Interaction Capture and Synthesis

Dinesh K. Pai
University of British Columbia
Rutgers University
[with Paul G. Kry]

Haptics ≡ The sense of touch
≡ Force sensing and display?

Haptics ≡ Contact
Contact is multisensory with forces sounds deformation motion discontinuities …
The AHI Audio-Haptic Interface

DiFilippo and Pai UIST 00
See also [Doel and Pai 96], [Doel, Kry and Pai, SIGGRAPH 01]

Contact Interaction with Integrated Audio and Haptics

Derek DiFilippo
Dinesh K. Pai

University of British Columbia
Precomputed Acoustic Transfer
[James, Barbic, Pai SIGGRAPH 2006]

Motivation: Whole hand interaction with the Tango
[Pai, et al. World Haptics 05]
• Whole hand passive haptic interface
• 32 x 8 capacitive sensor, 3 axis accelerometer
Motivation: Motion capture animation techniques difficult to use with contact

Motivation: Whole hand interaction with the Tango
Motivation

- Need to capture how humans move
 - Impedance (stiffness) of muscles...
 - Feed-forward control

- Brain actively controls the passive behavior of the musculoskeletal system
 - Depends on task, geometry, intent, style
 - Important for stability

Interaction Capture and Synthesis

- motion capture
- force capture
- analysis
- intended motion
- interaction
- trajectory
- passive behavior
- simulation
- new object
Overview Example

- Motion capture cameras 500 Hz
- Force-torque sensor 500 Hz
Overview Example

- Estimate the *Interaction Trajectory*
 - Compliance (inverse of stiffness)
 - Reference trajectory (motion without contact)
Overview Example

- Environment
 - Fully dynamic simulation
- Character
 - Contact from quasi-static simulation
 - Dynamics from reference trajectory

Outline

- *Interaction trajectory estimation*
Compliant hand model

Effective end-point compliance

Compliance is Task Dependent

• Controlled by the brain in addition to motion
 – Scratching has half the compliance of exploring

<table>
<thead>
<tr>
<th>(rad/Nm)</th>
<th>Exploring</th>
<th>Scratching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrist</td>
<td>0.35</td>
<td>0.15</td>
</tr>
<tr>
<td>MP</td>
<td>0.99</td>
<td>0.47</td>
</tr>
<tr>
<td>PIP</td>
<td>0.67</td>
<td>< 0.84</td>
</tr>
<tr>
<td>DIP</td>
<td>2.01</td>
<td>< 0.84</td>
</tr>
</tbody>
</table>
Compliance Estimation

• Previous work
 Arms [Xu, Hollerbach, Hunter 91; Gomi, Kawato 96; etc.]
 Fingers [Hajian 97; Milner, Franklin 98; Hasser, Cutkosky 02]
 • Stiffness, some measure damping and inertia too
 • End points, joints, static poses, during movement

• Approach in common is perturbation
 – Complicates capture, changes the motion

Compliance Estimation without extra perturbation

• Contact provides a natural perturbation
 – Exploits slow speed of spinal reflexes
Assumptions & Limitations

- Independent compliance estimations
- Natural perturbation must be observable
- Complex ‘pre-programmed’ motion
Validation

- Estimates show task dependence
 - Scratching has half the compliance of exploring

<table>
<thead>
<tr>
<th></th>
<th>Exploring</th>
<th>Scratching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrist</td>
<td>0.35</td>
<td>0.15</td>
</tr>
<tr>
<td>MP</td>
<td>0.99</td>
<td>0.47</td>
</tr>
<tr>
<td>PIP</td>
<td>0.67</td>
<td>< 0.84</td>
</tr>
<tr>
<td>DIP</td>
<td>2.01</td>
<td>< 0.84</td>
</tr>
</tbody>
</table>

Validation

- Perturbation via spring loaded platform
Validation

\[f(t) = m \ddot{z}(t) + b \dot{z}(t) + k z(t) + f_0 \]

Parameter	Exploring	Scratching
\(f_0 \) (N) | 0.677 | 1.345 |
\(m \) (kg) | 0.017 | 0.018 |
\(b \) (Ns/m) | 2.04 | 3.86 |
\(k \) (N/m) | 89.16 | 257.04 |

Estimates reasonable given values in previous studies [Hajian 97; Milner et al. 98; Kuchenbecker et al. 03]
Outline

• Interaction Synthesis

Interaction Synthesis

• Quasi-static simulation
 – Alternative is fully dynamic simulation
 – Capture already contains character’s dynamics
 – Focus on synthesizing contact perturbations
 – Compute the new forces with Coulomb friction

\[
\min_{\Delta u} u^T f_{\text{tangent}}
\]

\[f \in \text{friction cone} \]
Interaction Synthesis

- Linear Complementarity Problem (LCP)
 - New algorithm for compliant contact and friction

Results
Grip Adjustment

- Object unexpectedly heavier than expected
 - Tighten grip by reducing compliances after a small delay

Grip Adjustment

- Expected changes
 - Similar motor program, adjusted due to object appearance
 - Gradually reduce compliance when slip is imminent
Example Using Tango Capture

- motion capture
- force capture
- previously estimated compliance

Analysis

Reference trajectory

Compliance

Simulation

Tango captures at 100 Hz

Conclusions

- Interaction capture
 - Extends motion capture to handle contact
 - Compliance estimation from natural movement
- Interaction synthesis by simulation
 - New algorithm for compliant contact with friction
• Download data at http://www.interactioncapture.org

Thanks to the support of
• NSF grants IIS-0308157, EIA-0215887, ACI-0205671, EIA-0321057
• NIH CRCNS 1R01NS050942
• Canada Research Chair