions supporting these patterns. This is done at the
algorithm level by suppressing in Algorithm [2| the for loop of line 6, which is no
longer necessary, and by calling GlemLoop on line 7 with e = 0, which corre-
sponds to Date T when Date is the first attribute. This enforces the constraint
while pruning a large part of the search space. For clarity, in the rest of this
section Date T is omitted from the patterns reported.

We focused our analysis on the time frame of the Deepwater Horizon oil Spilﬁ
from 20 April to 15 July 2010 in a dataset of weekly quotes. We were especially
interested by patterns comprising the quote of the BP company (NYSE: BP). We
present the gradual patterns found in this dataset and our effort to explain them
by searching in current events (newspapers, other sources). We saw that there
are many companies affected by this accident together with BP. First, we found
(BP |, HAL |, RIG |, APC |). It means that the stock price of BP decreases
gradually together with the stock price of Halliburton (NYSE: H AL), Transocean
(NYSE:RIG) and Anadarko (NYSE: APC) in the same time (42.86% in 14
total weeks). Halliburton was responsible for cementing the ocean floor while
Transocean was the owner of the rig that BP was leasing. And Anadarko has
25 percent working interest in BP’s Macondo Prospeciﬂ The result is shown in
Figure

Anadarko was affected worse than Halliburton and Transocean with the pat-
tern (BP |, APC' ). Looking into our result (Figure[17)), we can see that 64.29%
(in total 14 weeks) of time BP’s stock price and Anadarko’s stock price decrease
together.

But there are some companies that have the stock price increase while BP’s
decrease. For example, the pattern (BP |, CLH 71) shows that Clean Harbor
(NYSE:CLH)’s stock price increases in 42.86% (in 14 total weeks) of time to-
gether with BP’s stock price (as shown in Figure. Clean Harbor is an environ-

3 Source from Yahoo Finance! http://finance.yahoo.com/
4 http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
5 http://en.wikipedia.org/wiki/ Anadarko_Petroleum_Corporation
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Fig. 16. BP, Halliburton, Transocean and Anadarko’s stock price decrease in the same time

mental service provider focused in North America. Clean Harbor’s crew members
worked along the gulf coastline to mitigate the environmental damage of the BP
oil spill. Another company’s stock price that was expected to increase is Procter
and Gamble (NYSE:PG) because it delivered 2,000 Dawn dish washing liquid
bottles to the Gulf of Mexico in order to clean the affected wildlife in the region.
But it had a small impact for a global company like Procter and Gamble and
it did not affect P&G very much. We even found the pattern (BP |, HAL |,
RIG |, APC |, PG |), presented in Figure , which shows that P&G action
did not help it to rise its stock value.

5. Conclusion and perspectives

We have presented in this paper GLCM, the first algorithm for directly mining
closed frequent gradual itemsets. Such gradual itemsets allow to find covarations
between numerical attributes, with many applications to real data.

Our algorithm is based on the ppc-extension idea developed in the LCM
algorithm, and which is currently the most efficient way to mine closed patterns,
with a time complexity linear in the number of results to find and a memory
complexity constant w.r.t. the number of results to find.

We also parallelized our algorithms in order to exploit the computing power
of recent multicore processors.
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Our experimental study have shown that our approach, either sequential or
parallel, is two orders of magnitudes faster than the state of the art. Our parallel
algorithm scales well with the number of available cores for complex datasets,
where such computing power is really needed. The low memory requirements of
our algorithms allow them to handle large real world datasets, which could not
be handled by existing algorithms due to memory saturation. Our algorithms
thus removed the lock that prevented the use of gradual patterns analysis in
realistic applications. We have shown that it is able to find many interesting
knowledge in real world datasets about movie ratings or stock market.

The code is available as Open Source at http://membres-1liglab.imag.fr/
termier/PGLCM.html|

Our work opens several perspectives. An immediate perspective is to coop-
erate with practitioners having large numerical datasets, in order to help them
extracting and analyzing gradual datasets. Reporting the results of such experi-
ments will allow to show the practical interest of gradual pattern and hopefully
lead to further research in the field of gradual pattern mining.

Other perspectives lie in the improvement of our algorithms. Currently, our
algorithm always uses the same binary matrices whatever the gradual itemset
under consideration. However (Di Jorio et al, 2009) has shown that the binary
matrices could be reduced: some transactions never appear in the support of
a pattern, so the corresponding lines and columns can be suppressed from the
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Fig. 18. BP’s stock price decreases while Clean Harbor’s stock price increases in the same
time

corresponding binary matrix. This optimization would not reduce the theoretical
complexity, however the FIMI workshop results (Goethals, 2003-2004; Uno et al,
2004) showed that reducing databases was one of the keys for reducing practical
run time.
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