
Combining Logic and Probabilities for

Discovering Mappings between Taxonomies

Rémi Tournaire1, Jean-Marc Petit2, Marie-Christine Rousset1, and Alexandre
Termier1

1 University of Grenoble, Laboratory of Informatics of Grenoble UMR 5217,
681, rue de la Passerelle, BP72, 38402 St-Martin d’Hères Cedex, France

Remi.Tournaire@imag.fr
2 INSA Lyon, LIRIS UMR 5205, 69621 Villeurbanne Cedex, France

Abstract. In this paper, we investigate a principled approach for defin-
ing and discovering probabilistic mappings between two taxonomies. First,
we compare two ways of modeling probabilistic mappings which are com-
patible with the logical constraints declared in each taxonomy. Then we
describe a generate and test algorithm which minimizes the number of
calls to the probability estimator for determining those mappings whose
probability exceeds a certain threshold. Finally, we provide an experi-
mental analysis of this approach.

1 Introduction

The decentralized nature of the development of Web data management systems
makes inevitable the independent construction of a large amount of personalized
taxonomies used for annotating data and resources at Web scale. Taxonomies
are hierarchical structures appropriate for data categorization and semantic an-
notation of resources. They play a prominent role in the Semantic Web since
they are central components of OWL [8] or RDF(S) [19] ontologies. A taxonomy
constrains the vocabulary used to express metadata or semantic annotations to
be classes that are related by structural relationships. Taxonomies are easy to
create and understand by humans while being machine interpretable and pro-
cessable thanks to a formal logical semantics supporting reasoning capabilities.
In this setting, establishing semantic mappings between taxonomies is the key to
enable collaborative exchange of semantic data. Manually finding such mappings
is clearly not possible at the Web scale. Therefore, the automatic discovery of
semantic mappings is the bottleneck for scalability purposes.
Many techniques and prototypes have been developed to suggest candidate map-
pings between several knowledge representations including taxonomies, ontolo-
gies or schemas (see [25, 14] for surveys). Most of the existing approaches rely on
evaluating the degree of similarity between the elements (e.g., classes, properties,
instances) of one ontology and the elements of another ontology. Many different
similarity measures are proposed and often combined. Most of them are based
on several syntactic, linguistic or structural criteria to measure the proximity of
the terms used to denote the classes and/or their properties within the ontology.



2 R. Tournaire, J-M. Petit, M-C. Rousset, A. Termier

Some of them exploit characteristics of the data declared as instances of the
classes (e.g. [12]).
As a result, most of the existing matching systems return for every candidate
pair of elements a coefficient in the range [0,1] which denotes the strength of the
semantic correspondence between those two elements [15, 24, 4]. A threshold is
then used for keeping as valid mappings those pairs of elements for which the co-
efficient of similarity is greater than the threshold. Since most of the approaches
are based on similarity functions that are symmetric, the mappings that are re-
turned with high similarity scores are interpreted as equivalence mappings. Few
approaches [17, 18] handle inclusion mappings between classes. Yearly interna-
tional evaluation campaigns3 are organized to compare matching systems on
different benchmarks, in terms of quality (recall and precision) of the mappings
they return. Except until very recently, only equivalence mappings have been
considered in the OAEI campaigns.
Our first claim is that inclusion mappings between classes of two pre-existing
taxonomies are more likely to exist than equivalence mappings. When taxonomies
are used as query interfaces between users and data, inclusion mappings between
taxonomies can be used for query reformulation exactly like the subclass rela-
tionship within a taxonomy. For instance, a mapping Opera ⊑ V ocal between
the class Opera of a taxonomy and the class V ocal of a second taxonomy may be
used to find additional answers to a query asking data about V ocal by returning
data categorized in the class Opera in the first taxonomy.
In contrast with logical approaches (e.g., [17]) for (inclusion) mapping discovery,
we also claim that uncertainty is intrinsic to mapping discovery. Therefore, we
advocate to consider inclusion mappings with a probabilistic semantics. Like the
similarity scores, the probability coefficients can be compared to a threshold for
filtering mappings. In addition, they can be the basis of a probabilistic reasoning
and a probabilistic query answering through mapped taxonomies.
It is important to emphasize here that the similarity coefficients returned by
most of the existing ontology or schema matching systems cannot be interpreted
as probabilities of the associated mappings. The reason is that they do not take
into account possible logical implications between mappings, which can be in-
ferred from the inclusion axioms declared between classes within each ontology.
Interpreting similarities between classes as probabilities of the corresponding
mappings requires that the similarity between any subclass of a given class A1

and any superclass of a given class A2 is greater than the similarity between A1

and A2. Up to our knowledge, this monotony property is not satisfied in any of
the existing similarity models.
In this paper, we propose an algorithm for automatic discovery of probabilistic
mappings between taxonomies, which respects the above monotony property.
First, we investigate and compare two ways of modeling probabilistic mappings
which are compatible with the logical constraints declared in each taxonomy. In
those two probabilistic models, the probability of a mapping relies on the joint
probability distribution of the involved classes. They differ on the property of

3 E.g., OAEI http://oaei.ontologymatching.org/2009/



Combining Logic and Probabilities for Discovering Mappings 3

monotony of the corresponding probability function with respect to the logical
implication. Based on the above probabilistic setting, we have designed, imple-
mented and experimented a generate and test algorithm called ProbaMap for
discovering the mappings whose probability is greater than a given threshold. In
this algorithm, the monotony of the probability function is exploited for avoid-
ing the probability estimation of as many mappings as possible. The paper is
organized as follows. Section 2 presents the formal background and states the
problem considered in this paper. Section 3 is dedicated to the definition and
computation of mapping probabilities. In Section 4, we present the ProbaMap
algorithm which discovers mappings with high probabilities (i.e., greater than a
threshold). Section 5 surveys the quantitative and qualitative experiments that
we have done. Finally, in Section 6, we compare our approach to existing works
and we conclude.

2 Formal background

We first define taxonomies as a graphical notation and its interpretation in
standard first-order-logic semantics, on which the inheritance of instances is
grounded. Then, we define mappings between taxonomies as inclusion state-
ments between classes of two different taxonomies. Finally, we set the problem
statement of matching taxonomies that we consider in this paper.

Taxonomies: classes and instances
Given a vocabulary V denoting a set of classes, a taxonomy TV is a Directed
Acyclic Graph (DAG) where each node is labelled with a distinct class name
of V , and each arc between a node labelled with C and a node labelled by D
represents a specialization relation between the classes C and D.
Each class in a taxonomy can be associated with a set of instances which have an
identifier and a content description. In the following, we will abusively speak of
the instance i to refer to the instance identified by i. Figure 1 shows two samples

Classical Music

Romantic XXth century

Romantic 
 Vocal

Romantic 
 Instrumental

XXth Vocal XXth Instr.

DebussyFauré Stravinsky BoulezWagner
Schumann 

 Vocal
Schumann 

 Instrumental

#105 
 [Debussy, 

 Arabesque I, 
 ...]

isa

#104 
 [Stravinsky, 

 Firebird, 
 ...]

isa

#101 
 [Boulez, 
 Réponds, 

 ...]

isa

#103 
 [Schumann, 
 Carnaval, 

 ...]

isa

#106 
 [Schumann, 

 Piano Concerto, 
 ...]

isa

#102 
 [Wagner, 

 Walkyries, 
 ...]

isa

(a) Taxonomy T2

Opera

XXth Opera

Piano

Recent 
 Classical

Jazz

Ravel

#202 
 [Schostakovitch, 
 Piano Concerto, 

 ...]

isa

Music

#203 
 [Ravel, 

 Piano Works, 
 ...]

isa

(b) Taxonomy T2

Fig. 1. 2 Taxonomies and associated instances



4 R. Tournaire, J-M. Petit, M-C. Rousset, A. Termier

of taxonomies related to the Music domain. Bold arrows are used for representing
specialization relations between classes, and dashed arrows for membership re-
lation between instances and classes. In both taxonomies, some instances, with
description denoted between brackets, are associated to classes. For example,
#102 is an instance identifier and [Wagner, Walkyries, ...] its associated descrip-
tion.
The instances that are in the scope of our data model can be web pages (which
content description is a set of words) identified by their URLs, RDF resources
(which content description is a set of RDF triples) identified by URIs, or au-
dio or video files identified by a signature and whose content description may
be attribute-value metadata that can be extracted from those files. Taxonomies
have a logical semantics which provides the basis to define formally the extension
of a class as the set of instances that are declared or can be inferred for that class.

Logical semantics
There are several graphical or textual notations for expressing the specialization
relation between a class C and a class D in a taxonomy. For example, in RDF(S)
[19] which is the first standard of the W3C concerning the Semantic Web, it is
denoted by (C rdfs:subclassOf D). It corresponds to the inclusion statement
C ⊑ D in the description logics notation.
Similarly, a membership statement denoted by an isa arc from an instance i to
a class C corresponds in the RDF(S) notation to (i rdf :type C), and to C(i) in
the usual notation of description logics.
All those notations have a standard model-theoretic logical semantics based on
interpreting classes as sets: an interpretation I consists of a non empty domain
of interpretation ∆I and a function .I that interprets each class as a non empty
subset of ∆I , and each instance identifier as an element of ∆I . The classes de-
clared in a taxonomy are interpreted as non empty subsets because they are
object containers. According to the unique name assumption, two distinct iden-
tifiers a and b verify (aI 6= bI) in any interpretation I.
I is a model of a taxonomy T if:
- for every inclusion statement E ⊑ F of T : EI ⊆ F I ,
- for every membership statement C(a) of T : aI ∈ CI .
An inclusion G ⊑ H is inferred by a taxonomy T (denoted by T |= G ⊑ H) iff
in every model I of T , GI ⊆ HI . A membership C(e) is inferred by T (denoted
by T |= C(e)) iff in every model I of T , eI ∈ CI .
Let D be the set of the instances associated with a taxonomy T . The extension
of a class C in T , denoted by Ext(C, T ), is the set of instances for which it
can be inferred from the membership and inclusion statements declared in the
taxonomy that they are instances of C: Ext(C, T ) = {d ∈ D/ T |= C(d)}

Mappings
The mappings that we consider are inclusion statements involving classes of two
different taxonomies T1 and T2. To avoid ambiguity and without loss of gener-
ality, we consider that each taxonomy has its own vocabulary: by convention



Combining Logic and Probabilities for Discovering Mappings 5

we index the names of the classes by the index of the taxonomy to which they
belong. Mappings between T1 and T2 are consequently of the form A1 ⊑ B2 or
A2 ⊑ B1. For a mapping m of the form Ai ⊑ Bj , its left-hand side Ai will be
denoted lhs(m) and its right-hand side will be denoted rhs(m).
A mapping Ai ⊑ Bj has the same meaning as a specialization relation between
the classes Ai and Bj , and thus is interpreted in logic in the same way, as a set
inclusion. The logical entailment between classes extends to logical entailment
between mappings as follows.

sub-taxonomy of T2 sub-taxonomy of T1

Music

Opera Piano

XXth Opera
Recent 

 Classical

Ravel

XXth century

XXth Vocal XXth Instrumental

mapping mapping

Fig. 2. 2 mappings between T1 and T2

Definition 1 (Entailment between mappings). Let Ti and Tj be two tax-
onomies. Let m and m′ be two mappings between Ti and Tj: m entails m′ (de-
noted m � m′) iff every model of Ti , Tj and m is also a model of m′.

It is straightforward to show that � is a (partial) order relation on the set of
mappings between the two taxonomies Ti and Tj . If m � m′, we will say that m
is more specific than m′ (also that m is an implicant of m′) and that m′ is more
general than m (also that m′ is an implicate of m).
The following proposition characterizes the logical entailment between mappings
in function of the logical entailment between the classes of their left hand sides
and right hand sides.

Proposition 1. Let m and m′ be two mappings between two taxonomies. Let Ti

be the taxonomy of lhs(m), Tj the taxonomy of rhs(m).
m � m′ iff
- lhs(m) and lhs(m′) are classes of the same taxonomy Ti, and
- Ti |= lhs(m′) ⊑ lhs(m) and Tj |= rhs(m) ⊑ rhs(m′)

For example, two mappings between taxonomies T1 and T2 of Figure 1 are il-
lustrated in Figure 2. The mapping XXth Opera2 ⊑ XXth V ocal1 is more
specific than the mapping XXth Opera2 ⊑ XXth Century1, and the mapping
RecentClassical2 ⊑ XXth Instrumental1 is more specific than the mapping
Ravel2 ⊑ XXth Century1.



6 R. Tournaire, J-M. Petit, M-C. Rousset, A. Termier

3 Mapping probabilities: models and estimation

We consider two probabilistic models for modeling uncertain mappings. They
are both based on the discrete probability measure defined on subsets of the
sample set representing the set of all possible instances of the two taxonomies.
From now on, we will denote Pr(E) the probability for an instance to be an
element of the subset E.
The first model defines the probability of a mapping Ai ⊑ Bj as the conditional
probability for an instance to be an instance of Bj knowing that it is an instance
of Ai. It is the natural way to extend the logical semantics of entailment to
probabilities.
The second model comes directly from viewing classes as subsets of the sample
space: the probability of Ai ⊑ Bj is the probability for an element to belong to
the set Ai ∪ Bj , where Ai denotes the complement set of Ai in the sample set.
Both models are described below.

Definition 2 (Two probabilities for a mapping). Let m be a mapping of
the form Ai ⊑ Bj.
-Its conditional probability, denoted Pc(m), is defined as Pc(m) = Pr(Bj |Ai).
-Its union set probability, denoted Pu(m), is defined as Pu(m) = Pr(Ai ∪ Bj).

Proposition 2 states the main (comparative) properties of those two probabilistic
models. They both meet the logical semantics for mappings that are certain, and
they can both be expressed using joint probabilities.

Proposition 2. Let m be a mapping between two taxonomies Ti and Tj. The
following properties hold:

1. Pu(m) ≥ Pc(m).
2. If m is a certain mapping, Pc(m) = Pu(m) = 1
3. Pu(m) = 1 + Pr(lhs(m) ∩ rhs(m)) − Pr(lhs(m))

4. Pc(m) =
Pr(lhs(m)∩rhs(m))

Pr(lhs(m))

They differ on the monotony property w.r.t the (partial) order � corresponding
to logical implication (cf. Definition 1): Pu is monotonous whereas Pc verifies a
property of weak monotony only:

Theorem 1 (Property of monotony). Let m and m′ two mappings.

1. If m � m′ then Pu(m) ≤ Pu(m′)
2. If m � m′ and lhs(m) = lhs(m′), Pc(m) ≤ Pc(m

′)

The proof results from Proposition 1 and Proposition 2 which relate mappings
with the classes of their left hand sides and right hand sides for logical entail-
ment and probabilities respectively, and from considering (declared or inherited)
inclusions of classes within each taxonomy as statements whose probability is
equal to 1.



Combining Logic and Probabilities for Discovering Mappings 7

As shown in Proposition 2, the computation of Pu(m) and Pc(m) relies on com-
puting the set probability Pr(lhs(m)) and the joint set probability Pr(lhs(m)∩
rhs(m)). Those values are unknown and must be estimated. For doing so, we
follow the Bayesian approach to statistics [9]: we model those (unknown) pa-
rameters as continuous random variables, and we use observations to infer their
posterior distribution from their prior distribution. This is summarized in Defi-
nition 3.

Definition 3 (Bayesian estimator of Pr(E)). Let E be a subset of the sample
set Ω. Let O be a sample of observed elements for which it is known whether they
belong or not to E. The Bayesian estimator of Pr(E), denoted P̂ r(E), is the
expected value of the posterior distribution of Pr(E) knowing the observations
on the membership to E of each element in O, and setting the prior probability
of a random set to 1

2
, and of the intersection of two random sets to 1

4
.

Setting the prior probabilities to 1

2
and 1

4
depending on whether E is a class

or a conjunction of classes corresponds to the uniform distribution of instances
among the classes. The following theorem provides a simple way to compute
the Bayesian estimations P̂u(m) and P̂c(m) of the two probabilities Pu(m) and
Pc(m) defined in Definition 2. It is a straightforward consequence of a basic
theorem in probability theory (Theorem 1, page 160, [9]), stating that if the
prior distribution of the random variable modeling Pr(E) is a Beta distribution
of parameters α and β, then its posterior distribution is also a Beta distribution
the parameters of which are: α + |Ext(E,O)| and β + |O|, where Ext(E,O) is
the set of observed instances of O that are recognized to belongs to E.

Theorem 2 (Estimation of probabilities).
Let m : Ci ⊑ Dj be a mapping between two taxonomies Ti and Tj. Let O be

the union of instances observed in Ti and Tj. Let N = |O|, Ni = |Ext(Ci,O)|,
Nj = |Ext(Dj ,O)| and Nij = |Ext(Ci ∩ Dj,O)|.

P̂u(m) = 1 +
1+Nij

4+N
− 1+Ni

2+N
P̂c(m) =

1+Nij

4+N
× 2+N

1+Ni

Depending on the way the taxonomies are populated (manually or automati-
cally), it is not always possible to obtain Nij simply by counting the instances
that are common to the two classes involved in the mapping. If the taxonomies
are populated manually and independently by different users, it is indeed likeky
that the intersection of the two taxonomies contains very few instances or even no
instance at all. In that case, we apply existing automatic classifiers (e.g., Naive
Bayes learning, decision trees, SVM) in order to compute Ext(Ci ∩ Dj ,O), by
following the same approach as [12] for training them on the description of the
available instances in each taxonomy.

4 The ProbaMap algorithm

Given two taxonomies Ti and Tj (and their associated instances), let M(Ti, Tj) be
the set of all mappings from Ti to Tj (i.e., of the form Ci ⊑ Dj). The ProbaMap
algorithm determines all mappings m of M(Ti, Tj) verifying a probabilistic-based



8 R. Tournaire, J-M. Petit, M-C. Rousset, A. Termier

criterion of validity that will be denoted by P̂ (m) ≥ S.

P̂ (m) ≥ S is a parameter in the algorithm, which can be one of the three fol-
lowing validity criteria, where Su and Sc are two thresholds in [0, 1]:

- Validity criterion 1: P̂u(m) ≥ Su

- Validity criterion 2: P̂c(m) ≥ Sc

- Validity criterion 3: P̂c(m) ≥ Sc and P̂u(m) ≥ Su.

Candidate mapping generation
The principle of ProbaMap algorithm is to generate mappings from the two
sets of classes in the two taxonomies ordered according to a topological sort [6].
Namely, the nested loops (Line 2) in Algorithm 1 generate all the mappings
Ci ⊑ Dj by enumerating the classes Ci of Ti following a reverse topological
order and the classes Dj of Tj following a direct topological order. The following
proposition is a corollary of Proposition 1.

Proposition 3. Let Ti and Tj two taxonomies.
Let ReverseTopo(Ti) be the sequence of classes of Ti resulting from a reverse
topological sort of Ti. Let Topo(Tj) be the sequence of classes of Tj resulting
from a topological sort of Ti. Let m : Ci ⊑ Dj and m′ : C′

i ⊑ D′
j two mappings

from Ti to Tj. If m′ is an implicant of m (i.e., m′ � m), then Ci is before C′
i in

ReverseTopo(Ti) or Ci = C′
i and Dj is before D′

j in Topo(Tj).

Pruning the candidate mappings to test
Based on the monotony property of the probability function Pu (Theorem 1),
every mapping m′ implicant of a mapping m such that Pu(m) < Su verifies

Pu(m′) < Su. Therefore, in ProbaMap, if the validity criterion involves P̂u,
we prune the probability estimation of all the implicants of every m such that
P̂u(m) < Su. We shall use the notation Implicants(m) to denote the set of all
mappings that are implicants of m. Similarly, based on the property of weak
monotony of the probability function Pc (Theorem 1), if the validity criterion

involves P̂c, when a tested candidate mapping m is such that P̂c(m) < Sc we
prune the probability estimation of all the implicants of m having the same left-
hand side as m. We shall denote this set: Implicantsc(m). Based on Proposition
1, Implicants(m) and Implicantsc(m) can be generated from Ti and Tj .
Based on the order in which the mappings are generated, Proposition 3 shows
that the validity test in Line 5 of the algorithm 1 maximizes the number of prun-
ing. The resulting ProbaMap algorithm is described in Algorithm 1, in which:

– P̂ (m) ≥ S in Line 6 denotes a generic validity criterion that can be instan-

tiated either by P̂u ≥ Su, or by P̂c ≥ Sc, or by (P̂c ≥ Sc and P̂u ≥ Su).

– In the case where the validity criteria involves P̂c, Implicants(m) in Line 9
must be replaced by Implicantsc(m).

– In Line 4, ReverseTopoi and Topoj denote the respective sequences ReverseTopo(Ti)
and Topo(Tj). ReverseTopoi[k] (resp. Topoj[l]) denotes the class of Ti (resp.
Tj) ranked k (resp. l) in the sequence.

Algorithm 1 returns mappings directed from Ti to Tj . In order to obtain all valid
mappings, it must be applied again by swapping its inputs Ti and Tj .



Combining Logic and Probabilities for Discovering Mappings 9

Algorithm 1 ProbaMap

Require: Ti, Tj ,threshold S

Ensure: return {m ∈M(Ti, Tj)/P̂ (m) ≥ S}
1: MV al ← ∅, MNV al ← ∅
2: for k = 1 to |Ti| do

3: for l = 1 to |Tj | do

4: let m = ReverseTopoi[k] ⊑ Topoj [l]
5: if m 6∈MNV al then

6: if P̂ (m) ≥ S then

7: MV al ←MV al ∪ {m}
8: else

9: MNV al ←MNV al ∪ Implicants(m)
10: return MV al

5 Experiments

In this section, we evaluate the quantitative and qualitative performances of
ProbaMab (Algorithm 1) on large real-world taxonomies populated with in-
stances. We focus our experiments on the Internet directories4 from Yahoo! and
Google (actually corresponding to Dmoz). This allows us to compare our ap-
proach to the SBI algorithm of Ichise et al. [20, 21], which is dedicated to the
discovery of mappings between Internet directories. Internet directories are huge
trees of categories, which can be seen as taxonomies, categories being the classes.
Each category contains a set of links (i.e. URLs to web sites), which can be seen
as the instances of the class. Each link comes with a small text summary, whose
words can be seen as instance attributes for classification.
Our datasets are corresponding locations in the Yahoo! and Google directories,
that have also been used in the experiments of [20, 21]:

– Yahoo! : Recreation / Automotive & Google : Recreation / Autos
– Yahoo! : Computers and Internet/Software & Google : Computers/Software
– Yahoo! : Arts / Visual Arts / Photography & Google : Arts / Photography

The data from the directories was collected in the beginning of 2010, so is slightly
different from the data of [21] and [20] which was collected in Fall 2001.
Table 1 shows for each dataset the number of classes and instances in each class,
and the number of instances shared between the Yahoo! and the Google direc-
tories. Two instances are considered shared if they correspond to the same URL
in both directories. For a fair comparison, we have implemented both ProbaMap
and the SBI algorithm in Java.
The goal of our experiments is to compare the quality of Internet directories
alignement for ProbaMap and SBI.
During the learning step, ProbaMap and SBI receive as training set a subset of
the shared instances with their correct category in each of the directories. The
test set is the remaining of the shared instances. When adding classification to
ProbaMap, the training set is extended with all the non shared instances. The

4 dir.yahoo.com, www.dmoz.org



10 R. Tournaire, J-M. Petit, M-C. Rousset, A. Termier

classification is performed using the SVM implementation SMO[16] in Weka [27],
where the classification attributes for an instance are the words of its summary.

Yahoo! Google shared
classes instances classes instances instances

Autos 947 4406 967 6425 837

Software 323 2390 2395 30140 572

Photography 168 1851 321 3852 286
Table 1. Statistics on data collected from subdirectories on Yahoo! and Google

We computed the accuracy (standard criteria used in [21]) of mapping prediction
on the test set, and conducted a ten-fold cross validation. The results when
varying the size of the training set are shown in Figure 3 for the Autos dataset.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.3  0.4  0.5  0.6  0.7  0.8  0.9

A
cc

ur
ac

y

Training set size (ratio  w.r.t. common instances)

SBI
ProbaMap

ProbaMap with Classif

Fig. 3. Accuracy for alignment of Autos subdirectories (Yahoo to Google)

ProbaMap with or without classification significantly outperforms SBI, with
a 15% better accuracy for ProbaMap alone and 15-25% better accuracy for
ProbaMap with classification. Note that when using classification, the accuracy
of ProbaMap with the smallest training set size (30% of shared instances) is
better than the accuracy of SBI with a training set containing 90% of shared in-
stances. We obtain similar results (and coherent with those in [21]) on Software
and Photography subdirectories, with the same order for the three methods.
These results show that the probabilistic mapping discovery method that we
propose gives excellent results on real-world datasets, and can take advantage
of classification techniques to compensate small training set sizes. This is an
important quality for real world taxonomies built by different people, that are
unlikely to have many instances in common.
Thanks to the monotony property of our probabilistic mapping model (see Sec-
tion 4), ProbaMap can prune large parts of the mapping search space and handle
the alignement of very large taxonomies. We successfully conducted scalabil-
ity experiments on very large taxonomies from the OAEI5 contest (directory
dataset). We have compensated the lack of instances available for those tax-
onomies by automatically populating the classes with WordNet synsets. The

5 http://oaei.ontologymatching.org



Combining Logic and Probabilities for Discovering Mappings 11

taxonomies to align have 6628 and 2857 classes, leading to more than 15 mil-
lions potential mappings. Up to our knowledge, very few OAEI participants have
taken the whole directory dataset as input, but instead a splitted version of it
into branches which was provided by the OAEI organizers.

6 Related work and conclusion

As outlined in the introduction, semantic mappings are the glue for data integra-
tion systems. A wide range of methods of schema/ontology matching have been
developed both in the database and the semantic web communities [14]. One
of the principles widely exploited is terminological comparison of the labels of
classes with string-based similarities or lexicon-based similarities (like WordNet)
(e.g., TaxoMap [18], H-MATCH [4]) . Another widely used principle is structure
comparison between labeled graphs representing ontologies (e.g., OLA [15]). In
fact, most of the existing matchers combine these two approaches in different
ways (e.g., COMA++ [1] and COMA [10], Cupid [24], H-MATCH [4]). Other
approaches have been investigated with machine learning techniques using a cor-
pus of schema matches (e.g., [23]), or a corpus of labelled instances (e.g., LSD
[11], SemInt [22], GLUE [12], FCA-merge [26], SBI-NB[21]). SBI[20] computes
the degree of agreement of each couple of classes based on instances statistics,
but without machine learning. It is standard practice for ontology and schema
matchers to associate numbers with the candidate mappings they propose. How-
ever, those numbers do not have a probabilistic meaning and are just used for
ranking. In contrast, our approach promotes a probabilistic semantics for map-
pings and provides a method to compute mapping probabilities based on the
descriptions of instances from in each ontology. It is important to note that even
if we use similar classification techniques as [12], we use them for computing true
probabilities and not similarity coefficients.
The most distinguishing feature of our approach is that it bridges the gap be-
tween logic and probabilities by providing probabilistic models that are consis-
tent with the logical semantics underlying ontology languages. Therefore, our
approach generalizes existing works based on algebraic or logical representation
of mappings as a basis for reasoning (e.g., S-Match [17], Clio [5]). The mappings
returned by ProbaMap can be exploited for mapping validation by probabilistic
reasoning in the line of what is proposed in [3]. More generally, our approach
is complementary of the recent work that has been flourishing on probabilistic
databases [2, 7]. It fits into the general framework set in [13] for handling uncer-
tainty in data integration, for which it provides an effective way for computing
mapping probabilities.
The experiments that we have conducted on both real-world and controlled data
have shown the feasibility and the scalability of our approach.

References

1. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching
with COMA++. In: SIGMOD’05. ACM (2005)

2. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: ULDBs: Databases with
uncertainty and lineage. In: VLDB (2006)



12 R. Tournaire, J-M. Petit, M-C. Rousset, A. Termier

3. Castano, S., Ferrara, A., Lorusso, D., Näth, T.H., Möller, R.: Mapping validation
by probabilistic reasoning. In: Proc. of 5th ESWC (2008)

4. Castano, S., Ferrara, A., Montanelli, S.: H-MATCH: an algorithm for dynamically
matching ontologies in peer-based systems. In: SWDB (2003)

5. Chiticariu, L., Hernández, M.A., Kolaitis, P.G., Popa, L.: Semi-automatic schema
integration in clio. In: VLDB (2007)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Second Edition. The MIT Press (2001)

7. Dalvi, N.N., Suciu, D.: Answering queries from statistics and probabilistic views.
In: VLDB (2005)

8. Dean, M., Schreiber, G.: OWL web ontology language reference. W3C recommen-
dation, W3C (2004)

9. Degroot, M.H.: Optimal Statistical Decision. Wiley Classics Library (2004)
10. Do, H., Rahm, E.: COMA - a system for flexible combination of schema matching

approaches. In: VLDB (2002)
11. Doan, A., Domingos, P., Levy, A.Y.: Learning mappings between data schemas.

In: Proceedings of the AAAI-2000 Workshop on Learning Statistical Models from
Relational Data (2000)

12. Doan, A., Madhavan, J., Domingos, P., Halevy, A.Y.: Learning to map between
ontologies on the semantic web. In: WWW (2002)

13. Dong, X.L., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: VLDB
Journal (2007)

14. Euzenat, J., Shvaiko, P.: Ontology matching. Springer-Verlag (2007)
15. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In:

ECAI (2004)
16. Flake, G.W., Lawrence, S.: Efficient SVM regression training with SMO. Machine

Learning (2002)
17. Giunchiglia, F., P.Shvaiko, M.Yatskevich: S-Match: an algorithm and an imple-

mentation of semantic matching. In: Proceedings of ESWS (2004)
18. Hamdi, F., Zargayouna, H., Safar, B., Reynaud, C.: TaxoMap in the OAEI 2008

alignment contest . In: OAEI 2008 Campaign - Int. Workshop on Ontology Match-
ing (2008)

19. Hayes, P. (ed.): RDF Semantics. World Wide Web Consortium (2004)
20. Ichise, R., Takeda, H., Honiden, S.: Integrating multiple internet directories by

instance-based learning. In: IJCAI. vol. 18 (2003)
21. Ichise, R., Hamasaki, M., Takeda, H.: Discovering relationships among catalogs. in

Einoshi Suzuki And Setsuo Arikawa, Editors, Discovery Science 3245 (2004)
22. Li, W.S., Clifton, C.: Semint: a tool for identifying attribute correspondences in

heterogeneous databases using neural networks. Data Knowl. Eng. 33(1) (2000)
23. Madhavan, J., Bernstein, P.A., A.Doan, Halevy, A.: Corpus-based schema match-

ing. International Conference on Data Engineering (2005)
24. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.

In: VLDB Journal (2001)
25. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.

VLDB Journal (2001)
26. Stumme, G., Maedche, A.: FCA-MERGE: Bottom-Up Merging of Ontologies. In:

Proc. of the 17th International Joint Conference on Artificial Intelligence (2001)
27. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann, 2 edn. (2005)


