
A Semi-empirical Model of Test Quality in Symmetric
Testing: Application to Testing Java Card APIs �

Arnaud Gotlieb
IRISA-INRIA

Campus Beaulieu
35042 Rennes Cedex, FRANCE

Arnaud.Gotlieb@irisa.fr

Patrick Bernard
OBERTHUR CARD SYSTEMS

rue Auguste Blanche
92800 PUTEAUX, FRANCE

p.bernard@oberthurcs.com

ABSTRACT
In the smart card quality assurance field, Software Testing is the
privileged way of increasing the confidence level in the implemen-
tation correctness. When testing Java Card application program-
ming interfaces (APIs), the tester has to deal with the classical
oracle problem, i.e. to find a way to evaluate the correctness of
the computed output. In this paper, we report on an experience
in testing methods of the Oberthur Card Systems Cosmo 32 RSA
Java Card APIs by using the Symmetric Testing paradigm. This
paradigm exploits user-defined symmetry properties of Java meth-
ods as test oracles. We propose an experimental environment that
combines random testing and symmetry checking for (on-card) cross
testing of several Java Card API methods. We develop a semi-
empirical model (a model fed by experimental data) to help decid-
ing when to stop testing and to assess test quality.

1. INTRODUCTION
Although formal verification and software testing were viewed

as opposites for a long time, with formal verification concentrat-
ing on proving program correctness while testing concentrating on
finding faults in program implementation, they can now be consid-
ered as complementary techniques [1]. In the smart card field, soft-
ware testing is required by the Common Criteria evaluation scheme
[2] to increase the confidence level of the certifying authority in the
implementation correctness of security functions. In this context,
techniques and tools that permit to automate (even partially) the
testing process are welcome. Research works in that field include
the BZ-testing approach designed by Legeard et al. [3, 4] to gener-
ate automatically test cases from a formal B or Z specification. The
corresponding tools suite has been employed to validate the Java
Card transaction mechanism by generating test cases on the bound-
ary states of the formal specification [5]. In [6], Pretschner et al.
followed a similar approach by using the AUTOFOCUS tool for
specifying the command/response mechanism of an inhouse smart

�Supported by the Réseau National des Technologies
Logicielles as part of the CASTLES project (www-
sop.inria.fr/everest/projects/castles/)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

card and generating test cases for validating the authentification
protocol of the card. At the same time, Clarke et al. [7] developed
symbolic test generation algorithms and applied them to generate
on-the-fly test cases for a feature of the CEPS1 e-purse application
and Martin and Du Bousquet [8] proposed to use UML-based tools
to generate test suites for testing Java Card applets.

All these approaches have in common to require first a formal
model (Z or B specification, automata, input/output transition sys-
tem or statecharts) to be constructed in order to generate test cases.
When the time-to-market of a new product is critical, this effort ap-
pears as being too costly and cheaper (but still rigorous) approaches
are needed. Techniques such as statistical testing [9–11], boundary
testing [12], or local exhaustive testing [13] do not require a formal
model to be developed. Statistical testing aims at selecting ran-
domly the values inside the input domain of the application under
test by using pseudo-random numbers generators, boundary test-
ing relies on selecting the boundaries of an input space partition,
whereas local exhaustive testing systematically explores a bounded
part of the input domain. In these approaches, testing just depends
on the availability of oracles, that is, some procedures for predicting
the expected results of the applications under test. Unfortunately,
as earlier pointed out by Weyuker [14], there are programs to be
tested for which the design of oracles is a non-trivial task. Exam-
ples of such programs in the smart card field include standard and
proprietary Java Card APIs as they are just usually described by
their interfaces and a few lines of natural text2. For these APIs,
current industrial practices rely on coding the oracle as the result
of another program that will be confronted with the result of the
API under test. This approach suffers from several drawbacks such
as the high cost of the development of oracles and the existence of
faults into the oracles.

Recently, we have proposed [15] to address this oracle problem
for Java programs by using user-defined symmetries of programs
to check the correctness of the computed output. Here, symmetries
are input-output permutation relations over program executions that
lead to partitioning the input space into equivalence classes and the
equivalence between two executions serves as an oracle. We in-
troduce a testing paradigm called Symmetric Testing, where auto-
matic test data generation was coupled with symmetries checking
and local exhaustive testing to uncover faults inside the programs.

In this paper, we report on an experience in applying Symmet-
ric Testing to test methods of the Oberthur Card Systems Cosmo
32 RSA V3.4 Java Card API [33] by using random testing. Unlike
our previous work [15], we develop here an original semi-empirical

1The Common Electronic Purse Specification is a standard for cre-
ating inter-operable multi-currency smart card e-purse systems.
2Although formalizations do exist [31].

model to help decide when to stop testing and to assess test quality
in Symmetric Testing. This model is fed with an empirical parame-
ter (based on symmetry checking) in a theoretical model of random
testing, in order to obtain the minimum number of test data required
to reach a given level of quality. From the Oberthur Card Systems
Cosmo 32 RSA V3.4 Java Card API [33], we have selected the
methods to test by studying their symmetry properties, as Sym-
metric Testing is only suitable for testing programs that possesses
input-output symmetry relation. By using several tools, we have
designed an experimental environment to build our semi-empirical
model and to apply Symmetric Testing in situations as close as pos-
sible to the real situations. In contrast with other research works in
testing Java card programs [6, 7], test execution and symmetries
checking have been conducted by cross-testing on a smart card and
not by using simulations.

The rest of the paper is organized as follows: section 2 presents
the Symmetric Testing paradigm and gives examples of symmetry
relations. Section 3 reports the symmetry analysis of a few methods
of the Oberthur Card Systems Cosmo 32 RSA V3.4 Java Card API
while section 4 details our semi-empirical model of random testing
based on symmetries checking. Section 5 reports the first experi-
mental results and discusses extension of the framework to handle
non-symmetric methods of the Java Card APIs. Finally section 6
pinpoints several perspectives to this work.

2. SYMMETRIC TESTING
Exploiting symmetry in verification is not a new idea. Emerson

and Sistla [17] and Ip and Dill [18] proposed early to exploit struc-
tural symmetries to address the problem of state explosion in model
checking. This approach has been experienced and proved interest-
ing in practice in several tools, such as VeriSoft [19] or SPIN [20];
its principle is based on basic results from group theory [17–19]
and partial order techniques [21].

Based on similar ideas, we recently introduced Symmetric Test-
ing [15] in the context of Software Testing. The flavour of our
approach is explained here on a very basic example. Consider a
program � intended to compute the greatest common divisor (���)
of two non-negative integers � and � and suppose that � is tested
with the following test datum �� � ����� � � ���� automati-
cally generated by a random test data generator. Although we all
know how to compute the gcd of two integers3, it is not so easy
to predict the expected value of ��������� ���� without the help
of a calculator. Fortunately, ��� satisfies a simple symmetry re-
lation: ����� ������ �� � ������ ��. So, if � ������ ���� ��
� ����� ����� then the testing process will succeed to uncover a
fault in � without the help of a complete oracle of ���. Note that
such a symmetry relation is a necessary but not sufficient condition,
for the correctness of � . Such user-specified relations between sev-
eral program executions have been called metamorphic relations
and thoroughly investigated by Chen et al. [22–24].

Identifying such symmetry relations for larger programs might
appear to be difficult or useless to detect non-trivial fault. On the
contrary, we argue that numerous programs have to satisfy sym-
metry relations and these relations are useful for detecting subtle
faults. In fact, every program � that takes an unordered set as ar-
gument has to satisfy a symmetry relation: the expected outcome
of � is invariant under any permutation of the elements of the set.
Numerous programs take unordered sets as arguments: consider
sorting or selection programs that are used in search engines, pro-
grams that operate over data buffers, or graph-based programs just
to name a few. Note that experimental evidence are also available

3With the Euclidian algorithm for example.

to support this argument in [23, 24] and [15].

2.1 Symmetry relations
We generalized the above idea to obtain a formal and generic

definition of symmetry relation. This definition is based on basic
results from Group theory that are briefly recalled here. A detailed
but still accessible presentation can be found in [25].

The notion of symmetric group is the corner-stone of Symmet-
ric Testing. The symmetric group �� is the set of bijective map-
pings from ��� 		�
� to itself. It has exactly
	 elements, called per-

mutations. A permutation in�� is written: � �

�
� 		

���� 		 ��
�

�
where ����� 		� ��
� denote the images of �� 		�
 by the permutation
�. A group action of �� on a set is a mapping ��� �� �� � �� such
as: ���� � � � � and ��� Æ ��� � � � �� � ��� � �� for all � � and
�� ��� �� � �� (we say that �� acts on and � acts on �). Note
that is closed under the action of ��.

It is well-known that any permutation can be expressed as the
composition of certain simple permutations, called cycles. Con-
sider for example the permutation

� �

�
�
 � � �
� � � �

�
of ��, the same permutation can be

written as � � �� ���
 � �� where each pair of brackets denotes
a cycle ��� �� 		 ���, that maps �� to ��, .. ���� to ��, �� to ��
and leave unchanged the other elements. A cycle written ��� ��� is
usually referred to as a transposition.

A subset � of elements of a symmetric group �� is a set of
generators iff every element of �� can be written as a finite com-
position of the elements of � . For example, �� is generated by
the two transpositions �� � ��
� and �� � �
 ��. More gener-
ally, �� is generated by the transposition � � ��
� and the cycle
� � ��
 		
� and cannot be generated by less than two permu-
tations [25]. Note that other two-generator sets can be found for
��.

Symmetries of the function computed by a program � become
interesting with regards to testing when they express general ab-
stract properties. This leads to the notion of symmetry relations for
a program.

DEFINITION 1 (symmetry relation). Let� be a program that
computes a function � over an input domain ������ toward a
range domain ��
���, and let �� act on ������ with a group
action � and �� act on ��
��� with a group action 	. A symmetry
relation ��� holds for � iff

1. �� � ���
� � �� such that �� � �������
��� � �� � � 	 ����

2. ��� � � ��� � is a homomorphism from �� to ��

The first item requires � to satisfy an invariant property for all
� in �� and for all � in the input domain of � . Note that �, the
image of � by the symmetry relation ���, is independent of the
choice of �. Most of the time the two group actions will be the
same (� �), however we will see below an example of distinct
group actions in a symmetry relation. The second item requires the
symmetry relation to be a homomorphism. A homomorphism is a
map � from �� to �� such that ��� Æ ��� � ���� Æ ����� for all
�� �� � ��. Informally speaking, this requirement guarantees the
symmetric structure of ������ to be preserved by application of
� , allowing so nice composition properties of symmetric relations.
In our framework, we make an extensive use of this property to
optimize the symmetry testing process, as explained below.

2.2 Examples
As an example, consider the Java Card program

void max3(byte[] A, byte[] B) which selects the three
maximum values of the array � and sorts them into the array �. If

 denotes the size of � (
 �) and � denotes the function com-
puted by max3 from �

� to �� , where � is the finite set of all possi-
ble bytes whose values are 8-bit signed two’s complement integers,
then the program max3 has to satisfy a ��� symmetry relation be-
cause the array B is invariant under any permutation of A. Here, the
considered group action (in both cases) is defined by: �� � �

� �
�
� , ��� � � ���� 		� ���� �� � �� � ��������� 		� ��������

As B is required to be sorted, all permutations � will map to the
identity of ��.

As a more complicated example, consider the program short
getIndex0(short[] A) that takes an array A of (non-negative)
distinct values as argument and returns the index of the occur-
rence of � in the array or throws an exception if � is not present
in A. The program getIndex0 computes a function � from �

�

to ��� �� 		�
 � �� � ����� where � denotes the finite set of 32-
bit signed short integers,
 denotes the size of A and ��� denotes
an erroneous symbolic value. When � belongs to the array A,
getIndex0 has to satisfy a ��� symmetry relation because, 1)
for any � � ��, ��� ��� � � 	 ���� for all � � �

� that contains
an occurrence of �, and 2) the identical map � ��� � is a group
homomorphism. For instance, if
� � ���� ����� �
��� ����
���� ���� �
���� �� �����
����� and
� � ��
 		 ��� then ���� returns � and ��� � �� returns � which
is the image of � by � when it acts over ��� �� 		� ��. Note that
this example shows two distinct group actions: �� acts over ���

when it is applied to the input sequence � of � whereas it acts over
��� �� 		� �� when applied to the outcome of � with the following
group action:
������ �� 		�
� �� � ��� �� 		�
� ��, ��� �� �� �	 � � ����.

2.3 Symmetric Testing
Symmetry relations can be used to seek for a subclass of faults

within an implementation. Informally speaking, the Symmetric
Testing principle aims at finding counter-examples (called sym-
metry violations) of the symmetry relation that a program has to
satisfy.

DEFINITION 2. (Symmetry violation) let � be a program over
an input domain � and 	�
 be a symmetry relation that � has to
satisfy, then a symmetry violation for � w.r.t. 	�
 is a couple ��� ��
such as � � �� � � �� and � �� � �� �� 	�
���	 � ���.

The interesting point here is that symmetry violation can be checked
by program executions whereas trying to prove formally that the
function computed by a program satisfies a symmetry relation would
be very difficult. Note that there is no way to distinguish among the
two test data � and � � � the one that leads to an incorrect outcome
for � . In the worst case, they can even be both faulty. So, given a
set of test data and a symmetry relation, we get a naive procedure
that can uncover a subclass of faults in � : it requires to compute
� with all the permutations of the permutable inputs of each vec-
tor � in the test set and then to check whether the outcome vectors
are equal to a permutation of the vector returned by � . The latter
operation is called an outcome comparison in the rest of the paper.

However, the somehow naive procedure given above requires an
outcome comparison for each possible permutation in the Symmet-
ric Group �� and, as �� contains
	 permutations, the approach
becomes impractical when
 increases. The following result is ex-
ploited to reduce the number of outcome comparisons:

THEOREM 1. Let � be a program that computes a function �
and 	�
 be a symmetry relation for � , let � � ��
� and � �
��
 		 ��, then we have�

� Æ � � 	�
�� � Æ �

� Æ � � 	�
��� Æ �
�� � Æ � � 	�
��� Æ � �� � �	

A proof of this theorem can be found in [15]; it is based on the
fact that 	�
 is required to be a group homomorphism. Hence, by
showing that ��� ��� � 	�
���	���� and ��� ��� � 	�
���	
����, we get ��� � �� � 	�
���	 ���� for all � � �	, meaning
that only two permutations are required to be checked. Moreover,
by noticing that if ��� �� is a symmetry violation then �� � �� ����
is automatically another symmetry violation, the input domain to
be explored can even be shrinked. These properties are exploited
to design an efficient procedure for Symmetric Testing, that is fully
described in [15].

The rest of the paper reports on our experience in applying Sym-
metric Testing combined with Random Testing to the testing of
some Java Card API methods.

3. SYMMETRY IN JAVA CARD API
Unlike other smart cards, a Java Card includes a Java Virtual Ma-

chine and a set of API classes implemented in its read-only memory
part. The Java Card Virtual Machine provides the interpretation of
Java Card language constructs and the APIs are a set of classes and
interfaces providing additional functionality that can be accessed
by Java Card applets. A complete view of the development process
of Java Card applets can be found in [29]. The OCS4 Cosmo 32
RSA V3.4 (called Cosmo in the following) contains an implemen-
tation of the Java Card APIs.

3.1 The Cosmo Java Card APIs
The structure of the Cosmo Java Card platform is given in Fig.1.

It consists of several components, such as an implementation of the
Java Virtual Machine, the open platform applications, a set of pack-
ages implementing the standard SUN’s Java Card API [16] and a set
of proprietary packages. The four OCS proprietary packages con-
sists of standard security services such as the VISA Open Platform
Provider Security Domain, a set of base classes for implementing
a Provider Security Domain, a complete range of classes for creat-
ing, maintaining and inspecting the card file-system and methods
that are useful for JCRE related operations. Note that the Cosmo
Java Card platform includes garbage collection facilities.

3.2 Symmetry analysis of a selected Cosmo
Java Card API class

Among several possibilities, we selected com.oberthurcs.
javacard.file.Utilfs as a case study because it consists
of several generic utility methods that present symmetries. All the
methods operate on byte or object arrays and are useful for dealing
with APDU5 buffers. The Utilfs class is composed of 10 meth-
ods, shown in Tab.1 together with their symmetry relations. The
first and second column are extracted from the Cosmo API informal
specification [33]. The third column summarizes the results of our
symmetry analysis. The set of all possible bytes is noted � and the
set of available objects is noted �. Note first that some methods that
deal with multiple array elements are tagged as NonAtomic. Atom-
icity defines how the card handles the contents of persistent storage

4Stands for Oberthur Card Systems
5Application Protocol Data Unit is an ISO-normalized communi-
cation format between the card and the off-card applications.

Hardware : CPU, cryptography cell
Hardware : CPU, cryptography cell

Applet Applet Applet...

Standard JavaCard API

java.lang

javacard.framework

javacard.security

javacardx.crypto

Oberthur Card Systems API

com.oberthurcs.javacard

com.oberthurcs.javacard.domain

com.oberthurcs.javacard.file

visa.openplateform

JavaCard Runtime Environment (JCRE)

JavaCard Virtual Machine

Open Plateform

Figure 1: The OCS Cosmo 32 RSA V3.4 platform

after a failure or fatal exception during an update of a class field
or an array component [16]. An applet might not require atomicity
for array updates. The Utilfs.arrayAndNonAtomicmethod
is an example: it shall not use the transaction commit buffer even
when called with a transaction in progress.

Among the ten methods of this class, we found that seven have to
satisfy a simple symmetry relation. We discuss a few of them; the
other ones can easily be deduced from these. The method short
arrayAndNonAtomic(byte[] dest, short destOff,
byte[] src, short srcOff, short len) can be abstracted
by a function � from �

�� � �

�� to �
�� as it modifies the input-

output parameter dest by combining src and dest and by con-
sidering all other parameters as non-variable. arrayAndNonAtomic
has to satisfy a
���
�� symmetry relation because of the follow-
ing invariant property:

�� � �
��� ��� � �� !� � � ��� � � 	 ���� !� ���

This is due to the fact that �� ! and �� represent two unordered
sets of values for this method. Note that the two group actions
are distinct as the first one holds over the set �
�� � �

�� (i.e.
� � ��� �� � �� � �� � � �� where � and � are vectors of �
��)
whereas the second one 	 holds just over �
�� . The methods
short arrayCompare(byte[] src, short srcOff,
byte patByte, short length) and short arrayFind-
Byte(byte[] src, short srcOff, short len, byte
pattern) have each to satisfy a
���
�� symmetry relation as
the following invariant property holds: �� � �
��� ��� � ��� �
� 	 �� ��� where � denotes a map from �

�� to ��� 		� "�
�. In
fact, these two programs are selection programs that are invari-
ant to permutations of a subset of their input parameters. In the
Utilfs class, some methods do not have to satisfy simple sym-
metry relations. For example, the method arrayFindShort has
incompatible input types, that is to say the method looks for a short
integer variable into an array of bytes. Although we have not real-
ized a full study of the Cosmo Java Card APIs, we took a look at
other classes to find symmetry relations. For example, the classes
visa.openplatform.OPSystem,javacard.security.
MessageDigest or javacard.framework.Util contain
methods that have to satisfy symmetry relations. Note that the com-
positional definition of symmetry relations allows to combine sev-
eral method calls. However, we also found numerous classes where
the symmetry analysis does not reveal any symmetry relations. Ex-
amples of such classes include com.oberthurcs.javacard.

file.* or javacard.framework.JCSystem. So, the Sym-
metric Testing approach remains limited in application to a restricted
part of the Cosmo Java Card APIs. For these classes and methods,
other input-output properties should be taken as partial oracles as
discussed in section 5.3.

4. A SEMI-EMPIRICAL MODEL
In this paper, the Symmetric Testing principle combines random

test data generation and automatic symmetry checking. Random
testing has traditionally been viewed as a blind approach of pro-
gram testing. However, results of actual random testing experi-
ments confirmed its potential to reveal faults and as a validation
tool [9]. Nevertheless, when the tester wants to exploit a random
test data generator, he faces two main difficulties. The first is the
classical oracle problem already discussed in the introduction of
this paper: an automatic way of checking the output correctness
is required. The second problem is to determine the test quality
level reached by such a testing approach. In general, it is difficult
to quantify how reliable is a program that has only been tested by
randomly generated test data. Several works deal with this prob-
lem by using a purely theoretical framework based on probabilistic
analysis [10, 30]. In this paper, we exploit a semi-empirical model
(a model fed by experimental data) to help decide when to stop
testing. This section is devoted to the presentation of this semi-
empirical model.

4.1 Random testing
Let #� be the probability that a randomly generated input test

datum � exhibit a fault in the program � . A fault in � can be un-
derstood as a syntactical change in the source code that leads, for
some input data, to a difference between � ��� and the expected
output of the function computed by � with �. By a simple prob-
abilistic reasoning, a model of random testing based on #� can be
developed. It is a law between the number $ of randomly gener-
ated test data and a probabilistic parameter that characterizes the
fault-detecting effectiveness of the random testing strategy [9, 32].
The probability of detecting at least one failure is called the test
quality6 and it is noted % [10]. Its value is given by the following
definition:

DEFINITION 3. % � �� ��� #��

As an immediate consequence, we get an estimation of the min-
imum number of test data required to reach a certain value of % :

THEOREM 2. $ �
������ �

������ �
�

where ��� denotes the ceiling function applied to a real number �.

4.2 The empirical parameter #�

The above model of random testing suffers from a major draw-
back: it is based on #� which is almost impossible to evaluate with-
out a precise knowledge of all the existing faults in the program � .
We address this problem by using an empirical parameter in place
of #� to build our model. This parameter #� is related to symmetry
checking: #� is the probability of detecting a symmetry violation
��� �� when � is randomly generated over a subset of size of
the input domain. This parameter characterizes the probability for
Symmetric Testing to reveal a fault in � when it makes use of a
random test data generator to generate a single test datum.

In this paper, we propose to empirically evaluate #� on a cor-
rect specimen program by making use of fault-injection techniques.

6This measure is also called the P-measure

Table 1: Symmetry in the OCS Utilfs methods
Java Card methods Informal specifications Symmetry relations
short arrayAndNonAtomic(byte[] dest,
short destOff, byte[] src, short srcOff,
short len)

Copies the result of a bitwise AND
on the first operand dest and the sec-
ond operand src into dest

The program computes the following function:
� � ���� � �

��� �� �
���

������ ���� ��� �����

where ����� stands for the value ���� computed
after application of the arrayAndNonAtomic program.
It has to satisfy a �������� symmetry relation.

short arrayCompare(byte[] src, short
srcOff, byte patByte, short len)

Returns the index of the first byte
in the specified part of src that does
not match patByte, or 0xFFFF if
every byte matches

We ask src to contain 1 occurrence of patByte and ���	�� � �

� � ���� �� ���

� ����
��� ��� ���

arrayCompare has to satisfy a �������� symmetry relation.
short arrayFindByte(byte[] src, short
srcOff, short len, byte pattern)

Returns the index of the first byte
in the part of src that matches the
specified pattern.

We ask src to contain 1 occurrence of pattern
� � ���� �� ���

� ����

��� ��� ���
arrayFindByte has to satisfy a �������� symmetry relation.

short arrayFindPattern(byte[] src,
short srcOff, short srcLen, byte[] pat-
Src, short patOff, short patLen)

Returns the index of the first byte
in the part of src that matches the
specified pattern.

no simple symmetry

short arrayFindShort(byte[] src, short
srcOff, short len, short pattern)

Returns the index of the first byte
in the part of src that matches the
specified pattern (a short is 2 bytes).

no simple symmetry

short arrayOrNonAtomic(byte[] dest,
short destOff, byte[] src, short srcOff,
short len)

Copies the result of a bitwise OR on
the first and second operands into
dest.

� � ���� � �
��� �� �

���

������ ���� ��� �����

arrayOrNonAtomic has to satisfy a �������� symmetry relation.

short arrayXorNonAtomic(byte[] dest,
short destOff, byte[] src, short srcOff,
short len)

Copies the result of a bitwise XOR
on the first and second operands
into dest.

� � ���� � �
��� �� �

���

������ ���� ��� �����

arrayXorNonAtomic has to satisfy a �������� symmetry relation.

short getObjectIndex(java.lang.Object[]
src, short srcOff, short n,
java.lang.Object pattern)

Returns the index of the nth occur-
rence in the part of src that matches
pattern.

��� denotes the length of src and � � �,
we ask src to contain 1 occurrence of pattern
� � ���� �� ���

� ����

��� ��� ���

getObjectIndex has to satisfy a �������� symmetry relation.
short getShortIndex(short[] src, short
srcOff, short n, short pattern)

Returns the index of the nth occur-
rence in the part of src that matches
pattern.

��� denotes the length of src and � � �,
we ask src to contain 1 occurrence of pattern
� � ���� �� ���

� ����

��� ��� ���
getShortIndex has to satisfy a �������� symmetry relation.

short getTaggedShort(byte[] src, short
srcOff, short srcLen, short tag)

Returns the index of the first TLV
tag in the part of src that matches
the specified tag.

no simple symmetry

Using a specimen program is advantageous as we can easily inject
faults by modifying its source code. The key point of our approach
resides in the knowledge of symmetry violations occurring when
checking the output correctness of this program. Note that this ap-
proach is based on an uniform hypothesis: the inferred value for
the specimen program applies to other programs as well. This hy-
pothesis is debatable and relates to the difficulty of finding a rep-
resentative sample in statistics. In our framework, we preferred to
select a single representative program rather than a large set of non-
representative programs. Of course, any other more representative
program can be employed. For example, when testing an airborne
flight-guidance software, one can employ a well-established correct
program of the airborne software domain.

4.3 Our protocol to evaluate #�

Our protocol to evaluate #� is based on a set of faulty versions
of the specimen program � that are automatically created by a mu-
tation analysis scheme [34]. A mutant % is a version of � where
a single syntactical change has been introduced. Classically, a mu-
tant is said to be killed by a test datum � when %��� �� � ���. In
our framework, we will consider a mutant to be killed if there exists
� � �� such as ��� �� is a symmetry violation for % w.r.t. ���.
The value of #� depends on , the size of the subdomain of this
input space that is considered for the random test data generation.
Given a size , the empirical protocol is as follows:

1. built �%�������� a set of & mutants of a specimen program

� that has to satisfy a symmetry relation ���;

2. for each %�, compute the booleans '��� �
�%���	�� �� ����� �	%���� or %���	�� �� ������	%�����
for each test datum � of the input domain of � ;

3. returns #� � �
��

	
�

'��� which is just the median value of
the probability for the & mutants.

Note that the programs %� are executed on a large part of their
input domain, hence it is important to select a specimen program
having an input space of reasonable size. Note also that only two
permutations are required to be checked in this protocol (� � ��
�
and � � ��
 		
�). This is a direct consequence of Theorem 1.

We selected the well–known triangle classification program tri-
typ [27], that belongs to the Software Testing folklore. It takes
three non-negative bytes as arguments that represent the relative
lengths of the sides of a triangle and classifies the triangle as sca-
lene, isocele, equilateral or illegal. The results of trityp must
be invariant to every permutation of its three input values, leading
to a ��� symmetry relation. This program appears to be an in-
teresting specimen candidate as it contains a lot of decisions and
the probability of a symmetry violation to occur is highly related to
the flow of control. Hence, this probability highly depends on the
input subdomain that is being explored. This property has recently
been investigated from an experimental point of view in [24]. Of
course, any more representative program can be employed but we

Ps
AOR
ROR
LCR

0.1

0.15

0.2

0.25
P

ro
ba

bi
lit

y
of

 s
ym

m
et

ric
 fa

ul
t o

cc
ur

re
nc

e

20 40 60 80 100 120

s : size of domain

Figure 2: Empirical evaluation of #�

would like just to study the feasibility of the approach rather than
designing a fully acceptance testing methodology.

In our empirical protocol, application of the tool MuJava [34]
led to build automatically 36 mutants where an arithmetic operator
was replaced (AOR), 85 mutants where a relational operator was
replaced (ROR), and 14 mutants where a Logical connector was
replaced (LCR). In the current MuJava framework, equivalents mu-
tants7 are not removed from the set of mutants, although they can-
not be revealed by the means of testing [27]. So, ��� mutants of the
trityp programs were built by the tool and the input domain was
restricted to contain at most � �
�� �
������ input values.
Among the ��� mutants,
� were not killed by Symmetric Testing
but we kept them in the experiments to avoid introducting a bias in
the study.

For each mutant, we compute the number of symmetry viola-
tions found when exploring exhaustively a subdomain of the input
domain. The average number of symmetry violations that were de-
tected when exploring a subdomain of size allows for calculating
the probability of a symmetry violation to occur by using a uni-
form random test data generator (#�). Fig.2 contains the results we
got for several increasing values of (��� ��� ���� 			� �
��) by dis-
tinguishing the class of considered mutants (AOR,ROR,LCR). We
compute #� as the center of mass of the 3 bottom values obtained
for the greatest size (� �
��). Hence, #� � ��� � �	��� ��� �
�	��� � �� � �	��
�(��� � �	���.

4.4 Test quality based on symmetry violations
Based on definition 3, we get that) � �����#��

 for random
testing based on symmetry checking. The test quality) differs
from % as) is only based on symmetry checking. In fact,)
measures the probability of $ randomly generated test data in a
subdomain of size to reveal at least one symmetry violation in � .
When the property is enforced (� has been tested with a test quality
)), we get that the symmetry relation is satisfied by the program �
with a probability) . So, by using this model it becomes possible

7programs which compute the same outcome as the original pro-
gram although a mutation operator is applied

javac converter verifier

Open

Plateform

loader

.java .class .cap

Card

Commands

processor

.cmd

USB port

Java CardCard reader

Personal Computer

APDUs

Figure 3: Experimental environment

to assess the symmetry-based test quality for � .
The test quality was required to be equal to �	���� as is usually

the case in experimental frameworks [10]. By using the empirical
value of #� � �	��� and the theorem $ �
������ �

�������
�, we get that

$ � ��, meanning that at least �� test cases must be generated.
Note that we have just argued that this (arbitrary) value is suitable
for feeding our semi-empirical model.

5. EXPERIMENTAL ENVIRONMENT
The goal of the experiments was to study the applicability of

Symmetric Testing to reveal faults within Java Card APIs. The val-
idation process of Java Card APIs is usually made of three distinct
phases: firstly, Java card test applets are developed on a host ma-
chine by using simulation libraries; secondly, the tests are applied
to an emulation code that runs on a card emulator; and finally, the
test execution is conducted by cross-testing on the Java card. Our
experiments were performed in situations as close as possible to the
real usage. Hence, test execution and symmetries checking have
been conducted by cross-testing on the Java card with the help of a
card reader. In this respect, we differ from other smart cards testing
research approaches that focus only on test cases generation [6, 7].
In fact, we would like to check whether Symmetric Testing can
be combined with Random Testing in a cross-testing environment,
which was a challenging question as lots of limitations to memory
resources arise in such situations. Moreover, this approach required
to develop carrefully our prototype implementation to masterize the
memory and time consumption. Fig.3 contains a view of our exper-
imental environment. It is composed of five components: the java
compiler (SUN SDK 1.4), the OCS converter that produces stan-
dard Java Card byte code (converted applet file), the OCS verifier
which statically determines whether a cap file complies with the
Java Card specifications, the Open Platform loader which down-
loads and manages the applets onto the card and a Card Command
Processor that sends commands to the smart card via a card-reader
interface. Note that the bytecode verification process is done off-
card by the OCS verifier. The Card Command Processor is a com-
mand interpreter that accepts several language constructs such as
conditional and loop.

5.1 Tests generation and execution
In our experimental environment, a special attention has been

paid to minimize the communications between the reader and the
card. Recalling that our goal was to realize the test execution and
the symmetry checking processes on-card, passing large sets of ran-
dom numbers through the APDU mechanism would have been too

time-consuming. Hence, we have designed a Java Card applet (to
be loaded on-card) that generates test data and that checks the sym-
metry relations. This applet serves as a test harness and its size
is around 1.2 kbytes. It defines a single command TEST API that
launches three executions of the API method under test (� ���� � �� �
��� � �� � ��) and checks the computed output with regards to a
given symmetry relation. The applet makes use of a uniform ran-
dom test data generator provided by the Cosmo API implementa-
tion of the javacard.security.RandomData class to gen-
erate a single test datum �. In case of symmetry violation, a boolean
is returned through the APDU mechanism to inform the tester. Af-
ter having compiled, converted and verified the applet, it is loaded
on-card by the OP loader. Then, the command TEST API is launched
$ � �� times with the help of a command script, interpreted by
the Card Command processor.

5.2 Experimental results
For our experiments, we selected the seven methods from the

Cosmo Java Card API Utilfs that have a symmetry relation to
satisfy. In the industrial validation process of the Cosmo kit, these
methods are systematically tested by using a few values. For in-
stance, the arrayAndNonAtomicmethod is tested with two ran-
domly generated byte arrays by varying the values of destOff, sr-
cOff and len. By using the approach presented in the paper, we
tested each method of the API Utilfs (that has to satisfy a sym-
metry relation) with �� randomly generated test data8. Tab. 2 con-
tains the time elapsed to pass all the �� tests for each method. This
time value corresponds to the absolute user time (including garbage
collections, operating system calls, etc.) elapsed on the 8-bit CPU
Cosmo processor. It is just given here to illustrate the interest of
using symmetry relations as automatic (partial) test oracles. This
time should be compared to the time required by the tester to predict
the expected results of the methods with each of the �� randomly
generated test data.

The test quality achieved by these tests is equals to �	����, that
is to say each of these methods satisfies its symmetry relation with
a test quality of �	����. We did not find any symmetry violations
during this testing process but this does not prove the absence of
symmetry violations as our approach is only probabilistic.

5.3 Discussion and further work
The main limitation of the Symmetric Testing paradigm arises

when one tries to apply it to non-symmetric methods [15]. To ad-
dress this problem, we plan to explore other properties to check the
output correctness of Java Card APIs. Recently, Chen et al. pro-
posed in [22] to use existing relations over the input data and the
computed outcomes to eliminate faulty programs. Formally speak-
ing, let �*�� 		� *����� be
 distinct test data for a program in-
tended to compute a function � and suppose that given a relation �
over �*�� 		� *��, the results ��*��� 		� ��*�� must satisfy a property
�� , then we have: ��*�� 		� *�� �� �����*��� 		� ��*���. These
relations, called metamorphic relations, are more general than sym-
metry relations. In a previous work we did [28], we proposed to
automate the generation of input data that violate a given metamor-
phic relation, by using Constraint Logic Programming techniques.
Specifying such metamorphic relations over the Java Card APIs
would be interesting as they could serve as (partial) test oracles for
non-symmetric methods. A similar approach would be to consider
formally specified postconditions as a way to check the output cor-
rectness. For example, the formal specification of Java Card APIs
written in JML (Java Modeling Language) by Poll et al. [31] could

8All the randomly generated arrays are of size 0x7F which is the
greatest byte value

ensures (\forall int i; (i<=0 & i<dest.length)
==> (destOff <=i & i<destOff+length) ?

dest[i] == src[srcOff + (i-destOff)] :
dest[i] == \old(dest[i]));

ensures \result == destOff+length ;

Figure 4: JML postconditions for arrayCopy

be an interesting way of getting formulas that can serve as (par-
tial) test oracle. However, combining these formal postconditions
with a random test data generator remain a non-trivial task as they
make use of specific constructs that limit the possibility to asses
test quality. For example, the formal JML postcondition of the ar-
rayCopy Java Card API method extracted from [26] and shown
in Fig.4 makes use of array accesses and a loop construct for which
a fault occurrence probability seems to be difficult to establish.

6. CONCLUSION
In this paper, we have introduced a software testing framework

for on-card testing of symmetric Java Card API methods. The
framework contains a semi-empirical model to help deciding when
to stop testing and how to assess test quality. We have reported on
a first experience on testing a few methods of the OCS Cosmo 32
RSA V3.4 Java Card API by using the Symmetric Testing paradigm.
Further work will be dedicated to the exploitation of non-symmetric
properties to check the output correctness of Java Card methods,
such as metamorphic relations or postconditions extracted from a
formal specification. Another perspective will consist in explor-
ing how Symmetric Testing can be tuned to deal with the resources
consumption problem. Due to its limited memory and execution
features, Java cards and Java Card APIs must be thoroughly tested
w.r.t. memory and time consumption. Symmetry relations com-
bined with random testing could be an interesting candidate to find
counter-examples of statically estimated consumption bounds but
this remains to be shown.

7. REFERENCES
[1] J. P. Bowen, K. Bogdanov, J. Clark, M. Harman, R. Hierons,

and P. Krause. FORTEST: Formal methods and testing. In
COMPSAC 02: 26th IEEE Annual Int. Computer Software
and Applications Conf., Oxford, UK, pages 91–101.
Computer Society Press, Aug. 2002.

[2] ISO International Standard 15408. Common Criteria for
Information Technology Security Evaluation, Aug. 1999.
CCIMB-99-033, Part 3: Security assur. req.

[3] B. Legeard and F. Peureux. Generation of functional test
sequences from b formal specification : presentation and
industrial case study. In In Proc. of ASE’01, IEEE Computer
Society Press, pages 377–381, San Diego, USA, Nov. 2001.

[4] F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard,
F. Peureux, M. Utting, and N. Vacelet. Bz-testing-tools: A
tool-set for test generation from z and b using constraint
logic programming. In In Proc. of FATES’02, Formal App. to
Testing of Software, Workshop of CONCUR’02, pages
105–120, Brn, Czech Republic, Aug. 2002.

[5] B. Legeard, F. Peureux, and M. Utting. Automated boundary
testing from z and b. In In Proc. of FME’02, Formal Methods
Europe, Springer Verlag LNCS 2391, pages 21–40,
Copenhaguen, Denmark, Jul. 2002.

[6] A. Pretschner, O. Slotosch, H. Ltzbeyer, E. Aiglstorfer, and
S. Kriebel. Model based testing for real: The inhouse card
case study. In In Proc. 6th Intl. Workshop on Formal

Table 2: Symmetry in the OCS Utilfs methods
Java Card methods User time elapsed
short arrayAndNonAtomic(byte[] dest, short destOff, byte[] src, short srcOff, short len) 13 min 59 sec
short arrayCompare(byte[] src, short srcOff, byte patByte, short length) 6 min 15 sec
short arrayFindByte(byte[] src, short srcOff, short len, byte pattern) 4 min 24 sec
short arrayOrNonAtomic(byte[] dest, short destOff, byte[] src, short srcOff, short length) 13 min 57 sec
short arrayXorNonAtomic(byte[] dest, short destOff, byte[] src, short srcOff, short length) 13 min 55 sec
short getObjectIndex(java.lang.Object[] src, short srcOff, short n, java.lang.Object pattern) 2 min 01 sec
short getShortIndex(short[] src, short srcOff, short n, short pattern) 2 min 05 sec

Methods for Industrial Critical Systems (FMICS’01), pages
79–94, Paris, Jul. 2001.

[7] D. Clarke, T. Jeron, V. Rusu, and E. Zinovieva. Automated
test and oracle generation for smart-card applications. In In
Int. Conf. on Research in Smart Cards (e-Smart’01),
Springer Verlag, LNCS 2140, pages 58–70, 2001.

[8] H. Martin and L.d. Bousquet. Automatic test generation for
java-card applets. In Isabelle Attali and Thomas P. Jensen,
editors, Java on Smart Cards: Programming and Security,
First International Workshop, JavaCard 2000, Cannes,
France, September 14, 2000, Revised Papers, volume 2041
of Lecture Notes in Computer Science, pages 121–136.
Springer, 2001.

[9] J.W. Duran and S. Ntafos. An Evaluation of Random Testing.
IEEE Trans. on Soft. Eng., 10(4):438–444, Jul. 1984.

[10] P. Thévenod-Fosse and H. Waeselynck. An investigation of
statistical software testing. Journal of Sotware Testing,
Verification and Reliability, 1(2):5–25, July 1991.

[11] T. Y. Chen, T. H. Tse, and Y. T. Yu. Proportional sampling
strategy: a compendium and some insights. The Journal of
Systems and Software, 58 (2001), pages 65–81. Elsevier
2001.

[12] R. A. DeMillo, W. M. McCracken, R. J. Martin, and J. F.
Passafiume. Software Testing and Evaluation. The
Benjamin/Cummings Publishing Company, INC., Menlo
Park, CA, 1987.

[13] T. Wood, K. Miller, and R. E. Noonan. Local exhaustive
testing: a software reliability tool. In Proc. of the Southeast
regional conf., pages 77–84. ACM Press, 1992.

[14] E. Weyuker. On testing non-testable programs. The
Computer Journal, 25(4), 1982.

[15] A. Gotlieb. Exploiting symmetries to test programs. In IEEE
International Symposium on Software Reliability and
Enginering (ISSRE), pages 365–374, Denver, CO, USA,
Nov. 2003.

[16] SUN Microsystems. Java Card 2.1.1 Application
Programming Interface, May 2000.

[17] F. Allen Emerson and A. Prasad Sistla. Symmetry and model
checking. Formal Methods in System Design: An
International Journal, 9(1/2):105–131, August 1996.

[18] C. Norris Ip and David L. Dill. Better verification through
symmetry. Formal Methods in System Design: An
International Journal, 9(1/2):41–75, August 1996.

[19] P. Godefroid. Exploiting symmetry when model-checking
software. FORTE’99, pp 257-275.

[20] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric spin.
In SPIN, pp 1–19, 2000.

[21] Edmund M. Clarke, Orna Grumberg, Marius Minea, and
Doron Peled. State space reduction using partial order
techniques. Soft. Tools for Tech. Transfer, 2, 1998.

[22] T.Y. Chen, T.H. Tse, and Zhiquan Zhou. Fault-based testing

in the absence of an oracle. In IEEE Int. Comp. Soft. and
App. Conf. (COMPSAC), pages 172–178, 2001.

[23] T.Y. Chen, T.H. Tse, and Zhiquan Zhou. Semi-proving: an
integrated method based on global symbolic evaluation and
metamorphic testing. In ACM Int. Symp. on Soft. Testing and
Analysis (ISSTA), pages 191–195, 2002.

[24] T.Y. Chen, D.H. Huang, T.H. Tse, and Z.Q. Zhou. Case
studies on the selection of useful relations in metamorphic
testing. In 4th Ibero-American Symp. on Software
Engineering and Knowledge Engineering (JIISIC 04), pages
569–583, 2004.

[25] M. A. Armstrong. Groups and Symmetry, UTM. Springer
Verlag, 2nd ed., 1988.

[26] C.-B. Breunesse, N. Catao, M. Huisman, and B.P.F. Jacobs.
Formal methods for smart cards: an experience report.
Science of Computer Programming, 55(1-3):53–80, 2005.

[27] R.A. DeMillo and J.A. Offut. Constraint-based automatic
test data generation. IEEE Trans. on Soft. Eng.,
17(9):900–910, Sep. 1991.

[28] A. Gotlieb and B. Botella. Automated metamorphic testing.
In 27th IEEE COMPSAC’03, Dallas, TX, USA, November
2003.

[29] U. Hansmann, M.S. Nicklous, T. Schack, and F. Seliger.
Smart Card Application Development using Java. Springer
Verlag, 2000.

[30] Y. Malaiya, M.N. Li, J.M. Bieman, and R. Karcich. Software
reliability growth with test coverage. Trans. on Reliability,
51(4):420–426, Dec. 2002.

[31] H. Meijer and E. Poll. Towards a full formal specification of
the java card api. In Isabelle Attali and Thomas P. Jensen,
editors, Smart Card Programming and Security,
International Conference on Research in Smart Cards,
E-smart 2001, Cannes, France, September 19-21, 2001,
LNCS 2140, pp 165–178. Springer Verlag, 2001.

[32] S. Ntafos. On Random and Partition Testing. Soft. Eng.
Notes, 23(2):42–48, 1998.

[33] Oberthur Card Systems. Cosmo 32 RSA V3.4 API Reference
Guide, 2003.

[34] J. Offutt, Y. Ma, and Y. Kwon. An experimental mutation
system for java. Softw. Eng. Notes, 29(5):1–4, 2004.

