
THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
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Résumé : Dans le domaine de l’extraction de motifs, il existe un grand nombre
d’algorithmes pour résoudre une large variété de sous problèmes sensiblement identiques.
Cette variété d’algorithmes freine l’adoption des techniques d’extraction de motifs pour
l’analyse de données. Dans cette thèse, nous proposons un formalisme qui permet de
capturer une large gamme de problèmes d’extraction de motifs. Pour démontrer la
généralité de ce formalisme, nous l’utilisons pour décrire trois problèmes d’extraction de
motifs : le problème d’extraction d’itemsets fréquents fermés, le problème d’extraction de
graphes relationnels fermés ou le problème d’extraction d’itemsets graduels fermés.

Ce formalisme nous permet de construire ParaMiner qui est un algorithme générique et
parallèle pour les problèmes d’extraction de motifs. ParaMiner est capable de résoudre
tous les problèmes d’extraction de motifs qui peuvent être décrit dans notre formalisme.
Pour obtenir de bonne performances, nous avons généralisé plusieurs optimisations pro-
posées par la communauté dans le cadre de problèmes spécifique d’extraction de motifs.
Nous avons également exploité la puissance de calcul parallèle disponible dans les archi-
tectures parallèles.

Nos expériences démontrent qu’en dépit de la généricité de ParaMiner ses performances
sont comparables avec celles obtenues par les algorithmes les plus rapides de l’état de
l’art. Ces algorithmes bénéficient pourtant d’un avantage important, puisqu’ils incorporent
de nombreuses optimisations spécifiques au sous problème d’extraction de motifs qu’ils
résolvent.
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Abstract: In the pattern mining field, there exist a large number of algorithms that can
solve a large variety of distinct but similar pattern mining problems. This variety prevent
broad adoption of data analysis with pattern mining algorithms. In this thesis we propose
a formal framework that is able to capture a broad range of pattern mining problems. We
illustrate the generality of our framework by formalizing three different pattern mining
problems: the problem of closed frequent itemset mining, the problem of closed relational
graph mining and the problem of closed gradual itemset mining.

Building on this framework, we have designed ParaMiner, a generic and parallel algo-
rithm for pattern mining. ParaMiner is able to solve any pattern mining problem that
can be formalized within our framework. In order to achieve practical efficiency we have
generalized important optimizations from state of the art algorithms and we have made
ParaMiner able to exploit parallel computing platforms.

We have conducted thorough experiments that demonstrate that despite being a generic
algorithm, ParaMiner can compete with the fastest ad-hoc algorithms.
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Chapter 1
Introduction

In 1994, Agrawal and Srikant took the list of the sale records of a retail store and tried to
discover knowledge about buying habits of customers. They did so by extracting recurring
patterns from the list of receipts. These patterns consisted in sets of items frequently
occurring together in customer baskets. For example the pattern {cereals,milk} is likely
to be a frequent one since most people buy milk with their cereals.

The frequent sets of items and their frequency can later be turned into association rules
in order to know whether customers who bought milk are likely to buy cereals, or the
opposite. In this context, the association rule: cereals → milk – stating that people
buying cereals are likely to buy milk – is the most likely one. The association rules
extracted from a retail store dataset are considered as valuable knowledge to rearrange
items in shelfs and improve sales.

Back then Agrawal’s work on pattern mining was pushed by the progress in bar-code
technology and the increasing data storage capacities. Nowadays, recording devices are
ubiquitous and almost every piece of information is digitally recorded. In the scientific
field, collecting tremendous amounts of experimental data has become a standard. At
the CERN in Geneva, the Large Hadron Collider produces over 15 million gigabytes of
experimental data every year. Other scientific applications in chemistry, meteorology and
micro biology generate similar amounts of data.

For centuries, results of scientific experiments were carefully analyzed by experts with
strong knowledge in the field. However, no human beings are capable of tackling the
tremendous amounts of data generated by modern scientific experiments. Hence computer
programs are now required to assist the domain experts to analyze their experimental data.
These programs can help to discover relevant informations from an ocean of mostly noisy
data.

Since 1994, the pattern mining community has grown and gain in diversity. It is today
an important topic of computer science addressed by many scientific publications in in-
ternational conferences. In order to harness the diversity of the pattern mining problems,
researchers have proposed various techniques that fall into two categories: the statistical
approach and the structural approach.

The traditional approach to handle large amounts of data is to use statistics. Nowadays,
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2 CHAPTER 1. INTRODUCTION

statistical approaches for pattern mining are widely used to mine for knowledge in very
large graphs such as the web, social networks or even gene networks. In this context,
so called statistical graph mining algorithms are used to compute general informations
such as statistical distributions of the node degrees or such as typical topologies of small
clusters[KTF09, MN08]. This approach allows to infer global properties about the input
graph and spot representative or dissimilar patterns in this graph. Statistical approaches
can tackle very large input datasets and provide informative knowledge over the dataset.

The other approach is in the direct vein of Agrawal’s pattern mining algorithm. It consists
in extracting algebraic substructures such as sets but also sequences or graphs from the
input dataset. Relevant substructures are identified according to whatever property is
meaningful to the application. In most applications the frequency of a pattern is the basic
property to discriminate irrelevant patterns, but not always. In this thesis we exclusively
deal with this approach of pattern mining so called structural pattern mining.

1.1 Structural pattern mining

Pushed by the interesting results obtained in the context of market basket analysis, experts
from other scientific domains with large set of experimental data, started to show interest
in pattern mining techniques. In collaboration with researchers from the pattern mining
community, they have elaborated new algorithms to extract meaningful patterns from
their datasets.
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Figure 1.1: Azidothymidine (c) is a molecular pattern that occurs in many anti-HIV
molecules such as (a) and (b).

For example, chemical engineers were interested in extracting characteristic substructures
from datasets of chemical compounds. In [KDRH01] Kramer et al. have mined a dataset
of molecules represented as graphs. Those molecules had been previously tested for their
capability to protect human cells from the HIV infection (an example of such molecules



1.1. STRUCTURAL PATTERN MINING 3

Date Temp. (°C) Pressure (hPa) Wind direction Wind speed (km/h)

May 26 2011 17.6 1021.20 300 57
May 27 2011 18.5 1021.30 310 57
May 28 2011 20.4 1018.20 320 51
May 29 2011 28.5 1012.80 110 26
May 30 2011 18.9 1014.80 290 67
May 31 2011 16.5 1026.50 310 77

Figure 1.2: Meteorological records of climate taken from May 25 2011 to May 31 2011, at
6pm, in France. The gradual pattern {T °↑, P ↓,Wind ↑} is observable day 26, 28, 29 and
31.

is shown in figure 1.1 (a) and (b)). The goal was to extract the substructures commonly
occurring in anti-HIV molecules (e.g. figure 1.1 (c)). Although in [KDRH01] Kramer et al.
were only able to extract linear fragments of this compound, other approaches developed
by Inokuchi et al. in [IWM00] and Yan et al. in [YH02] are capable of extracting full
graph patterns such as in figure 1.1 (c). Graph mining is a useful application to analyze
many other types of dataset such as web logs or gene networks datasets.

Yet some datasets were still out of reach. Recently in [DJLT09], Di-Jorio et al have
conducted work in order to analyze datasets consisting in large amounts of quantitative
data. The goal is to extract correlated variations of quantitative values. For example, the
dataset in figure 1.2 is a list of records from various climatic sensors. Given this dataset,
one may want to know if there exists any correlation between the measured values. A
fine analysis of this dataset reveals that in 67% of the records, when the temperature
increases the pressure decreases and the wind speed increases. Gradual pattern mining is
able to extract such co-variations formalized as {T °↑, P ↓,Wind ↑}. Di-Jorio in[DJLT09]
have worked on gradual pattern mining in order to extract co-variations in datasets with
hundreds of attributes and thousands of records. This type of pattern is helpful to mine
survey database, data streams or network sensors readings.

Because of the diversity of the datasets and the patterns to extract, most people having
interest in pattern mining have developed their own ad-hoc algorithm adapted to their
needs. Although the problems addressed by those algorithms look quite different, they are
all different instances of the same problem: structural pattern mining. In this thesis, we
define the problem of structural pattern mining as follows:

Given a dataset, a pattern structure definition and a pattern selection criterion, extract
the set of patterns made up of all the structures occurring in the dataset satisfying the
selection criterion.

� The dataset is the input data to mine. In the context of basket market analysis, the
dataset is a list of receipts where each receipt is a set of items purchased together. It
can also be a set of molecules, when mining for substructures in chemical compounds,
or the list of records from climatic sensors when mining for gradual patterns.

� The pattern structure definition specifies the structure of the patterns to extract. It
is set according to dataset structure and the application needs. For example, in the
context of market basket analysis, patterns are subsets of the set of available items.
When mining molecular compounds, the patterns are labeled graphs where vertices
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are labeled with chemical elements names in a given set and edges are labeled with
covalent bound types. The pattern structure definition intentionally defines the set
of all the candidate patterns.

� The pattern selection criterion is formulated by the application experts. A candidate
pattern must meet this criterion in order to be an actual pattern. It discriminates
patterns relevant to the application from irrelevant ones. The frequency is com-
monly used to discard irrelevant patterns, however it can be combined with other
requirements such as the pattern must be a connected graph (see. Section 2.2.2).

When it’s clear from context, pattern mining will be used as a shortcut for structural
pattern mining.

Pattern mining is a very difficult problem that raises many important challenges such as:

� Encoding and preprocessing of raw data.

� Handling the combinatorial explosion of the number of candidate patterns.

� Filtering and analyzing patterns that are extracted.

In this thesis we address the second challenge by generalizing in a principled way sev-
eral optimizations and by incorporating them into a generic and parallel pattern mining
algorithm.

1.2 Scope of this thesis

The standard method to output the set of patterns is to generate candidate patterns with
respect to the pattern structure definition, and then test if they occur in the dataset
and satisfy the selection criterion. However the number of candidate patterns to test is
theoretically tremendous. For example if a retail store, selling 1000 distinct items, wants
to mine its sale records to extract frequent sets of items, the number of candidate patterns
is as big as 21000(∼ 10300). Generating and testing this amount of candidate patterns is
not feasible in practice.

To reduce the number of candidate patterns and simplify the process of testing them, most
pattern mining algorithms were designed to take advantage of the specificities of patterns
and datasets to mine.

In [AS94], Agrawal and Srikant address the problem of mining frequent subsets by exploit-
ing the anti-monotonicity property of the frequent sets. This property states that any set
including an infrequent subset is also infrequent. Based on this property, Agrawal’s al-
gorithm avoids generating all the candidate patterns including one or more infrequent
subset. This principle was later adapted to mine other types of frequent patterns such as
frequent graphs in [IWM00].

In [HPY00], Han et al. have proposed FP-growth, a depth-first-search recursive algorithm
which starts from a frequent set and efficiently computes the frequent supersets of this set.
In FP-growth items occurring in the dataset are stored in a prefix tree like structure called
FP-tree. FP-growth avoids costly database scans by building for each recursive call a new
FP-tree representing only the sub-dataset relevant to the recursive call being processed.
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Since larger frequent sets are less represented in the dataset, FP-trees get smaller as the
algorithm gets deeper in the recursive calls. This approach allowed FP-growth to tackle
big datasets with a divide and conquer approach. An improved version of this technique
is used in the fastest frequent set mining algorithms, LCM[UKA04].

Reducing the number of candidate patterns may not be sufficient to tackle large datasets
because the number of patterns can be large as well. In order to avoid the combinatorial
explosion of the number of patterns, recent algorithms focus on the extraction of closed
patterns only. Closed patterns were introduced by Pasquier et al. in [PBTL99] in the
context of mining frequent sets. A frequent set is closed if and only if there exist no strict
supersets occurring in the dataset with an equal frequency. Mining closed frequent sets
represents no loss of information over mining frequent sets. It is indeed possible to derive
the identity and the frequency of any frequent set from the set of closed sets. It is also
more concise; in practice the number of closed frequent sets can be orders of magnitude
smaller than the number of frequent sets. Closed pattern mining is a major issue to reach
efficiency in pattern mining, thus various types of closure operator were defined for other
types of patterns such as trees, graphs and even gradual patterns.

In order to tackle bigger datasets researchers have worked on pattern mining algorithms
able to exploit parallel architectures. The problem has attracted more attention since
the parallelism became truly ubiquitous with the advent of multi-core architectures. In-
deed, almost every processor available nowadays embeds two or more computing cores
providing true parallelism at low cost. However naive parallelizations of pattern mining
algorithms perform poorly on multi-core platforms due to load imbalance or excessive
memory consumption. The problem of designing pattern mining algorithms for multi-core
architectures has been addressed by several research papers in the context of frequent set
mining [LOP07, NTMU10], tree mining [TP09] or graph mining [BPC06]. These papers
have shown that dynamic work distribution strategies and customized data structures can
reduce the load imbalance and the memory consumption. Both are required to achieve
good scalability with the number of cores used to run the algorithm.

The additional computational power available in multi-core architectures, together with
the algorithmic improvements mentioned above, should allow to tackle many real world
datasets. However, very few pattern mining algorithms fully integrate these research
works. Indeed, the lack of an unified definition for pattern mining problems make any im-
provement hardly transposable from one pattern mining problem to another. In addition
most of these improvements do not coexist well together. For example, enumeration of
closed patterns breaks the algorithmic properties that allowed FP-growth to tackle the
problem with a divide and conquer approach. Without the divide and conquer approach,
the problem must be handled globally, leading to unwanted communication and synchro-
nization when it comes to parallel algorithms. As a consequence, most application experts
do not have access to adequate and efficient algorithms to mine their datasets.

1.3 Contributions of this thesis

In this thesis, we aim at generalizing the main improvements proposed over the years to
mine large specific datasets into a single generic algorithm. This includes efficient pattern
enumeration strategies, closed pattern mining, divide and conquer methods to tackle the
dataset and parallelism.
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Our contributions are the following:

A generic definition of the structural pattern mining problem. Following Boley
et al. in [BHPW07] or Arimura and Uno in [AU09], we define the problem of enumerating
closed patterns as the problem of enumerating sets satisfying constraints in a set system.
This definition comes with the guarantee that the problem can be solved in polynomial
delay and space, if the underlying set system is strongly accessible. We extended this defi-
nition to pattern mining by formalizing and incorporating the notion of patterns occurring
in a dataset. We show that this definition is sufficient to capture many different pattern
mining problems such as frequent itemset mining, gradual pattern mining, relational graph
mining.

A generic and parallel algorithm for structural pattern mining. ParaMiner
is an algorithm able to solve any pattern mining problem that can be expressed according
to the definition mentioned above. In order to tackle large-scale datasets ParaMiner,
successfully addresses several important issues of pattern mining. It efficiently solves
the problem of parallel enumeration of closed patterns. It also generalizes several of the
most important optimizations introduced in ad-hoc algorithms such as database reduction.
ParaMiner is then proven to be correct for any pattern mining algorithm expressed
according to our definition.

A parallelism engine for multi-core architectures adapted to pattern mining
algorithms. Load imbalance and high memory consumption are two important prob-
lems observed with almost any pattern mining algorithm. We address these problems by
proposing Melinda, a parallelism engine for pattern mining algorithms. Melinda is able
to accurately drive the execution of a parallel pattern mining algorithm according to a
strategy expressed with abstract concepts. It was designed based on an extensive study
conducted over several pattern mining applications involving different types of patterns
and datasets. Although Melinda is the parallelism engine in use in ParaMiner, it was
designed independently and is used in other parallel pattern mining algorithms[NTMU10].

1.4 Outline

This thesis is organized as follows:

� Chapter 2 provides our definition of pattern mining and the formal background on
which it is built.

� Chapter 3 describes ParaMiner, our generic and parallel algorithm for pattern
mining.

� Chapter 4 is an experimental validation of ParaMiner. In this chapter, we report
on thorough experiments that we have conducted in order to evaluate ParaMiner’s
efficiency.
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� We present in Chapter 5 the state of the art in generic pattern mining and the most
recent works in parallel pattern mining.

� We conclude and present several perspectives in Chapter 6.
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Chapter 2
A generic framework for mining patterns
in a dataset

Contents

2.1 Formal background . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Candidate patterns . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Selection criterion . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Closed patterns . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Formal problem statement . . . . . . . . . . . . . . . . . 16

2.2 Formalization of different specific pattern mining problems . . . . . 16

2.2.1 Mining closed frequent itemsets (fim) . . . . . . . . . . . 17

2.2.2 Mining closed frequent connected relational graphs (crg) 17

2.2.3 Mining closed frequent gradual itemsets (gri) . . . . . . 18

2.3 Closed pattern enumeration . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Patterns as sets in a set system . . . . . . . . . . . . . . 22
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2.3.3 Accessibility in pattern mining problems . . . . . . . . . 26

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

The naive approach to output a set of patterns is to generate all the candidate patterns
matching the pattern structure definition, then to test which candidate patterns satisfy
the selection criterion. However generating and testing the set of candidate patterns is
intractable because the number of structures is combinatorial with the number of possible
structure components. For example, the number of candidate itemsets that can be gener-
ated over a set of n distinct items is as big as 2n. The number of candidate patterns is
even larger with other pattern structure definitions such as sequence-based or graph-based
structure definitions.

In most pattern mining problems, the candidate patterns can be partially ordered by an
inclusion relation. Thus the set of candidate patterns has a directed acyclic graph (a
DAG) structure. Even if this DAG is too big to be entirely constructed, it is an important

9
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resource to efficiently explore the set of candidate patterns. Indeed, the generation of large
amounts of non-meaningful candidate patterns can be avoided given the results of tests
performed on a small number of candidate patterns.

The structured exploration of the set of candidate pattern is however insufficient to achieve
reasonable performances when the number of meaningful patterns itself is large. In order
to cope with this problem, Pasquier et al.([PBTL99]) have proposed to mine closed patterns
only. The set of closed patterns is a lossless representation of the set of all the meaningful
patterns, that can be one to several order of magnitude smaller.

Exploring the DAG structure formed by the candidate patterns in order to extract closed
patterns only is a complex task. Existing pattern mining algorithms are typically driven
by an enumeration strategy to ensure exhaustive and non redundant enumeration of all the
closed patterns. Until recently the work on enumeration strategies was lacking theoretical
foundations. Enumeration strategies for most pattern mining algorithms were designed in
an ad-hoc way, based on specific properties of the search space and the patterns mined.

In this chapter we first provide a generic formal framework to address the problem of
pattern mining in which the patterns are represented as sets of elements. We show how
it is able to capture several assorted pattern mining problems such as relational graph
mining or gradual pattern mining. We then present the work of Boley et al.([BHPW10])
and Arimura and Uno([AU09]), on closed pattern enumeration, and show how it can
be used to define an efficient and generic enumeration strategy for enumerating closed
patterns in a parallel algorithm. This will introduce the ParaMiner algorithm that will
be extensively presented in the next chapter.

2.1 Formal background

2.1.1 Dataset

In our setting, any dataset is defined as a sequence of transactions over a finite ground set
of elements.

Definition 2.1 (Dataset)
Given a ground set E, a dataset DE is sequence of transactions [t1, t2, . . . , tn] where each
transaction is a subset of the ground set E. The set of transaction indices is called the tid
set and is denoted TDE

.

We also use the following notations:

� DE(i), with i ∈ TDE
denotes the transaction ti in DE

� |DE | denotes the number of transactions in DE

� ||DE || =
∑i≤|DE |

i=1 |DE(i)| denotes the size of DE .

Many application datasets can be directly stored in this form. For instance, in the context
of market basket analysis [AS94], if the ground set is the set of all available items such
as E = {apple, beer, chocolate . . .}, one can store each receipt, that is each set of items
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purchased together, as a transaction. The set DE of all the transactions is a dataset for
this application. An example is shown in Figure 2.1.

receipt # 1 2 3

apple
beer
choco-
late

apple
beer

apple
choco-
late

⇒

E = {apple, beer, chocolate}

DE =
[{apple, beer, chocolate},
{apple, beer},
{apple, chocolate}]

Figure 2.1: A dataset for frequent itemset mining in the context of market basket analysis.
The ground set E is the set of available items, each transaction in DE is a set of items
purchased together.

In the context of gene network analysis [YZH05], given a set of genes denoted G, the
ground set E is the cartesian product G×G of pairs of genes representing all the possible
gene interactions in a given set G of genes. In the dataset, each transaction is a set of
interactions observed during one experiment. An example is shown in Figure 2.2.

2.1.2 Candidate patterns

In our setting a candidate pattern is simply defined as a subset of the ground set.

Definition 2.2 (candidate pattern)
A candidate pattern is any subset of the ground set E.

The support set of a candidate pattern is the sub-dataset made of the transactions includ-
ing this candidate pattern.

Definition 2.3 (support set)
Given a dataset DE and a candidate pattern X ⊆ E, the support set of X denoted DE [X]
is the sequence of transactions in DE including X.

Definition 2.4 (tid support set)
In addition we define the tid support set of X, denoted DE [[X]] as the set of indices of the
transactions in DE [X]: DE [[X]] = {t ∈ TDE

|X ⊆ DE(t)}.

If a candidate pattern X ⊆ E has a non empty tid set in a dataset DE , we say that X
occurs in DE .

We will use the following proposition in several places: the support set of the union of two
candidate patterns is the intersection of the support sets of each candidate pattern.

Proposition 2.1
For every X,Y ⊆ E: DE [X ∪ Y ] = DE [X] ∩ DE [Y ].

Proof: From Definition 2.3, the support set of X ∪ Y is the set of transactions t such
that X ∪ Y ⊆ t. The candidate pattern X ∪ Y is included in a transaction if and only if



12CHAPTER 2. A GENERIC FRAMEWORK FOR MINING PATTERNS IN A DATASET

'

&

$

%

G2

G1

G3 G4

1

G2

G1

G3 G4

G5

2

⇓
E = {(G1, G2), (G1, G3), . . . , (G5, G4)}

DE =
[{(G1, G2), (G3, G1), (G3, G2), (G4, G1)},
{(G1, G2), (G1, G5), (G3, G2), (G4, G1)}]

Figure 2.2: A dataset of relational graphs, each node is a gene, there is an arc between
two genes GX , and GY when the gene GX interacts (i.e. has an influence) with the gene
GY . The ground set E is the set of all the possible interactions between the set of genes,
each transaction in DE is a set of interactions between genes.

X and Y are both included in this transaction. Hence the support set DE [X ∪ Y ] is the
set of transactions that are in DE [X] and in DE [Y ]. DE [X ∪ Y ] = DE [X] ∩ DE [Y ].

2.1.3 Selection criterion

The selection criterion is specified according to the application needs. It provides a way to
discriminate candidate patterns meaningful to the application from irrelevant ones. The
selection criterion is defined as follows:

Definition 2.5 (selection criterion)
The selection criterion denoted Select is a user-specified predicate. Given a candidate
pattern X ⊆ E and a dataset DE , the selection criterion Select(X,DE) returns true if
and only if the candidate pattern X is to be retained as a pattern in DE .

In many pattern mining applications, the selection criterion is based on frequency in order
to extract frequent or infrequent patterns from the dataset. For example in applications
such as the basket market analysis, the patterns to be retained are the ones occurring
in at least ε transactions. In this pattern mining problem, the selection criterion can be
specified as follows: Select(X,DE) ≡ |DE [X]| ≥ ε.

In other applications, other properties may be involved in the selection criterion. For
example, given a gene network dataset such as the one presented in Figure 2.2 the connec-
tivity of the final graph-pattern is an important concern. Indeed in Figure 2.2, although
the candidate pattern {(G4, G1), (G3, G2)} (Figure 2.3) is frequent, it does not represent
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any connected graph and is therefore not meaningful to model a gene interaction network.
Thus one can add the connectivity constraints in the selection criterion:
Select(X,DE) ≡ |DE [X]| ≥ ε ∧X is a connected set of arcs.

G2

G1

G3 G4

Figure 2.3: The candidate pattern {(G4, G1), (G3, G2)} is not a pattern because it is not
connected.

We define the concept of meaningful pattern as follows.

Definition 2.6 (Meaningful pattern)
Given a dataset DE built over a ground set E, a selection criterion Select, a candidate
pattern X ⊆ E is a meaningful pattern in DE if and only if:

1. X occurs in DE

2. X satisfies the selection criterion in the dataset: Select(X,DE) = true.

When it is clear from context the term pattern will stand for meaningful pattern.

We denote by F ⊆ 2E the set of meaningful patterns.

2.1.4 Closed patterns

Although each pattern in F is meaningful, the whole set of meaningful patterns may
provide redundant information. Closed patterns were proposed by Pasquier et al. in
[PBTL99] in the context of frequent itemset mining, to reduce the redundancy among
the set of the patterns. The set of closed pattern is a lossless representation of the set of
patterns.

For example, consider the itemsets I1 = {chocolate} and I2 = {beer, chocolate} occurring
in the dataset DE in Figure 2.1. I1 and I2 are both frequent for a given support threshold
ε = 2. However I2 = {beer, chocolate} is frequent implies that I1 = {chocolate} is
frequent, hence the if I2 is in F , adding I1 provides no additional information.

In the context of frequent itemset mining, a frequent itemset I is closed in a dataset DE

if and only if it is the biggest pattern with the support set DE [I]. Considering the two
itemsets I1 = {chocolate} and I2 = {beer, chocolate} from DE in Figure 2.1, I1 and I2
are both frequent for ε = 2, and they both share the same support set {DE(1),DE(3)},
however I1 is not closed because there exists I2 such that I1 ⊂ I2 and DE [I1] = DE [I2].
I2 is closed.

The principle of closed patterns can be extended to other types of patterns. For example,
the two graph patterns P1 and P2 in Figure 2.4, are both connected and frequent subgraphs
in the graph dataset from Figure 2.2 (with ε = 2). P1 and P2 share the same support set,
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however P2 is a superset of P1 hence P1 is not a closed pattern. P2 is the biggest pattern
in the dataset with the support set {DE(1),DE(2)}, hence it is closed.

G2

G1

G4

P1

G2

G3 G1

G4

P2

Figure 2.4: Two 2-frequent and connected subgraphs extracted from the graph dataset in
Figure 2.2. Only (b) is closed.

In our setting, we define a closed pattern as follows:

Definition 2.7 (Closed pattern)
A meaningful pattern P ∈ F is closed if and only if there does not exist any strict superset
of P that is a pattern in F with the same support set.

We also define the closure of a pattern as follows:

Definition 2.8 (Closure of a pattern)
For a pattern P ∈ F , a closed pattern Q ∈ F is a closure of P if and only if P ⊆ Q and
DE [P ] = DE [Q].

Proposition 2.2
Every pattern in F admits at least one closure.

Proof: We suppose that there exists a pattern P that does not have a closure. From
Definition 2.8, P 6= ∅ and there does not exist a closed pattern Q such that P ⊆ Q and
DE [P ] = DE [Q]. Therefore P itself is not closed or else Q = P would be a closure of P .
From the definition of a closed pattern, if P is not closed, there exist at least one strict
superset Q of P that is a pattern in F such that DE [P ] = DE [Q]. Therefore P admits Q
as a closure which contradicts the initial statement that P admits no closure. Hence there
exists a closure for every P ∈ F . �

This definition does not guarantee the uniqueness of the closure of a pattern. However, in
Theorem 2.1, we exhibit a sufficient condition for guaranteeing it. This condition express
that a given property (P1), depending on the dataset DE and the definition of the set F
of patterns, holds.

Theorem 2.1
Let (P1) be the following property:
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(P1)

For every two patterns Q and Q′ ∈ F ,
if:

i) DE [Q] = DE [Q′] (Q and Q′ have the same support set)

ii) there exists Z ⊆ Q ∩Q′ such that Z 6= ∅ and Z ∈ F (Q ∩Q′ includes a
non empty pattern)

then Q ∪Q′ ∈ F (Q ∪Q′ is also a pattern)

If (P1) is satisfied, then every pattern has a unique closure.

Proof: Suppose that there exists a pattern P that admits two closures denoted Q and
Q′. From Definition 2.8, it is guaranteed that: (1) Q and Q′ are patterns, (2) P ⊆ Q
and P ⊆ Q′, and (3) DE [Q] = DE [Q′]. Hence, according to Property (P1) (applied with
Z = P ), Q∪Q′ is also a pattern. Since DE [Q] = DE [Q′], DE [Q∪Q′] = DE [Q]∩DE [Q′] =
DE [Q] = DE [Q′]. However, if Q is closed, there exist no strict super set of Q that admit
the same support set. Hence Q = Q ∪ Q′. The same goes for Q′, and thus Q = Q′.
Therefore the closure of any pattern P is unique. �

Other characterizations of the closure uniqueness have been published. In particular the
property of confluence has been introduced by [BHPW10]: A set of patterns is confluent
if and only if the union of two patterns having a non empty pattern in their intersection
is also a pattern.

Definition 2.9 (Confluence [BHPW10])
Given a set F of patterns defined over a ground set E, F is confluent if and only for all
I,X, Y ∈ F with ∅ 6= I ⊆ X and I ⊆ Y , it holds that X ∪ Y ∈ F .

It is shown in Theorem 7 from [BHPW10] that the set of patterns defined over a ground
set is confluent if and only if the closure is well defined (exists and is unique) for every
dataset defined over the same ground set.

It may seem that Theorem 7 is stronger than Theorem 2.2. This is not the case. Our
Theorem 2.2 applies to most of existing pattern mining problems whereas Theorem 7
does not apply on the most basic pattern mining problem that is the problem of frequent
itemset mining. Indeed this problem does not verify the confluence property even thus
the closure is unique.

This does not contradict the fact that the confluence property is a necessary condition in
Theorem 7 for the existence and uniqueness of closure when F is defined independently
of the dataset.

For example:
Let E = {a, b} be a ground set and F = {∅, {a}, {b}, {a, b}}, DE = [{a}, {b}]. The closure
of {a, b} does not exist. This is due to the fact that in contrast with our definition, the
patterns defined in [BHPW10] are not required to occur in the dataset.

The Property (P1) that we have introduced in Theorem 2.2 is more specific than the
confluence property but applies to most pattern mining problems encountered in practice
as we will show in Section 2.2 including the problem of frequent itemset mining. Therefore
this Property (P1) is the right property to characterize the pattern mining problem for
which the closure is unique.



16CHAPTER 2. A GENERIC FRAMEWORK FOR MINING PATTERNS IN A DATASET

In this case, we denote Clo(P,DE) the closure operator that, for every P ∈ F , associates
a pattern with its closure. We also denote C, the set of closed patterns that are the closure
of a pattern in F : C = {Q ∈ F|∃P ∈ F , Q = Clo(P,DE)}. Algorithm 1, is a generic
algorithm that computes the closure of any pattern P by augmenting P with elements
from the intersection of the transactions in the support set of P .

Algorithm 1 A generic closure operator

• Require: a ground set E, a dataset DE , a selection criterion Select and a pattern P .
• Ensure: returns the unique closure Q of P .

1: Q← P
2: //while there exists e such that Q ∪ {e} ∈ F
3: while ∃e ∈ ∩DE [P ] \Q such that Select(Q ∪ {e},DE) do
4: Q← Q ∪ {e}
5: end while
6: return Q

In practice, this algorithm may be very costly and can be replaced by more efficient specific
algorithms relying on characterizations of the closure operator that exploit the specificities
of the problem.

2.1.5 Formal problem statement

In this thesis, we address the problem of closed pattern mining when the closure is unique
and computable by a closure operator Clo. It can be stated as follows.

Definition 2.10 (Closed pattern mining problem)
Given a ground set E, a dataset DE , a selection criterion, Select and closure operator Clo
extract from DE all the closed patterns, that is any set P ⊆ E such that:

1. P occurs in DE (DE [P ] 6= ∅)

2. Select(P,DE) = true

3. Clo(P,DE) = P .

2.2 Formalization of different specific pattern mining prob-
lems

In this section, we show how the generic framework presented in the former section can
capture several existing pattern mining problems by using an adequate encoding. This
encoding can be direct (e.g. frequent itemset mining) or more complex (e.g. gradual
itemset mining).
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2.2.1 Mining closed frequent itemsets (fim)

Ground set & dataset: Encoding a frequent itemset input dataset is direct and has
been explained in Figure 2.1.

Selection criterion: A subset of the ground set E is a pattern if occurs in at least ε
transactions (for a given constant ε). For any P ⊆ E, Select(P,DE) ≡ |DE [P ]| ≥ ε.

Theorem 2.2 (Closure uniqueness for the fim problem)
The Property (P1) is satisfied for the fim problem.

The proof relies on the following Lemma, which will be further reused.

Lemma 2.1
Let Q and Q′ be two candidate patterns such that DE [Q] = DE [Q′]. Let us show that if
Q or Q′ is frequent, then Q ∪Q′ is also frequent.

Proof: If Q is frequent |DE [Q]| ≥ ε and |DE [Q]| ≥ ε. From Proposition 2.1 DE [Q∪Q′] =
DE [Q] ∩ DE [Q′], hence DE [Q ∪Q′] = DE [Q] ≥ ε. �

The proof the Theorem 2.2 is a direct consequence of the Lemma: For every two patterns
Q and Q′ such that DE [Q] = DE [Q′], Q ∪ Q′ is frequent, hence Q ∪ Q′ is a pattern and
(P1) holds. �

Closure operator: As it has been proved in [PBTL99], the closure of a pattern P is
the intersection of the transactions in the support set of P : Clo(P,DE) =

⋂
DE [P ].

2.2.2 Mining closed frequent connected relational graphs (crg)

A relational graph is a labelled graph in which all the node labels are distinct. Such graphs
can represent gene networks as well as social networks [YZH05]. An example of a relation
graph dataset has been presented in Figure 2.2.

The problem of mining frequent connected relation graph can be stated as follows: Given
a set of vertices V and a set of relational graphs G1, . . . , Gn where each Gi is a relational
graph (V,Ei) defined using the nodes in V , extract the connected sub-graphs occurring in
at least ε input graphs.

The problem of extracting frequent closed connected relational graphs can be captured in
our setting as follows:

Ground set: The ground set E is a set of pairs in V ×V , each pair is used to represent
an edge connecting two nodes in V .

Dataset: The dataset DE = [t1, . . . , tn] is a sequence of transactions where for all
i ∈ [1, n], the transaction DE(ti), represents the input graph Gi. Each element in the
transaction ti is a pair representing an edge in Gi.
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Selection criterion: Given a pattern G, Select(G,DE) returns true if and only if:

� G is connected.

� |DEg[G]| ≥ ε (for a given constant ε)

Theorem 2.3 (Closure uniqueness for the crg problem)
The Property (P1) is satisfied for the crg problem.

Proof: Let Q and Q′ be two patterns in F such that DE [Q] = DE [Q′]. and let Z be a
pattern in F such that Z ⊆ Q ∩Q′ and Z 6= ∅. As patterns, Q, Q′ and Z are connected
set of edges. Q is connected implies that for every edges e, e′ ∈ Q, there exists a path
[e, . . . , e′], connecting e and e′. Let e, be an edge in Q∩Q′ (This edge always exists because
Q∩Q′ ⊇ Z 6= ∅) then ∀e′ ∈ Q and e′′ ∈ Q′, there exists a path [e′, . . . , e, . . . , e′′] ∈ Q∪Q′.
Hence Q ∪ Q′ is connected. From Lemma 2.1, we have that Q ∪ Q′ is frequent in DE .
Q ∪Q′ is a pattern. The Property (P1) is satisfied. �

Closure operator: The closure of a graph P is the set of edges connected to P occurring
in every transactions of the support set of P . It can be computed with Algorithm 2. This
algorithm is specialization of Algorithm 1: in Line 3, we only perform a connectivity test
rather than a complete call to Select, because by construction Q ∪ {e} is frequent.

Algorithm 2 Closure operator for the crg problem

• Require: a graph pattern P and a dataset DE

• Ensure: returns the unique closure Q of P .

1: Q← P
2: //while there exists e such that e is connected to Q
3: while ∃e ∈ ∩DE [P ] \Q such that Q is connected e do
4: Q← Q ∪ {e}
5: end while
6: return Q

2.2.3 Mining closed frequent gradual itemsets (gri)

The problem of mining gradual itemsets consists in mining attributes co-variations in
numerical datasets [ALYP10]. Consider the numerical database Figure 2.1.

Place Temperature in °C Electric consumption in W

p1 0 2000
p2 10 1000
p3 20 500
p4 30 1500

Table 2.1: Example of a numerical database

When considering the records p1, p2 and p3, it appears that an increase in temperature is
correlated with a decrease in electric consumption. This co-variation of the temperature
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and the electric consumption can be represented by the gradual itemset (T ↑, EC↓) (where
T stands for Temperature and EC stands for Electric Consumption. This gradual itemset
is respected by the sequence of records [p1, p2, p3]. Note that symmetrically, (T ↓, EC↑) is
respected by [p3, p2, p1].

Let A = {a1, . . . , am} be a set of attributes and P = {p1, . . . , pn} be a set of records
where each record pi with i ∈ [1, n] stores a numerical value for every attribute in A. The
problem of mining closed frequent gradual itemsets can be represented in our framework
by considering as ground set the variations of attributes and by encoding transactions and
patterns as subsets of attribute variations verifying some constraints. The encoding is the
following:

Ground set: E is the set of attributes variations: E = {a↑1, a
↓
1, . . . , a

↑
m, a↓m}.

Dataset: In the dataset DE , there are as many transactions as pairs of records (pi, pj) ∈
P with i, j ∈ [1, n] and i 6= j. A transaction has as identifier (pi, pj) if it contains the
variation for every attribute in A between the record pi and pj . We will denote the
corresponding transaction t(pi,pj): for every attribute a ∈ A, a↑ ∈ t(pi,pj) ⇔ pi[a] ≤
pj [a] (p[a] denoting the value of attribute a for record p), a↓ ∈ t(pi,pj) otherwise. The
corresponding encoded dataset for the database in Table 2.1 is shown in Table 2.2.

t(p1,p2) : [{T ↑, EC↓},
t(p1,p3) : {T ↑, EC↓},
t(p1,p4) : {T ↑, EC↓},
t(p2,p1) : {T ↓, EC↑},
t(p2,p3) : {T ↑, EC↓},
t(p2,p4) : {T ↑, EC↑},
t(p3,p1) : {T ↓, EC↑},
t(p3,p2) : {T ↓, EC↑},
t(p3,p4) : {T ↑, EC↑},
t(p4,p1) : {T ↓, EC↑},
t(p4,p2) : {T ↓, EC↓},
t(p4,p3) : {T ↓, EC↓}]

Table 2.2: Encoding for the database in Table 2.1

Selection criterion: Given a constant ε, and a candidate pattern G = {av1g1 , . . . , a
vk
gk
}

with g1 < . . . < gk, and v1, . . . , vk variations of the form ↑ or ↓, G is a pattern if it is
contained in at least ε transactions in DE whose identifiers form a path. A sequence of
transactions identifiers [(pi1 , pj1), . . . , (pin , pjn)] forms a path if ∀k ∈ [1, n[, pjk = pik+1

.
When it is clear from context, we say that the transactions form a path when their iden-
tifiers forms a path.

In addition, to account for the symmetry of this problem, we discard from the set of
patterns, any pattern G = {av1g1 , . . . , a

vk
gk
} such that v1 is not ↑.

Given a pattern G = {av1g1 , . . . , a
vk
gk
}, Select(G,DE) returns true if and only if:

� G is contained in at least ε transactions whose tid form a path, (C1)
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� G is empty or, the first variation v1 of ag1 in G is ↑. (C2)

Theorem 2.4 (Closure uniqueness for the gri problem)
The Property (P1) is satisfied for the gri problem.

Proof: Let Q and Q′ be two patterns in F such that DE [Q] = DE [Q′] and Z be another
pattern in F such that Z ⊆ Q ∩Q′ and Z 6= ∅. Since Q is a pattern, there exists at least
ε transactions including Q whose tids form a path. The same transactions also contains
Q′ because DE [Q] = DE [Q′], thus Q ∪Q′ is also included in the same transactions whose
tids form a path. Therefore Q ∪Q′ is pattern if and only if the first variation v1 of av1g1 is
↑, which is always granted since Q and Q′’s first variations are both ↑. Hence Q∪Q′ ∈ F .
The Property (P1) is satisfied. �

Closure operator: We recall that the attributes a1, . . . , am are ordered. The closure
of a pattern P is the intersection of the transactions in DE [P ], from which we remove
the descending variations of the attributes before the first attribute with an ascending
variation.

Algorithm 3 Closure operator for the gri problem encoding attribute variations

• Require: a gradual itemset pattern P and a dataset DE encoding attribute variations
• Ensure: returns the unique closure Q of P .

1: Qmax ← ∩DE [P ]
2: a1 ← the first attribute with an ascending variation in Qmax

3: Q← Qmax

4: while ∃a↓ ∈ Q such that a precedes a1 in the order of the attributes do
5: Q← Q \ {a↓}
6: end while
7: return Q

Proof: We show that the closure operator defined in Algorithm 3 for the gri problem
is equivalent to the generic closure operator defined in Algorithm 1.

Let a1 be the first attribute with an ascending variation in
⋂
DE [P ].

First, let us show that for any a↓ ∈
⋂
DE [P ] such that a is before a1 in the order of the

attributes, there does not exist S ⊂
⋂
DE [P ] such that a↓ ∈ S and P ∪ S is a pattern.

Suppose that P ∪ S is a pattern: its first variation is ascending and therefore there is b↑,
where b < a < a1. This contradicts the fact that a1 is the first attribute with an ascending
variation in

⋂
DE [P ]. Therefore the closure of P cannot include any element in the set R

of elements suppressed in Line 5 of Algorithm 3.

Second, let us show that S′ =
⋂
DE [P ] \ R is the closure of P . P being a pattern, it

appears in at least ε transactions of DE [P ] whose tids form a path. By construction S′

has the same support set as P and therefore S′ also appears in at least ε transactions
forming a path.
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By removing R from
⋂
DE [P ] to build S′, it is guaranteed that there is no descending

variation on attributes before a1 in S′. Therefore S′ is a pattern.

By definition elements that are not in
⋂
DE [P ], cannot be in the closure of P , hence S′ is

maximal and thus is the closure of P . �

Note that the closure operator defined in Algorithm 3 is much simpler than the one defined
in [DJLT09]. this is due to our set-based encoding of the problem of closed frequent gradual
itemset mining.

2.3 Closed pattern enumeration

In most pattern mining algorithms an enumeration strategy ensures that every pattern
is outputted once and only once. In our framework, we have designed an enumeration
strategy for closed patterns by exploiting the structure of the set of patterns defined by
the augmentation relation defined as follows.

Definition 2.11 (Pattern augmentation)
A pattern Q is an augmentation of a pattern P if there exists e ∈ Q \ P such that
Q = P ∪ {e}.

The set of patterns together with the augmentation relation form a strict partial order with
⊥ as its minimum element, thus having a directed acyclic graph (DAG) structure. Given
this DAG, one enumeration strategy is to explore the set of candidate patterns following
an enumeration tree, spanning the closed patterns (see Figure 2.5, shaded boxes).

⊥

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Figure 2.5: A DAG representation of a set F of patterns defined over a ground set
E = {A,B,C,D,E}. In the boxes, the label ACD stands for {A,C,D}. Dashed boxes
are candidate patterns, solid boxes are meaningful patterns and shaded boxes are closed
pattern. Each dashed edge connects a pattern and its augmentation. The enumeration
tree over the set C of closed patterns, is presented in solid edges.
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This enumeration strategy however, does not ensure space efficiency. Indeed, since the
nodes of the enumeration tree are the closed patterns in C ⊆ 2E , the size of the tree can
be exponential with the size of the ground set E. Relying on a memory representation of
the tree to ensure the soundness and the completeness of the enumeration strategy is thus
inefficient in terms of memory. In addition keeping in memory an up-to-date representation
of the enumeration tree, is inadequate to parallel exploration because it requires extensive
synchronization and communication which can drastically reduce the concurrency, hence
the overall performances of the parallel algorithm.

The problem of designing polynomial space enumeration strategies for which soundness
and completeness are not based on a memory representation of the enumeration tree, is a
crucial issue for a parallel algorithm. However, this problem was lacking theoretical foun-
dation until recent work of Boley et al. in [BHPW07], then Arimura and Uno in [AU09].
They have investigated the problem of enumerating closed patterns by modeling patterns
as sets in a set system and they have shown that it is always possible to build a polynomial
space enumeration strategy if the set system satisfies some accessibility properties.

2.3.1 Patterns as sets in a set system

Definition 2.12 (Set system)
A set system is an ordered pair (E,F) where E is a set of elements and F ⊆ 2E is a family
of subsets of E.

In the context of pattern mining, E is the ground set, and F is the set of patterns. We now
present three properties of set systems that are observed in most pattern mining problems
(discussed in Section 2.3.3). These so called accessibility properties are key properties to
build time and space efficient enumeration strategies. They are defined here from the least
strong to the strongest(as stated in Proposition 2.3).

Definition 2.13 (Accessible set system)
A set system (E,F) is accessible if for every non-empty X ∈ F , there exists some e ∈ X
such that X \ {e} ∈ F .

Definition 2.14 (Strongly accessible set system)
A set system (E,F) is strongly accessible if it is accessible and if for every X,Y ∈ F with
X ⊂ Y , there exists some e ∈ Y \X such that X ∪ {e} ∈ F .

Definition 2.15 (Independence set system)
A set system (E,F) is an independence set system if Y ∈ F and X ⊆ Y together imply
X ∈ F .

The intuition behind the notion of accessibility is that when a set system is accessible,
there is a way to reach each pattern by repeatedly augmenting smaller patterns, starting
from the empty set (denoted ⊥). Finding this way is increasingly difficult as we relax the
accessibility constraints from independence to accessibility.
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The independence property of a set system guarantees that any subset of a pattern is
also a pattern. For instance, this property is satisfied for the problem of frequent itemset
mining (proven in [BHPW07]).

Figure 2.6(a) shows an independence set system. As can be seen, if ABC is a pattern,
then any subset of ABC is also a pattern. It is thus possible to reach ABC by repeatedly
augmenting A or B or C with any other element in ABC.

The independence property of a set system is not always satisfied. For instance: the
encoding proposed in Section 2.2 for the problem of mining closed connected relational
graphs. In this problem the subset of a connected graph is not guaranteed to be connected,
hence not every subset of a pattern is also a pattern. We prove later in Theorem 2.6 that
the set system associated with the crg problem is strongly accessible.

Figure 2.6(b) shows a strongly accessible set system. Contrary to the independence set
system, it is impossible to reach ABC by augmenting A with B, because AB is not a
pattern.

However, the strong accessibility guarantees that for any subset of ABC that is a pattern,
there exist at least one augmentation path toward ABC. Hence we can reach ABC by
augmenting A, B, C, AC or BC.

In contrast with both previous examples, the set system in Figure 2.6(c) is accessible,
but neither independent nor strongly accessible. In such set systems, the fact that A is a
pattern and a subset of ABC does not guarantee that there an augmentation path between
A and ABC. However it is guaranteed that there exist at least one such path in the whole
set system. We cannot reach ABC by augmenting A, but we can by augmenting B, C or
BC.

Proposition 2.3 (Relationship between accessibility properties)
Let (E,F) be a set system:

1. if it is independent, then it is strongly accessible,

2. if it is strongly accessible, then it is accessible.

Proof:

1. Any independence set system is also strongly accessible: Let S = (E,F) be an
independence set system. For every X,Y in F , with X ⊂ Y let e be any element
in Y \ X. Since S is an independence set system, Y belongs to F implies that
X ∪{e} ⊆ Y belongs to F as well. Therefore for every X,Y ∈ F with X ⊂ Y , there
exist e such that X ∪ {e} is in F . S is strongly accessible.

2. By construction, any strongly accessible set system is also accessible.

�

2.3.2 Building the enumeration tree in accessible set system

In order to efficiently build the tree in Figure 2.5, we assume a total order <E , associated
with the ground set E. Since any arbitrary is adequate, there is no loss of genericity. The
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⊥

A B C

AB AC BC

ABC

(a) ⊥

A B C

AB AC BC

ABC

(b) ⊥

A B C

AB AC BC

ABC

(c)

Figure 2.6: (a): an independence set system. Each pattern P in F can be reached by
augmenting any subset of P ; (b): a strongly accessible set system, there is one way to
reach any pattern in F from any of its subset in F ; (c): an accessible set system, there is
a minimum of one way in the whole DAG. Here, although there is no way to reach ABC
from A, there is one way to reach it from B or C.

set of candidate patterns 2E , can be totally ordered by a lexicographical order built from
the order <E . Since F and C are both subsets of 2E they are totally ordered as well. We
denote <F the total order of F and C, or simply < when it is clear from context.

This order allows to identify for each closed pattern a unique first parent, defined as follows:

Definition 2.16 (First parent)
Let P be a closed pattern, and Q the closure of an augmentation P ∪ {e} of P such that
P < P ∪ {e}. P is the first parent of Q if there does not exist a closed pattern P ′ < P
and an element e′ such that P ′ < P ′ ∪ {e′} and Q is the closure of P ′ ∪ {e′}.

Given this definition, we can build the enumeration tree and correctly and completely
enumerate the set C by going through it with a recursive algorithm such as the Algorithm 4.
The enum clo() procedure in the Algorithm 4 generates the augmentations of a closed
pattern P and performs a recursive call if the augmentation has P as first parent, in other
words, if there is an arc between P and its augmentation in the enumeration tree.

In Algorithm 4, the first parent test is performed by the is first parent() boolean function.
Given a pattern P and the closure Q of an augmentation of P , is first parent(P,Q) will
return true, if and only if P is the unique first parent of Q.

In any accessible set system, if there exists a polynomial space implementation for Select,
Clo and is first parent, then the algorithm in Algorithm 4 performs in polynomial
space([AU09]).

First parent detection

The first parent detection is an increasingly difficult task as we relax the constraints on
the accessibility of the set system from independence to accessibility.

When the set system formed by the pattern is independent, all the subsets of a (closed)
pattern are also patterns, thus checking whether P is the first parent of Q (obtained by
closure of an augmentation P ∪ {e} > P ) can be reduced to check whether Q > P (see
[BHPW07]).
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Algorithm 4 Enumerate closed patterns in accessible set systems

• Require: An accessible set system (E,F), a closure operator Clo and a dataset DE .
• Ensure: Outputs the set C of all the closed pattern in F .

1: enum clo(Clo(⊥,DE),DE)

2: procedure enum clo(P,DE)

• Require: A closed pattern P , the dataset DE .
• Ensure: Outputs the set of all the closed patterns that have P as an ancestor in the

enumeration tree.

3: output P
4: //Generate all the augmentations of P .
5: for all e ∈ E such that P ∪ {e} ∈ F do
6: if is first parent(P,Clo(P ∪ {e},DE) then
7: //Recursive call if the augmentation’s first parent is P .
8: enum clo(Clo(P ∪ {e},DE),DE)
9: end if

10: end for
11: end procedure

When the set formed by the patterns is only accessible, testing whether a given closed
pattern P is the first parent of a pattern Q is a difficult task that may lead to a reverse
generation of a whole branch of the enumeration tree to find the actual first parent.
Although Arimura and Uno have shown in [AU09] how to design a polynomial space
implementation of is first parent(), it has been shown in [BHPW10] that the problem
of enumerating closed pattern in accessible set systems is time-intractable in the general
case.

When the set system formed by the patterns is strongly accessible, this test is complex,
but simpler than in accessible systems. It can be done by keeping track of the minimal
augmentations (w.r.t. to <F ) that were performed on the branch ending to P . If any of
these augmentation is included in Q, then it is granted that Q has been expanded from a
pattern with a lower value in another branch of the enumeration tree.

This holds because in a strongly accessible set system, any lower subset of Q that is a
pattern in F , can be expanded toward Q. In Figure 2.6 (b) if A belongs to F , it is
granted that ABC can be reached by repeatedly augmenting A. This does not holds in
the accessible set system in Figure 2.6 (c).

Boley et al. in [BHPW07] store the elements used to augment closed patterns that occurred
previously in the branch in an exclusion list denoted EL. The is first parent(P,Q) test
can be implemented by testing whether EL ∩Q is empty, if it is, P is the first parent of
Q.

In the Figure 2.7, we start the exploration with B because A is not a pattern. So far
EL = ∅. The next closed pattern ABC, which is the closure of {B} ∪ {A} has B as first
parent, and indeed ABC∩EL = ∅ hence it is outputted. Since we augmented B with A we
add A to EL, and proceed to augment B towards BC a similar way. At this point A is a
valid augmentation for BC, but ABC’s first parent is not BC, indeed EL∩ABC = A 6= ∅,
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hence it not outputted, and we avoided the duplicate generation of ABC.

⊥

A B C

AB AC BC

ABC

Figure 2.7: A strongly accessible set system

A polynomial space enumeration strategy is presented in Algorithm 5.

Algorithm 5 Enumerate closed patterns in strongly accessible set systems

• Require: An accessible set system (E,F), a closure operator Clo.
• Ensure: Output the set C of all the closed pattern in F .

1: enum clo(Clo(⊥,DE),DE , ∅)

2: procedure enum clo(P,DE , EL)

• Require: A closed pattern P , the dataset DE , and an exclusion list EL.
• Ensure: Outputs the set of all the closed patterns that have P as an ancestor in the

enumeration tree.

3: output P
4: //Generate all the augmentation of P .
5: for all e ∈ E such that P ∪ {e} ∈ F do
6: //detect if P is P ∪ {e}’s first parent.
7: if Clo(P ∪ {e},DE) ∩ EL = ∅ then
8: //Recursive call if P is the first parent.
9: enum clo(Clo(P ∪ {e},DE),DE , EL)

10: end if
11: EL := EL ∪ {e}
12: end for
13: end procedure

2.3.3 Accessibility in pattern mining problems

We discuss here the accessibility properties of the problems presented in Section2.2.

In order to prove the strong accessibility of several pattern mining problems 2.2, we need
the following theorem.

Theorem 2.5 (Set system intersection)
Given two set systems S1 = (E,F1) and S2 = (E,F2) defined over the same ground set
E, if S1 is independent and S2 is strongly accessible, the set system S3 = (E,F1 ∩ F2) is
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strongly accessible.

Proof: First, let Y be a subset of E in F3, and let X be any subset of Y . Since
F3 = F1 ∩ F2, Y is also in F1 and F2. As a subset of Y , X is also in F1, therefore any
subset X of Y belongs to F3 if and only if it belongs to F2.

We now show that S3 is accessible. F2 is strongly accessible thus accessible, therefore
there exists e ∈ Y such that Y \ {e} ∈ F . However Y \ {e} is a subset of Y and belongs
to F2, therefore it also belongs to F3. S3 is accessible.

In a similar way, we show that S3 is also strongly accessible. Since F2 is strongly accessible
there exists some e ∈ X \ Y such that X ∪ {e} ∈ F2. However, X ∪ {e} is a subset of
Y and therefore also belongs to F3. S3 is accessible and for any Y,X ∈ F3, there exists
e ∈ Y \X such that X ∪ {e} ∈ F3 therefore S3 is strongly accessible. �

Frequent itemsets (fim)

The set system (E,F) formed by the frequent itemsets have been proven to be an inde-
pendence set system in [BHPW10].

Frequent Connected Relational Graphs (crg)

Theorem 2.6 (Accessibility in crg)
The set system associated with the crg problem is strongly accessible for every dataset
DE .

We denote (E,F0), with F0 = Select(2E ,DE) the set system formed by all the sets X ⊆ E
satisfying the selection criterion. That is, any X such that:

� X is a frequent set of edges in DE ,

� X is a connected set of edges.

Let F1 be the set of sets X ⊆ E such that X is a frequent set of edges and let F2 the set
of sets Y ⊆ E such that Y is a connected set of edges. Hence, F = F1 ∩ F2 is set of all
the frequent and connected sets of edges F0 = F1 ∩ F2.

We observe that mining frequent sets of edges is equivalent to mine frequent set of items,
hence the set system (E,F1) formed by all the frequent set of edges is an independence
set system.

The set system (E,F2) formed by all the connected sets of edges have been proven to be
strongly accessible in [BHPW10].

According Theorem 2.5, the set system formed by all the frequent and connected graphs
(E,F0 = F1 ∩ F2) is strongly accessible.
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Gradual itemsets (gri)

Theorem 2.7 (Accessibility in gri)
The set system associated with the gri problem is strongly accessible for every dataset
DE .

Proof: We denote (E,F0), with F0 = Select(2E ,DE) the set system formed by all the
set X ⊆ E satisfying the selection criterion. That is, any X = {av1x1

, . . . , avkxk
} such that:

� X is contained in at least ε transactions whose tid form a path. (P1)

� X is empty or, the first variation v1 of ax1 in X is ↑. (P2)

Let F1 be the set of sets X ⊆ E satisfying (P1) and, F2 the set of sets Y ⊆ E satisfying
(P2). The set of sets satisfying both conditions is F0 = F1 ∩ F2.

We show that (E,F1) is an independence set system and that (E,F2) is a strongly acces-
sible set system. Hence we can apply Theorem 2.5.

(E,F1) is an independence set system: ∀Y ∈ F1 with X ⊆ Y , Y ∈ F1 if and only
if there exists at least ε transaction in DE [Y ] whose tid form a path. Since X ⊆ Y ,
DE [Y ] ⊆ DE [X], the same path also exists in DE [X]. X ∈ F1, and thus the set system
F1 an independence set system.

(E,F2) is strongly accessible: We recall that (E,F2) is strongly accessible if and only
if:

1. it is accessible

2. for every X,Y ∈ F with X ⊂ Y , there exists some e ∈ Y \X such that X ∪{e} ∈ F .

We first prove that the set system (E,F2) is accessible. From (P2), Y = {av1y1 , . . . , a
vk
yk
} ∈

F2 implies that the variation v1 of the first attribute ay1 in Y , is ↑. We show that there
always exists aviyi ∈ Y , with i ∈ [1, k], such that Y \ {aviyi} still satisfies (P2). For every
Y ∈ F2, if |Y | ≥ 2, there exists at least one aviyi ∈ Y with i 6= 1. Hence there exists aviyi ,
such that X = Y \ {aviyi} contains av1y1 . Since av1y1 , is the variation for the first attribute in
X, and v1 =↑, X = Y \ {aviyi} satisfies (P2). In addition, if |Y | = 1, X = Y \ {av1y1} = ∅ for
every e ∈ Y , which is granted to be in F2 since the restriction (P2) does not applies to ∅.
Therefore for every Y ∈ F2 there exists at least one aviyi such that Y \ {aviyi} ∈ F2. (E,F2)
is accessible. The set system (E,F2) is accessible.

We show that for every X,Y ∈ F with X ⊂ Y , there exists some e ∈ Y \ X such that
X ∪ {e} ∈ F . Let X = {av1x1

, . . . , avkxk
} and Y = {av1y1 , . . . , a

vp
yp} be two patterns in F2 with

X ⊂ Y , since (E,F2) is accessible, it also is strongly accessible if and only if ∀X,Y ∈ F2

with X ⊂ Y , there exists aviyi ∈ Y \X, such that X ∪ {aviyi} ∈ F2.

� If |Y | − |X| = 1 then there exists only one avixi
∈ Y \X and Y \ {avixi

} = X. Since
X ∈ F2, Y \ {avixi

} = X is in F2 as well.

� If |Y | − |X| ≥ 2, let aviyi be any attribute variation in Y \ X with aviyi 6= av1y1 . Then
Y \ {aviyi} admits av1y1 as a first variation with v1 =↑. Y \ {aviyi} ∈ F2.
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(E,F2) is a strongly accessible.

From Theorem 2.5, if (E,F1) is an independence set system, and (E,F2) is a strongly
accessible set system, the set system (E,F0 = F1 ∩ F2) is strongly accessible.

2.4 Discussion

The framework presented in this chapter offers an interesting base for a generic and parallel
pattern mining algorithm. Several pattern mining problems such as frequent itemset
mining, closed connected graph mining and gradual pattern mining can be successfully
captured with a reasonably sized ground set. In addition, we have shown that a generic
closure operator can be defined when the union of two patterns having a non-empty pattern
in their intersection and having the same support set is a pattern. This property (property
(P1) of our Theorem 2.1) is more appropriate than the confluence property in [BHPW10]
for characterising the pattern mining problems in which the closure operator is well defined.
This is due to the fact that our definition of pattern, in contrast with [BHPW10] requires
patterns to occur in the dataset which is an obvious requirement when data is involved.

Any pattern mining problem formulated into our framework comes with an underlying set
system. The structural properties of the underlying set system is a sufficient information
to design an efficient enumeration strategy that does not rely on the problem definition.
We showed in this chapter that the independence property of a set system is too strict to
capture most pattern mining problems, and the accessibility property is too loose to build
efficient pattern enumeration strategies. The strong accessibility is a fair compromise.

Given that the set system is strongly accessible, the set theory can be used to design
efficient polynomial space enumeration strategies. In addition to the space complexity
guaranteed it offers several benefits that are major issues to a parallel pattern mining
algorithm, the main one being a cutting plane to distribute the work among several pro-
cessing units without synchronization.

Although these are important improvements they are far from enough to obtain a generic
and practically efficient algorithm for pattern mining. Indeed, dealing with large datasets
is another main issue of pattern mining that have not been addressed yet.
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In this section, we present ParaMiner, a parallel algorithm able to solve every pattern
mining problem formalized in the framework described in the previous chapter.

The enumeration strategy implemented in ParaMiner is built on the principles of pattern
enumeration in strongly accessible set systems recalled in the previous chapter. This
enumeration strategy consists in exploring a tree covering the closed patterns. The strong
accessibility of the set system formed by the set of patterns guarantees that it is possible to
build every branch of the tree without sharing data with other branches. This is a major
benefit for a parallel algorithm in which communication between the different processing
units can reduce the concurrency and the performance of the algorithm.

Although this enumeration strategy is a good base for building a parallel pattern mining
algorithm, it is not sufficient to achieve practical efficiency. The selection criterion and
the closure operator are performed millions of times along the execution of the algorithm,
hence their efficiency is also a critical issue. Since these two operations typically require
to access the dataset, providing efficient access to the relevant information is mandatory
to be able to handle medium or large datasets.

In order to propose a solution to this problem, pattern mining researchers have made an
important observation: most patterns occur in a small part of the dataset only, hence the
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whole dataset is not required to compute the selection criterion for a given set of candidate
patterns. In [HPY00] Han et al. have built FP-Growth, a recursive frequent itemset min-
ing algorithm. In FP-Growth, each recursive call inputs a frequent itemset and outputs
a set of larger frequent itemsets. In order to count itemset’s frequency efficiently, each
recursive call holds a tree representation of the dataset called a conditional pattern tree
containing only the support set of the input pattern. Later in [UKA04], Uno et al. have
adapted this technique to closed itemset mining by proposing database reduction. In their
LCM algorithm all the computations required to augment a closed pattern are performed
in a sub-dataset instead of in the full dataset. A sub-dataset is built for each closed pat-
tern. Each sub-dataset is a copy of the initial dataset where the transactions and elements
not required to compute the augmentations of the closed pattern are removed. In this
chapter we show how to generalize database reduction to our generic framework and how
it can be used to speed up the computation of Clo and Select. In order to be be consistent
with our framework we call this technique dataset reduction.

Distributing the computations among the available processing units is a critical issue in
any parallel algorithm. Indeed, different distributions strategies may significantly impact
the parallel efficiency of the algorithm. However ParaMiner as well as many other data
mining algorithms is data-driven. It means that the execution of the algorithm is driven
by the input data and the intermediary results. Hence depending on the problem and the
data at hand, the optimal strategy for distributing the computations and the data may
differ. To address this problem we have designed Melinda which is a parallelism engine
adapted to data-driven algorithms. Melinda assumes that tasks are produced all along
the execution of the algorithm and can be consumed in any order. With Melinda, anyone
with basic programming skills can build and evaluate new distribution strategies. We show
that Melinda can be used to design distribution strategies that fit the memory sub-system
of the execution platform and improve the run time or the memory consumption.

In this chapter we first present the ParaMiner algorithm in Section 3.1 and show how
to combine the enumeration strategy presented in the previous chapter with a dataset
reduction. The dataset reduction technique and other optimizations is discussed in the
following Section 3.2. In Section 3.3, we show how to break up the exploration of the
enumeration tree into tasks, we then present Melinda and show how it can be used to
efficiently run ParaMiner on multi-core platforms.

ParaMiner is a generalization of the PLCM algorithm that we have previously designed
and implemented on top of Melinda. PLCM is a parallel algorithm designed for making
LCM parallel. LCM [UKA04] is the state of the art fastest sequential algorithm to mine
closed frequent itemsets. To avoid redundancy in this thesis report, we have chosen to
focus on describing ParaMiner. For details on PLCM, we refer to [NTMU10].

3.1 ParaMiner: main algorithm

In ParaMiner, the enumeration tree is explored in a bottom-up fashion starting from ⊥
as in the enumeration strategy described in the previous chapter. Given a closed pattern
P , the expand() procedure (Algorithm 7) is in charge of outputting every closed patterns
that is a descendent of P in the enumeration tree.

The input parameters of the expand() procedure are:
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� a closed pattern P ,

� the reduced dataset Dreduced
P of P (see Section 3.2),

� a copy of the exclusion list EL that is required to perform the first parent test as
described in Section 2.3.2.

Each individual call to expand(P,Dreduced
P , EL) outputs the set of closed patterns that

have P as first parent.

ParaMiner starts the exploration of the enumeration tree by calling the expand() proce-
dure on ⊥. When expand() finds a closed pattern Q, it builds the reduced dataset Dreduced

Q

of Q by calling the reduce() function with the parent dataset Dreduced
P as a first argument.

The expand() procedure is then recursively called to build the augmentations of Q (as
illustrated in Figure 3.1).

⊥

expand()

A

expand()

AB

expand()

ABD ABE

AD

B C D

expand()

DF

expand()

DEF

DE

Dreduced
A Dreduced

D

Dreduced
DFDreduced

AB

Figure 3.1: The expand() procedure explores the search space following the enumeration
tree (white boxes), and builds a reduced dataset for each new node of the enumeration
tree (shaded boxes).

expand() builds the augmentations of a pattern P by testing (Line 3) which candidate
pattern P ∪{e} satisfies the selection criterion (given as input). However we only perform
this test for the elements e that occurs in the reduced dataset of P . This is not a limitation
compared to Algorithm 5 because we build the reduced dataset Dreduced

P of P such that it is
guaranteed that if e does not occurs in Dreduced

P , then the candidate pattern P ∪{e} would
either not occur in the initial dataset – hence fail the pattern test (Line 5 in Algorithm 5)
– or fail the first parent test (Line 7 in Algorithm 5).

If P ∪ {e} satisfy the selection criterion Select, ParaMiner applies the closure operator,
Clo (given as input) to get the closure Q of P ∪ {e}. For each one of them, Line 5 checks
whether P is their first parent by a simple intersection test with the exclusion list EL (as
in Algorithm 5).

The closed patterns are outputted as soon as they are produced in Line 7. The expand()
procedure is then called Line 9, on each Q and together with its corresponding reduced
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dataset Dreduced
Q . The reduced dataset is build Line 8 by the reduce() function described

in Algorithm 8, Section 3.2), and the same exclusion list EL.

In Line 9 instead of performing the recursive call the expand() procedure, we spawn a new
task that can be performed on a different core. We discuss this parallelization strategy in
Section 3.3.

Algorithm 6 ParaMiner

• Require: ground set E, selection criterion Select, closure operator Clo, dataset DE

• Ensure: Outputs all closed patterns occurring in DE .

1: output Clo(⊥,DE)
2: expand(Clo(⊥,DE),DE , ∅)

Algorithm 7 Expanding a closed pattern P

1: procedure expand(P , Dreduced
P , EL)

• Require: A closed pattern P , a reduced dataset Dreduced
P , an exclusion list EL.

• Ensure: Output all closed patterns that are descendent of P in the enumeration tree.

2: for all e such that e occurs in Dreduced
P do

3: if Select(P ∪ {e},Dreduced
P ) then

4: Q← Clo(P ∪ {e},Dreduced
P )

5: if EL ∩Q = ∅ then
6: //P is Q’s the first parent
7: output Q
8: Dreduced

Q ← reduce(Dreduced
P , e, EL)

9: spawn expand(Q,Dreduced
Q , EL)

10: EL← EL ∪ {e}
11: end if
12: end if
13: end for
14: end procedure

ParaMiner’s efficiency depends on the reduce() function, we explain in details the prin-
ciples of the dataset reduction and provide the complete algorithm in the next section.
We then prove ParaMiner’s soundness.

3.2 Optimizations based on dataset reduction

ParaMiner is based on the same principles of Boley et al.’s enumeration strategy of closed
patterns. In fact, if in Algorithm 7, Dreduced

P and Dreduced
Q (respectively appearing in Line 1,

2, 3, 4, 8 and 9) were replaced by DE (the full dataset), we would get exactly the enum clo
algorithm in Algorithm 5 proven to be sound and complete by Boley et al in [BHPW10].
However, the practical efficiency of ParaMiner (that will be demonstrated in Chapter 4)
relies on the fact that the full dataset is replaced by appropriate reduced datasets in the
computation of Clo (Line 4 of Algorithm 7), Select (Line 3 of Algorithm 7) and in the
elements chosen to expand closed pattern (Line 2 of Algorithm 7). In Section 3.2.1, we
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provide the algorithm computing the reduce() function at the core of ParaMiner and we
show why the resulting reduced datasets are sufficient for the computation of the closure
operator (under some constraints on Select). In Section 3.2.2, we explain how to build
appropriate indexes for the reduce datasets that are the basis for testing and counting the
occurrences of the patterns in the (reduced) dataset, we then show how indexes can be
used to efficiently compute support sets and pattern’s closures.

3.2.1 Dataset reduction: principles and properties

In the enumeration strategy implemented by expand() and thus in ParaMiner, a closed
pattern Q is obtained by an appropriate augmentation of a closed pattern P (called its
first parent).

Dataset reduction is a recursive process: we explain in the next two paragraphs how
the reduced dataset of a closed pattern Q is obtained by by removing transactions and
elements from the reduced dataset of its first parent P .

The algorithm implementing the corresponding reduce() function is shown in Algorithm 8.

In the following, we denote e the element used to obtain Q by augmenting P : Q =
Clo(P ∪ {e}).

Algorithm 8 The dataset reduction algorithm

1: function reduce(Dreduced
P , e, EL)

• Require: The reduced dataset Dreduced
P of the parent P of Q, the augmenting element

e such that Q = Clo(P ∪ {e},DE), the exclusion list EL.
• Ensure: Returns the reduced dataset of Q: Dreduced

Q

2: Dreduced
Q ← Dreduced

P [{e}]
3: // Suppress elements from transactions.
4: for all G ∈ partition(Dreduced

Q , EL) do
5: for all e ∈ EL do
6: if there exists t′ ∈ G such that e 6∈ t′ then
7: Suppress e from all the transactions in G
8: end if
9: end for

10: end for
11: return Dreduced

Q

12: end function

Removing transactions: It is done in Line 2 of Algorithm 8, and consists in initializing
Dreduced

Q with the support set of {e} in Dreduced
P . This first reduction step was initially

introduced by FP-Growth in [HPY00], it consists in removing from the dataset any
transaction not including Q.

Suppressing elements from transactions: By construction, elements in the exclusion
list EL cannot appear in patterns enumerated from Q. These elements however cannot be
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directly suppressed from Dreduced
Q , because some of them are needed to compute the closure

of patterns enumerated from Q (Line 4 of Algorithm 7) and check that these patterns have
an empty intersection with EL (Line 5). The elements of the exclusion list EL that can
be safely removed from transactions in Dreduced

Q are the elements that are guaranteed not
to appear in any closed pattern that is a descendent of Q in the enumeration tree.

For example, given the ground set E = {A,B,C,D}, let {C} be a closed pattern, and EL =
{A,B} an exclusion list. Considering the following dataset (each line is a transaction):

Dreduced
{C} =

↓
A B C D
A C D

C

In this dataset, the only superset of {C} that can be a closed pattern and a descendent
of {C} in the enumeration tree is the candidate pattern {C,D}. Any other superset of Q
would necessarily include A or B which belong to the exclusion list, hence it would fail
the first parent test (Line 5 in Algorithm 7).

However A must be kept inDreduced
Q because it is a possible element of the closure of {C,D}.

Indeed {C,D} and {A} have the same support set, hence if Select({A,C,D}) = true, then
the closure of {C,D} is {A,C,D}. Without A in the dataset the closure of {C,D} cannot
be computed correctly and the first parent test is not guaranteed to fail as it should be.
This scenario could lead to the generation of {C,D} as a closed pattern even if it is not
one.

B does not have the same support set as any superset of {C} that is a descendent of {C}
in the enumeration tree, therefore it can be removed from Dreduced

Q without altering the
soundness of ParaMiner.

For determining easily the elements that cannot belong to any closure of a descendent
of Q, Dreduced

Q is partitioned (by the function partition(Dreduced
Q , EL) called Line 4 in

Algorithm 8) in groups of sets of transactions that have the same elements except elements
of EL (the partition() function is detailed in Algorithm 9). For each group G of the
partition, we suppress from each of its transactions the elements of EL that do not appear
in all the transactions of the group. Such elements will not belong to the closure of any
pattern Q′ further produced from augmentations of Q and supported by the transactions
in G. This is done in Lines 5–9 of Algorithm 8. Note that this is a generalization of the
so-called prefix intersection optimization at the core of LCM [UAUA04].

The following theorem characterizes the dataset reduction. It is the key to guarantee
ParaMiner’s soundness. It states that the transaction identifiers (tid support sets, see
Definition 2.4, Page 11) are preserved by dataset reduction, and the elements that belong
to all the transactions in the support set of a pattern augmentation are also preserved.

Theorem 3.1
Let Q = Clo(P ∪ {e},Dreduced

P ) and Dreduced
Q be the result of reduce(Dreduced

P , e, EL). If e′

occurs in Dreduced
Q and (Q ∪ {e′}) ∩ EL = ∅ then:

� DE [[Q ∪ {e′}]] = Dreduced
Q [[{e′}]].

�

⋂
DE [Q ∪ {e′}] =

⋂
Dreduced

Q [{e′}].
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Algorithm 9 The partition function used in reduced()

1: function partition(Dreduced
Q , EL)

• Require: A dataset Dreduced
Q , an exclusion list EL

• Ensure: Returns sets of transactions that are equal when considering only the elements
that are not in EL.

2: T ← Dreduced
Q

3: for all t ∈ T do
4: G← {t}
5: T ← T \ {t}
6: for all t′ ∈ T do
7: if t \ EL = t′ \ EL then
8: //t and t′ have the same set of non EL-elements.
9: //They belong to the same group of transactions.

10: G← G ∪ {t′}
11: T ← T \ {t′}
12: end if
13: end for
14: G ← G ∪ {G}
15: end for
16: return G
17: end function

Proof: Let us prove the first item. Let i be a tid in DE [[Q∪{e′}]]: it is the identifier of a
transaction t in DE including Q∪{e′}. t cannot have been removed by Line 2 of reduce()
because the support set of DE [Q ∪ {e′}] is included in DE [Q]. In addition the elements
in Q ∪ {e′} cannot have been removed from t by Line 7 because (Q ∪ {e′}) ∩ EL = ∅.
Therefore the resulting transaction t′ obtained by removing elements from t necessarily is
in Dreduced

Q [e′]. Therefore i is also in Dreduced
Q [[e′]].

Conversely, since e′ /∈ EL, e′ occurs in Dreduced
Q and thus there exists a tid i in Dreduced

Q [[e′]].

Let t′ the transaction identified by i in Dreduced
Q [[e′]] and let t the transaction identified by

i in DE . By construction: Q ∪ {e′} ⊆ t′ and t′ ⊆ t, and thus Q ∪ {e′} ⊆ t. Therefore i is
in DE [[Q ∪ {e′}]].

Let us now prove the second item. Let a in
⋂
DE [Q ∪ {e′}]. By construction each group

of transactions in DE including Q ∪ {e′} also includes a. Hence the condition in Line 6
in Algorithm 8 is not satisfied for a. Therefore a is not suppressed by reduce() from any
transaction in Dreduced

Q [{e′}] and thus it belongs to
⋂
Dreduced

Q [{e′}].

Since e′ /∈ EL, e′ occurs in Dreduced
Q and thus there exists a in

⋂
Dreduced

Q [{e′}]. Suppose
that a is not in

⋂
DE [Q ∪ {e′}]: there exists a transaction t in DE [Q ∪ {e′}] including

Q ∪ {e′} that does not include a. This transaction cannot have been removed by Line 2
of reduce() because the support set of DE [Q∪ {e′}] is included in DE [Q]. In addition the
elements in Q∪{e′} cannot have been removed from t by Line 7 because (Q∪{e′}) 6⊆ EL.
Therefore the resulting transaction t′ obtained by removing elements from t necessarily is
in Dreduced

Q [{e′}]. Since a is not in t it cannot be in t′ either. This contradicts the fact a

is in
⋂
Dreduced

Q [{e′}]. �
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We focus now on the soundness of ParaMiner. As we will show further, the soundness of
ParaMiner is guaranteed if the Select predicate is decomposable (Definition 3.1). This
definition states that Select(P,DE) can be decomposed in two constraints, one on the
pattern P and the other on the tid support set of P in DE (see Definition 2.4).

Definition 3.1 (Decomposability of Select)
Given a ground set E, the Select predicate is decomposable if and only if there exist a
constraint C1 and a constraint C2 such that for every dataset DE and every pattern P ,
Select(P,DE) ≡ C1(P ) ∧ C2(DE [[P ]]), where DE [[P ]] is the tid support set of P in DE .

To prove the soundness of ParaMiner, we need to prove the following lemmas.

Lemma 3.1 states that the closure Q of a pattern P ∪{e} computed Line 4 in Algorithm 7
is the same in DE and in Dreduced

P (Clo(P ∪ {e},DE) = Clo(P ∪ {e},Dreduced
P )).

Lemma 3.2 states that the expand() function of Algorithm 7 returns the same output as
the enum clo() function (Algorithm 5, Page 26).

Those two lemmas (and thus the Theorem 3.2) are true under the following condition (P2)
on the predicate Select, that defines what the patterns are and thus varies depending on
the pattern mining problem to solve. (P2) holds if the Select predicate can be checked on
reduced datasets (instead of the full dataset). Based on Theorem 3.1 (first item), (P2) is
true if the Select predicate is decomposable.

Condition (P2): For every call to expand(P,Dreduced
P , EL), for every element e not in

EL and occurring in Dreduced
P , and for every S ⊂

⋂
DE [P ∪{e}], Select(P ∪{e}∪S,DE) ≡

Select(P ∪ {e} ∪ S,Dreduced
P ).

Lemma 3.1
Let P be a closed pattern and Dreduced

P its reduced dataset. If e is an element such

that P ∪ {e} is a pattern in Dreduced
P (e occurs in Dreduced

P and Select(P ∪ {e},Dreduced
P ))

then, if the Select predicate is decomposable, the following property holds: Clo(P ∪
{e},Dreduced

P ) = Clo(P ∪ {e},DE).

Proof: We show that the generic closure operator provided in Algorithm 1, Page 16
applied with Dreduced

P as the input dataset returns the same result than the one provided
with DE .

We denote Q(DE) the result of Algorithm 1 applied to (P ∪{e},DE) and Q(Dreduced
P ) the

result of Algorithm 1 applied to (P ∪ {e},Dreduced
P ).

Let e′ an element of Q(DE), we show that e′ is also in Q(Dreduced
P ).

e′ is in Q(DE) implies the following:

� e′ ∈
⋂
DE [P ∪ {e}]

� let S be the set of elements added before e (i.e. in former iterations of the while loop
in Line 4 in Algorithm 1. It is granted that Select(P ∪ {e} ∪ S ∪ {e′},DE) is true.

Therefore if e′ /∈ Q(Dreduced
P ) either:
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� e′ /∈
⋂
Dreduced

P [P ∪ {e}]: this cannot be the case because e′ occurs in Dreduced
P and

P ∪ {e} 6⊆ EL hence Theorem 3.1 applies with Q = P .

� there exists S′ such that Select(P∪{e}∪S′∪{e′},Dreduced
P ) is false whereas Select(P∪

{e}∪S′∪{e′},DE) is true. This is impossible from condition (P2) and S = S′∪{e′}.

Conversely we show that if e′ is an element of Q(Dreduced
P ), e′ is also in Q(DE).

If e′ /∈ Q(DE) either:

� e′ /∈
⋂
DE [P∪{e}]: this cannot be the case because e′ occurs in DE and P∪{e} 6⊆ EL

hence Theorem 3.1 applies with Q = P .

� there exists S′ such that Select(P∪{e}∪S′∪{e′},DE) is false whereas Select(P∪{e}∪
S′∪{e′},Dreduced

P ) is true. This is impossible from condition (P2) and S = S′∪{e′}.

Therefore Q(DE) = Q(Dreduced
P ). �

Lemma 3.2
If the Select predicate is decomposable, then: for every argument (P,Dreduced

P , EL) of

expand(P,Dreduced
P , EL), expand(P,Dreduced

P , EL) = enum clo(P,DE , EL).

Proof: Let Q be an output of enum clo(P,DE , EL): it is of the form Clo(P ∪ {e},DE)
where P ∪ {e} is a pattern and e /∈ EL.

Suppose that it is not outputted by expand(P,Dreduced
P , EL). According to Algorithm 7

it means that:

� either e does not occur in Dreduced
P (Line 2 in Algorithm 7) which is impossible: since

e does not belong to EL, it cannot have been suppressed by the dataset reduction
returning Dreduced

P .

� or Select(P ∪{e},Dreduced
P ) is false (Line 3 in Algorithm 7). This cannot be the case

if the condition (P2) holds.

� or Clo(P ∪ {e},Dreduced
P ) ∩ EL 6= ∅) (Line 5 in Algorithm 7). This cannot be the

case since according to Lemma 3.1: Clo(P ∪ {e},Dreduced
P ) = Clo(P ∪ {e},DE) and

Clo(P∪{e})∩EL = ∅ (P∪{e} is outputted by enum clo only if Clo(P∪{e})∩EL = ∅
according to Line 7 in Algorithm 5).

Conversely, we prove that a Q outputted by expand(P,Dreduced
P , EL) (Algorithm 7) is also

outputted par enum clo(P,Dreduced
P , EL) (Algorithm 5, Page 26).

If Q is outputted in Line 7 in Algorithm 7 it means that there exists an e such that:

1. e occurs in Dreduced
P and Select(P ∪ {e},Dreduced

P ) is true, and

2. EL ∩ Clo(P ∪ {e},Dreduced
P ) = ∅.

From 1., according to the property (P2), the condition P ∪{e} ∈ F Line 5 in Algorithm 5
is satisfied.

From 2., and Lemma 3.1 stating that Clo(P ∪ {e},Dreduced
P ) = Clo(P ∪ {e},DE), the

condition Line 7 in Algorithm 5 is also satisfied.

Therefore Q is outputted by enu clo(P,Dreduced
P , EL)
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Theorem 3.2 (Soundness of ParaMiner)
ParaMiner computes the set of all closed patterns if the Select predicate is decomposable.

Proof: It is a direct consequence of Lemma 3.2 and from the fact that enum clo() (Al-
gorithm 5, Page 26) is in fact a rephrasing of the Boley et al.’s Algorithm 1 in [BHPW10],
which has been shown to compute the set of closed patterns.

We now prove that the Select predicate is decomposable for the fim, crg and gri pattern
mining problems introduced in Section 2.2. It guarantees that ParaMiner is sound and
complete for these problems.

Theorem 3.3
ParaMiner is sound and complete for the fim, crg and gri problems.

Proof: It is straightforward to show that the Select predicate for the fim problem is
decomposable, since Select(P,DE) is true if and only if P is frequent in DE . Therefore
Select(P,DE) ≡ |DE [[P ]]| ≥ ε (where DE [[P ]] is the tid support set of P and ε is the
frequency threshold).

It is also easy to show that the Select predicate is decomposable for the crg problem,
since Select(P,DE) is true if and only if P is a connected graph and frequent in DE .
Therefore Select(P,DE) ≡ is connected(P ) ∧ |DE [[P ]]| ≥ ε.

Finally let us consider the gri problem. Let us recall that in this problem P is a pattern
if and only if:

1) its first element is of the form a↑

2) and if its tid support set contains a path whose size is greater than ε.

Note that the first condition 1) is a constraint that depends only on the pattern P while
the condition 2) is a constraint that depends only on the tid support set of P in DE . This
corresponds exactly to requirements for Select to be decomposable (Definition 3.1). �

3.2.2 Indexing

An execution of ParaMiner requires a large number of accesses to the dataset to check
if a candidate pattern must be outputted or not. For example, computing the support set
of a candidate pattern is a common operation in ParaMiner. In each call to expand(),
it is required at least once for every element that occurs in the reduced dataset (Line 2
in Algorithm 7). However to compute the support set of a pattern, one needs to perform
a full pass over the dataset. This makes to many passes over the dataset to expect good
performances. A common solution is to have an index which associate each element with
the set of transactions in which it occurs, saving computation at the cost of memory space.

Indexes are very common to improve the performances of information finding in large
databases. They are redundant representations of the initial data organized a different
way in order to provide faster accesses. This technique was first introduced in LCM under
the name of occurrence deliver.
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Given a reduced dataset Dreduced
P , the index of Dreduced

P denoted IndexDreduced
P

associates

each element e occurring in Dreduced
P with the set of the transaction identifiers of the trans-

actions that include e. For any element e, IndexDreduced
P

[e] = Dreduced
p [[e]]. In ParaMiner,

the index of a reduced dataset is built with the build index() function presented in Algo-
rithm 10. We build an index for each new reduced dataset (Line 8 of Algorithm 7, omitted
for clarity) and use it to improve the computation of tid sets.

Algorithm 10 Computing the index of a reduced dataset.

1: function build index(Dreduced
P )

• Require: A reduced dataset Dreduced
P .

• Ensure: Returns the index of Dreduced
P .

2: for all transaction t in Dreduced
P do

3: for all element e in t do
4: Add the transaction identifier of t to IndexDreduced

P
[e]

5: end for
6: end for
7: return IndexDreduced

P

8: end function

In ParaMiner, we check if a an element e occurs in a dataset Dreduced
P (Line 2 in Algo-

rithm 7) by checking whether IndexDreduced
P

[e] is not empty.

The index can also be used to speed up the computation of the closure operators. For
example, in the generic closure operator (Algorithm 1) as well as in every problem-specific
closure algorithms that we have proposed in Section 2.2, the intersection

⋂
Dreduced

P [Q]
is required to perform the closure of a pattern Q. Given the index IndexDreduced

P
we can

efficiently compute this intersection by checking the elements that have the same tid set
as Q. The algorithms to compute the intersection is provided in Algorithm 11.

Algorithm 11 Computing the intersection of the support set with indexes.

• Require: The index IndexDreduced
P

of a dataset Dreduced
P , and a pattern Q that is an

augmentation of P (Q = P ∪ {e}).
• Ensure: Returns the intersection of the support set of Q in Dreduced

P .

1: I ← ∅
2: for all e′ such that e′ occurs in Dreduced

P do
3: //Q = P ∪ {e}, therefore e′ belongs to

⋂
Dreduced

P [Q] if it has the same tid support
set than e in Dreduced

P .
4: if IndexDreduced

P
[e] = IndexDreduced

P
[e′] then

5: //e′ belongs to
⋂
Dreduced

P [Q].
6: I ← I ∪ {e′}
7: end if
8: end for
9: return I
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3.3 Optimizations based on parallelism

The algorithmic optimizations presented in the previous section are mandatory to be
able to tackle large datasets. However in order to further improve the performances of
ParaMiner and make it usable for practical data-mining problems, it is also important
to consider the architecture of modern execution platforms.

In this thesis we focus on platforms with multi-core architectures, that is platforms with
more than one processing units (cores) and a main memory that is accessible from every
cores. This covers a broad range of execution platforms, from everyone’s desktop computer
with 2 to 8 cores, to departmental computing servers with up to several hundreds of cores.

In order to be able to run efficiently on these platforms, and to be able to scale efficiently
on larger platforms, ParaMiner must be a parallel algorithm. In order to be paral-
lel, the whole computation must be split into independent tasks that can be performed
onto different cores. In Section 3.3.1 we first explain how to split the computations in
ParaMiner.

Once the global computation has been split into tasks, we must distribute the tasks to
the cores available. If the computations are not fairly distributed among the cores load
balancing issues may arise. If the computations are fairly distributed but the data in
memory is accessed in a very disorganized manner, poor data locality issues may arise. Both
reduce the performances of the algorithm, and should be avoided. However improving load
balancing typically reduces the data locality and conversely, therefore finding the correct
task distribution is a complex problem.

An adequate distribution strategy can be found with a good knowledge of both the al-
gorithm behavior and the execution platform. In order to find efficient task distribution
strategies for the range of problems that can be solved by ParaMiner, we designed
Melinda. Melinda is the parallel execution engine used to run ParaMiner on multi-
core architectures. In Melinda the task distribution strategy can be easily changed in or-
der to fit the algorithm and the execution platform. We present Melinda in Section 3.3.2
and show how it can be used to improve ParaMiner’s performances in Section 3.3.3.

3.3.1 Parallel exploration of the enumeration tree

ParaMiner outputs the set of closed pattern by following the enumeration tree described
in the previous chapter, therefore splitting the exploration of the enumeration tree into
tasks is the natural approach to distribute the computations among the available process-
ing units. In ParaMiner each task is in charge of expanding a node of the enumeration
tree (i.e. a call to expand()). Each task may create additional tasks to explore the child
nodes of the tree. When all the tasks have been completed, that is when no more tasks
are pending, the exploration of the enumeration tree is also complete.

Creating and executing tasks comes with a computational overhead. It is worth it if
this overhead is small relatively to the computation time required to complete the tasks.
However in the deeper levels of the enumeration tree, the calls to expand() are typically
much simpler due to dataset reduction. When the time required to complete a task
becomes close to the time required to create and handle it (i.e. within the same order of
magnitude), it is not worth creating a new task. In order to avoid the creation of small
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tasks, no new tasks are created to perform the descendent calls to expand() over a fixed
level in the enumeration tree, instead further calls are performed within the same task.
More precisely over this fixed depth, spawn in Algorithm 12, Line 9 becomes a recursive
call to expand(), and any further call is performed sequentially within the same tasks. An
example of splitting is shown in Figure 3.2.

Algorithm 12 ParaMiner’s expand() procedure with depth controlled spawn.

1: procedure expand(P , Dreduced
P , EL, depth)

• Require: A closed pattern P , a reduced dataset Dreduced
P , an exclusion list EL, the

depth in the enumeration tree.
• Ensure: Output all closed patterns that are descendent of P in the enumeration tree.

2: for all e such that e occurs in Dreduced
P do

3: if Select(P ∪ {e},Dreduced
P ) then

4: Q← Clo(P ∪ {e},Dreduced
P )

5: if EL ∩Q = ∅ then
6: //P is Q’s the first parent
7: output Q
8: Dreduced

Q ← reduce(Dreduced
P , e, EL, depth + 1)

9: if depth ≤ depth threshold then
10: spawn expand(Q,Dreduced

Q , EL, depth + 1) //Spawn a new task.
11: else
12: expand(Q,Dreduced

Q , EL, depth + 1) //Perform the recursive call in-
side the task.

13: end if
14: EL← EL ∪ {e}
15: end if
16: end if
17: end for
18: end procedure

It is important to note that each task can be performed without communicating with other
tasks. This property directly derives from the polynomial space enumeration strategy and
the first parent test presented in the previous chapter. This is an important benefit for
ParaMiner because task-wise communications are time consuming and induce dependen-
cies among the tasks. Since there is no task dependencies in ParaMiner, no particular
order is required to ensure its soundness.

However, the tasks should be distributed among the cores in order to preserve ParaMiner
from important parallel issues such as load unbalance or poor cache locality.

Poor cache locality

The main memory is an important resource that is shared by every cores of the processors.
However, the delay required to fetch a value from the main memory to the core is long
when compared to the delay required to perform any other operation on this value (e.g.
an arithmetic operation). In order to reduce this delay, the cores embed caches memories.
A cache contains a copy of the memory space that has been recently accessed by the core.



44 CHAPTER 3. THE PARAMINER ALGORITHM
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Figure 3.2: An enumeration tree split into tasks, over depth 2 in the enumeration tree
(dashed line), the expands calls are performed sequentially into a single task.

If the cache holds a copy of a value, the delay required to access this value is two to three
orders of magnitude smaller than in the main memory. If the value is not contained in the
cache, it has to be loaded from the main memory into the cache. Therefore in order to
keep the cores busy and ensure a good computational throughput, it is important to keep
the number of out-of-cache memory accesses as low as possible.

In ParaMiner numerous tasks exhibit data-affinities. Two tasks share affinities, if they
access the same data-structures from the memory. For example, when a task create a
dataset (Line 8 in Algorithm 12), this dataset will be further used by the child task. In
order to reduce the number of out-of-cache memory accesses, it is important to execute
those task on the same core because the cache already contains the dataset.

Conversely if the tasks sharing data-affinities are executed on different cores the same
dataset may have to be transfered twice from the memory to distinct caches, this is an
important concern because the canal used to transfer data from the memory to the cache
is a shared resource, hence subject to contention when a lot of data transfers are performed
simultaneously by several cores. Without a special care, an algorithm may not be able to
scale on a large computation platforms with a large number of cores.

Preserving the cache locality implies distributing the tasks with respect to the core on
which they have been created, this constraint on the way to distribute the tasks may lead
to load unbalance.

Unpredictable tasks size and load unbalance

Load unbalance is another well known problem occurring in many parallel algorithms.
It occurs when cores are assigned tasks that requires different amount of time to be
completed. If one core is assigned a short task and the other a much longer task, the
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first core will stay idle until the second core has finished processing its task. This will
reduce the number of tasks completed per time unit, hence increase the execution time.
The Figure 3.3 shows two executions of the same set of tasks on a two cores platform. The
execution in (a) shows load unbalance (core 1 is idle during the hatched section) whereas
the execution in (b) does not. As a consequence, even if the total amount of computation
required is identical in both scenarios, the time required to perform all the tasks is shorter
in (b) than in (a).

time
t1

t2 t3

exec. time = 4

core 1

core 2

(a)

time
t1 t2

t3

exec. time = 3

core 1

core 2

(b)

Figure 3.3: Unbalanced execution (a) vs. balanced execution (b).

An execution of ParaMiner is driven by the enumeration tree which depends on the input
dataset. As a consequence, the number of tasks is unknown in advance and the amount of
time required to complete each task is highly variable. For example in Figure 3.2, the task
in charge of expanding AB spawns more and possibly larger tasks, than the task in charge
of expanding E. Since the enumeration tree is unknown until the tasks are completed, no a
priori distribution of the tasks can be made at the initialization of the algorithm. We call
algorithms whose execution flow is driven by their input data data driven algorithms. For
those algorithms, naive task distribution strategies fail to provide correct load balancing
(cf. Related Works in Chapter 5) and dynamic and adaptive distributions must be used
to avoid this issue.

Discussion

Load unbalance and cache locality are two orthogonal problems and solving one can worsen
the other, preventing any performance increase. A good distribution strategy is typically
a fair tradeoff between load unbalance and cache locality.

The pattern mining problems that can be solved by ParaMiner are not equally subject
to cache locality and load unbalance. For example, load unbalance happens in frequent
tree and graph mining applications[TP09, BPC06] whereas memory issues are frequent in
itemset mining[NTMU10]. These papers have proposed efficient ad-hoc solutions designed
after an extensive study of a given algorithm and a given problem. (cf. Related Work in
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Chapter 5). However those solutions are hardly generalizable to ParaMiner which has
to be efficient for pattern mining problems that can exhibit very different behaviors.

In order to find a satisfying solution for distributing the tasks in ParaMiner, Melinda,
the parallelism engine used to drive the distribution and the execution of the tasks in
ParaMiner can be parameterized with various task distributions strategies. In Melinda,
creating and adapting strategies is fast and simple.

Although it is illustrated with ParaMiner within the next section, Melinda has
been used as the execution engine of several other pattern mining algorithms such as
DigDag[TTN+07, NTM08], PLCM[NTMU10], and PGLCM[DLT10].

3.3.2 Melinda: a parallel engine adapted to pattern mining algorithm

Melinda has been inspired by the Linda model designed by Gelernter in [Gel85]. The
main components in Melinda are tuples and the tuple-space. Tuples are records with
named fields where each field is defined according to the algorithm needs (in our case:
ParaMiner). The tuple-space is a memory space that can contain tuples only. The tuples
can be dropped in, or withdrawn from the tuple-space using two primitives, respectively
put() and get(). In order to avoid errors due to concurrent accesses to the tuple-space,
the put() and get() primitives are implemented with the adequate synchronization. It is
important to note that there is no other mean to access to the tuple-space.

When there are no tuples in the tuple-space, the get() function is blocking, and the core
calling the function is put on a waiting queue. The program terminates when all the cores
are pending in the waiting queue.

In ParaMiner, we create a new tuple for each task. We recall that a task is a node or
a sub-tree of the enumeration tree. Since each node of the enumeration tree is discovered
by a call to the expand() procedure, each task can be defined as the list of parameters of
a call to expand(). Therefore, in order to use ParaMiner together with Melinda, we
create a tuple containing this list of parameters. In addition, to perform the splitting as
it is described in Figure 3.2, we also store in the tuple the depth in the tree at which it
has been generated. Any tuple in ParaMiner is a 4-fields tuple [Q,Dreduced

Q , EL, depth],

where Q is the closed pattern, the Dreduced
Q is the reduced dataset of Q, EL is the exclusion

list and depth the depth generation. Notice that in practice, we only store in the tuple a
pointer to the dataset, this to avoid expensive copies of the datasets into the tuple-space.

In order to execute the tasks, each core executes a function that pulls tuples from the
tuple-space with the get() primitive (Algorithm 13 procedure run tasks()). For each tuple
extracted, the core calls the expand() procedure with the list of parameters contained in
the tuple. Notice that each call to expand() may create new tuples if necessary. This
carries on until the tuple-space is empty.

With this settings, the spawn instruction Line 9 in Algorithm 7 can be implemented as
shown in Algorithm 13 (only the lines relevant to spawning a new task are shown here,
i.e. Lines 9 to 13 in 12).

Melinda ensures correct data sharing among the cores and global termination detection.
Since it hides low level details it can be used by programmers with no experience with
parallel programming.
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Algorithm 13 The mechanism used to implement the spawn instruction in Algorithm 7.

• The expand() procedure with tuples

1: procedure expand(P , Dreduced
P , EL, depth)

. . .
2: //In order to spawn a task, creates a tuple and put it in the tuple-space.
3: if depth ≤ depth threshold then
4: put([Q,Dreduced

Q , EL, depth + 1])
5: else
6: expand(Q,Dreduced

Q , EL, depth)
7: end if
8: end procedure

• The function executed by the cores

1: procedure run tasks
2: while tuple-space is not empty do
3: [P,D, E, depth] = get()
4: expand(P,D, E, depth)
5: end while
6: end procedure

In the original Linda, the tuples are heterogeneous and can be queried by specifying the
fields values. A tuple is extracted from the tuple-space only if the specified fields matches.
This approach is of interest for ParaMiner and other data-driven algorithms because the
tuples contains relevant information that can be exploited to build an adequate distribution
of the tuples.

However, Melinda must be able to handle a large number of tuples and an intensive
usage of get() and put(). In addition, we do not need such an advanced querying system,
instead, we need a way to drive the tuple distribution that can be tuned easily in order
to match the pattern mining problem and the execution platform. In Melinda, we use
internals. Internals are arbitrary subdivisions of the tuple-space that can be used to sort
tuples.

3.3.3 Optimizing ParaMiner’s performances with Melinda’s tuple dis-
tribution strategies

When threads are pulling tuples from the tuple-space, Melinda is in charge of distributing
them according to a strategy that can be redefined by the user. If no strategy is provided,
the tuples are retrieved in a first in first out manner. However, different strategies can be
used to preserve data locality or to improve the load balancing.

In order to define new strategies, the tuple-space is divided into internals. Each internal is
a disjoint section of the tuple-space and can be used to group tuples together according to
whatever trait is relevant to the algorithm. For example, tuples can be grouped according
to the size of their reduced dataset. In addition to this, Melinda provide information
relative to the execution platform. Therefore the tuples can also be grouped according to
platform information such as the identifier of the core that have generated the tuple.

A strategy is then defined by a pair of functions (distribute(), retrieve()). The distribute
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function is called by the put() primitive, right before putting the tuple inside the tuple-
space (Line 2 in Algorithm 14). The distribute function returns an integer that is used as
a internal identifier. If the internal does not exists it is created dynamically. Conversely,
when an internal is empty it is destroyed. The retrieve() function is called by the get()
primitive. The integer value returned by retrieve() is used as an internal identifier (Line 2
in Algorithm 15) from which get() picks the tuple to return. If the internal does not
exists or is empty, a tuple is taken from any other internal. This way the soundness of the
algorithm is not altered.

Algorithm 14 The put() primitive.

1: function put(t: tuple)
2: internal id← distribute(t)
3: if Internals[internal id] does not exists then
4: create internal
5: end if
6: I ← Internals[internal id]
7: Stores t in internal I.
8: end function

Algorithm 15 The get() primitive.

1: function get
2: internal id← retrieve()
3: while Internals[internal id] is empty or does not exist do
4: internal id← next internal id //Pick another internal id.
5: end while
6: //Internals[internal id] is a non-empty internal.
7: return the first tuple t from Internal[internal id].
8: end function

Now we can easily implement a strategy to improve the load imbalance issue mentioned in
Section 3.3.1. For example, we are aware that tuples with large datasets typically require
more time to be completed than tuples with small datasets. In Algorithm 16 the distribute
function stores large datasets in Internal 1 and small datasets in Internal 2 (Line 3 to 6).
The retrieve function returns 1, therefore if the corresponding internal is not empty, the
tuples will be retrieved from it, otherwise they will be retrieved from another one (here the
Internal 2). It has been proven by Graham et al. in [Gra66] that this way of distributing
the tasks provides better load balancing than a random task distribution strategy.

Another strategy can be used to promote local memory accesses and preserve cache locality.
In ParaMiner, if a task spawns another task, they require accesses to the same data-
structures: a parent call to expand() creates the sub-dataset that is used by the child call
to expand(). However if the child task is performed on a core with a different cache, the
dataset has to be transfered again into the other cache, which costs time. The strategy
proposed in Algorithm 17 ensure that a tuple is delivered to the core that has generated
the tuple, as far as possible. It does so by storing the tuples from the same cores within
the same internal.
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Algorithm 16 Melinda strategy to improve the load balancing.

1: function Distribute(tuple:[P,D, EL, depth])
2: //Stores the tuples with large datasets in internal 1 and the tuples with small

datasets in internal 2.
3: if ||D|| is large then
4: return 1
5: else
6: return 2
7: end if
8: end function
9: function Retrieve()

10: //Retrieve tuple with large datasets in priority.
11: return 1
12: end function

Algorithm 17 Melinda strategy to promote local memory accesses.

1: function Distribute(tuple:[P,D, EL, depth])
2: return core identifier
3: end function
4: function Retrieve()
5: return core identifier
6: end function

3.4 Conclusion

In this section, we have proposed ParaMiner, which is an algorithm adapted to pattern
mining problems as defined in the previous chapter. Although ParaMiner is generic it
is made efficient by generalizing state of the art algorithmic optimizations such as the
database reduction technique and indexing techniques. In addition ParaMiner is a par-
allel algorithm hence it can benefit from modern parallel architectures. As a consequence
any one with basic programming skills and a dataset to mine can benefit from state of the
art pattern mining techniques and from parallelism.

In addition, pattern mining is a challenging problem for the parallelism community. Indeed
naive parallelizations of pattern mining typically fail to scale even on machines with few
cores, and even with a ad-hoc algorithm it is sometime hard to reach the maximal speed on
a given execution platform due to the complex interactions between the algorithm behavior
and hardware components. In the past years various researchers from both communities
have worked together to build efficient ad-hoc parallel algorithms (see Section 5). Thanks
to the Melinda executing engine used in ParaMiner, we can quickly benefit from these
works by implementing strategies into Melinda. In addition, ParaMiner together with
Melinda is an interesting framework for quick experimentations regarding an unknown
pattern mining problem. It also makes the experiments comparable with other execution
strategies or other pattern mining problems. Hence it is and valuable tool for a better
understanding of parallel pattern mining algorithms.

Within the next section, we validate the efficiency of ParaMiner by comparing it with
other ad-hoc algorithms.
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In this chapter we report on thorough experiments that we have conducted to evaluate
ParaMiner’s performances in terms of execution times and also in terms of scalabil-
ity on large computation platforms. We give the details of our experimental settings in
Section 4.1.

In Section 4.2, we experimentally demonstrate the efficiency of dataset reduction by mea-
suring the gain offered by this optimization presented in the previous chapter. The ex-
periments show that dataset reduction makes drastically faster the computation of closed
patterns and that it is a key optimization to tackle large datasets.

In Section 4.3, we demonstrate the benefit of parallelism on several types of computation
platforms. With the raise of multi-core processors, parallelism is now available in most
standard computers. We thus evaluate the gain offered by parallelism on a 4-core laptop
computer. These experiments show that ParaMiner can fully exploit this new form of
computational power.
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We also demonstrate that ParaMiner can benefit from larger computation platforms by
conducting experiments on a 32-core computation server with 64GiB of memory. Thanks
to this additional computational power, ParaMiner successfully tackle the problem of
gradual itemset mining on real world datasets.

Those larger platforms have complex architectures and exploiting them efficiently have
been an active research topic for decades. Designing efficient parallel pattern mining algo-
rithms is a particularly challenging problem due to irregular and memory intensive compu-
tations. Experiments reveal important parallelism issues also identified in [TP09, GBP+05]
or [NTMU10] that prevent ParaMiner from reaching the theoretical performance of the
computing platforms. From those experiments, we propose solutions and demonstrate
their feasibility with Melinda strategies.

In Section 4.4, we demonstrate experimentally that ParaMiner is generic and efficient,
thanks to the above optimizations. For doing so, we compare the performances of
ParaMiner with several state of the art specific algorithms designed for particular pat-
tern mining problems. Although these algorithms are the fastest available, ParaMiner
is competitive in all cases. For the problem of gradual itemset mining, it outperforms the
state of the art algorithm by several orders of magnitude.

4.1 Experimental settings

We have implemented ParaMiner in C++. The Select and Clo operators for the different
problems proposed in this thesis are also implemented in C++ although it is technically
possible to interface ParaMiner with other common programming languages such as
Java or Python. The Melinda library is implemented in C. Unless otherwise mentioned,
the Melinda strategy in use is the default strategy where the tuples are pushed into and
pulled from the tuple-space in the first-in, first-out order.

All the algorithms including algorithms from different authors are compiled with the gcc

compiler with the same settings and with compiler optimizations fully enabled (-O3 flag
in gcc). They are executed on computers running the GNU/Linux operating system.

We execute the algorithms on two distinct computing platforms namely Laptop and Server.
Their hardware configuration are presented in Table 4.1. Laptop is a high-end laptop com-
puter with four cores. Its fairly standard configuration is similar to what most data-miners
use as their main computer. Experiments conducted on this platforms thus represent what
anyone can get by running ParaMiner on his/her own computer.

Laptop Server

# cores 4 32

Memory (GiB) 8 64

Processor type Intel Core i7 X900 4 x Intel Core i7 X7560

Processor frequency (GHz) 2 2.27

Cache size (MiB) 8 4 × 24

Memory bus bandwidth (GiB/s) 7.9 9.7

Table 4.1: Specifications of the computation platform

Server is a computation server with 32 cores and 64 GiB of memory. It is four times the
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size of Laptop in terms of number of cores and eight times the amount of memory available.
However it is important to note that other important characteristics are not dimensioned
in these proportions. For example the bus memory bandwidth is roughly the same on both
platforms: 7.9 GiB/s on Laptop vs 9.7 GiB/s on Server. This will imply important issues
discussed later in this chapter.

4.2 Experimental evaluation of dataset reduction

In order to evaluate the impact of ParaMiner’s dataset reduction, we first measure the
average reduction factor. The reduction factor of a given reduced dataset Dreduced

P , is the

ratio between its size and the size of the input dataset DE : reduction factor = ||DE ||
||Dreduced

P || .

We compute the average reduction factor for all the reduced datasets built during an
execution of ParaMiner. Given a dataset DE and a set of closed patterns C in DE , the
average reduction factor can be computed with the following formula:

average reduction factor =

∑
P∈C ||DE ||/||Dreduced

P ||
|C|

In the following experiments we also present the average dataset size, which is given by

the following formula: average dataset size =
∑

P∈C ||Dreduced
P ||
|C| .

4.2.1 Reduction factors for the fim problem

We compute the average reduction factors for two datasets, namely: BMS-WebView-2
and Accidents. These two datasets are from the FIMI repository [Goe03] which contains
a large number of itemset mining datasets commonly used to evaluate the performances
of frequent itemset mining algorithms. The characteristics of several datasets from the
FIMI repository are shown in Table 4.2.

In addition to traditional metrics such as the size of the ground set or the number of
transactions, the density has been introduced by [GNDR11] as the ratio between the
largest dataset that is possible to build with a given ground set and a given number of
transactions, and the number of actual elements occurring in this dataset. It is important

dataset name ground set size # transactions dataset size Density (%)

|E| |DE | ||DE || |E||DE |
||DE || × 100

BMS-WebView-2 3,340 77,512 320,601 (1.2MiB) 0.14
T40I10D100K 942 100,000 3,960,507 (15MiB) 4.20
Connect 129 67,557 2,904,951 (11MiB) 33.33
Mushroom 119 8,124 186,852 (0.7MiB) 19.33
Accidents 468 340,184 11,500,870 (43MiB) 7.22

Table 4.2: Characteristics of fim datasets available in the FIMI repository. The bracketed
value in the size field is an approximation of the size of the dataset once loaded into the
memory.
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to consider the density because some algorithms exhibit variable performances depending
on the density[UKA05, NTMU10].

We run our first experiments on BMS-WebView-2 and Accidents because they are both
fairly large and real datasets. BMS-WebView-2 is very sparse, i.e. it has a low density,
whereas Accidents is very dense.

We present in Figure 4.1 (a) the average dataset size and in (b) the average reduction
factor for ParaMiner on BMS-WebView-2 executed with various frequency thresholds.
The frequency thresholds are given relatively to the size of the input dataset decreasingly
from 0.09% to 0.02%. Executions of ParaMiner with lower frequency thresholds outputs
more closed patterns and are thus more complex problems.

In Figure 4.2 (a) we present the average dataset size and the average reduction factor in (b)
for the dense dataset Accidents. Due to its higher density, the number of closed patterns
in accidents is much higher and is thus tackled with much higher frequency thresholds
from 90% to 20% in order to have a problem difficulty comparable with the previous
experiment.

These results show that the dataset can be reduced up to 600 times in the sparse dataset
BMS-WebView-2 (a), and up to 20,000 times with the dense dataset Accidents (b). For
both kinds of datasets, dataset reduction is thus able to efficiently reduce the size of the
dataset, alleviating the computations needed to compute Select and Clo (cf. Section 4.2.3).

It is important to note that the reduction factor increases as we reduce the frequency
threshold. This is due to the fact that the reduced dataset of a pattern only contains the
transactions that include this pattern (See Paragraph 3.2.1, Page 35). Hence the reduced
dataset of an itemset included in a small number of transactions is typically much smaller
than the original dataset. This makes the dataset reduction a key optimization for tackling
large datasets with low frequency threshold.

The rest of the reduction is achieved by removing elements that belong to the exclusion list
(described in Paragraph 3.2.1). This is particularly effective when performing reduction
on patterns occurring on the right side of the enumeration tree where the exclusion lists
are large. It is not uncommon to have a single call to reduce() reducing a large dataset
to few elements.

4.2.2 Reduction factors for crg and gri

In order to compute the reduction factors achieved by ParaMiner for the relational graph
mining problem (crg), we use a real world gene network dataset: Hughes. This dataset
is made of DAGs, where each DAG represents a potential gene interaction network built
with the algorithm in [IGM01] from micro array experiments [HMJ+00]. In this dataset,
there are 1000 graphs, having an average of 245 genes and 270 edges.

The datasets used for graduals itemset mining (gri), I500 and I4408, are also real datasets
from DNA experiments describing gene expressions in the framework of breast cancer. I500
has 500 attributes and 109 lines, I4408 has 4408 attributes and 109 lines as well. Mining
these datasets is a complex process: in order to evaluate the reduction factor, we only use
the smallest dataset: I500.

Once they are encoded into our framework these datasets can be compared with the same
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Figure 4.1: Impact of dataset reduction for the fim problem on BMS-WebView-2 (sparse).
Average reduced dataset size in (a), and average reduction factor in (b).
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Figure 4.2: Impact of dataset reduction for the fim problem on Accidents (dense). Average
reduced dataset size in (a), and average reduction factor in (b).
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dataset name ground set size # transactions dataset size Density (%)

|E| |DE | ||DE || |E||DE |
||DE || × 100

Hughes 794 1,000 270,985 34.13

I500 1008 11,556 5,824,224 50

I4408 8824 11,556 50,985,072 50

Table 4.3: Characteristics of encoded datasets: Hughes(crg problem), I500 and I4408
(gri problem).
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Figure 4.3: Impact of dataset reduction for the crg problem on Hughes. Average reduced
dataset size in (a), and average reduction factor in (b).

metrics. The characteristics of the encoded datasets Hughes, I500, and I4408 are shown
in Table 4.3.

The reducing factors for crg and gri are shown in Figure 4.4. Again, ParaMiner
exhibits important reduction factors: over 400 times in the gri problem, and over 85
times in the gri problem. We demonstrate the important impact of the reduction on the
execution times in the following section.

4.2.3 Performance impact of dataset reduction

In order to evaluate the performance impact of the dataset reduction we compare
ParaMiner with ParaMinerno dsr which is the same algorithm except all the compu-
tations are performed within the original dataset.

More precisely, ParaMinerno dsr is Algorithm 7, Page 34 in which we have performed
the following changes:

� Dreduced
P or Dreduced

Q are replaced by DE , line 3, 4, and 9.

� No call to reduce() is performed Line 8.

� Line 2: forall e such that e occurs in Dreduced
P do . . .

is replaced by: forall e such that P ∪ {e} occurs in DE do . . .
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Figure 4.4: Impact of dataset reduction for the crg problem on Hughes. Average reduced
dataset size in (a), and average reduction factor in (b).

Replacing Line 2 that way is mandatory to ensure the soundness of ParaMinerno dsr.

We then compare the efficiency of ParaMinerno dsr and ParaMiner by comparing the
execution times required to mine closed frequent itemsets from the Mushroom dataset.
Both algorithms are executed on Laptop, using only one core (sequential execution). The
results are shown in Figure 4.5.

We do not run these experiments on Accidents or BMS-WebView-2 due to the limited
capabilities of ParaMinerno dsr: instead we run them on Mushroom which is a smaller
dataset (see Table 4.2). The average reduction factors performed by ParaMiner on this
dataset are shown in Figure 4.5 (a). The execution times shown in Figure 4.5 (b) clearly
show that dataset reduction reduces the amount of computation required to tackle the
dataset. As the consequence ParaMinerno dsr is outperformed by one to two orders of
magnitude.

Although dataset reduction is an important optimization, the pattern mining problem is
still a time consuming problem. We made ParaMiner a parallel algorithm in order to
fully exploit the parallelism provided by multi-core architectures. In the following section
we evaluate the benefits offered by parallelism.

4.3 Experimental evaluation of parallelism in ParaMiner

In order to demonstrate the gain of parallelism, we first run experiments on Laptop. These
experiments show that by correctly exploiting multi-core architectures we can turn most
standard desktop or laptop computer into a powerful computation platform able to tackle
reasonably sized pattern mining problems. This is an interesting result to pattern mining
practitioners that need pattern mining to be a process as interactive as possible.

We then evaluate ParaMiner’s efficiency on larger computation platforms by experi-
menting on Server which is a 32-core computation server. This type of server can be
useful to tackle more complex problems such as the gri problem or problems with larger
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Figure 4.5: ParaMiner vs ParaMinerno dsr, sequential execution times on the dataset
Mushroom (a). The average reduction factor for this dataset is shown in (b).

dataset size and lower frequency thresholds. However due to the large number of interact-
ing hardware components, these platforms can exhibit important issues such as contention
on the communication channel connecting these components: the memory bus. After a
first evaluation of ParaMiner’s performance, we discuss the results and conduct further
experiments to understand and ParaMiner’s behavior on this type of platforms.

In order to evaluate the parallel performances of ParaMiner, we measure both the ex-
ecution times and the speedups. The speedup is obtained by dividing the time required
for an execution restricted to one core, by the time required for an execution exploiting a
number n of cores.

speedupn =
execution time using 1 cores

execution time using n cores

A parallel algorithm has a good speedup with n cores, the speedup approaches n. The
speedup is a well recognized metric to evaluate the ability of an algorithm to scale up with
a large number of cores.

4.3.1 Parallel performance evaluation of ParaMiner on Laptop

The execution times and the speedups of ParaMiner on BMS-WebView-2 and Accidents
(fim) are shown in Figure 4.6 and Figure 4.7. The execution times and the speedups on
Hughes (crg) are shown in Figure 4.8. Due to a large memory requirements, experiments
for the gri problem were only conducted on Server.

In Figure 4.6 (a), 4.7 (a) and 4.8 (a), the upper curves show the execution times for an
execution of ParaMiner restricted to one core, the lower curves show the execution times
of ParaMiner exploiting all the available cores (four cores on Laptop). The (b) chart on
the right side of each figure shows the corresponding speedup achieved.

We first observe that in both experiments the speedup is lower for the executions with
higher frequency threshold values. However, those executions all complete within a very
short time delay (less than five seconds). The lower speedup is due to the significant
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Figure 4.6: Runtimes on Laptop: Execution times for the fim problem on BMS-WebView-2
(a) and speedups (b).
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Figure 4.7: Runtimes on Laptop: Execution times for the fim problem on Accidents (a)
and speedups (b).
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Figure 4.8: Runtimes on Laptop: Execution times for the crg problem on Hughes (a) and
speedups (b).

overheads required to create tasks and distribute them among the multiple cores. If the
total computation time is short, it is not worth using many cores. However since this
effect quickly disappears when tackling the datasets with lower threshold values, we do
not consider this to be an important issue.

The speedup bars in Figure 4.6 (b), show that ParaMiner performs almost four times
faster when exploiting the four cores available on Laptop. To flesh out these numbers on
real data analysis scenarios, this means that a 12 hour computation, wasting one work
day, can be done in three to four hours.

The speedup bars in Figure 4.7 (b), and 4.8 (b) show a 3 times speedup which is also an
important benefit for the user of ParaMiner. However this is not the maximum reachable
speedup on a computer with four cores. We observe similar behaviors on the Server, and
thus we will discuss this in the following section by running additional experiments.

These experiments reveal the significance of designing parallel pattern mining algorithms.
They are the only algorithms that can exploit the new form of computational power. By
exploiting four cores instead of one, ParaMiner is able to perform three to four times
faster.

4.3.2 Parallel performance evaluation of ParaMiner on Server

We now evaluate the scalability of ParaMiner on larger platforms. We run our experi-
ments on a 32-core computation server. Thanks to this additional computational power,
we are able to tackle more complex problems such as the gri problem.

The execution times and the speedups of ParaMiner for the fim problem are shown in
Figure 4.9 and 4.10. The executions times and speedups for the crg problem are shown
in Figure 4.13. Finally, the execution times and speedups for the gri problem are shown
in Figure 4.11, Figure 4.12.

We first discuss the execution times and the speedup of ParaMiner for the gri prob-
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Figure 4.9: Runtimes on Server: Execution times for the fim problem on BMS-WebView-2
(a) and speedups (b).

lem. ParaMiner exhibits good execution times for both datasets I500 and I4408. It is
important to note that these dataset were both out of reach until recent work by Do in
[DLT10]. On the larger dataset I4408, ParaMiner performs up to 30 times faster than
on a single core execution. As a consequence, we are able to mine the dataset I4408 for
graduals itemsets within few minutes instead of several hours.

The speedup reached by ParaMiner is less satisfying when it comes to mine frequent
itemsets in BMS-WebView-2 and Accidents or relational graphs in Hughes. ParaMiner
reaches a 4 times speedup but does not benefit further from additional cores.

Result interpretation

In order to provide an explanation of the behavior of ParaMiner on Server, we first
monitor the core activity during an execution. The two charts in Figure 4.14 show each
core activity during two execution of ParaMiner: one with BMS-WebView-2 (a) and
one with Accidents (b). When a core switches from the inactive state to active state its
activity curve moves upward and conversely. The program terminates when all the cores
are shown inactive.

First, what we can see in the Figure 4.14 is that load imbalance is not an issue. Load
imbalance occurs when some cores remains inactive while others are performing their last
task. Figures 4.14 (a) and (b) clearly show that at the end of the execution, all the cores
become inactive roughly at the same time.

However Figure 4.14 (b) reveals that most cores are inactive at the beginning of the
execution of ParaMiner. Further investigation shows that this is the time required to
load and pre-process the input dataset. In ParaMiner, this operation is done sequentially.
It means that during this time, only one core is contributing to the overall progress of the
execution. When the dataset is as large as Accidents, the time required to perform this
step may be a significant fraction of the total time and this can impact the speedup. In
this particular experiment the fraction of sequential time is about 1

5 of the total time
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Figure 4.10: Runtimes on Server: Execution times for the fim problem on Accidents (a)
and speedups (b).
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Figure 4.11: Runtimes on Server: Execution times for the gri problem on I500 (a) and
speedups (b).
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Figure 4.12: Runtimes on Server: Execution times for the gri problem on 4408 (a) and
speedups (b).
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Figure 4.13: Runtimes on Server: Execution times for the crg problem on Hughes (a)
and speedups (b).
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Figure 4.14: Core activity for BMS-WebView-2 mined with a frequency threshold of 0.08%
(a) and Accidents mined with a frequency threshold of 40%: (b).

(4.2s/22.9s). The Aldahm’s law state that the maximal speedup is bounded by the inverse
of the fraction of sequential time (max speedup = 1

P where P is the portion of sequential
time). Therefore the theoretical speedup is five for this execution.

According to Figure 4.10 ParaMiner’s speedup on Accidents with a frequency threshold
of 40% is above 3. In addition, ParaMiner on BMS-WebView-2 does not exhibit the
same behavior and still does not reach the maximal speedup of 32. Hence this is not the
only explanation for ParaMiner’s behavior shown in speedup curves.

We recalled in the previous chapter that poor cache locality is another common issue in
a parallel algorithm. Caches are useful to provide fast memory accesses to data. Indeed
accesses to data that are already in the cache can be performed very quickly. Conversely
when data are not in the cache, it must be fetched from the main memory and it implies a
delay. Each memory access that has to fetch data from the main memory is called a cache
miss. We say that an algorithm suffers from poor cache locality when cache misses are
frequent and induce an important time penalty for the algorithm. In order to evaluate the
cache locality in ParaMiner, we measure the number of memory accesses that are cache
misses, and compare it to the total number of memory accesses. The results are shown in
Figure 4.15.

The Figure 4.15 clearly shows that the number of cache misses increases when ParaMiner
is executed with more cores. It start with 11% with a single core execution and reaches
45% percent when using 32 cores.

When the algorithm performs a lot of cache misses, the memory bus is frequently solicited.
The memory bus is the hardware component used to transfer data from the memory to the
cores. When the bus reaches its maximal bandwidth, it has to delay memory operations.
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During this delay the cores are unable to execute any instruction, and the overall efficiency
is impacted. The Figure 4.15 only reports the number of caches misses which is insufficient
to detect these delays.

In Figure 4.16, we measure the amount of high-latency memory operations with a varying
number of cores. Darker surfaces mean longer memory operations. This figure shows that
as we increase the number of cores used to execute ParaMiner, memory operations are
performed within more cycles. On this type of platform, an access to the main memory
is performed in about 120 cycles. Therefore if a memory operation is performed in more
than 120 cycles it means that it has been delayed.
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Figure 4.16: The increasing number of high latency memory operations.

If we focus on memory operations whose latency is above 128 cycles (three darker slices),
we observe that the number of such operations is almost null when ParaMiner runs on
a single core (∼ 0.2%) but reaches 3.4% when ParaMiner is executed on 32 cores. This
is symptomatic of a memory bus unable to sustain the memory accesses in time. This
results are in line with the results of Ghosting in [GBP+05], measured on a FP-Growth

like frequent itemset mining algorithm.

This problem is known as the memory wall problem [WM95]: It is due to the fact that
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for twenty five years the computational throughput of processors has increased faster than
the memory bus capabilities. Today, it is almost impossible to build a scalable parallel
algorithm without putting work into the reduction of bus usage.

We have shown in this section that ParaMiner is particularly sensitive to the memory
wall problem due to an extensive usage of memory operations. Similar results have been
observed on other pattern mining algorithms in [TP09, GBP+05]. In the following sec-
tion we propose a Melinda strategy to improve the cache locality and reduce the bus
contention.

4.3.3 Melinda strategies to improve the cache locality

First, it important to mention that this work on Melinda strategies was conducted in
collaboration with Serge Emteu in the context of a master internship [ETMT10].

It also important to mention that we designed and experimented new Melinda strategies
on the PLCM algorithm and not on ParaMiner. PLCM is our parallel frequent itemset
mining algorithm, which is also powered by Melinda. PLCM integrates a similar dataset
reduction process although it is specific to frequent itemset mining. In addition, when
ParaMiner is used to mine closed frequent itemset, both algorithms explore the search
space according the same enumeration strategy.

We have shown in former experiments in [NTMU10] that PLCM also hit the memory wall.
PLCM was preferred to ParaMiner to conduct these experiments because it features
bloc allocation. Bloc allocation simply guarantees that large data structures such as the
datasets are stored contiguously in the memory. It provides PLCM a more straightforward
behavior in terms of memory accesses. This feature has not been integrated yet into
ParaMiner. As a consequence, PLCM is more appropriate to experiment on memory
accesses but the results are transposable to an implementation of ParaMiner using bloc
allocation.

In this section we design and evaluate a Melinda strategy that takes advantage of the
processor complex cache architecture in Server. We first present the cache architecture in
Server then explain how we can exploit this knowledge to improve PLCM’s behavior in
terms of cache locality.

Cache architecture in Server

In order to reduce the number of accesses to the main memory most multi-core archi-
tectures comes with not just one, but a cascade of cache memory units. When data is
requested by a core, the first cache level is queried, if the first level cache does not contain
a copy of the data, the second level is queried and so on until the main memory. First
levels units are fast but can only store a limited amount of data whereas last level are
bigger but slower. A schematic representation of a processor of Server is presented in
Figure 4.17.

Figure 4.17 shows that each processor on Server has three levels of cache: L1, L2 and L3.
It also reveals that the last level of cache is shared among all the cores of the processor.
It means that if a core fetches a particular data structure such as a dataset, this data
structure is then available in this cache for all the other cores of the processor. Therefore
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Figure 4.17: The caches architecture of one processor of Server. The whole computation
platforms has four such processors.

if two tasks performs accesses to the same data structures in memory, they can benefit
from being executed on two cores with the same cache. In our new strategy, we want to
take advantage of this effect to reduce the amount of out-of-cache memory accesses. To
do so we must identify what tasks perform accesses to the same data structures.

Data sharing in PLCM and ParaMiner

Data sharing in ParaMiner and PLCM occurs due to the internal representation of the
reduced datasets. In order to limit the memory usage, the reduced dataset of a closed
pattern shares common parts with its parent reduced dataset. As a consequence, parents
and sibling tuples often access the same data structures in memory. Conversely tuples
generated on different branches perform accesses to different data structure.

The idea behind the strategies proposed in this section is to group together on the same
processor the tasks that perform accesses to the same data structures. The benefit is
two fold: first the data structures only need to be loaded once into the cache; and second,
if all the tasks perform access to the same data structures more cache memory is available
to store these data structures. This is illustrated in Figure 4.18.

Core #1

Core #2

Core #3

Cache

Data A

Data B

Data C

(a)

Core #1

Core #2

Core #3

CacheData B

(b)

Figure 4.18: Bad strategy vs good strategy: In (a), all three cores access different data
structures, and shared cache is overfull. In (b) the cache is correctly used.

In order to achieve the result in Figure 4.18 (b), we propose a Melinda strategy and
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measure the speedup achieved on two dense datasets: Accidents and Connect.

Our strategy Sarch consists in distributing the tuples generated in the same branch of the
enumeration tree to the cores of the processors that share a cache. In order to avoid the
computation of several branches simultaneously on the same processor, cores may have to
wait until the branch is completed before exploring another branch.

The distribute() function of the strategy Sarch is shown in Algorithm 18. This function
separates the depth 1 tuples from other tuples. The depth 1 tuples are the roots of new
branches and are systematically stored in the first internal (Line 3).

Any tuple with a depth higher than 1 is by construction an internal node of a branch that
must be taken by a core of the same processor. By returning the processor identifier in
Line 8, we guarantee that tuples generated by different processors are not mixed together
within the same internal.

The rest of the work is performed by the reduce() function presented in Algorithm 19.
In this function, we essentially pull tuples from the internal processor id until the branch
is complete. The branch is complete when no more tuples are available (Line 3), and no
more processor’s core is active (Line 6). When the branch is completed, a root tuple is
pulled from the internal 0 (Line 7), and the same process starts again until no more tuple
are available in internal 0.

In order to prevent two branches from being processed simultaneously on the same pro-
cessor, cores have to wait in Line 10 until the branch is completely processed. Cores wait
until they are signaled by another core. Signals are sent when a new tuple is pushed into
the internal (Algorithm 19 Line 6-7) or when a new tuple is retrieved from the first internal
to explore a new branch (Line 6 in Algorithm 19).

Algorithm 18 Melinda strategy Sarch (distribute).

1: function Distribute(tuple:[P,D, depth])
2: if depth = 1 then
3: return 0 //Each depth 1 tuple is the first node of a new branch. We store these

tuples in the first internal (internal 0).
4: else
5: pending tuples[processor id]← pending tuples[processor id] + 1
6: signal //Signal waiting cores that a new thread arrived.
7: return processor id
8: end if
9: end function

The Figure 4.19 compares the default strategy with this new strategy. The curve Sdefault

represents the speedup of PLCM with the default fifo strategy whereas Sarch is the speedup
with our new strategy. This figures show that our Sarch strategy performs 24% better on
Accidents and 28% better on Connect when running ParaMiner. This is an important
benefit obtained without any modifications to the source code of PLCM and also without
handling too low level concepts.

In Figure 4.19 (b) we also observe that with this new strategy, the performance are optimal
with up to two active cores per processor (i.e. a total of 8 active cores). This suggests that
over two cores per processor, the bus is unable to sustain the demand and has again to
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Algorithm 19 Melinda strategy Sarch (retrieve).

1: active cores[processor id]← 0
2: function Retrieve()
3: while pending tuples[processor id] = 0 do
4: active cores[processor id]← active cores[processor id]− 1
5: if active cores[processor id] = 0 then
6: active cores[processor id]← active cores[processor id] + 1
7: signal
8: return 0 //Explore a new branch
9: else

10: wait //Wait until a new tuples arrives.
11: end if
12: end while
13: active cores[processor id]← active cores[processor id] + 1
14: //Pulls a tuple of the branch and decrease the tuple count
15: pending tuples[processor id]← pending tuples[processor id]− 1
16: end function

delay the memory operations. However this strategy is an important step towards more
cache locality.
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Figure 4.19: Speedup on Accidents (a) and Connect (b) with different Melinda’s strate-
gies.

4.4 Comparative experiments of ParaMiner with ad-hoc al-
gorithms

In this section we compare the performances of ParaMiner for mining frequent item-
set and gradual itemset with state of the art ad-hoc algorithms. We were unable to run
comparative experiments for the relational graph mining problem due to lack of imple-
mentation available.
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Figure 4.20: Comparatives experiments for fim: ParaMiner vs PLCM vs MT-Closed.

The algorithms that we compare to are the original implementations downloaded from
author’s website or directly retrieved from them. We recall that the algorithms were
all compiled with the same compiler (gcc) and compiler settings. The execution times
include the complete mining process. In ParaMiner, this includes reading and encoding
the input dataset, computing the patterns and writing them into a file.

4.4.1 ParaMiner vs fim algorithms

During the FIMI workshop [Goe03], the efficiency of dozens of fim algorithms has been
compared. LCM received the fastest algorithm award. Since PLCM is our parallel imple-
mentation of LCM, (whose efficiency was demonstrated in [NTMU10]), we chose to com-
pare ParaMiner with PLCM. The DCI-Closed algorithm by Lucchese et al. [LOP04] is
another very competitive algorithm. In fact, DCI-Closed is particularly efficient on dense
datasets. In addition, DCI-Closed author’s have built an efficient parallel implementation
of DCI-Closed called MT-Closed [LOP07]. Thus we also chose to compare ParaMiner
with MT-Closed.

The experiments were conducted on the two datasets BMS-WebView-2 (sparse) and Ac-
cidents (dense). The timing results are shown in Figure 4.20 (a) for BMS-WebView-2 and
in Figure 4.20 (b) for Accidents.

On the sparse dataset, ParaMiner and MT-Closed exhibit very close performances. On
this dataset, they are also both one order of magnitude slower than PLCM. On the dense
dataset, ParaMiner is one order of magnitude slower than both PLCM and MT-Closed.
This is a good result considering that PLCM and MT-Closed can exploit the problem
specificity by ignoring infrequent elements for example. This reduces the search space
and allows more aggressive dataset reduction. Although ParaMiner cannot make these
assumptions for the sake of genericity, it still exhibits good execution times. It is worth
noticing that for the same datasets, any implementation of Apriori is two to three orders
of magnitude slower than ParaMiner.
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Figure 4.21: Comparatives experiments for gri: ParaMiner vs PGLCM vs PGP-mc.

4.4.2 ParaMiner vs gri algorithms

We now compare ParaMiner with the state-of-the-art parallel algorithms designed to
solve the gri problem. We run comparative experiments with two algorithms: PGP-

mc by Laurent et al. [LNST10] and PGLCM [DLT10] by Do et al. The comparison
with PGP-mc is not fair because it only mines frequent gradual itemsets (not necessarily
closed). However it is shown here to evaluate the benefit of closed gradual itemset mining.
PGLCM is the fastest closed gradual itemset mining algorithm available nowadays, its
efficiency has been demonstrated in [DLT10].

We first experiment on the real gene expression database I4408 described in Table 4.3.
The results are shown in Figure 4.21 (a).

On this database, PGP-mc cannot complete due to memory exhaustion. With a frequency
threshold of 70%, PGLCM takes more than 11 hours to complete the computations whereas
ParaMiner outputs the same result within less than six minutes. This is mostly due to
the lack of dataset reduction technique in PGLCM. In [DLT10], the authors leave the
problem of designing a dataset reduction for the gri problem as open problem. Since any
problem formalized into our framework can directly benefit from ParaMiner’s dataset
reduction, this problem is now solved.

Due to lack of dataset reduction PGLCM’s efficiency is particularly sensitive to the high
number of attributes in the I4408 database (4408). However this database has few number
of records. In order to provide a fair comparison with PGLCM, we also run experiments on
C1000A100. C1000A100 is a synthetic database with 1000 records and only 100 attributes.
It was generated with a modified version of IBM Synthetic Data Generator for Association
and Sequential Patterns also used in [DLT10] and [LNST10].

The results are shown in Figure 4.21 (b). This figure shows that although ParaMiner is
one order of magnitude slower than PGLCM, this database can be tackled in less than a
minute by both algorithms. PGP-mc which is competitive with high frequency thresholds
values, is quickly outperformed when this frequency threshold is reduced. This is due to
non-closed pattern mining in PGP-mc. Despite being a generic algorithm, ParaMiner is
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the best choice to solve the gri problem.

4.5 Conclusion on the experimental evaluation of ParaMiner

In this chapter we have experimentally demonstrated the practical efficiency of dataset
reduction and we have also shown the important benefit that can be achieved by exploiting
efficiently the computational power offered by multi-core architectures.

This ability to exploit multi-core architectures combined together with optimizations such
as dataset reduction make ParaMiner a competitive algorithm for many important pat-
tern mining problem. As a consequence, for some important problems such as the gri
problem, ParaMiner is able to achieve much better performances than state of the art
ad hoc algorithms. This demonstrates the interest of the generic approach compared to
the traditional problem specific approach. It also validates the framework presented in
Chapter 2 and the design choices made in Chapter 3.

For some problems, ParaMiner does not currently scale up to the large number of cores
available in large multi-core platforms. We have identified with experiments that those
problems are due to the memory wall problem and are provoked by poor cache locality.
This is a challenging problem that has been observed and addressed by several research pa-
pers in parallel pattern mining such as [TP09], [GBP+05] and [NTMU10]. We will present
these works in Section 5. It is important to note that any improvement in ParaMiner
implementation will instantaneously benefit to the broad range of problems that can be
formalized into our framework.
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To the best of our knowledge, ParaMiner it is the first work to address simultaneously the
problems of genericity and of parallelism. Separately, these two problems have attracted
a lot of attention from the pattern mining community. We present in this chapter the
state of the art in generic pattern mining and the most recent works in parallel pattern
mining. For each family of approaches, we will compare it with ParaMiner in order to
highlight the specificities of our approach w.r.t. the state of the art and the use cases
where ParaMiner should be preferred over another approach.

5.1 Generic pattern mining

The notion of genericity in pattern mining have been tackled in two major ways. One
of them, called constraint-based pattern mining, is rooted in the database world. It is
based on the necessity to make as precise as possible queries on the dataset, in order to
produce few patterns of high significance. These queries are expressed as constraints that
the candidate patterns have to satisfy in order to be considered as a result. Constraint-
based approaches are mostly adapted to transactional databases, possibly with numerical
values. We present them in sub-section 5.1.1.

The other approach has an algorithmic root. It is built on the observation that most
pattern mining algorithms share a similar structure, and tries to unify the algorithms in
order to reduce the work of practitioners having a new pattern mining problem to handle.
We call this approach the toolbox approach. Toolbox approaches are mostly adapted to

73
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databases with structured data: sequences, trees or graphs. We present them briefly in
Section 5.1.2.

5.1.1 Constraint-based approaches

Constraint-based pattern discovery is a solution that was introduced as early as 1996
[SVA97] to mine more efficiently a reduced number of interesting patterns. The idea is
to allow pattern mining system users to characterize the patterns of interest with various
constraints. This guarantees that the practitioner will have less patterns, which correspond
better to what is searched in the data. From the mining algorithm point of view, a large
body of work has been dedicated to push as deeply as possible the constraints inside the
mining algorithm, allowing to prune large portions of the search space and to dramatically
reduce mining times (see [BL07] for a survey).

A constraint is a predicate C : 2E × DE × A 7→ {true, false}. It is very similar to our
Select predicate: the only syntactic difference is the presence of the set of attributes A
in the constraints, however nothing prevents from using attribute values in our Select
predicate. Most approaches presented in the literature consider that a candidate pattern
is a meaningful pattern (following terminology of Chapter 2) if it is frequent and if it
satisfies a user-defined constraint C (other than frequency). This acknowledges the fact
that in practice frequency is needed, both to ensure the discovery of patterns having
enough significance in the dataset and to guarantee pruning of the search space.

From the practitioner point of view, the constraints can either be written in any formalism,
like in our approach, or a formalism can be imposed: [Sou06, SC05] give a rich set of
primitives for expressing the constraints, and recently [GNR11] proposed to directly use
the formalism of constraint programming.

For all these formalisms, the most important point is how deeply the constraint can be
pushed into the algorithm in order to prune the search space and improve the mining time.
This depends on properties that are verified by these constraints. Several classes of prop-
erties verified by the constraints have been studied in the literature: anti-monotone con-
straints [MT97], monotone constraints [MT97], succinct constraints [NLHP98], convertible
constraints [PH00, PHL01], loose anti-monotone constraints [BL07] and more general con-
straints, such as the area constraint [SC05, Sou06].

Constraints and accessibility

The properties on constraints given above help to define how the search space of pat-
terns verifying the constraint is organized. They are thus very similar to the accessibility
properties presented in Chapter 2. As a side contribution of this thesis, we present the
most studied constraint classes and show the accessibility property that they verify when
possible.

For sake of simplification, in the following we simply write C(X) to denote the value of
constraint C applied to the candidate pattern X.

We first recall the definitions of all major constraint classes, with an example for each
class.
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Definition 5.1 (Anti-monotone constraint)
A constraint C is anti-monotone if for every pattern X and every candidate pattern Y
with Y ⊆ X, C(X) implies C(Y ).

Example: The well known frequency constraint, first defined in Apriori [AS94] is an
anti-monotone constraint.

Definition 5.2 (Monotone constraint)
A constraint C is monotone if for every pattern X and every candidate pattern Y with
Y ⊇ X, C(X) implies C(Y ).

Example: Consider that each element is associated a price attribute. The constraint
CM (X) ≡ sum(X.price) ≥ 500 is monotone for prices taking values in R+.

For the succinct constraints, we use the a reformulation by [Sou06], which is more under-
standable than the original formulation provided in [NLHP98].

Definition 5.3 (Succinct constraint)
For a ground set E, a constraint C is succinct if the exists E1 ⊆ E,...,En ⊆ E such that
the set of patterns satisfying C can be expressed as unions and differences of the power
sets 2E1 , ..., 2En .

Example: Consider a set of elements E with a unique type attribute having categorical
values such as toy, food, tool . . . and so on. Let X be a candidate pattern defined over E.
Now consider the constraint CS(X) ≡ X.type ⊇ {food, toy}, where X.type denotes the
union of all types of the elements in X. Informally, a candidate pattern satisfies CS if it
contains at least one element of type food and one element of type toy. [BL07] have shown
that this constraint is succinct because the set of patterns satisfying it can be defined as:
2E − 2E2 − 2E3 − 2E4 − 2E2∪E4 − 2E3∪E4 , with:

� E2 = {e | e ∈ E and e.type = food}

� E3 = {e | e ∈ E and e.type = toy}

� E4 = {e | e ∈ E and e.type 6= toy and e.type 6= food}

Definition 5.4 (Convertible constraint)
A constraint C is convertible anti-monotone if there exists an order R on the elements
of the ground set E such that for all X satisfying C, it holds that any prefix of X also
satisfies C.

A constraint C is convertible monotone if there exists an order R on the elements of the
ground set E such that for all X not satisfying C, any prefix of X also does not satisfies
C.
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Example: Suppose that a unique attribute price with numerical values is defined for
all elements of the ground set E. Let R be a value-descending order. Then CCAM (X) ≡
average(X.price) ≥ v for a fixed value v is a convertible anti-monotone constraint [BL07].

With the same order, CCM (X) ≡ average(X.price) ≤ v for a fixed value v is a convertible
monotone constraint.

Definition 5.5 (Loose anti-monotone constraint)
A constraint C is loose anti-monotone if for every candidate pattern X with |X| > 2,
C(X) implies ∃e ∈ X|C(X \ {e}).

Example: The constraint CLAM (X) ≡ variance(X.A) ≤ v for an attribute A and a
fixed value v is loose anti-monotone [BL07].

Definition 5.6 (Area constraint)
Given a candidate pattern X, the area constraint for X is CA(X) ≡ support(X) ×
length(X) ≥ v for a fixed value v, where length(X) is the number of elements in X.

This last constraint is in none of the classes defined above.

We now determine the accessibility property verified by each constraint.

Property 5.1
The set system associated to an anti-monotone constraint is independent.

Proof: We already have stated in Chapter 2 that the fim problem was independent
thanks to the anti-monotony of frequency. The proof of [BHPW10] can trivially be ex-
tended to all anti-monotone constraints. �

Property 5.2
The set system associated to constraint which is either:

� monotone

� succinct

� convertible

� loose anti-monotone

� area

is not accessible.

Proof: For each of the above constraint classes, consider the example constraints we have
given for before. For the empty set, the constraints CM (∅), CCAM (∅), CCM (∅), CLAM (∅)
are not defined. The constraints CS(∅) and CA(∅) are defined but are not satisfied. So in
all cases as ∅ is not in the set system defined by the constraint, that set system cannot
be accessible and the examples provided are counter-example for the accessibility of their
class of constraints. �
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The point that prevented to conclude to accessibility was in all cases the fact that ∅ could
not satisfy the constraints due to their specific formulation. In practice, many constraints,
especially aggregate constraints such as sum, average, variance, can only be satisfied by
candidate patterns having a certain size. This means that at the beginning of the enu-
meration the technique to “augment ∅ by one element” cannot work, the enumeration has
to make “jumps” to bigger candidate patterns. However once a pattern of minimal size is
found, for some constraints the above enumeration technique can be used.

We thus propose to amend the notion of accessibility to such cases. This is a preliminary
step towards the convergence of works of constrained pattern enumeration and works on
accessible / strong accessible set system enumeration.

We first need to characterize the “minimal” patterns satisfying a constraint. This can
be done with the notion of lower border introduced in 2007 for itemsets in [SY07]. We
generalize below their definition for any set system.

Definition 5.7 (Lower border of a set system)
Let (E,F) be a set system. The lower border of F , denoted BD−F , is the set of patterns
such that:

i BD−F ⊆ F

ii For any two patterns X,Y ∈ BD−F , X 6⊆ Y and Y 6⊆ X (BD−F is called an antichain)

iii For any pattern X ∈ F , there exists at least one pattern Y ∈ BD−F such that Y ⊆ X.

Property 5.3
The lower border of a set system is unique.

Proof: Let (E,F) be a set system, and let BD1−F and BD2−F be two lower borders for
(E,F). We will show that BD1−F = BD2−F .

(BD2−F ⊆ BD1−F ) Consider X2 ∈ BD2−F . Either X2 is also in BD1−F or there exists
X1 ∈ BD1−F such that X1 ⊂ X2 (according to iii. in Definition 5.7). For this X1, we have
either:

� X1 ∈ BD2−F : as X1 ⊂ X2, this contradicts the antichain property of BD2−F .

� or there exists X ′2 ∈ BD2−F such that X ′2 ⊂ X1 (property iii. of Definition 5.7).
Then we have X ′2 ⊂ X1 ⊂ X2, this contradicts the antichain property of BD2−F .

We conclude that X2 ∈ BD1−F , hence BD2−F ⊆ BD1−F .

(BD1−F ⊆ BD2−F ) This case is symmetrical to the preceding case.

Hence BD2−F = BD1−F , the lower border is unique. �

We can now propose a weaker property of accessibility based on the lower border.

Definition 5.8 (Partial accessibility)
Let (E,F) be a set system. (E,F) is partially accessible if for every X ∈ F \BD−F there
exists some e ∈ X such that X \ {e} ∈ F .
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Definition 5.9 (Partial strong accessibility)
Let (E,F) be a set system. (E,F) is partially strongly accessible if it is partially accessible
and if for every X ⊂ Y with X ∈ F and Y ∈ F \BD−F , there exists some e ∈ Y \X such
that X ∪ {e} ∈ F .

As preliminary results, we show below the partial accessibility properties verified by some
important constraint classes.

Property 5.4
Let C be a constraint and (E,F) be its associated set system.

� If C is monotone, then (E,F) is partially strongly accessible.

� If C is convertible anti-monotone or loose anti-monotone, then (E,F) is partially
accessible.

Proof: Monotone constraints: Let C be a monotone constraint with (E,F) its asso-
ciated set system. First let us prove the partial accessibility. Consider X ∈ F \BD−F . By
definition of the lower border, there exists at least one Y ∈ BD−F such that Y ⊂ X. Con-
sider any element e ∈ X\Y , and consider Y ′ = Y ∪(X\Y \{e}). We have Y ′ = X\{e} and
by definition of monotony, as C(Y ) holds so does C(Y ′). Hence the partial accessibility.

Let us now prove the partial strong accessibility. Let X ⊂ Y be two patterns satisfying the
constraint (C(X) = C(Y ) = true). We have that X ∈ F and by the antichain property
of lower border, Y ∈ F \ BD−F . Let us consider any e ∈ Y \ X. We have X ⊂ X ∪ {e}
so by monotony property C(X ∪ {e}) = true. Hence the set system is partially strongly
accessible.

Convertible anti-monotone constraints: Let C be a convertible anti-monotone con-
straint with the order R and let (E,F) be its associated set system. Let X be any pattern
satisfying C, with |X| = k > 1 and X ∈ F \ BD−F . By definition of the lower border, X
admits at least one subset which satisfies the constraint. Let X ′ be the k− 1-prefix of X:
by definition of convertible anti-monotone constraints C(X ′) = true, hence e = X \X ′ is
such that C(X \ {e}) = true. Hence the partial accessibility.

Loose anti-monotone constraints: Let C be a loose anti-monotone constraint and let
(E,F) be its associated set system. Let X ∈ F \ BD−F with |X| > 2. By definition of
the lower border, X admits at least one subset which satisfies the constraint. And by
definition of loose anti-monotony, there exists e ∈ X such that X \ {e} ∈ F . Hence the
partial accessibility. �

The property stated above shows that the efficient pattern enumeration techniques pre-
sented in Chapter 2 can be exploited for a large portion of the search space of major
constraints. This is important as these enumeration strategies have strong complexity
guaranties, which is not the case of most other approaches in the literature of constraint-
based pattern mining. One interesting perspective, developed in Chapter6, is to develop
efficient hybrid algorithms that first compute the patterns of the lower border for the set
system of a constraint and then switch to enumeration strategies adapted to accessible or
strongly accessible set systems.
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Constraints and closure

We have presented at the beginning of Chapter 2 the notion of closed patterns, which
is essential to speedup the discovery of patterns while reducing the size of the output.
Although there have been many works for mining closed patterns for itemsets, sequences,
trees or graphs, there are comparatively few works on closed constrained pattern mining.

The difficulty of integrating constrained pattern mining and closed pattern mining is well
illustrated in the following example coming from the 2004 paper of Bonchi and Lucchese
[BL04], which is focused on itemsets. Consider a constraint for an itemset X:

C(X) ≡ isFrequent(X) ∧ isClosed(X) ∧ sum(X.price) ≤ 22

Here the closure is considered as just another constraint, simplifying the writing of con-
straints. However, Bonchi and Lucchese point out that this constraint is ambiguous and
can lead to two possible interpretations:

� mine all frequent closed itemsets having the additional property of having sum of
prices less than 22 ;

� or mine all frequent itemsets having sum of prices less than 22 and which have the
additional property of being closed w.r.t. the two other constraints.

As the closure is not a property that an itemset verifies on its own but a property of
an itemset w.r.t. a set of itemsets, its the second interpretation which is correct. They
formally characterize the associated problem statement, showing that their solution is the
only one to provide a lossless representation of constrained frequent patterns for monotone
and anti-monotone constraints. They also propose a FP-Growth algorithm based on
Closet [PHM00], and show that for selective constraints their approach outperforms the
original algorithm.

More recently, Soulet [Sou06] has proposed an approach based on intervals of patterns w.r.t
the constraint during the search. Their approach is efficient at determining lower and upper
bounds of patterns verifying a constraint. For instance if AB,ABC,ABD and ABCD
satisfy the constraint, only the interval [AB,ABCD] will be returned. These intervals
allow to both reduce the output and perform pruning during search space exploration.
They have defined a closure for these intervals, allowing to improve their original algorithm
performance. Their final algorithm, Music-dfs, outputs a set of closed intervals satisfying
a constraint. Such a closure notion is interesting, as even if it differs from the traditional
“closed pattern” notion, it can be applied to many different constraints such as the area
constraint, and provides interesting pruning results.

Last, Guns et al. [GNR11] integrate the notion of closure directly into their constraint
programming framework. Due to the way constraint programming approaches explore a
search space, they state that their approach has a search space exploration very similar
to that of LCM [UKA04].

Discussion: The integration of closure and constraints have been tackled in several
different ways. Although these approaches show real performance improvements, there
still lacks an unifying framework that would allow to fully benefit from closure with as
many constraint classes as possible.
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Dataset reduction and constraints

Dataset reduction is a crucial optimization for the performance of pattern mining algo-
rithms. It has been shown in the case of ParaMiner by the experiments conducted in
Chapter 4.

With the additional pruning that they allow on the search space, constraints can also
benefit from dataset reduction. Bonchi and Lucchese detail in [BL07] for anti-monotone,
monotone and loose anti-monotone constraints the reductions that can be performed.
They explicitly provide the properties that must be checked on transactions to be pruned.
Their experiments show up to three orders of magnitude of reduction in the datasets.

This approach is interesting, but comes with specific algorithms for different classes of
constraints, and cannot be applied to all classes of constraints.

In [GNR11], Guns et al. advocate that their constraint programming based algorithms
perform an operation very similar to dataset reduction with the concept of state of the
search. However the data structures associated to this state currently have some overheads
that are necessary for generic constraint programming, but that impairs performances for
pattern mining.

Performances

Most papers about constrained pattern mining are interested in different classes of con-
straints, which make comparative experiments difficult to conduct. Hence these patterns
first define a baseline by comparing their approach on the simple problem of mining fre-
quent itemsets or closed frequent itemsets. In this case, the performances are similar to
the frequent itemset mining that has been used as a basis to build the constraint mining
algorithm.

We give below a quick positioning of ParaMiner w.r.t. the approaches that can extract
closed frequent itemsets:

� CCIMiner [BL04] has similar performances as Closet for mining closed frequent
itemsets. Closet has been show to be at least one order of magnitude slower that
DCI-Closed, which is the sequential version of the parallel algorithm MT-Closed

which ParaMiner has comparable performances for closed frequent itemset mining.

� The constraint-programming approach in [GNR11] reports performances on closed
frequent itemset mining that are between one and two order of magnitude slower
than LCM. This performance difference is similar to the performance difference be-
tween ParaMiner and PLCM which is a parallel algorithm based on LCM. However
PLCM and ParaMiner can benefit from parallelism, thus having faster execution
times than LCM and the constraint-programming approach in [GNR11] when using
several cores.

Discussion

Constraint-based pattern mining research has proposed many interesting solutions to the
problem of discovering a reduced number of high interest patterns. One key algorithmic
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point to efficiency is to exploit the properties of constraints in order to devise a good enu-
meration strategy. We have proposed above a new notion of partial (strong) accessibility,
that could allow to bridge the gap between set-system based generic algorithms such as
ParaMiner and the current research on pattern mining based on constraints.

In practice, picking the right algorithm depends on what constraints are significant to
the application. Then another problem is the tradeoff between expressivity, guidance and
performances. For instance, Soulet [Sou06] proposes a rich set of primitives for writing
many different constraints. It is thus easy for a practitioner to use it for writing customized
constraints with just basic mathematical knowledge. However, if the constraints are not
very selective (such as frequency) the performances will not necessarily be optimal: for
instance Music-dfs performances for mining frequent itemsets are between Apriori and
Eclat. A more constrained problem is thus recommended in this case, especially with
constraints such as the area constraint which are not handled in most other approaches.

The constraint programming approach of Guns and al. [GNR11] is based on the traditional
languages of constraint programming such as Essence. They will have a great appeal
for constraint programming specialists and to certain extent, to people with a strong
mathematical background. However they might be more difficult to grasp for practitioners
from other fields.

With ParaMiner we can write the Select predicate in any implementation language
that can be interfaced with ParaMiner’s implementation (currently C++). It is thus
accessible to practitioners of many different domains, although the strong accessibility
verification demands some mathematical skills. Thanks to parallelism ParaMiner is the
fastest approach for the constraints it can handle. The relative simplicity of the algorithm
make it a nice tool for data mining researchers to tinker with. For example, as seen in
Chapter 4, ParaMiner applied to gradual itemset mining provides the fastest mining
algorithm available to date for this problem, with minimal implementation effort.

Many constraint-based pattern mining approaches tend towards “final products” dedicated
to some practitioners with specific constraints that they need to analyze in data. Such
approaches culminate with the works of Bonchi and Lucchese [BL07] for efficiency and of
Soulet [Sou06] for expressivity and ease of use.

Conversely, Guns et al. [GNR11] proposed a convergence with the more mathematical
world of constraint programming, their work having the objective to be further extended
and improved. ParaMiner has a similar vision, establishing a convergence between both
generic pattern mining and the domains of closed pattern enumeration and parallelism,
in order to provide a new basis to pattern mining researchers, with a heavy focus on
computing efficiency.

5.1.2 Toolbox approaches

Since 2000, several prominent pattern mining researchers have devoted their work to mine
patterns in structured data, i.e. data having a structure of sequence, tree or graph. For
example the groups of Jiawei Han or the one of Mohamed J. Zaki have designed numerous
notorious algorithms to mine various types of structured data: CloSpan [YHA03] and
Spade [Zak01] for sequence mining, TreeMiner [Zak05a] or Sleuth [Zak05b] for tree
mining and gSpan [YH02] for graph mining.
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Jiawei Han’s team proposed its algorithms in a toolbox called IlliMine1, which include
algorithms for mining frequent itemsets, sequences and graphs. The algorithms are not
integrated together, so if the user wants to adapt an algorithm for a different pattern
mining problem, he has to directly modify the code, which can be difficult.

Mohamed J. Zaki’s team proposed a more integrated approach with the Data Mining
Template Library (DMTL)2 [AHCS+05]. In DMTL, the mechanic of classical pattern
mining algorithms is abstracted, and a specific pattern mining task is instantiated by
implementing specific sub-tasks needed for the mining:

� candidate generation, which boils down to take two existing patterns and join them
to obtain a new candidate pattern with one more element ;

� isomorphism checking, which verifies that a candidate pattern has not been enumer-
ated twice ;

� support counting, which returns the support of a candidate in the database.

This approach has been tested with patterns ranging from itemsets to graphs, and in
[AHCS+05] it is shown that it can be easily used for cliques, which had not been addressed
by a specific mining algorithm at that time. For genericity of implementation, the data
structures and the functions make a heavy use of C++ template mechanism.

Compared to ParaMiner, it is more easy to mine patterns with a complex structure in
DMTL, as patterns in DMTL are natively expressed as graphs. ParaMiner’s framework
requires encoding the patterns as sets, which makes more difficult the handling of labelled
sequences/trees/graphs having several times the same label. On the other hand, DMTL
does not handle closed frequent patterns, dataset reduction or parallelism: its run-times
are very slow. DMTL is also specialized for frequency, whereas ParaMiner can handle
more general pattern interest measures. Last, if the C++ templates approach used in
DMTL is very elegant from a design point of view, it can be difficult to master for non
specialists.

It is also worth mentioning the works of Flouvat et al. with the iZi3 library [FMP09]. iZi’s
goal is close to ParaMiner’s: it deals with patterns representable as sets. It is focused on
constrained-pattern mining problems where the constraint is anti-monotone or monotone.
The constraint is given as a predicate, the user also needs to give a set transformation
function that transforms the set representation of a pattern used by the algorithm into a
pattern that can be checked by the predicate, and an initialization component that finds
the patterns corresponding to singletons in the set representation. iZi’s mining algorithm
is based on Apriori, with FP-trees data structures in order to perform some dataset
reduction.

One of the interest of iZi compared to ParaMiner is that it can give the upper and
lower border of the results for a given predicate, which can be of interest for certain users.
It also directly integrates monotone constraints. On the other hand, it does not manage
closure and uses an outdated algorithmic base (Apriori). It is thus very slow, being beaten
by ad-hoc Apriori implementations. It is thus several orders of magnitude slower than

1http://illimine.cs.uiuc.edu
2http://dmtl.sourceforge.net
3http://liris.cnrs.fr/izi

http://illimine.cs.uiuc.edu
http://dmtl.sourceforge.net
http://liris.cnrs.fr/izi
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ParaMiner, and can only be used on small datasets or with high support values with
the current implementation.

We presented in this section existing approaches for generic pattern mining and compare
them with ParaMiner. ParaMiner is not only a generic pattern mining algorithm, it
is also an efficient parallel pattern mining algorithm. We present below major works on
parallel pattern mining and compare them with ParaMiner.

5.2 Parallel pattern mining

Pattern mining algorithms have always been time and memory consuming. This is a prob-
lem because the process of data analysis needs to be as interactive as possible. The only
way to get smaller execution times and thus more interactivity is to exploit the additional
computational power available in parallel computation platforms. Thus researchers in
pattern mining have soon worked on the problem of designing efficient parallel pattern
mining algorithms.

The works conducted by the pattern mining community to build parallel algorithms have
shown that two problems are particularly important when designing parallel pattern min-
ing algorithms. The first one consists in finding a good task decomposition. We will
discuss the different approaches in Section 5.2.1. The second problem is to minimize data
movement between the processing units and the memory, we will present several possible
solutions proposed by the community in Section 5.2.2. In this thesis we focus on shared
memory machines and more particularly on multi-core architectures. However, several
works conducted before the emergence of multi-core architectures are also relevant to our
problem, therefore we also present some work conducted on different parallel platforms
such as clusters of computers.

5.2.1 Decomposing computations into tasks

Decomposing the computation into independent tasks and distributing them among avail-
able processing units has been shown to be a non trivial problem. Several works presented
in this section show that naive task decomposition or naive task distribution strategies can
lead to extensive communication/synchronization or load imbalance issues. Researchers
have addressed this problem in the context of frequent itemset mining, graph mining, tree
mining and closed itemset mining with variable success.

First works on parallel pattern mining have been conducted by Agrawal et al. [AS96]. They
have proposed several parallel implementations of their Apriori algorithm for clusters of
computers. Apriori is an iterative algorithm for mining frequent itemsets ([AS94]). In each
loop, first a set of candidate patterns is generated, then the frequency of each candidate
is evaluated. Agrawal et al. proposed several strategies to decompose the computations
into independent tasks. We present two of them below.

� Count Distribution: The dataset is partitioned into equal parts and distributed to
the nodes. Each node generates all the candidates and counts the support of these
candidates on its local partition of the dataset. All the nodes exchange their local
counts in order to obtain the global frequency count for each candidate.



84 CHAPTER 5. RELATED WORK

� Data Distribution: The dataset is distributed on the nodes as in Count Distri-

bution. Each node generates a disjoint set of candidate patterns and counts their
local frequency in its dataset partition. Each node then has to scan remote dataset
partitions to compute the global frequency count of its candidates.

These two strategies are two different ways to split and distribute the work of Apriori on
several nodes. Agrawal et al. could show that Count Distribution had the best result
because it requires less communications between the nodes (only frequency counts are
exchanged).

Zaki et al. in [ZPOL97b] proposed improvements upon the works of Agrawal et al. for
parallel frequent itemset mining. They evaluate the performances of four parallel algo-
rithms namely Par-Eclat, Par-MaxEclat, Par-Clique and Par-MaxClique based on
the sequential algorithms proposed in [ZPOL97a]. All the algorithms are based on the
same principle: in an initialization phase the algorithms generate the frequent 2-itemsets
and distribute them to the different processing units according to prefix based equivalence
classes (Par-Eclat, Par-MaxEclat) or to Clique based equivalence classes (Par-Clique,
Par-MaxClique). Each processor has a copy of the sub dataset that is relevant to its
equivalence class. This sub dataset is actually the support set of the 2-itemset originating
the equivalence class. This is a simple version of the dataset reduction implemented in
ParaMiner. It is well adapted to a depth first exploration of the search space. This
is the first occurrence of this exploration technique for parallel pattern mining which has
been used and improved later in many algorithms including ParaMiner.

Contrary to the previous approach by Agrawal et al. each processor can perform the
computations without costly synchronization or communications. As a consequence this
approach scales much better than the one of Agrawal et al. on large computation platforms.

Later in [BPC06], Buehrer et al. tackle the problem of designing a parallel algorithm for
mining graph patterns. They proposed a parallel implementation of the well known gSpan

algorithm. This algorithm builds candidate graph patterns by growing frequent graph
patterns with additional nodes. For this algorithm, naive decomposition of the search space
based on the frequent 1-node subgraphs fails to provide correct load balancing because a
single 1-node subgraph can originate over 50% of the total computation required. Buehrer
et al. thus propose to use a dynamic task decomposition and a dynamic task distribution,
explained below.

Buehrer and his colleagues evaluate several task distribution strategies, and retain the
distributed model on the basis of experimental results. In this model each processor is
assigned a task queue where it can push tasks into. If a processor is idle it pulls a task
from its own queue in priority. But if the queue is empty it searches other queues in a
round robin fashion.

The main contribution of this work lies in the dynamic task decomposition strategy
adopted: the authors propose an adaptive partitioning strategy which commands the al-
gorithm to create new tasks for a processor only when the number of pending tasks in its
queue is below a given threshold. As a consequence, when the number of tasks is sufficient
to balance the work, no new tasks are created. This reduces the overhead due to extensive
task creation and it also limit data movements (see Section 5.2.2).

Their experiments show that their parallelization of gSpan is able to reach a 22.5 to 27 fold
speedup on a 32 cores machine. This demonstrates that adaptive partitioning successfully
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solves the problem of load imbalance in graph mining applications.

Building on this work Tatikonda et al. in [TP09] proposed a multi level work sharing
approach that adaptively modulates the type and granularity of the tasks according to the
platforms needs. This work was proposed in the context of a parallel tree mining algorithm.
They define three levels of tasks: A first level task encompasses all the computations
required to generate a complete equivalence class of tree, a second level task encompasses
all the computations required to generate a single tree pattern and a last level task contains
only a fraction of the computations required to generate a tree pattern. First and second
level tasks can be dynamically subdivided into lower level tasks (i.e. smaller tasks). A
dynamic task partitioning strategy switches to smaller tasks when load balancing is needed.
Tatikonda et al. are able to achieve a 7.43 to 7.85 speed up on a computing platforms
with 8 cores. It is worth noticing that is the first experiments that were conducted on
an actual multi-core system. Previous experiments were conducted on traditional multi
processors systems due to the lack of large scale multi-core architectures available. The
performance of an algorithm may not be the same on the two types of platforms.

In [LOP07] Lucchese et al. have proposed to tackle the problem parallel closed frequent
itemset mining. Lucchese et al. observe that closed pattern mining is a more complex
problem because computing the closure “needs a global view either of the dataset or of the
collection of closed pattern mined so far”. It makes the problem of task decomposition a
tougher problem.

Their MT-Closed algorithm is based on DCI-Closed ([LOP04]) which recursively explores
the set of frequent closed patterns. Each recursive call is parameterized with a closed
frequent itemset, a PRE SET and a POST SET. The POST SET contains the items
that can be used to expand the current closed itemset whereas the PRE SET contains
the items that have been formerly used to expand the closed itemset. The PRE SET
is used to detect possible duplicate. It is worth noticing that POST SET principle is
very similar to the Exclusion List proposed by Boley et al. in [BHPW10] and used for
enumeration in ParaMiner. In MT-Closed, every 2-itemset originates a parallel call to
the recursive function. However since the PRE SET is unknown at this time, it is set to ∅.
This change, compared to the original DCI-Closed, may lead to generation of duplicate
itemsets. In order to ensure its soundness, MT-Closed has to perform duplicates checks.
Those duplicate checks are optimized by exploiting the SIMD vector instructions available
in most modern processors.

The authors of MT-Closed evaluate static and dynamic task distribution strategies. They
also implement an additional task decomposition system where an idle processor can steal
work from another busy processor by subdividing the task into two new sub tasks. In
this case splitting a task consists in distributing the set of possible extension (i.e. the
POST SET) to different cores. This technique is well known in by the parallel computing
community as work stealing and has been shown to be adapted to irregular problems
([BL94]).

Their experiments show that static task decomposition and static task distribution does
not provide correct load balancing. Static task decomposition with dynamic task distri-
bution and dynamic task decomposition with dynamic task distribution provide better
results with a slight advantage for the latter. However, for several datasets the algorithm
is unable to show a good speedup. For instance, for the Connect dataset, the speedup is
4.5 on 8 cores.
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Discussion

In ParaMiner we adopted a branch wise task decomposition strategy. This strategy can
be parameterized according to the problem requirement to generate more or less tasks.
Usually our tasks are fine grained enough to avoid load imbalance issues. Using work
stealing strategies such as in [LOP07] is thus not necessary.

One of the main point of using Melinda for ParaMiner’s task distribution is flexibility:
it is easy to implement either a static or a dynamic task distribution strategy if the problem
requires it. Interesting ideas such as Buehrer et al. load aware task distribution strategies
can also be implemented as a Melinda strategy.

It is also worth noticing that the problem of task decomposition for closed pattern mining
addressed by Lucchese et al in [LOP07] is solved in ParaMiner thanks to our pattern
enumeration strategy. It allows independent exploration of different branches of the enu-
meration tree in any order. As a consequence we do not need to perform in ParaMiner
any global operation such as duplicate checks.

5.2.2 Minimizing data movements

As we have shown in our experiments (Chapter 4) a correct task distribution is insufficient
to guarantee performance. In parallel pattern mining algorithms reducing the amount of
data movements between the main memory and the processing units is a critical issue.
In the context of exploiting multi-core architectures this mostly consists in reducing the
bandwidth pressure. We present in this section the most significant works in this direction.

In [GBP+05], Ghoting et al. observe that over 50% of the operation performed are mem-
ory operations. This measure reveals the importance of having fast memory operations in
pattern mining, which can be achieved through improving the cache usage. They also ob-
serve that an important number of architectural innovations embedded in new processors
to bridge the gap between memory and cores are widely ignored by pattern mining algo-
rithms. For example pointer based structures such as FP-Trees used in the FP-Growth

algorithm does not combine well with caches and cache line prefetchers, which fail to pro-
vide the improvements they are supposed to. Ghoting at al. proposed cache conscious
prefix trees which are essentially FP-Trees restructured to improve cache locality. The
cache conscious prefix tree is a prefix tree were each node of the tree is stored in consecu-
tive blocks in memory following the depth first search order. This way of storing the tree
accommodates bottom up traversals which are frequent in FP-Growth.

In order to further improve the cache usage Ghoting et al. have also proposed the path
tiling optimization. This optimizations is based on the observation that most FP-Trees
do not fit into caches. Therefore different parts of the trees have to be loaded several times
into the cache, once for each step of the computation that needs to traverse the tree. Path
tiling consists in breaking the FP-Trees into tiles. Each tile is a subset of nodes stored
consecutively in the memory. The authors have modified FP-Growth such that all the
computations to be performed on a tile are performed consecutively. As a consequence
each tile is loaded once into the cache and can be purged.

Thanks to its improvement and other optimizations, Ghoting et al. are able to reach 30%
to 60% improvement in execution time compared to a fast implementation of FP-Growth.
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Later in [TP09], Tatikonda and Parthasarathy observed that algorithms must maintain
small working sets to deliver good performance. The working set is the amount of data
actively used by the program during a particular phase of computation. Based on this
observations they have conducted an extensive study to evaluate the working set size of
several existing tree mining algorithms namely TreeMiner ([Zak02]), iMB3-T ([TDH+06])
and Trips ([TPK06]) and chose to focus their work to the Trips algorithm that have the
smallest working set.

In sequential algorithms it is common to trade space for improved execution times. For
example a majority of tree mining algorithm maintain an embedding list to speedup the
mining process. An embedding list is created for each new pattern and contains location
information useful to locate the pattern occurrences in the input trees. They are used to
speedup the process of testing whether a child pattern occurs in an input tree.

Embedding lists are redundant information and occupy an important amount of memory.
In a sequential algorithm it is worth the cost as long as there is enough memory available
to run the algorithm. However in a parallel algorithm the overheads induced by the
additional memory transfers drastically reduce the performances. Instead of carrying the
embedding list together with the pattern tree, Tatikonda et al. have proposed to build
these embedding list on the fly. Although it increases the amount of computation required,
it drastically reduces the working set size of their algorithm.

The authors of [TP09] have demonstrated the importance of reducing the working set
by proposing a parallel implementation of Trip. Thanks to the reduced working set and
other similar memory optimizations not detailed here, they are able to reduce the memory
footprint of Trip by 366 times and improve achieved a near-linear speedup on a 8-core
machine.

These results highlight the fact that modern algorithm must be designed by taking into
consideration of both the computations and the memory transfers. This is in line with
the experiments by Agrawal et al. in [AS96], who had better performances with their
Count distribution algorithm with redundant computation but fewer data transfers. In
[TP09], Tatikonda et al. summarize it by saying that: “Essentially parallelization without
identifying memory conscious optimizations [. . . ] is extremely inefficient”.

In [NTMU10], we presented the details of our parallel closed frequent itemset mining
algorithm. PLCM is based on the sequential LCM algorithm ([UKA04]). In LCM the
dataset reduction process involves a sorting algorithm. Transactions are sorted using an
algorithm based on the principle of radix sort: in a first pass transactions’ identifiers are
stored into buckets, each bucket for a different number. Once the transaction identifiers
are correctly arranged into buckets a second pass sorts the transactions. Several iterations
are needed to completely sort the transactions, but the algorithm is able to achieve linear
time sorting of the transactions by using additional memory (under the form of buckets).
Although this strategy exhibit good performances in LCM algorithm we demonstrated
that it was not a good way to sort the transactions in a parallel algorithm. Indeed this
algorithm exhibit very random memory access patterns that prevent caches to be efficient.
We designed a new dataset reduction algorithm based on the simpler in-place quick sort
algorithm. Quicksort is slower in generally slower than radix sort, but it reduces the
working set size and thus improve the locality. Thanks to this change we were able to
achieve a 15% to 50% performance improvement in speedup.
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Discussion

In ParaMiner, the working set size is reduced through dataset reduction. This technique
has been proved to be very efficient in the sequential case. In a parallel setting results
depends on the dataset and on the mining task at hand. For large datasets and simple
mining tasks such as closed frequent itemsets many cache evictions occur, leading to bad
locality and reduced speedups. In this case ParaMiner would benefit from the tiling
technique proposed by [GBP+05] and described in this section. We further discuss this
point in our Future Works, Chapter 6.

5.2.3 Conclusion on parallel pattern mining

Studying these work highlighted that the theoretical performances of the execution plat-
form cannot be reached without deep changes in the algorithms. These changes are typi-
cally closely related to the algorithm itself and the execution plaforms. As a consequence
we observe an important trend in the design of efficient parallel pattern mining algorithm:
they tend to be more and more architecture conscious. It means that they are aware of
the machine features and limits. For example cache conscious algorithms ([GBP+05]),
load adaptive algorithms ([BPC06]), memory conscious algorithms ([TP09]) or algorithms
using SIMD processor’s instruction set [LOP07].

Designing this type of algorithm require a high expertise in high performance computing
and as well as a good knowledge in pattern mining algorithms. For example in Ghoting et
al. in [GBP+05] design new FP-Trees to improve the efficiency of the hardware cache line
prefetchers. In addition these algorithm are usually not portable due to their dependency
to the computing platform.

By designing Melinda we tried and succeeded to a certain extent to decouple the algo-
rithmic issues and the platform details. All the interaction between the two are described
in Melinda’s strategy that can be understood with basic knowledge on the algorithm
bahaviour and the platform architecture. Hopefully ParaMiner and Melinda can be
used as an experimentation platform to experiment and exchange knowledge concerning
both the algorithms and the computing plaforms.

Another important observation that can be made is that algorithms with higher computa-
tional requirements tend to exhibit better speedups than high-end optimized algorithms.
Indeed, when more arithmetic instructions are executed, the bus is less frequently solicited
and it is possible to overlap communication delays with computations. Conversely, when
the amount of computations are reduced to the minimum required, it is harder to overlap
communications delays with computations, consequently such algorithms are generally
more bandwidth demanding. This phenomenon is illustrated by the fact that Count-

Distribution by Agrawal et al. is able to achieve good speedups on clusters of computers
with very low bandwidth and high latency memory operations whereas MT-Closed and
PLCM exhibit some speedup issues on multi-core architectures with much higher bus ca-
pabilities. In [LOP07] Lucchese et al. compare an execution of MT-Closed with and
without their projection optimization. This optimization is similar to dataset reduction
and drastically reduces the amount of computations required to count the frequency of a
candidate pattern. Although they do not discuss phenomenon in their publication, their
experiments clearly show that with projections enabled, their algorithm has lower exe-
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cution times but also marginally lower speedups. Our experiments on ParaMiner also
illustrate this effect: ParaMiner exhibits a much better speedup on the complex gradual
itemset mining problem than on the frequent itemset mining problem and the relational
graph problem which are comparatively simpler problems.

Although one could be tempted to parallelize simpler implementations to achieve better
speedups it is important to keep in mind that the parallelism can only offer a linear speedup
with the number of cores whereas algorithmic optimizations can drastically reduce the
algorithm complexity. For example, we recall that even if Count-Distribution exhibit
good speedups, it is still orders or magnitude slower than modern algorithms. We will
conclude by saying that algorithmic optimization must not be disregarded but rather
adapted to collaborate with parallelism.
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Chapter 6
Conclusion

In the pattern mining field, many ad-hoc algorithms solve similar problems. Each of
these algorithms is highly optimized with respect to its problem and is difficult to adapt
to variations of this problem. This unnecessarily complex setting holds back progress in
pattern mining research and large scale adoption of data analysis with pattern mining.

Based on a set of important pattern mining problems we proposed a generic framework for
pattern mining algorithms. This framework extends state of the art pattern enumeration
strategies with the notion of dataset, central to pattern mining. We also proposed in this
framework a new property to characterize pattern mining problems having a well defined
closure operator.

We have shown that this framework captures many distinct pattern mining problems such
as closed frequent itemset mining, closed frequent relational graph mining and closed
frequent gradual itemset mining.

Our second contribution is an efficient generic and parallel pattern mining algorithm:
ParaMiner. ParaMiner is able to solve any problem that can be expressed in our
framework. One of our main achievement in ParaMiner is an efficient dataset reduc-
tion technique which generalizes several state of the art optimizations. Up to now these
optimization could only be used in some ad-hoc algorithms. Another achievement is that
ParaMiner is a parallel program, able to exploit parallel multi-core computers. We pro-
posed Melinda as a parallelism engine for ParaMiner. Melinda is flexible enough to
accommodate the various characteristics of the different pattern mining problems and the
different computation platforms.

We have conducted in Chapter 4 a thorough experimental study to evaluate ParaMiner’s
efficiency. First we have shown that our dataset reduction technique was able to dramati-
cally reduce the computation time. This allows ParaMiner to tackle real worlds datasets.
Next, we have shown that ParaMiner could scale well on recent computers with four
cores. On larger platforms we shown that ParaMiner hit the memory wall problem, well
known in the parallelism community. We proposed solutions based on Melinda strategies.
Last, we have shown ParaMiner is able to compete with carefully optimized ad-hoc algo-
rithms such as MT-Closed or PLCM for the frequent itemset mining problems. For other
problems such as the problem of gradual itemset mining, ParaMiner is even one order
of magnitude faster than the state of the art algorithm PGLCM on real world datasets.
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ParaMiner is the first generic pattern mining algorithm exhibit such performances

In the Chapter 5, we positioned our approach with other generic approaches based on con-
straints and could find a relationship between constraints and the accessibility properties
exploited in ParaMiner. We also reviewed the main parallel pattern mining approaches.
Most of these approaches tackle the complex problems that we encountered in our experi-
ments through deep modifications of the algorithm which cannot yet be used in a generic
framework. However we will discuss several ideas that can be retained for improvement
in the perspectives bellow.

Any pattern mining problem encoded in our framework immediately benefits from an ef-
ficient and parallel algorithmic solution: ParaMiner. ParaMiner thus allows to freely
experiment new pattern definitions, and test them on real datasets. For such new prob-
lems, ParaMiner can be the new de facto baseline algorithm. This allows for example
to estimate how much gain a new ad-hoc approach can bring, helping in the progress of
pattern mining research. As a consequence, ParaMiner is already used in other tasks
of our laboratory. It is used to mine execution traces generated by bit accurate processor
simulators. This work is conducted in the context of the Ph.D of Sofiane Lagraa (Date’11
paper in submission).

ParaMiner is also used in the Ph.D works of Patricia Lopez Cueva to explore a new
definition of periodic patterns (SDM’12 paper in submission). Periodic pattern are used
to mine traces generated by video decoding algorithms on embedded processors.

Future works

There exist a large variety of works that can be conducted to improve both ParaMiner
and Melinda. Most of these work fall into three categories: the works to improve effi-
ciency, usability and genericity.

Improving ParaMiner’s/Melinda’s efficiency

Since pattern mining typically requires long processing times, improving the efficiency is
closely related to improving usability. We already put a lot of effort to keep ParaMiner
efficient. We detail below approaches for further improvements.

As the number of cores available on multi-core architectures increases, performing more
computations to reduce the amount of data movements is becoming more worthwhile. In
ParaMiner we can adopt this design strategy by implementing tiling techniques such as
the ones proposed in [GBP+05] and described in Section 5.2.2. In ParaMiner it would
consist in breaking up the larger datasets into chunks, and performing all the computations
on a chunk before moving to the next one. It would require to rearrange the computations
in ParaMiner which could lead to lower sequential performances but this additional cost
would be absorbed by the speedup increase on large multi-core architectures.

The rationale behind the design of Melinda is to provide its user a way to control the
distribution strategy. In Melinda internals are used to organize the tuples in the tuple-
space. This method provides a simple way to sort the tuples and retrieve them efficiently.
However there are no means to query a specific tuple in an internal. This choice was
deliberate to ensure Melinda’s efficiency. A different approach is to provide Melinda’s
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users a more advanced tuple querying system. For example we can integrate in the tuple-
space a simple database system in order to allow SQL like tuple querying. This would
obviously induce an important additional cost when retrieving tuples, however it would
also allow the implementation of a whole new range of more complex Melinda’s strategies.
For example, we could implement a strategy that carefully distributes the tuples on the
processor such that the sum of the datasets is small enough to fit in the cache memory.

Although we focus on multi-core architectures, it is worth noticing that ParaMiner can
be modified to exploit larger parallel platforms such as clusters of computers. Thanks to
our decomposition of the search space into independent tasks and the dataset reduction
technique no task migration is required a priori. In practice however, it can be required
to balance the work on cluster with thousands of nodes. To reduce the impact of task
migration, we can try to estimate the amount of work associated with each task. For doing
so, there exists simple heuristics based for example on the dataset size or the number of
pattern extensions, but these heuristics typically fail to provide accurate estimations of
the computation required to complete a task. A better idea is to use the work proposed
by Boley et al. in [BG08]. In this work, the authors are able to accurately estimate the
number of frequent itemsets in a dataset with a probabilistic method. If this approach
is successful on frequent itemset mining algorithms, it is an interesting question to know
whether this work can be generalized to other types of patterns.

Improving ParaMiner’s usability

In order to use ParaMiner for a new pattern mining problem, a practitioner has first to
define a selection criterion for this problem. Then he/she has to prove that the associated
set system is strongly accessible in order to ensure that ParaMiner can discover all the
closed patterns satisfying the selection criterion. This step requires mathematical skills
and may prevent ParaMiner’s adoption to some pattern mining practitioners. As a
perspective we would like to provide the practitioner a way to write selection criterions
that are guaranteed to be strongly accessible. We already have seen that the composition
of strongly accessible and independence set system led to a strongly accessible set system.
It would thus be interesting to provide a list of elementary selection criterions whose
accessibility properties are known and a list of operators to combine them together, while
preserving the strong accessibility. The rationale behind this idea is to have an algebra
on strongly accessible set systems, like the relational algebra of the database world. With
such an algebra we could define a declarative language to easily write strongly accessible
selection criterion. This language could be to pattern mining what SQL is to the relational
algebra.

Improving genericity

Our most important goal is to extend ParaMiner’s genericity. So far, some important
pattern mining problems cannot be solved efficiently.

First, we proposed in Chapter 5.1.1 the notion of partial (strong) accessibility. We have
shown that this notion allows to express the accessibility property of many constraint based
pattern mining problems. From partial (strong) accessibility we can deduce that when
patterns are above the lower border of the set system, they can be enumerated efficiently
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with the enumeration strategy presented in Chapter 2. It would thus be interesting to
propose hybrid algorithms that use state of the art techniques from constraint based
pattern mining in order to discover the lower border of the set system and then switch
to ParaMiner’s enumeration strategy above the lower border. ParaMiner could be
extended to operate this way, it would further increase the number of problem that can
be solved efficiently with it.

Another problem of interest is the problem of mining frequent sequences in a sequence
database. Any sequence (input sequence or pattern) can be encoded into sets by using
precedences elements. For instance, the sequence [a, b, d] can be encoded to the set {a �

b, a� d, b� d}.

In sequences however, the same element can be repeated several times. We can solve this
problem by adding indexes, for example the sequence [a, b, a] can be encoded with the
following set: {a1 � b1, a1 � a2, b1 � a2}.

However this encoding presents an important drawback, the encoding of the sequence [b, a]
is not included (w.r.t. set inclusion) in the encoding of the sequence [a, b, a]: {b1 � a1} 6⊆
{a1 � b1, a1 � a2, b1 � a2}.

This problem can be solved with an adequate encoding of the input dataset, but the size
of the resulting dataset would be combinatorial with the number of repeated elements,
thus we do not consider this as an efficient solution.

In ParaMiner, the set inclusion is used to test if a pattern occurs in a transaction. To
solve problem mention above, we can replace this set inclusion by a more flexible inclusion
relation. For example, one that is able to detect that the coded sequence {b1 � a1} is
included in {a1 � b1, a1 � a2, b1 � a2}. Although it would not break the soundness of
the enumeration strategy, this would inevitably invalidate some important optimizations
in ParaMiner. However, it is an interesting question to know if we could adapt these
optimizations and have good performances.

This approach to solve the sequence problem is based on the set system theory used in
combination with a non trivial encoding of the sequence problem. Another interesting
approach to solve the same problem is to extend the accessibility properties to other
algebraic structures such as sequences or general graphs. We illustrate this idea bellow.

We observe that given a database of sequences, an augmentation relation similar to the
one for patterns represented as sets can be defined (see Definition 2.11, Page 21). Since it
is also possible to define an order on the sequences, the set of frequent sequences can be
represented as a DAG in a fashion similar to the one presented in Figure 2.5, Page 21. In
this DAG structural properties similar to the strong accessibility can be defined. It would
be interesting to know to what extent it is possible to use such properties to efficiently
enumerate closed sequences.
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