
Debugging Embedded Multimedia Application
Execution Traces through Periodic Pattern Mining

Patricia López Cueva

CIFRE Thesis supervised by:
Alexandre Termier, Jean François Méhaut and Miguel Santana

8th July, 2013

Introduction Formal Framework Its Application Conclusions

Context

STMicroelectronics

Leading semiconductor manufacturer.

Telecommunications and Multimedia

Highly integrated devices.

Competitive market: Hardware +
Software.

Software development: di�cult
and slow.

Time-to-market.

Debugging phase: long and costly.

Patricia López Cueva Thesis Defense 8th July, 2013 2 / 34

Introduction Formal Framework Its Application Conclusions

Debugging Techniques

Software Debugging

Functional Debugging
Interactive debuggers ⇒ High Intrusiveness

Performance Debugging
Pro�lers ⇒ Not enough detail

More Parallelism

More bugs: interaction between components of the system.

Interactive debuggers or pro�lers not suitable to diagnose these bugs.

Tracing: A multipurpose solution

Recording the execution of the application for a postmortem analysis.

Problem: Their size is becoming unmanageable for a manual analysis.

Need: Automatic analysis tools.

Patricia López Cueva Thesis Defense 8th July, 2013 3 / 34

Introduction Formal Framework Its Application Conclusions

Pattern Mining: A possible solution

Data Mining
Extract knowledge from huge volumes of data.

Frequent Pattern Mining
Discover regularities in the data that are called patterns.
Fine-grained analysis of the application behavior.

Characteristic of multimedia application
Periodic behavior (frame decoding).

Proposal

A new approach to debug multimedia application execution traces through
periodic pattern mining.

Patricia López Cueva Thesis Defense 8th July, 2013 4 / 34

Introduction Formal Framework Its Application Conclusions

Outline

1 Introduction
Context and Motivation

2 Formal Framework
Frequent Periodic Patterns
Core Periodic Concepts
PerMiner Algorithm
Scalability Experiments

3 Its Application
Usage Guidelines
Use Cases

4 Conclusions
Conclusions
Future Work

Patricia López Cueva Thesis Defense 8th July, 2013 5 / 34

Introduction Formal Framework Its Application Conclusions

Outline

1 Introduction
Context and Motivation

2 Formal Framework
Frequent Periodic Patterns
Core Periodic Concepts
PerMiner Algorithm
Scalability Experiments

3 Its Application
Usage Guidelines
Use Cases

4 Conclusions
Conclusions
Future Work

Patricia López Cueva Thesis Defense 8th July, 2013 6 / 34

Introduction Formal Framework Its Application Conclusions

What is a periodic pattern?

Periodic Pattern Group of events that appear regularly in the trace.

Pattern Mining Set of items that appear periodically in the transactional DB.

68.770630 getFrame
68.770697 displayFrame
68.770741 int16
68.770768 swint16
68.770869 displayFrame
68.770913 getFrame
68.770959 write16
68.770982 cpu_clock
68.771032 getFrame
68.771099 displayFrame
68.771150 read16
68.771235 fork
68.771324 get_pid
68.771346 getFrame
68.771372 displayFrame
68.771402 printk
68.771456 sem_up
68.771487 sem_down
68.771540 getFrame
68.771586 displayFrame

Execution Trace (s.µs)

Decode of
a frame

0.1 ms

t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

Preprocessing

getFrame, displayFrame
int16, swint16
displayFrame, getFrame
write16, cpu_clock
getFrame, displayFrame
read16
fork, get_pid
getFrame, displayFrame, printk
sem_up, sem_down
getFrame, displayFrame

Transactional Database

Patricia López Cueva Thesis Defense 8th July, 2013 7 / 34

Introduction Formal Framework Its Application Conclusions

What is a periodic pattern?

Periodic Pattern Group of events that appear regularly in the trace.

Pattern Mining Set of items that appear periodically in the transactional DB.

68.770630 getFrame
68.770697 displayFrame
68.770741 int16
68.770768 swint16
68.770869 displayFrame
68.770913 getFrame
68.770959 write16
68.770982 cpu_clock
68.771032 getFrame
68.771099 displayFrame
68.771150 read16
68.771235 fork
68.771324 get_pid
68.771346 getFrame
68.771372 displayFrame
68.771402 printk
68.771456 sem_up
68.771487 sem_down
68.771540 getFrame
68.771586 displayFrame

Execution Trace (s.µs)

Decode of
a frame

0.1 ms

t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

Preprocessing

getFrame, displayFrame
int16, swint16
displayFrame, getFrame
write16, cpu_clock
getFrame, displayFrame
read16
fork, get_pid
getFrame, displayFrame, printk
sem_up, sem_down
getFrame, displayFrame

Transactional Database

Patricia López Cueva Thesis Defense 8th July, 2013 7 / 34

Introduction Formal Framework Its Application Conclusions

What is a periodic pattern?

Periodic Pattern Group of events that appear regularly in the trace.

Pattern Mining Set of items that appear periodically in the transactional DB.

68.770630 getFrame
68.770697 displayFrame
68.770741 int16
68.770768 swint16
68.770869 displayFrame
68.770913 getFrame
68.770959 write16
68.770982 cpu_clock
68.771032 getFrame
68.771099 displayFrame
68.771150 read16
68.771235 fork
68.771324 get_pid
68.771346 getFrame
68.771372 displayFrame
68.771402 printk
68.771456 sem_up
68.771487 sem_down
68.771540 getFrame
68.771586 displayFrame

Execution Trace (s.µs)

Decode of
a frame

0.1 ms

t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

Preprocessing

getFrame, displayFrame
int16, swint16
displayFrame, getFrame
write16, cpu_clock
getFrame, displayFrame
read16
fork, get_pid
getFrame, displayFrame, printk
sem_up, sem_down
getFrame, displayFrame

Transactional Database

Patricia López Cueva Thesis Defense 8th July, 2013 7 / 34

Introduction Formal Framework Its Application Conclusions

Cycle(itemset, period , o�set, length)

Itemset Set of events.

Period Distance between two consecutive transactions of the cycle.

O�set Transaction identi�er of �rst transaction forming part of the
cycle.

Length Number of transactions forming part of the cycle.

Legend : gF getFrame, dF displayFrame, I16 int16, SI16 swint16, w16 write16, clk cpu_clock,
r16 read16, fk fork, gpid get_pid, pk printk, sup sem_up, sd sem_down.

Patricia López Cueva Thesis Defense 8th July, 2013 8 / 34

Introduction Formal Framework Its Application Conclusions

Periodic Pattern P(itemset, period , support, cycles)

Periodic Pattern
[Ma & Hellerstein, 2001]

A group of cycles forms a
periodic pattern if:

1 Same period for all cycles.

2 All cycles are consecutive.

3 Cycles do not overlap.

Support

Sum of all cycles lengths:
cycles = {(o1, l1), ..., (ok , lk)}

support =
k∑

i=1

li

Frequent Periodic Pattern

Given a minimum support threshold
(min_sup), a pattern is frequent if

support ≥ min_sup

Patricia López Cueva Thesis Defense 8th July, 2013 9 / 34

Introduction Formal Framework Its Application Conclusions

How many Frequent Periodic Patterns?

High redundancy!

1 All combinations of a large itemset.

2 All combinations of frequent periods.

Frequent Periodic Patterns

P1({gF}, 2, 5, {(1, 3)(8, 2)})
P2({dF}, 2, 5, {(1, 3)(8, 2)})
P3({gF , dF}, 2, 5, {(1, 3)(8, 2)})
...
P6({gF , dF}, 3, 2, {(5, 2)})
...
P9({gF , dF}, 4, 2, {(1, 2)})
...
P12({gF , dF}, 5, 2, {(3, 2)})
...
P15({gF , dF}, 5, 2, {(5, 2)})

1

2

Patricia López Cueva Thesis Defense 8th July, 2013 10 / 34

Introduction Formal Framework Its Application Conclusions

Triadic Approach [Lehmann et al., 1995]

Triadic Context

3 sets
+

1 ternary relation

Patricia López Cueva Thesis Defense 8th July, 2013 11 / 34

Introduction Formal Framework Its Application Conclusions

Set of periodic concepts

Triples
({gF , dF}, {2}, {t1, t3, t5})

Patricia López Cueva Thesis Defense 8th July, 2013 12 / 34

Introduction Formal Framework Its Application Conclusions

Set of periodic concepts

Periodic Concepts
T1({gF , dF}, {2}, {t1, t3, t5, t8, t10})

Patricia López Cueva Thesis Defense 8th July, 2013 12 / 34

Introduction Formal Framework Its Application Conclusions

Set of periodic concepts

Periodic Concepts
T1({gF , dF}, {2}, {t1, t3, t5, t8, t10})
T2({gF , dF}, {2, 4}, {t1, t5})

Patricia López Cueva Thesis Defense 8th July, 2013 12 / 34

Introduction Formal Framework Its Application Conclusions

Set of periodic concepts

Periodic Concepts
T1({gF , dF}, {2}, {t1, t3, t5, t8, t10})
T2({gF , dF}, {2, 4}, {t1, t5})
T3({gF , dF}, {2, 5}, {t3, t5, t8, t10})

Patricia López Cueva Thesis Defense 8th July, 2013 12 / 34

Introduction Formal Framework Its Application Conclusions

Set of periodic concepts

Periodic Concepts
T1({gF , dF}, {2}, {t1, t3, t5, t8, t10})
T2({gF , dF}, {2, 4}, {t1, t5})
T3({gF , dF}, {2, 5}, {t3, t5, t8, t10})
T4({gF , dF}, {2, 3, 5}, {t5, t8})

Patricia López Cueva Thesis Defense 8th July, 2013 12 / 34

Introduction Formal Framework Its Application Conclusions

Core Periodic Concepts (CPC)

Core Periodic Concept

A periodic concept (I ,P,T) is a core periodic concept if there does not
exist any other periodic concept (I ′,P ′,T ′) such that I = I ′, P ′ ⊂ P and
T ′ ⊃ T .

Periodic Concepts

T1({gF , dF}, {2}, {t1, t3, t5, t8, t10})
T2({gF , dF}, {2, 4}, {t1, t5})
T3({gF , dF}, {2, 5}, {t3, t5, t8, t10})
T4({gF , dF}, {2, 3, 5}, {t5, t8})

Patricia López Cueva Thesis Defense 8th July, 2013 13 / 34

Introduction Formal Framework Its Application Conclusions

Core Periodic Concepts (CPC)

Core Periodic Concept

A periodic concept (I ,P,T) is a core periodic concept if there does not
exist any other periodic concept (I ′,P ′,T ′) such that I = I ′, P ′ ⊂ P and
T ′ ⊃ T .

Core Periodic Concepts

T1({gF , dF}, {2}, {t1, t3, t5, t8, t10})
T2({gF , dF}, {2, 4}, {t1, t5})
T3({gF , dF}, {2, 5}, {t3, t5, t8, t10})
T4({gF , dF}, {2, 3, 5}, {t5, t8})

Patricia López Cueva Thesis Defense 8th July, 2013 13 / 34

Introduction Formal Framework Its Application Conclusions

Condensed representation

A condensed representation of a set S , is a subset
C of the set S such that every element in S can
be derived e�ciently from C .

Advantage: Less results.

Algorithms to mine them are complex to design.

Examples: closed [Pasquier et al., 1999],
non-derivable [Calders & Goethals, 2002], etc.

Patricia López Cueva Thesis Defense 8th July, 2013 14 / 34

Introduction Formal Framework Its Application Conclusions

How do we �nd CPCs?

3-STEP [Lopez Cueva et al., 2012]

1 Generate all triples.

2 Mine all periodic concepts using Data-Peeler [Cerf et al., 2009]

3 Extract CPCs.

Is there a more e�cient way?

3-STEP needs the whole set of periodic concepts to say whether a
periodic concepts is a CPC.

Connectivity property: only needs a periodic concept.

Patricia López Cueva Thesis Defense 8th July, 2013 15 / 34

Introduction Formal Framework Its Application Conclusions

PerMiner: A CPC Miner

Can we directly enumerate CPCs?

There exist enumeration techniques to enumerate directly condensed
representations [Uno et al., 2004] [Arimura & Uno, 2009].

Polynomial delay time and polynomial space complexity.

PerMiner

PerMiner bases its enumeration on these techniques: item
enumeration with a special period handling.

Depth-�rst search algorithm based on LCM [Uno et al., 2004] algorithm.

Preserves polynomial delay time and polynomial space complexity
(proven).

Proven soundness, completeness and no duplicate generation.

Patricia López Cueva Thesis Defense 8th July, 2013 16 / 34

Introduction Formal Framework Its Application Conclusions

PerMiner: How does it work?

⊥

{gF}

gF

(gF , 2,
{t1, t3, t5, t8, t10})

(gF , 3,
{t5, t8})

(gF , 4,
{t1, t5})

(gF , 5,
{t3, t5, t8, t10})

Period Computation

({gF , dF}, 2, {t1, t3, t5, t8, t10})⋂
t1, t3, t5, t8, t10

{gF , dF}

Recursive call

I16 sd
...

Patricia López Cueva Thesis Defense 8th July, 2013 17 / 34

Introduction Formal Framework Its Application Conclusions

PerMiner: How does it work?

⊥

{gF}

gF

(gF , 2,
{t1, t3, t5, t8, t10})

(gF , 3,
{t5, t8})

(gF , 4,
{t1, t5})

(gF , 5,
{t3, t5, t8, t10})

Period Computation

({gF , dF}, 2, {t1, t3, t5, t8, t10})⋂
t1, t3, t5, t8, t10

{gF , dF}

Recursive call

I16 sd
...

Patricia López Cueva Thesis Defense 8th July, 2013 17 / 34

Introduction Formal Framework Its Application Conclusions

PerMiner: How does it work?

⊥

{gF}

gF

(gF , 2,
{t1, t3, t5, t8, t10})

(gF , 3,
{t5, t8})

(gF , 4,
{t1, t5})

(gF , 5,
{t3, t5, t8, t10})

Period Computation

({gF , dF}, 2, {t1, t3, t5, t8, t10})⋂
t1, t3, t5, t8, t10

{gF , dF}

Recursive call

I16 sd
...

Patricia López Cueva Thesis Defense 8th July, 2013 17 / 34

Introduction Formal Framework Its Application Conclusions

PerMiner: How does it work?

⊥

{gF}

gF

(gF , 2,
{t1, t3, t5, t8, t10})

(gF , 3,
{t5, t8})

(gF , 4,
{t1, t5})

(gF , 5,
{t3, t5, t8, t10})

Period Computation

({gF , dF}, 2, {t1, t3, t5, t8, t10})⋂
t1, t3, t5, t8, t10

{gF , dF}

Recursive call

I16 sd
...

Patricia López Cueva Thesis Defense 8th July, 2013 17 / 34

Introduction Formal Framework Its Application Conclusions

PerMiner: How does it work?

⊥

{gF}

gF

(gF , 2,
{t1, t3, t5, t8, t10})

(gF , 3,
{t5, t8})

(gF , 4,
{t1, t5})

(gF , 5,
{t3, t5, t8, t10})

Period Computation

({gF , dF}, 2, {t1, t3, t5, t8, t10})⋂
t1, t3, t5, t8, t10

{gF , dF}

Recursive call

I16 sd
...

Patricia López Cueva Thesis Defense 8th July, 2013 17 / 34

Introduction Formal Framework Its Application Conclusions

Scalability Experiments

Experimental set-up

PerMiner implemented in C++

Run on a multiprocessor computing server:

4 Intel Xeon X7560 processors (8 cores each) 2.27 GHz 64 GB RAM.

Real Data

HNDTest Application: Test application for STMicroelectronics
middleware for set-top boxes.

Execution trace of a video playback: 528,360 events, 72 distinct events.

Split into 10 ms intervals: 15,000 transactions, 35 items/transaction.

Patricia López Cueva Thesis Defense 8th July, 2013 18 / 34

Introduction Formal Framework Its Application Conclusions

Scalability Experiments (Real Data)

Experimental set-up: 1 core, 15,000 transactions, 35 items/transaction.

Patricia López Cueva Thesis Defense 8th July, 2013 19 / 34

Introduction Formal Framework Its Application Conclusions

Scalability Experiments (Parallelization)

Experimental set-up: 1 to 32 cores, minimum support 10%, 15,000
transactions, 35 items/transaction.

speedupn =
sequential execution time

execution time with n threads

Patricia López Cueva Thesis Defense 8th July, 2013 20 / 34

Introduction Formal Framework Its Application Conclusions

Outline

1 Introduction
Context and Motivation

2 Formal Framework
Frequent Periodic Patterns
Core Periodic Concepts
PerMiner Algorithm
Scalability Experiments

3 Its Application
Usage Guidelines
Use Cases

4 Conclusions
Conclusions
Future Work

Patricia López Cueva Thesis Defense 8th July, 2013 21 / 34

Introduction Formal Framework Its Application Conclusions

Usage Guidelines

Special case of KDD methodology

Software developers are not familiar with data mining techniques.

A methodology gives developers the necessary guidelines to exploit this
new technique.

Patricia López Cueva Thesis Defense 8th July, 2013 22 / 34

Introduction Formal Framework Its Application Conclusions

Preprocessing

Execution
Trace

Preprocessing Transactional
Database

Consists in transforming an execution trace into a transactional database
by splitting the trace in a sequence of sets of elements

Which information is important?

GetFrame, 135_GetFrame, GetFrame_OK , ...

Which splitting criterion better suits the required analysis?

We proposed two methods: Time interval and function name.
Domain speci�c knowledge might propose better suited methods.

Patricia López Cueva Thesis Defense 8th July, 2013 23 / 34

Introduction Formal Framework Its Application Conclusions

Postprocessing

Set of
CPCs

Postprocessing Conclusions

How to analyze PerMiner results?

Manually is not manageable.

Visualization and analysis tools are needed.

We have implemented two tools:

Analysis tool: Competitors Finder.
Visualization tool: CPCViewer.

Patricia López Cueva Thesis Defense 8th July, 2013 24 / 34

Introduction Formal Framework Its Application Conclusions

Competitors Finder

Figure: Example of two patterns in full competition

Calculating Competition Ratio

Competition Ratio = 100 % - (co-execution + co-gap)

If Competition Ratio ≥ Minimum Competition Ratio ⇒ Competitors!

Patricia López Cueva Thesis Defense 8th July, 2013 25 / 34

Introduction Formal Framework Its Application Conclusions

CPCViewer

Itemsets
Hierarchical
View

Itemsets
Radial
View

Periodicity
Detailed
View

Periodicity
Overview

Patricia López Cueva Thesis Defense 8th July, 2013 26 / 34

Introduction Formal Framework Its Application Conclusions

1st Use Case: HNDTest Application

STAPI: set-top box middleware.

STi7200: set-top box SoC.

Tracing: KPTrace kernel module.

Trace split into 1 ms intervals.

PerMiner (10%): 758 CPCs in
195 s.

Pattern Quantity

FPP 18,459
PC 51,446
CPC 758

Patricia López Cueva Thesis Defense 8th July, 2013 27 / 34

Introduction Formal Framework Its Application Conclusions

1st Use Case: HNDTest Application

Discovered con�ict between the application and the system (USB port)

Interrupt_16: processor clock interrupt.

Interrupt_168: USB interrupt.

HNDTest_try_to_wake_up: system call (try_to_wake_up).

Pattern 1: Interrupt_16, Interrupt_168

Pattern 2: HNDTest_try_to_wake_up

Patricia López Cueva Thesis Defense 8th July, 2013 28 / 34

Introduction Formal Framework Its Application Conclusions

2nd Use Case: GStreamer Application

Multimedia application using GStreamer multimedia framework.

Figure: Orly SoC Block Diagram

Orly STiH416 multi-core MPSoC.

Tracing: KPTrace kernel module.

Trace split into 32 ms intervals.

PerMiner (10%): 787 CPCs in
28 s.

Pattern Quantity

FPP 3,086,321

PC 21,588

CPC 787

Patricia López Cueva Thesis Defense 8th July, 2013 29 / 34

Introduction Formal Framework Its Application Conclusions

2nd Use Case: GStreamer Application

Delay in �ushing interrupt causing bu�er
over�ow

Mixer maps audio samples every 32ms.

Expected undisrupted pattern of period 1.

Found regular gaps in periodicity.

Patricia López Cueva Thesis Defense 8th July, 2013 30 / 34

Introduction Formal Framework Its Application Conclusions

Outline

1 Introduction
Context and Motivation

2 Formal Framework
Frequent Periodic Patterns
Core Periodic Concepts
PerMiner Algorithm
Scalability Experiments

3 Its Application
Usage Guidelines
Use Cases

4 Conclusions
Conclusions
Future Work

Patricia López Cueva Thesis Defense 8th July, 2013 31 / 34

Introduction Formal Framework Its Application Conclusions

Conclusions

Objective

Help developers in debugging multimedia embedded applications.

Proposed a new approach that makes use of periodic pattern mining.

Pattern Mining

De�ned condensed representation of frequent periodic patterns: Core
Periodic Concepts (CPC).

Implemented e�cient CPC miner algorithm PerMiner.

Embedded Systems

Given some guidelines to use our approach.

Developed postprocessing tools: CPCViewer and Competitors Finder.

Patricia López Cueva Thesis Defense 8th July, 2013 32 / 34

Introduction Formal Framework Its Application Conclusions

Future Work

Pattern Mining

De�ne enumeration strategy based on items and periods.

Explore di�erent types of periodic patterns: sequences, graphs, etc.

Include domain knowledge in the mining process (SoCTrace, Leon Fopa
PhD).

Analysis

Automatic detection of anomalies.

De�nition of a full methodology (CIFRE, Oleg Iegorov PhD).

Patricia López Cueva Thesis Defense 8th July, 2013 33 / 34

Introduction Formal Framework Its Application Conclusions

Questions?

Patricia López Cueva Thesis Defense 8th July, 2013 34 / 34

Triadic Approach

Periodic Triadic Context (I,P, T ,Y)
I set of items.

P set of periods.

T set of transactions.

Y ternary relation, Y ⊆ I × P × T .

Example (min_sup = 2)

I = {gF , dF , I16, SI16, ...}
P = {1..5(|D|/min_sup)}
T = {t1, ..., t10}
Y = {(gF , 2, t1), (gF , 2, t3),
(gF , 2, t5), (gF , 2, t8),
(gF , 2, t10), (dF , 2, t1),
(dF , 2, t3), (dF , 2, t5), ...}

Patricia López Cueva Thesis Defense 8th July, 2013 1 / 12

Triadic Approach

Periodic Concept

A triple (I ,P,T) is frequent if I 6= ∅, P 6= ∅ and |T | ≥ min_sup.

A frequent triple (I ,P,T) is a periodic concept if none of its three
components can be enlarged without violating the condition
I × P × T ⊆ Y.
Example: T1({gF , dF}, {2}, {t1, t3, t5, t8, t10}).

Patricia López Cueva Thesis Defense 8th July, 2013 2 / 12

Connectivity Properties of Core Periodic Concepts

De�nition

tidlist(X , p) returns the list of all t transactions such that (X , p, t) ∈ Y.

Theorem

A periodic concept (X ,P,T) is a core periodic concept if and only if for all p ∈ P it is

true that tidlist(X , p) = T .

De�nition

A triple (X ,P,T) is fully connected if ∀p ∈ P and ∀t ∈ T there exist t′ ∈ T \ {t} such

that the distance between t and t′ is equal to p.

Proposition

A core periodic concept is fully connected.

Patricia López Cueva Thesis Defense 8th July, 2013 3 / 12

Patricia López Cueva Thesis Defense 8th July, 2013 4 / 12

1 procedure PerMiner (D,min_sup);
Data: dataset D, minimum support threshold min_sup
Result: Output all Core Periodic Concepts that occur in D

2 begin

3 if |D| ≥ min_sup then

4 ⊥clo ←
⋂

t∈D t

5 output (⊥clo , {1..|D|/2},D)
6 D⊥clo

= {t \ ⊥clo |t ∈ D}
7 foreach e ∈ I with e /∈ ⊥clo do

8 perIter(⊥clo ,D⊥clo
, e, ∅,min_sup)

Patricia López Cueva Thesis Defense 8th July, 2013 5 / 12

1 procedure perIter(X ,DX , e, el,min_sup);
Data: Itemset of a discovered CPC X , reduced dataset DX , item e, exclusion list el , minimum support threshold

min_sup.
Result: Output all Core Periodic Concepts whose itemset is pre�xed by X and whose transactions are in DX , with

minimal support min_sup.
2 begin
3 A := {e}
4 B := getPeriods(tidlist(A),min_sup) /* Period computation */

5 B′ := B \ {b | ∃b′ ∈ B such that b.occs ⊂ b′.occs}
6 G := group(B′)
7 S ← ∅ /* Closure computation */
8 foreach g ∈ G do

9 A′ :=
⋂
t∈g.occs t

10 S := S ∪ (A′, g.periods, g.occs)

11 S := �lter(S); /* First parent test */
12 new_el ← el
13 enum ← ∅ /* Itemset enumeration */

14 foreach (A′,P,T) ∈ S do

15 if max_elem(A′) = e then

16 Q = X ∪ A′

17 if el_test(Q, el) then

18 output (Q,P,T)
19 if Q /∈ enum then

20 DQ = reduce(DX ,Q, e,min_sup) /* Dataset Reduction */

21 foreach i ∈ I with i < e and i /∈ Q do

22 perIter(Q,DQ , i, new_el,min_sup)

23 enum := enum ∪ Q

24 new_el := new_el ∪ Q

Algorithm 1: Iterative CPC GeneratorPatricia López Cueva Thesis Defense 8th July, 2013 6 / 12

1 function getPeriods(T ,min_sup)
Data: Transaction list T , minimum support threshold min_sup
Result: A list of tuples (period, transaction list of the period)

2 B ← ∅
3 foreach period ∈ [1..|D|/min_sup] do
4 b.occs ← ∅
5 b.periods := period
6 i := 0
7 while i < (|T | − 1) do
8 if T [i].checked == false then
9 j := i + 1

10 while j < |T | AND (T [j]− T [i]) <= period do
11 if (T [j]− T [i]) == period then
12 b.occs := b.occs ∪ i ; T [i].checked := true
13 b.occs := b.occs ∪ j; T [j].checked := true
14 k := j + 1
15 while k < |T | AND (T [k]− T [j]) <= period do
16 if (T [k]− T [j]) == period then
17 b.occs := b.occs ∪ k; T [k].checked := true
18 j := k

19 k + +

20 j + +

21 i + +

22 if |b.occs| >= min_sup then
23 B := B ∪ b

24 return B
25 end function

Patricia López Cueva Thesis Defense 8th July, 2013 7 / 12

1 function group(B)
Data: List of tuples (period, transaction list of the period) B
Result: A list of tuples grouped by transaction list

2 foreach b, b′ ∈ B do

3 if b.occs == b′.occs then
4 b.periods := b.periods ∪ b′.periods
5 B := B \ b′

6 return B

7 end function

Patricia López Cueva Thesis Defense 8th July, 2013 8 / 12

1 function el_test(Q, el)
Data: Itemset Q, Exclusion list el
Result: True if none of the elements in el is included in Q. False

otherwise.
2 foreach X ∈ el do

3 if X ⊂ Q then

4 return False

5 return True

6 end function

Patricia López Cueva Thesis Defense 8th July, 2013 9 / 12

1 function �lter(S)
Data: List of CPCs S
Result: A �ltered list of CPCs

2 foreach (A,P,C), (A′,P ′,C ′) ∈ S do

3 if A ⊂ A′ then
4 S := S \ (A′,P ′,C ′)

5 return S

6 end function

Patricia López Cueva Thesis Defense 8th July, 2013 10 / 12

1 function reduce(Dreduced
X ,A′, e,min_sup)

Data: Database Dreduced
X , Itemset A′, element e, minimum support

threshold min_sup
Result: Reduced Database of A′: Dreduced

A′

2 Dreduced
A′ = Dreduced

X [e]

3 foreach i ∈ I do /* All items of I with support smaller
than */

/* min_sup are removed from the database */
4 if support(i) < min_sup then

5 Suppress i from all transactions in Dreduced
A′

6 foreach i ∈ A′ do /* All items of A′ are removed from
the database */

7 Suppress i from all transactions in Dreduced
A′

8 return Dreduced
A′

9 end function

Patricia López Cueva Thesis Defense 8th July, 2013 11 / 12

Why not a closure operator?

Closed Patterns:

O�er a reduced representation of the set of frequent patterns.
but closure operators based on binary relations.

Periodic Patterns:

Ternary relation: the item i is found in the transaction t with period p.

Closure operator for n-ary relations with n > 2.

"It is no longer possible to enumerate one attribute domain (usually
items) and compute the rest of the pattern thanks to a Galois
connection" [CERF09].

Patricia López Cueva Thesis Defense 8th July, 2013 12 / 12

	Introduction
	Context and Motivation

	Formal Framework
	Frequent Periodic Patterns
	Core Periodic Concepts
	PerMiner Algorithm
	Scalability Experiments

	Its Application
	Usage Guidelines
	Use Cases

	Conclusions
	Conclusions
	Future Work

	Appendix

