An overview of

Constraint-Based Testing

Arnaud Gotlieb
INRIA Rennes, France

Uppsala University, 05/19/10

Critical software systems must be thoroughly verified!

Several (complementary) techniques at the unit level:

- program proving
- software model-checking
- static-analysis based verification
- software unit testing
Software Testing

Model-based Testing

Code-based Testing

Constraint-Based Testing
Constraint-Based Testing (CBT)

Constraint-Based Testing (CBT) is the process of generating test cases against a testing objective by using constraint solving techniques.

Introduced 20 years ago by Offut and DeMillo in (Constraint-based automatic test data generation IEEE TSE 1991)

Mainly used in the context of code-based testing with code coverage objectives, for finding functional faults.

By now, not yet recognized as a mainstream ST technique, but lots of current research works!

CBT: main tools

Microsoft Research (SAGE/PEX P.Godefroid, P. de Halleux, N. Tillmann)
CEA - List (Osmose S. Bardin P.Herrmann)
Univ. of Madrid (PET M. Gomez-Zamalloa, E. Albert, G. Puebla)
Univ. of Stanford (EXE D. Engler, C. Cadar, P. Guo)
Univ. of Nice Sophia-Antipolis (CPBPV M. Rueher, H. Collavizza)
INRIA - Celtique (Euclide A. Gotlieb, T. Denmat, F. Charretre)

Main CBT tools (industrial usage):
- PEX (Microsoft P. de Halleux, N. Tillmann)
- InKa (Dassault A. Gotlieb, B. Botella)
- GATEL (CEA B. Marre)
- PathCrawler (CEA N. Williams)
The automatic test data generation problem

Given a location k in a program under test, generate a test input that reaches k

Undecidable in general, but ad-hoc methods exist

- Highly combinatorial
 \[f(\text{int } x_1, \text{int } x_2, \text{int } x_3) \{ \ldots \} \]
 \[2^{32} \times 2^{32} \times 2^{32} \times 2^{32} = 2^{96} \text{ possibilities} \]

- Loops and non-feasible paths
- Modular integer and floating-point computations
- Pointers, dynamic structures, function calls, …

Context of the presentation:
A single-threaded ANSI C function (infinite-state system)
selected location in code (reachability problems)

CBT: Pros/Cons

Pros: Handling control and data structures is essential in automatic software test data generation (i.e., SAT-solving doesn’t work in that context !)

- Improves significantly code-coverage
- (as constraints capture hard-to-reach test objectives)
- Fully automated test data generation methods

Cons: No semantics description, no formal proof \(\rightarrow\) correction is not a priority !

- Unsatisfiability detection has to be improved (to avoid costly labelling)
- Still have to confirm that techniques and tools can scale to the testing of large-sized applications
Outline

- Introduction
- Path-oriented exploration
- Constraint-based exploration
- Further work

Path-oriented test data generation

- Select one or several paths → Path selection step
- Generate the path conditions → Symbolic evaluation techniques
- Solve the path conditions to generate test data that activate the selected paths → Constraint solving

Test objectives: generating a test suite that covers a given testing criterion (all-statements, all-paths...) or a test data that raise a safety or security problem (assertion violation, buffer overflow, ...)

Main CBT tools: ATGen (Meudec 2001), EXE (Cadar et al. 2006)
double P(short x, short y) {
 short w = abs(y);
 double z = 1.0;
 while (w != 0) {
 z = z * x;
 w = w - 1;
 }
 if (y<0) z = 1.0 / z;
 return z;
}

all-statement coverage:
a-b-c-b-d-e-f

All-branches coverage:
a-b-c-b-d-e-f
a-b-d-f

all-2-paths (at most 2 times in loops):
a-b-d-f
a-b-d-e-f
a-b-(c-b)^2-d-e-f

all-paths:
Impossible
Symbolic state: \(\langle \text{Path, State, Path Conditions} \rangle \)

Path = \(n_i \cdots n_j \) is a path expression of the CFG
State = \(\langle \mathbf{v}, \varphi \rangle \) \(\mathbf{v} \in \text{Var}(P) \) where \(\varphi \) is an algebraic expression over \(X \)
Path Cond. = \(c_1, \ldots, c_n \) where \(c_i \) is a condition over \(X \)

\(X \) denotes symbolic variables associated to the program inputs and \(\text{Var}(P) \)
denotes internal variables

Path condition generation

Symbolic execution

Ex: \(a-b-(c-b)^2-d-f \) with \(X,Y \)

\[
\begin{align*}
\langle a, & \langle z, 1 \rangle, \langle w, \text{abs}(Y) \rangle, \text{true} \rangle \\
\langle a-b, & \langle z, 1 \rangle, \langle w, \text{abs}(Y) \rangle, \text{abs}(Y) = 0 \rangle \\
\langle a-b-c, & \langle z, \text{X} \rangle, \langle w, \text{abs}(Y)-1 \rangle, \text{abs}(Y) = 0 \rangle \\
\langle a-b-c-b, & \langle z, \text{X} \rangle, \langle w, \text{abs}(Y)-1 \rangle, \text{abs}(Y) = 0, \text{abs}(Y)-1 = 0 \rangle \\
\langle a-b-c-b-c, & \langle z, \text{X}^2 \rangle, \langle w, \text{abs}(Y)-2 \rangle, \text{abs}(Y) = 0, \text{abs}(Y)-1 = 0 \rangle \\
\langle a-b-(c-b)^2, & \langle z, \text{X}^2 \rangle, \langle w, \text{abs}(Y)-2 \rangle, \text{abs}(Y) = 0, \text{abs}(Y)-1 = 1, \text{abs}(Y)-2 = 0 \rangle \\
\langle a-b-(c-b)^2-d, & \langle z, \text{X}^2 \rangle, \langle w, \text{abs}(Y)-2 \rangle, \text{abs}(Y) = 0, \text{abs}(Y) = 1, \text{abs}(Y) = 2, Y \geq 0 \rangle \\
\langle a-b-(c-b)^2-d-f, & \langle z, \text{X}^2 \rangle, \langle w, 0 \rangle, \text{Y} = 2 \rangle
\end{align*}
\]
Computing symbolic states

- \(<\text{Path, State, PC}>\) is computed by induction over each statement of \text{Path}.

- When the \text{Path} conditions are unsatisfiable then \text{Path} is non-feasible and reciprocally (i.e., symbolic execution captures the concrete semantics)

 \(\text{ex:} \ <a-b-d-e-f, \{\ldots\}, \ \text{abs}(Y)=0 \ \land \ Y<0 >\)

- Forward vs backward analysis:

 Forward \to interesting when states are needed
 Backward \to saves memory space, as complete states are not computed

Backward analysis

\(\text{Ex:} \ a-b-(c-b)^2-d-f \ \text{with} \ X,Y\)
- \(f,d: Y \geq 0\)
- \(b: Y \geq 0, \ w = 0\)
- \(c: Y \geq 0, \ w-1 = 0\)
- \(b: Y \geq 0, \ w-1 = 0, \ w \neq 0\)
- \(c: Y \geq 0, \ w-2 = 0, \ w-1 \neq 0\)
- \(b: Y \geq 0, \ w-2 = 0, \ w-1 \neq 0, \ w \neq 0\)
- \(a: Y \geq 0, \ \text{abs}(Y)-2 = 0, \ \text{abs}(Y)-1 \neq 0, \ \text{abs}(Y) \neq 0\)
Problems for symbolic evaluation techniques

- Combinatorial explosion of paths (heuristics are needed to explore the search space)

- Pointer and array aliasing problems

```c
int P(int * p, int a) {
    if (*p != a) { ... }
}
```

If *p and a are aliased (i.e., p==&a) then the request is unsatisfiable!

- Symbolic execution constrains the shape of dynamically allocated objects

```c
int P(struct cell * t) {
    if (t == t->next) { ... }
}
```

Constrains t to:

- Number of iterations in loops must be selected prior to any symbolic execution

Dynamic symbolic evaluation

- Symbolic execution of a concrete execution (also called concolic execution)

- By using input values, feasible paths only are (automatically) selected

- Randomized algorithm, implemented by instrumenting each statement of P

Main CBT tools:

- PathCrawler (Williams et al. 2005),
- DART/CUTE (Godefroid/Sen et al. 2005),
- PEX (Tillman et al. Microsoft 2008),
- SAGE (Godefroid et al. 2008)
Concolic execution

1. Draw an input at random, execute it and record path conditions
2. Flip a non-covered decision and solve the constraints to find a new input x
3. Execute with x
4. Repeat 2

Constraint solving in symbolic evaluation

- **Mixed Integer Linear Programming approaches**
 (i.e., simplex + Fourier's elimination + branch-and-bound)
 - CLP(R,Q) in ATGen (Meudec 2001)
 - lpsolve in DART/CUTE (Godefroid/Sen et al. 2005)

- **SMT-solving (SAT + Theories)**
 - STP in EXE (Cadar et al. 2006),
 - Z3 in PEX (Tillmann and de Halleux 2008)

- **Constraint Programming techniques** (constraint propagation and labelling)
 - Colibri in PathCrawler (Williams et al. 2005)
 - Disolver in SAGE (Godefroid et al. 2008)
Outline

- Introduction
- Path-oriented exploration
 - Constraint-based exploration
 - Further work

Constraint-based program exploration

- Based on a constraint model of the whole program (i.e., each statement is seen as a relation between two memory states)
- Constraint reasoning over control structures
- Requires to build dedicated constraint solvers:
 * propagation queue management with priorities
 * specific propagators and global constraints
 * structure-aware labelling heuristics

Main CBT tools: InKa (Dassault A. Gotlieb, B. Botella), GATEL (CEA B. Marre), Euclide (INRIA A. Gotlieb)
A reacheability problem

```c
f( int i )
{
  a.    j = 100;
       while( i > 1)
  b.        { j++ ; i-- ;}
  ...
bas.
  d. if( j > 500)
  e.     ...
```
Constraint-based exploration

f(int i)
{
 a. j = 100;
 b. while(i > 1)
 { j++; i-- ;}
 ...
 d. if(j > 500)
 e. ...

1. Constraint model generation (through SSA)
2. Control dependencies generation;
 j_1 = 100, i_3 \leq 1, j_3 > 500
3. Constraint model solving
 j_1 \neq j_3 entailed \Rightarrow unroll the loop 400 times \Rightarrow i_1 in 401 .. 2^{31}-1

No backtrack!

Assignment as Constraint

Viewing an assignment as a relation requires to normalize expressions
and rename variables (through single assignment languages, e.g., SSA)

i^*=++i ; \quad \rightarrow \quad i_2 = (i_1+1)^2

\begin{array}{llll}
 i_1 = 3 & i_1 in -4..2 & no & i_1 in -5..3 \\
 i_2 = 16 & i_2 = 9 & i_2 = 7 & i_2 in 5..16 \\
\end{array}
Statements as (global) constraints

- Type declaration:
 signed long x; \rightarrow x \in -2^{31}.2^{31}.1

- Assignments:
 i*=++i; \rightarrow l_2 = (i_1+1)^2

- Memory and array accesses and updates:
 v=A[i] \text{ (or } p=Mem[&p] \text{)} \rightarrow \text{ variations of element/3}

- Control structures and function calls; dedicated global constraints:

 - Conditionnals (SSA)
 if D then C_1; else C_2; v_3=\phi(v_1,v_2) \rightarrow ite/6

 - Loops (SSA)
 v_3=\phi(v_1,v_2) \text{ while } D \text{ do } C \rightarrow w/5

 - Function calls (SSA)
 f(x_1, .., x_n) \rightarrow sp_call/2

Global constraint definition

- Interface: set of variables of the relation

- Awakening conditions (X becomes valued, domain of X is pruned, ...)

- Filtering algorithm (performed when awakened)

 can be defined with a set of guarded-constraints

 \[C_1 \Rightarrow C'_1, ..., C_n \Rightarrow C'_n \]
Conditional as global constraint: ite/6

\[
\begin{align*}
\text{ite}(x > 0, j_1, j_2, j_3, \ j_1 = 5, \ j_2 = 18) & \iff \\
& \text{if}(x > 0)
\end{align*}
\]

\[
\begin{align*}
& j_1 = 5; \\
& 0 \quad \text{if}(x > 0) \\
& 1 \\
& 3 \quad j_3 = \phi(j_1, j_2); \\
& 2 \quad j_2 = 18;
\end{align*}
\]

\[
\begin{align*}
& \text{ite}(x > 0, j_1, j_2, j_3, \ j_1 = 5, \ j_2 = 18) \iff \\
& \begin{align*}
& \cdot x > 0 \rightarrow j_1 = 5 \land j_2 = j_3 \\
& \cdot \neg(x > 0) \rightarrow j_2 = 18 \land j_3 = j_2 \\
& \cdot \neg(x > 0 \land j_1 = 5 \land j_3 = j_1) \rightarrow \neg(x > 0) \land j_2 = 18 \land j_3 = j_2 \\
& \cdot \neg((x > 0) \land j_2 = j_3) \rightarrow x > 0 \land j_1 = 5 \land j_3 = j_1 \\
& \cdot \text{Join}(x > 0 \land j_1 = 5 \land j_3 = j_1, \neg(x > 0) \land j_2 = 18 \land j_3 = j_2)
\end{align*}
\]

Loop as global constraint: w/5

\[
\begin{align*}
\text{w}(\text{Dec, } V_1, V_2, V_3, \text{ body}) & \iff \\
& \begin{align*}
& \cdot \text{Dec} \\ V_3 \equiv \phi(V_1, V_2) \quad \text{while(Dec)} \\
& \cdot \text{Dec} \\ V_3 \equiv \phi(V_1, V_2) \quad \text{body} \\
& \cdot \neg(\text{Dec} \land \text{body}) \rightarrow \neg\text{Dec} \land \neg V_3 = V_1 \\
& \cdot \neg(\neg(\text{Dec} \land \text{body}) \lor V_3 = V_1) \rightarrow \text{Dec} \land V_3 = V_1 \\
& \cdot \text{Dec} \land \text{body} \land V_3 = V_1 \land \text{w}(\text{Dec, } V_2, V_3, \text{ body}) \\
& \cdot \text{join}(\text{Dec} \land \text{body} \land V_3 = V_1 \land \text{w}(\text{Dec, } V_2, V_3, \text{ body}), \neg\text{Dec} \land \neg V_3 = V_1)
\end{align*}
\]

\[
\begin{align*}
& 1 \quad \text{body} \\
& 2 \quad V_3 = \phi(V_1, V_2) \\
& 3
\end{align*}
\]
Features of the \(w \) relation

- It can be nested into other relation (e.g., nested loops \(w(\text{cond}_1, v_1,v_2,v_3, w(\text{cond}_2, \ldots)) \))

- Managed by the solver as any other constraint (its consistency is iteratively checked, awakening conditions, success/failure/suspension)

- By construction, \(w \) is unfolded only when necessary but \(w \) may NOT terminate!

- Join is implemented using Abstract Interpretation operators (interval union, weak-join, widening)

(Gotlieb et al. CL’2000, Denmat et al. CP’2006)
Abstraction-based relaxations

- During constraint propagation, constraints can be relaxed in Abstract Domains (e.g., Q-Polyhedra)

\[
\begin{align*}
Z &= X \times Y, \quad X \text{ in } a..b, \ Y \text{ in } c..d \\
\Rightarrow \{ & Z - Ya - Xc + ac \geq 0, \\
& Xd - Z - ad + aY \geq 0, \\
& bY - bc - Z + Xc \geq 0, \\
& bd - bY - Xd + Z \geq 0, \\
& a \leq X \leq b, \ c \leq Y \leq d \}
\end{align*}
\]

- To benefit from specialized algorithm (e.g., simplex for linear constraints) and capture global states of the constraint system

- Require safe/correct over-approximation (to preserve property such as: if the Q-Polyhedra is void then the constraint system is unsatisfiable)

- Q-Polyhedra in Euclide (Gotlieb ICST’09), Difference constraints in Gatel, Congruences domain in IBM ILOG Jsolver (Leconte CSTVA’06) and now Gatel

Outline

- Introduction
- Path-oriented exploration
- Constraint-based exploration
- Further work
CBT (summary)

- Emerging concept in code-based automatic test data generation

- Two main approaches:
 Path-oriented test data generation vs constraint-based exploration

- Constraint solving:
 - Linear programming
 - SMT-solvers
 - Constraint Programming techniques with abstraction-based relaxations

- Mature tools (academic and industrial) already exist but application to real-sized applications still have to be demonstrated

Further work

- In constraint generation:
 - to handle complex data structures and type casting → advanced memory models (as complex as those used in automated program proving)
 - to handle efficiently function calls (modular analysis) and virtual calls in OO Programming (Thesis of F. Charreteur Mar. 2010, JAUT tool)
 - to deal with multi-threaded programs

- In constraint solving:
 - to improve the handling of modular integer and floating-point constraint solving
 - loops with abstraction-based relaxation → widening techniques
 - exploit parallelism to boost program exploration (in both path-oriented and constraint-based exploration)
Many thanks for your attention!

How CBT relates to other bug-finding techniques?

- **Static analysis** aims at finding *runtime errors* (e.g. division-by-zero, overflows, …) at compile-time
 while CBT aims at finding *functional faults* (e.g. P returns 3 while 2 was expected) at runtime

- Software **model-checking tools** explores a bounded boolean structure of the program in order to prove properties or find counter-examples
 while CBT uses global constraints to capture the structure

- **Dynamic analysis approaches** extract *likely invariants*
 while CBT exploits *symbolic reasoning* to find counter-examples to given properties
How CBT relates to other test data generation techniques?

Other test cases generation techniques include:

- **Dynamic methods** (program executions, Korel’s method, binary search, …)
- **Evolutionary techniques** (Genetic Algorithms, search-based methods, …)

By combining symbolic reasoning and numerical inference, CBT exploits program structure and data to refine the test case generation process and differs so from «blind» techniques that attempt to reach the testing objective by trials.

SSA form

Each use of a variable refers to a single definition

\[
\begin{align*}
 x &:= x + y; \\
y &:= x - y; \\
x &:= x - y;
\end{align*}
\]

\[
\begin{align*}
 x_1 &:= x_0 + y_0; \\
y_1 &:= x_1 - y_0; \\
x_2 &:= x_1 - y_1;
\end{align*}
\]

At the junction nodes

1. \(i := \ldots \)
2. \(i := \ldots \)
3. \(\ldots := i + \ldots \)

\(\phi \) functions

1. \(i_1 := \ldots \)
2. \(i_2 := \ldots \)
3. \(i_3 := \phi(i_1, i_2) \)
\(\ldots := i_3 + \ldots \)
The reach directive

- Static control dependencies analysis over structured programs
- Implemented as a network of boolean constraints

\[
\begin{align*}
&v_1 \Leftrightarrow \text{cond}_1, v_2 \Leftrightarrow \text{cond}_2, \\
&v_3 \Leftrightarrow \text{cond}_3, v_4 \Leftrightarrow \text{cond}_4, \\
&v_2 \Rightarrow v_1, v_3 \Rightarrow v_2, \neg v_3 \Rightarrow v_2, \\
&v_4 \Rightarrow v_2, \neg v_4 \Rightarrow v_2
\end{align*}
\]

reach(e) \Rightarrow v_4 = \text{false}

Global constraint definition

- Interface: set of variables of the relation
- Awakening conditions (X becomes valued, domain of X is pruned, ...)
- Filtering algorithm (performed when awaked)

can be defined with a set of guarded-constraints

\[
C_1 \rightarrow C'_1, \ldots, C_n \rightarrow C'_n
\]

Operational semantics of \(C_i \rightarrow C'_i \) w.r.t. a constraint store:

- If \(C_i \) is entailed then \(C'_i \) is pushed on the propagation queue and \(\{C'_j \rightarrow C'_j\} \) are all removed from the queue
- If \(C_i \) is disentailed then only \(C_i \rightarrow C'_i \) is removed
- Else \(C_i \rightarrow C'_i \) is suspended and could be awaked when global contr resumes

Detection of entailment:

\(C_i \) is entailed by \(\sigma \) if \(\sigma \land \neg C_i \) is inconsistent