
Automatic Test Data Generation using Constraint Solving Techniques

Arnaud Gotlieb

Dassault Electronique

�� quai Marcel Dassault

����� Saint Cloud� France

and also at

Universit�e de Nice 	 Sophia

Antipolis

Arnaud�Gotlieb�dassault�elec�fr

Bernard Botella

Dassault Electronique

�� quai Marcel Dassault

����� Saint Cloud� France

Bernard�Botella�dassault�elec�fr

Michel Rueher

Universit�e de Nice 	 Sophia

Antipolis

I
S	CNRS Route des colles�

BP ���

����
 Sophia Antipolis� France

rueher�unice�fr

Abstract

Automatic test data generation leads to identify input
values on which a selected point in a procedure is ex�
ecuted� This paper introduces a new method for this
problem based on constraint solving techniques� First�
we statically transform a procedure into a constraint
system by using well�known �Static Single Assignment�
form and control�dependencies� Second� we solve this
system to check whether at least one feasible control
�ow path going through the selected point exists and
to generate test data that correspond to one of these
paths�

The key point of our approach is to take advantage of
current advances in constraint techniques when solving
the generated constraint system� Global constraints are
used in a preliminary step to detect some of the non fea�
sible paths� Partial consistency techniques are employed
to reduce the domains of possible values of the test data�
A prototype implementation has been developped on a
restricted subset of the C language� Advantages of our
approach are illustrated on a non�trivial example�

Keywords

Automatic test data generation� structural testing� con�
straint solving techniques� global constraints

� INTRODUCTION

Structural testing techniques are widely used in unit or
module testing process of software� Among the struc�
tural criteria� both statement and branch coverages are

commonly accepted as minimum requirements� One of
the di�culties of the testing process is to generate test
data meeting these criteria�
From the procedure structure alone� it is only possible
to generate input data� The correctness of the output
of the execution has to be checked out by an �oracle��

Two di	erent approaches have been proposed for auto�
matic test data generation in this context� The initial
one� called path�oriented approach 
�� �� 
�� ��� ��� in�
cludes two steps which are �

� to identify a set of control �ow paths that covers
all statements �resp� branches� in the procedure �

� to generate input test data which execute every se�
lected path�

Among all the selected paths� a non�negligeable amount
is generally non�feasible 
���� i�e� there is no input data
for which such paths can be executed� The static identi�
�cation of non�feasible paths is an undecidable problem
in the general case 

�� Thus� a second approach called
goal�oriented 

�� has been proposed� Its two main steps
are �

� to identify a set of statements �resp� branches� the
covering of which implies covering the criterion �

� to generate input test data that execute every se�
lected statement �resp� branch��

Assuming that every statement �resp� branch� is reach�
able� there is at least one feasible control �ow path going
through the selected statement �resp� branch�� The goal
of the data generation process is then to identify input
data on which one such path is executed�

For these approaches� existing generation methods are
based either on symbolic execution 

�� �� 
�� �� 
��� or
on the so called �dynamic method� 
��� 
�� 

� �
��



Symbolic execution consists in replacing input param�
eters by symbolic values and in statically evaluating
the statements along a control �ow path� The goal of
symbolic execution is to identify the constraints �either
equalities or inequalities� called �path conditions� on
symbolic input values under which a selected path is
executed� This method leads to several problems � the
growth of intermediate algebraic expressions� the di��
culty to deal with arrays �although some solutions exist


�� ���� and the aliasing problem for pointer analysis�
Using symbolic execution corresponds to an exhaustive
exploration of all paths going through a selected point�
Of course� this may be unacceptable for programs con�
taining a large number of paths�

Korel proposes in 
��� to base the test data generation
process on actual executions of programs� Its method
is called the �dynamic method�� If an undesirable path
is observed during the execution �ow monitoring� then
a function minimization technique is used to �correct�
the input variables� 

�� presents an extension of the
dynamic method to the goal�oriented approach� This
method is designed to handle arrays� dynamic struc�
tures� and procedures calls 
�
�� However� although the
dynamic method takes into account some of the prob�
lems encountered with symbolic execution� it may re�
quire a great number of executions of the program�

This paper introduces a new method to identify auto�
matically test data on which a selected point in the pro�
cedure is executed� The proposed method operates in
two steps �


� The procedure is statically transformed into a
constraint system by the use of �Static Single
Assignment� �SSA� form 
��� �� �� and control�
dependencies 

��� The result of this step is a set of
constraints � called Kset � which is formed of �

� the constraints generated for the whole proce�
dure �

� the constraints that are speci�c to the selected
point�

�� The constraint system Kset is solved to check
whether at least one feasible path which goes
through the selected point exists� Finally� test data
corresponding to one of these paths are generated�

The key point of this method is to take advantages of
current constraint techniques to solve the generated con�
straint system� In particular� global constraints are used
in a preliminary step to detect some of the non�feasible
parts of the control structures and partial consistency
techniques are employed to reduce the domains of pos�
sible values of the test data� Search methods based on
the combination of both enumeration and inference pro�
cesses are used in the �nal step to identify test data�

Furthermore� these techniques o	er a �exible way to
de�ne and to solve new constraints on values of possible
test data�

A prototype implementation of this method has been
developped on a restricted subset of the C language�

Outline of the paper � the second section presents the
generation of Kset while the third section is devoted
to the resolution techniques� The fourth section de�
scribes the prototype implementationwhile the �fth sec�
tion provides a detailed analysis of a non�trivial example
that has been successfully treated with our method�

� GENERATION OF THE CON�

STRAINT SYSTEM

Application of our method is limited to a structured
subset of a procedural language� Unstructured state�
ments such as �goto�statement� are not handled in our
framework because they introduce non�controled exits
of loops and backward control �ow�
Pointer aliasing� dynamic allocated structures� func�
tion�s pointer involve di�cult problems to solve in the
frame of a static analysis� In this paper� we assume that
programs avoid such constructions� The treatement of
basic types such as char and �oating point numbers is
not presented� A few words in the fourth section are
devoted to the extension of our method to these types�

The generation of the constraint system Kset is done in
three steps �


� Generation of the �Static Single Assignment�
form �

�� Generation of a set of constraints corresponding to
the procedure p� called pKset�p� �

�� Generation of a set of constraints corresponding
to the control�dependencies of a selected point n�
called cKset�n��

Kset is de�ned as �

Kset�p� n�
def
� pKset�p� � cKset�n�

Now� let us introduce some basics used in the rest of the
paper�

��� Basics

A procedure control �ow graph �V�E� e� s� 

� is a con�
nected oriented graph composed by a set of vertices V �
a set of edges E and two particular nodes� e the unique



int f�int i�
int j �

�� j �� � �
	� while � i �� 
 �

do

�a� j �� j � i �
�b� i �� i� � �

od �
�� if � j � 	 �

� then i �� 	 �

� �
�� return j �

Figure 
� Example 


entry node� and s the unique exit node� Nodes repre�
sent the basic blocks which are sets of statements exe�
cuted without branching and edges represent the possi�
ble branching between basic blocks� For instance� con�
sider the procedure� given in �gure 
� which is designed
to compute the factorial function� and its control �ow
graph �CFG� shown in �gure ��

A point is either a node or an edge in the CFG� A path
is a sequence � vi� � � � � vj � of consecutive nodes �edge
connected� in �V�E� e� s�� A control �ow path is a path
� vi� � � � � vj � in the CFG� where vi � e and vj � s� A
path is feasible if there exists at least one test datum on
which the path is executed� otherwise it is non�feasible�
For instance� the control �ow path � 
� �� �� �� � � in
the CFG of example 
 is non�feasible�

A node v� is post�dominated 

�� by a node v� if every
path from v� to s in �V�E� e� s� �not including v�� con�
tains v��
A node v� is control�dependent 

�� on v� i	 
� there
exists a path P from v� to v� in �V�E� e� s� with any
v in P n fv�� v�g post�dominated by v� � �� v� is not
post�dominated by v�� For example� block � is control�
dependent on block � in the CFG of example 
�

��� SSA Form

Most procedural languages allow destructive updating
of variables � this leads to the impossibility to treat a
program variable as a logical variable� Initially proposed
for the optimisation of compilers 
�� ���� the �Static
Single Assignment� form 
�� is a semantically equiv�
alent version of a procedure on which every variable
has a unique de�nition and every use of a variable is
reached by this de�nition� The SSA form of a lin�
ear sequence of code is obtained by a simple renam�
ing �i �� i�� i �� i�� � � � � of the variables� For the
control structures� SSA form introduces special assign�

�For all the examples throughout the paper� a clear abstract syntax
is used to indicate that our method is not designed to a particular
language

3

5

6

4

2

1

Figure �� Control �ow graph of example 


int f�int i��
int j� �

�a� j� �� � �
�� Heading ��

�b� j� �� ��j�� j�� �
�c� i� �� ��i�� i�� �
	� while �i� �� 
 �

do
�a� j� �� j� � i� �
�b� i� �� i� � � �

od
�� if �j� � 	�

� then i� �� 	 �

�
�� i� �� ��i�� i�� �

return �j�� �

Figure �� SSA Form of example 




ments� called ��functions� in the junction nodes of the
CFG� A ��function returns one of its arguments depend�
ing on the control �ow� Consider the if�statement of
the SSA form of example 
 in �gure � � the ��function
of statement � returns i� if the �ow goes through the
then�part of the statement� i� otherwise� For some more
complex structures� the ��functions are introduced in a
special heading of the loop �as in the while�statement
in �gure ��� SSA Form is built by using the algorithm
given in 
��� which is designed to treat structured pro�
grams in one parsing step�
For convenience� a list of ��assignments will be written
with a single statement �
x� �� ��x�� x��� � � � � z� �� ��z�� z���� �v� �� ���v�� �v��

��� Generation of pKset

pKset�p� is a set of both atomic and global constraints
associated with a procedure p�

Informally speaking� an atomic constraint is a relation
between logical variables� Global constraints are de�
signed to handle more e�ciently set of atomic con�
straints� For instance� global constraint element�� � �
element�k� L� v� constraints the kth argument of the
list L to be equal to v�

Let us now present how pKset is generated� The method
is driven by the syntax� Each subsection� which is de�
voted to a particular construction� presents the genera�
tion technique�

����� Declaration

The variables of a procedure are either input variables
or local variables� Parameters and global variables are
considered as input variables while the other variables
are considered as local� Each variable x which has a
basic type declaration� is translated in atomic constraint
of the form � x � 
Min�Max� where Min �resp� Max�
is the minimum �resp� maximum� value depending on
the current implementation� An array declaration is
translated into a list of variables of the same type while
a record is translated into a list of variables of di	erent
types�
A speci�c variable� named �OUT�� is devoted to the
output value of the procedure�

����� Assignment and Decision

Elementary statements� such as assignments and ex�
pressions in the decisions are transformed into atomic
constraints� For instance� the assignment of statement

�where �� denotes the arity of the constraint

�a in example 
 generates the constraint j� � j� � i��
The decision of statement � generates i� 	� �� A ba�
sic block is translated into a conjunction of such con�
straints� For example� statements �a and �b generate
j� � j� � i� 
 i� � i� � 
�

����� Conditional Statement

The conditional statement if then else is translated
into global constraint ITE�� in the following way �

pKset�if d then s
 else s� � �v� �� ���v�� �v��� �
ite�pKset�d�� pKset�s
�
 �v� � �v�� pKset�s��
 �v� � �v��

This constraint denotes a relation between the decision
and the constraints generated for the then� and the else�
parts of the conditional� Note that ��assignments are
translated in simple equality constraints� The opera�
tional semantic of the constraint ITE�� will be made
explicit in section ����

����� Loop Statement

The loop statement while is also translated in a global
constraint W��� Informally speaking� this constraint
states that as long as its �rst argument is true� the
constraints generated for the body ��fth argument� of
the while statement are true for the required data�

pKset��v� �� ���v�� �v�� while d do s od�
� w�pKset�d�� �v�� �v�� �v�� pKset�s��

The generated constraint requires three vectors of vari�
ables �v�� �v�� �v�� �v� is a vector of variables de�ned before
the while�statement� �v� is the vector of variables de�ned
inside the body of the loop and �v� is the vector of vari�
ables referenced inside and outside the while�statement�
Note here that the ��assignments are only used to iden�
tify the vectors of variables�

The operational semantics of the constraint w�� will
also be given in section ����

����� Array and Record

Both arrays and records are treated as list of variables�
therefore we only present the generation of pKset on
arrays�

Reference of an array is provided in the SSA Form by
a special expression 
�� � access� The evaluation of ac�
cess�a�k� statement is the kth element of a noted v�



For the de�nition of an array� the special expression
update is used 
��� update�a�j�w� evaluates to an array
a� which has the same size as a and which has the same
elements as a� except for j where value is w�

Both expressions access and update are treated with
the constraint element�� �

pKset� v�� access�a� k�� � felement�k� a� v�g

pKset�a� �� update�a� j� w��
�
S

i��jfelement�i� a� v� 
 element�i� a�� v�g
� felement�j� a�� w�g

��� Generation of cKset

cKset�n� is a set of constraints associated with a point
n in the CFG� It represents the necessary conditions
under which a selected point is executed� These con�
ditions are precisely the control�dependencies on the
selected point� cKset�n� is then the set of constraints of
the statements and the branches on which n is control�
dependent� For example� node � is control�dependant
on node � then � cKset��� � fj� � �g

��� Example

For the procedure given in �gure 
 and the statement
�� the following sets are obtained �
pKset�f� �
f j� � 
�
w�i� 	� �� �i�� j��� �i�� j��� �i�� j���

j� � j� � i� 
 i� � i� � 
��
ite�j� � �� i� � � 
 i� � i�� i� � i���
OUT � j� g

cKset��� � fj� � �g

Kset�f� �� � pKset�f� � cKset���

� SOLVING THE CONSTRAINT SYS�

TEM AND GENERATION OF TEST

DATA

Constraint programming has emerged in the last decade
as a new tool to address various classes of combinato�
rial search problems� Constraint systems are inference
systems based on such operations as constraint propa�
gation� consistency and entailment� Inference is based
on algorithms which propagate the information given

by one constraint to others constraints� These algo�
rithms are usually called partial consistency algorithms
because they remove part of inconsistent values from
the domain of the variables� Altough these approxi�
mation algorithms sometimes decide inconsistency� it is
usually necessary to combine the resolution process with
a search method� Informally speaking� search methods
are intelligent enumeration process�
For a survey on Constraint Solving and Constraint Logic
Programming� see 

�� and 

���

Let us �rst introduce some basics notations on con�
straint programming required in the rest of the paper�
These notations are extracted from 

���

A constraint system is consistent if it has at least one
solution� i�e� if there exists at least one variable assign�
ment which respects all the constraints� More formally�
a set of constraints � is called a store and the store is
consistent if �

j� ����

where ���� denotes the existential closure of the formula
��
Entailment test checks out the implication of a con�
straint by a store� For example�

x � � is entailed by fx � y�g

The entailment test of the constraint c by the store � is
noted �

j� �
��� �� c�

where �
�� denotes the universal closure of ��
Both consistency and entailment tests are NP�complete
problems in the general case� For this reason� implemen�
tations of these tests are based on two approximations �
domain�consistency and interval�consistency�

��� Local consistency

Associated with each input variable xi is both a domain
Di � ZZ and an interval D�

i � 
min�Di��max�Di���
A constraint c�x�� � � � � xn� is a n�ary relation between
variables �x�� � � � � xn� which denotes a subset of ZZn�

Domain�consistency also called arc�consistency removes
values from the domains and Interval�consistency only
reduces the lower and upper bounds on the domains�
Both are applied in a subtle combination by the con�
straint solver� Intuitivelly� when the domains contain
a small number of values� domain�consistency is ap�
plied� Interval�consistency is applied on large domains�
Precise de�nitions of these local consistencies are now
given �



int g�int x�int y �
int z �
int t �

�a� z �� x � y �
�b� t �� 	 � x �
	� if �z � ��

then

�a� t �� t� y �
�b� if �t � �� x � � �
�� then ���

Figure �� Example �

De�nition �� �domain�consistency� �	
�
A constraint c is domain�consistent if for
each variable xi and value vi � Di there
exists values v�� � � � � vi��� vi	�� � � � � vn in
D�� � � � � Di��� Di	�� � � � � Dn such that c�v�� � � � � vn�
holds� A store � is domain�consistent if for every
constraint c in �� c is domain�consistent�

De�nition �� �interval�consistency� �	
�
A constraint c is interval�consistent if for each
variable xi and value vi � fmin�Di��max�Di�g
there exist values v�� � � � � vi��� vi	�� � � � � vn in
D�

� � � � � � D
�
i��� D

�
i	�� � � � � D

�
n such that c�v�� � � � � vn�

holds�

A local treatment is associated to each constraint�
The corresponding algorithm is able to check out both
domain� and interval� consistencies for this constraint�
The inference engine propagates the reductions pro�
vided by this algorithm on the other constraints� The
propagation iterates until a �xpoint is reached� Infor�
mally speaking� a �xpoint is a state of the domains
where no more prunnings can be performed�

Let us illustrate how interval�� domain� consistency and
the inference engine may reduce the domains of possible
values of test data on the example � given in �gure ��
Consider the problem of automatic test data generation
for statement ��

Parameters are of non�negative integer type� The
following set is provided �

Kset�g� �� � fx�� y� � 
��Max�� z� � x� � y�� t� �
� � x�� z� � �� t� � t� � y�� t� � 
� x� � 
g

and the following resolution process is performed �

z� � x� � y� leads to z� � 
��Max�
t� � � � x� leads to t� � 
��Max�
z� � � leads to z� � 
�� ��
t� � 
 leads to t� � f
g
x� � 
 leads to x� � 
��Max�
z� � x� � y� leads to x� � 
�� �� and y� � 
�� ��
t� � � � x� leads to t� � 
�� 
��

t� � t� � y� leads to y� � f�� �g and t� � f�� �g
t� � � � x� leads to x� � f�g and t� � f�g
t� � t� � y� leads to y� � f�g

Finally� �x� � �� y� � �� corresponds to the unique test
datum on which statement � in the program of �gure �
can be executed�

��� Global Constraints De�nitions

For atomic constraints and some global constraints� the
local treatment is directly implemented in the constraint
solver� However� for user�de�ned global constraint� it is
necessary to provide the algorithm� The key point of our
approach resides in the use of such global constraints to
treat the control structures of the program� The global
constraints are used to propagate information on incon�
sistency in a preliminary step of the resolution process�

����� Entailment Test Implementation

The entailment test is used to construct these global
constraints� The implementation of entailment test may
be done as a proof by refutation� A constraint is proved
to be entailed by a store if there is no variable assign�
ment respecting both the store and the negation of the
constraint�

The operational semantic of the user�de�ned global con�
straints is designed with properties which are �guarded�
by entailment tests� Such properties are expressed by
constraints added to the store� We have introduced in
the section ��� two global constraints � ite�� and w���
Let us give now their de�nitions�

����� ITE
�

De�nition �� �ite���
ite�c� fc� 
 � � �
 cpg� fc

�
� 
 � � �
 c�qg�

� if j� �
��� �� c� then � �� � � fc� 
 � � �
 cpg

� if j� �
��� �� �c� then � �� � � fc�� 
 � � �
 c�qg

� if j� �
��� �� ��c� 
 � � �
 cp�� then
� �� � � f�c 
 c�� 
 � � �
 c�qg

� if j� �
��� �� ��c�� 
 � � �
 c�q�� then
� �� � � fc 
 c� 
 � � �
 cpg

The �rst two features of this de�nition express the op�
erational semantic of the control structure if then else�
The last ones are added to identify non�feasible parts
formed by one of the two branches of the control



structure� Consider for example �

ite�i� 	� �� i� � i� � 
 
 i� � i�� i� � 
�

Suppose that the store contains i� � � � when
applying the fourth feature of the ite constraint we
have to consider the consistency of the following set �
fi� � �g � fi� � 
g It is inconsistant� meaning that the
else�part of the statement is non feasible� Then� the
constraints i� 	� � 
 i� � i� � 
 
 i� � i� are added to
the store�

����� W



The while�statement combines looping and destructive
assignments� Hence w�� behaves as a constraint gener�
ation program�

When evaluating w��� it is necessary to allow the gen�
eration of new constraints and new variables� A substi�
tution subs��v� � �v�� c� is a mechanism which generates
a new constraint having the same structure as c but
where variables vector �v� has been replaced by vector
�v�� The following example illustrates this mechanism �
if �v� � �x�� y�� and �v� � �x�� y�� then
subs��v� � �v�� x� � y� � �� is �x� � y� � ��

w�� is now formally de�ned �

De�nition �� �w���
w�c� �v�� �v�� �v�� c� 
 � � �
 cp�

� if j� �
��� �� subs��v� � �v�� c�� then
� �� � � fsubs��v� � �v�� c� 
 � � �
 cp� 

w�c� �v�� �v�� �v��
subs��v� � �v�� c� 
 � � �
 cp��g

� if j� �
��� �� subs��v� � �v���c�� then
� �� � � f�v� � �v�g

� if j� �
��� �� subs��v� � �v����c� 
 � � � 
 cp���
then
� �� � � fsubs��v� � �v���c�
 �v� � �v�g

� if j� �
��� �� �v� 	� �v�� then
� �� � � fsubs��v� � �v�� c� 

subs��v� � �v�� c� 
 � � �
 cp� 

w�c� �v�� �v�� �v�� subs��v� � �v�� c� 
 � � �
 cp��g

The �rst two features represent the operational seman�
tic of the while�statement� As for the ite�� constraint�
the other features identify non�feasible part of the struc�
ture� The third one is applied if it can be proved that
the constraints of the body of the loop are inconsistent
with the current store� This means the body cannot be
executed even once� the output vector of variables �v� is
then equated with the input vector �v�� In the opposite�

if �v� � �v� is inconsistent in the current store� the fourth
feature is applied meaning that the body of the loop is
executed at least once�

Let us illustrate the treatment of w�� on the while�
statement of example 
 �

Suppose that the store contains fj� � 
� j� � �g � when
testing the consistency of

w�i� 	� �� �i�� j��� �i�� j��� �i�� j���
j� � j� � i� 
 i� � i� � 
�

the fourth feature is applied twice and then gives
the following store �

fj� � 
� j� � �� j� � j� � i�� i� � i� � 
�
j� � j� � i�� i� � i� � 
� i� � �g

Finally� �i� � �� is obtained�

��� Complete Resolution of the Example

Consider again the example of �gure 
 and the problem
of generating a test data on which a feasible path going
through statement � is executed� The Kset provided by
the �rst step of our method is �

Kset�f� �� � pKset�f� � cKset��� �
f j� � 
�
w�i� 	� �� �i�� j��� �i�� j��� �i�� j���

j� � j� � i� 
 i� � i� � 
��
ite�j� � �� i� � j� 
 i� � i�� i� � i���
OUT � j�g � fj� � �g

The loop is executed twice� generating the follow�
ing store �

fj� � 
� i� 	� �� i� 	� �� i� � �� i� � i��
� i� � i��
� j� �
j� � i�� j� � j� � i�� j� � �� i� � j�� i� � i�� OUT � j�g

Interval consistency is applied to solve the sys�
tem� and yields to i� � �� This is the unique test data
on which statement � may be executed�

��� Search Process

Of course� local consistencies are incomplete constraint
solving techniques 
���� The store of constraints can
be domain�consistent though there is no solution in the
domains �i�e� the store is inconsistent�� Let us give an
example of a classical pitfall of these techniques �
x� y� z � f�� 
g� � � fx 	� y� y 	� zg
Testing j� �
��� �� �x � z�� fails because the store



fx 	� y� y 	� z� x 	� zg is domain�consistent�

In order to obtain a solution� it is necessary to enumer�
ate the possible values in the restricted domains 
��� 
���
This process is incremental� When a value v is chosen in
the domain Dx of the variable x� the constraint �x � v�
is added to the store and propagated� This may reduce
the domains of the other variables� This process is re�
peated until either the domain of all variables is reduced
to a single value or the domain of some variable becomes
empty� In the former case� we obtain a solution of the
test data generation problem� whereas in the latter we
must backtrack and try another value �x � w� until
Dx � ��

In general� there are many test data on which a se�
lected point is executed� As claimed in the Introduc�
tion� constraint solving techniques provide a �exible way
to choose test data� The search process can be user�
directed by adding new constraints on the input vari�
ables of the procedure� Our framework provides an ele�
gant way to handle such constraints� These constraints
are propagated by the inference engine as soon as they
induce a reduction on the domains� Furthermore� these
additional constraints may be used to insure that the
generated input data are �realistic�� They may have
one of the two following forms �

� constraints on domains �for example x� �

��� 
��� �

� constraints between variables �for example y� � x�
meaning that a parameter y� of a procedure is
strictly greater than another one x���

It is also possible to guide the search process with some
well�known heuristics� For example �

� to select the variable with the smallest domain
��rst�fail principle� �

� to select the most constrained variable �

� to bissect the domains � x � 
a� b� is transformed
into �Dx � 
a� a� b	�� or Dx � 
a� b	�� b�� ��

� IMPLEMENTATION

INKA� a prototype implementation has been developed
on a structured subset of language C� The extension to
control structures such as do�while and switch statement
is straightforward� Characters are handled in the same
way as integer variables� Floating point numbers do not
introduce new di�culties in the constraints generation
process� but they require another solver� Although the
domains remain �nite� it is of course not possible to

enumerate all the values of a �oating point variable�
Resolution of the constraint system is therefore more
problematic� References on these solvers can be found
in 

��� The extension of our method to pointer variables
falls into two classical problems of static analysis � the
aliasing problem and the analysis of dynamic allocated
structures�

INKA includes � modules �

� A C Parser

� A generator of SSA form and control�dependencies

� A generator of Kset

� A constraints solver

� A search process module

The constraint solver is provided by the CLP�FD� li�
brary of Sicstus Prolog ��� 
���

� EXAMPLE

We present now the results of our method on a non�
trivial example adapted from 


� � the SAMPLE pro�
gram given in �gure �� For the sake of simplicity� it is
written in the abstract syntax used in this paper� Size
of array have been reduced to � for improving the pre�
sentation�

Consider the problem of automatic test data generation
to reach node 
��

INKA has generated the Kset�SAMPLE�	�� constraint
system� The following set of constraints on domains are
added �

a

�� a
��� a
��� b

�� b
��� b
��� target � 

� ��

Table 
 reports only the results of the constraint solver
and search process module� Experiments are made on
a Sun Sparc � workstation under Solaris ���

First experiments concern the search of solutions with�
out adding any kind of constraints on input data� The
line 
 of the table 
 indicates the time required to obtain
the �rst solution and all solutions of the problem� The
exact test data is provided in the former case while the
number of solutions is only provided in the later one�

Then� we have considered that the user wants the input
data to satisfy the additional constraint �

a
��� � a

��� a
���



int sample�int a���� int b���� int target�
int i� fa� fb� out �

�a� i �� � �
�b� fa �� 
 �
�c� fb �� 
 �
	� while �i � ��

do

�� if �a�i� � target�
�� then fa �� � �

� �

� i �� i� � �

od
�� if �fa � ��

then
�a� i �� � �
�b fb �� � �
�� while �i � ��

do
�� if �b�i� �� target�
�
� then fb �� 
 �

� �
��� i �� i� � �

do �
� �

�	� if �fb � ��
��� then out �� � �
��� else out �� 
 �

� �
�
� return out �

Figure �� Program SAMPLE

Second line reports the results of generation when the
additional constraint is checked out after the search pro�
cess and the third line reports the results when the con�
straint is added to the current store and propagated�

A �rst fail enumeration heuristic has been used for
these experiments� Test data are given in vector form
�a

�� a
��� a
��� b

�� b
��� b
��� target� and CPU time is
the time elapsed in the constraint solving phase� Note
that a complete enumeration stage would involve to try
�
 � ������� values�

These experiments are intended to show what we have
called the �exible use of constraints� First� the CPU
time elapsed in the �rst and second experiments are ap�
proximatively the same to obtain all the solutions� In
both cases� the search process has enumerated all the
possible values in the reduced domains� The only dif�
ference is that� in the second case� the added constraint
has been checked out after the enumeration step� This
illustrate a generate and test approach� On the con�
trary� note that the results presented in the third line
of table 
 show an important improvement factor due
to the use of the additional constraint in the resolution
process� In the third case� the additional constraint is
used to prune the domains and thus the time elapsed in
the search process module is dramatically reduced�

Of course� further experiments are needed to show
the e	ectiveness of our approach and to compare the

Table 
� Results

First solu�
tion

CPU time All solutions CPU time

�
�
�
�
�
�
�
� 
��s 
��� solu�
tions

���s

��������������� ��s ����������������
����������������
����������������
����������������
����������������
���������������

���s

��������������� 
��s ����������������
����������������
����������������
����������������
����������������
���������������

���s

method with other approaches�

� CONCLUSION

In this paper� we have presented a new method for the
automatic test data generation problem� The key point
of this approach is the early detection of some of the
non�feasible paths by the global constraints and thus the
reduction of the number of trials required for the gen�
eration of test data� First experiments on a non�trivial
example made with a prototype implementation tend
to show the �exibility of our method� Future work will
be devoted to the extension of this method to pointer
variables and experimentations with �oating point num�
bers � an experimental validation on real applications is
also forseen�

ACKNOWLEDGEMENTS

Patrick Taillibert and Serge Varennes gave us invalu�
able help on preliminary ideas to design the global con�
straints introduced� Thanks to Xavier Moulin for its
helpful comments on earlier drafts of this paper�
This work is partially supported by A�N�R�T�
This research is part of the software testing project DE�
VISOR of Dassault Electronique�

References



� A� Aho� R� Sethi� and J� Ullman� Compilers Prin�
ciples� techniques and tools� Addison�Wesley Pub�



lishing Company� Inc� 
����


�� B� Alpern� M� N� Wegman� and F� K� Zadeck�
Detecting Equality of Variables in Programs� In
Proc� of Symposium on Principles of Programming
Languages� pages 
 

� New York� January 
����
ACM�


�� A� Bertolino and M� Marr!e� Automatic Generation
of Path Covers Based on the Control Flow Anal�
ysis of Computer Programs� IEEE Transactions
on Software Engineering� ���
������ ���� Decem�
ber 
����


�� R� Boyer� B� Elspas� and K� Levitt� SELECT �
A formal system for testing and debugging pro�
grams by symbolic execution� SIGPLAN Notices�

�������� ���� June 
����


�� M� M� Brandis and H� M"ossenb"ock� Single�Pass
Generation of Static Single�Assignment Form for
Structured Languages� Transactions on Program�
ming Languages and Systems� 
�����
��� 
����
November 
����


�� M� Carlsson� SICStus Prolog User�s Manual� Pro�
gramming over Finite Domains� Swedish Institute
in Computer Science� 
����


�� L� Clarke� A System to Generate Test Data and
Symbolically Execute Programs� IEEE Transac�
tions on Software Engineering� SE�������
� ����
September 
����


�� A� Coen�Porisini and F� de Paoli� Array Repre�
sentation in Symbolic Execution� Computer Lan�
guages� 
�����
�� �
�� 
����


�� R� Cytron� J� Ferrante� B� K� Rosen� M� N� Weg�
man� and F� K� Zadeck� E�cently Computing
Static Single Assignment Form and the Control De�
pendence Graph� Transactions on Programming
Languages and Systems� 
�������
 ���� October

��
�



�� R� A� DeMillo and A� J� O	ut� Constraint�Based
Automatic Test Data Generation� IEEE Transac�
tions on Software Engineering� SE�
�������� �
��
September 
��
�




� R� Ferguson and B� Korel� The Chaining Approach
for Software Test Data Generation�� ACM Trans�
actions on Software Engineering and Methodology�
��
���� ��� January 
����



�� J� Ferrante� K� J� Ottenstein� and J� D� Warren�
The Program Dependence Graph and its use in
optimization� Transactions on Programming Lan�
guages and Systems� �����
� ���� July 
����



�� D� Hamlet� B� Gi	ord� and B� Nikolik� Exploring
Data�ow Testing of Arrays� In Proc� of the Interna�
tional Conference on Software Engineering� pages


� 
��� Baltimore� May 
���� IEEE�



�� P� V� Hentenryck and V� Saraswat� Constraints
Programming � Strategic Directions� Constraints�
��
��� ��� 
����



�� P� V� Hentenryck� V� Saraswat� and Y� Deville� De�
sign� implementation� and evaluation of the con�
straint language cc�fd�� In LNCS �	�� pages ��� 
�
�� Springer Verlag� 
����



�� W� Howden� Symbolic Testing and the DISSECT
Symbolic Evaluation System� IEEE Transactions
on Software Engineering� SE��������� ���� July

����



�� J� Ja	ar and M� J� Maher� Constraint Logic Pro�
gramming � A Survey� Journal of Logic Program�
ming� ���
������ ��
� 
����



�� J� C� King� Symbolic Execution and Program Test�
ing� Commun� ACM� 
�������� ���� July 
����



�� B� Korel� A Dynamic Approach of Test Data Gen�
eration� In Conference on Software Maintenance�
pages �

 �
�� San Diego� CA� November 
����
IEEE�


��� B� Korel� Automated Software Test Data Genera�
tion� IEEE Transactions on Software Engineering�

�������� ���� august 
����


�
� B� Korel� Automated Test Data Generation for
Programs with Procedures� In Proc� of ISSTA����
volume �
���� pages ��� �
�� San Diego� CA� May

���� ACM� SIGPLAN Notices on Software Engi�
neering�


��� A� K� Mackworth� Consistency in Networks of Re�
lations� Arti�cial Intelligence� ��
���� 

�� 
����


��� B� K� Rosen� M� N� Wegman� and F� K� Zadeck�
Global Value Numbers and Redundant Computa�
tions� In Proc� of Symposium on Principles of Pro�
gramming Languages� pages 
� ��� New York� Jan�
uary 
���� ACM�


��� D� F� Yates and N� Malevris� Reducing The E	ects
Of Infeasible Paths In Branch Testing� In Proc�
of Symposium on Software Testing� Analysis� and
Veri�cation �TAV��� volume 
���� of Software En�
gineering Notes� pages �� ��� Key West� Florida�
December 
����


