
Goal-oriented test data generation for programs with pointer variables

Arnaud Gotlieb Tristan Denmat
IRISA / INRIA

35042 Rennes Cedex, France
fArnaud.Gotlieb,Tristan.Denmatg@irisa.fr

Bernard Botella
THALES AEROSPACE

78851 Elancourt Cedex, France
Bernard.Botella@fr.thalesgroup.com

Abstract

Automatic test data generation leads to the identifica-
tion of input values on which a selected path or a selected
branch is executed within a program (path-oriented vs goal-
oriented methods). In both cases, several approaches based
on constraint solving exist, but in the presence of pointer
variables only path-oriented methods have been proposed.
This paper proposes to extend an existing goal-oriented test
data generation technique to deal with multi-level pointer
variables. The approach exploits the results of an intrapro-
cedural flow-sensitive points-to analysis to automatically
generate goal-oriented test data at the unit testing level.
Implementation is in progress and a few examples are pre-
sented.

1. Introduction

Goal-oriented test data generation leads to the identifica-
tion of input values on which a selected branch in a program
is executed. The presence of pointer variables introduces
technical difficulties making the extension of current goal-
oriented test data generation methods a challenging task.

What is exactly the problem ? In imperative programs,
a dereferenced pointer and a variable may refer to the same
memory location at some program point. This is known as
the aliasing problem. Sometimes, a dereferenced pointer
may be aliased with a variable only if some conditions that
depend on the control flow are satisfied. As an example,
consider the problem of generating a test datum that acti-
vates the then-part of statement 4 in the C code of Fig.1. If
the assignment of statement 3 is considered to have no ef-
fect on variable i, then the then-part of statement 4 will be
declared as unreachable by an automatic test data generator
(i � �� and i � � are contradictory). However, if the flow
passes through the then-part of statement 1, then p points to
i and then i is assigned to � at statement 3. On the contrary,

if one suppose that statement 3 can modify any pointed vari-
able in the program, then the test data generation process
just suspends as it cannot decide whether i � � is satisfied
or not. Hence, activating the then-part of statement 4 re-
quires �p to be aliased with i and so requires the decision of
statement 1 to be satisfied. We call this a conditional alias-
ing problem. Note however that when a path is selected first,
the pointing relations are all known and conditional aliasing
problems are trivially handled. Hence, only goal-oriented
test data generation methods are concerned with conditional
aliasing problems. According to our knowledge, prior work

1. if (...) p � �i;
2. i � �� ;
3. �p � �;
4. if �i � �� ���

Figure 1. A conditional aliasing problem

on automatic test data generation in the presence of point-
ers did not address the conditional aliasing problem. Korel
[8] proposed exploiting several executions of the program
to find a test datum on which a selected path is executed.
In [4], the approach was adapted to generate goal-oriented
test data by making use of dynamic data flow analysis but
it did not suffer from the conditional aliasing problem as
it was solely based on program executions. More recently,
Visvanathan and Gupta [11], Zhang [12] and Williams et
al. [10] addressed the problem of generating test data for C
functions with pointers as input parameters by using sym-
bolic execution and constraint solving techniques. In their
approaches, pointer relationships are handled by constraints
on input values and aliasing problems occur only on in-
put data structures. All these approaches have in common
the need for a path to be selected first and so fall in the
path-oriented methods category. Unlike path-oriented and
among other advantages, goal-oriented methods exploit the
early detection of non-feasible paths to narrow the search
space made up of all the paths that reach a given branch [4].

1

Considering all paths that reach a given branch is usually
unreasonable as the number of control flow paths is expo-
nential on the number of program decisions or even infi-
nite when loops are unbounded. In [5, 6], we proposed a
novel framework that automatically generates goal-oriented
test data for the coverage of structural criteria. The un-
derlying method consists in generating a Constraint Logic
Program over Finite Domains associated with a C func-
tion and solving a CLP goal, obtained by the selection of
a given branch. The approach relies on Static Single As-
signment (SSA) forms [2] and Constraint Logic Program-
ming (CLP) techniques [7] to generate test data that reach
selected branches. Although our method has addressed non-
trivial academic and industrial test data generation problems
(including loops, arrays, bitwise operations and so on), its
incapacity to deal correctly with conditional aliasing prob-
lems was considered by us as a major drawback.

This paper gives an overview of the extension of our test
data generation method to a restricted class of pointer vari-
ables : multi-level pointers toward statically named vari-
ables. This class of pointers is the one most often used in
real-time control systems where dynamic allocation and un-
constrained use of pointers is prohibited.

Outline of the paper. In Section 2, background on our
CLP-based test data generation technique is recalled. Sec-
tion 3 gives an overview of our approach on an example.
Section 4 details the SSA form in the presence of pointers
while section 5 presents declarative semantics for two spe-
cific CLP combinators used to model pointer use and defi-
nition. Section 6 reports on the preliminary results.

2. Background

2.1. SSA form

The SSA form is a semantically equivalent version of
a program where each variable has a unique definition.
Every program can be transformed to SSA by numbering
the references and definitions of variables. For example
i � i��� j � j�i is transformed to i� � i���� j� � j��i�.
At the junction nodes of the control structures, SSA intro-
duces special assignments called �-functions, to merge the
definitions of a given variable : v� � ��v�� v�� assigns the
value of v� to v� if the flow comes from the first branch of
the control structure, v� otherwise. For convenience, a list
of �-functions is written as a single statement over vectors
of variables :
x� � ��x�� x��� ��� z� � ��z�� z�� �� �v� � ���v�� �v��

where �vi denotes a vector

�
�xi���
zi

�
�.

2.2. The CLP(FD) framework

A CLP(FD) program is a set of clauses of the formA:–B
where1 A is a user-defined constraint and B is a goal. A
goal is a sequence of constraint or combinator calls. Com-
binators are language constructs expressing high-level re-
lations between other constraints and variables in CLP(FD)
(called FD variables) take their values in a non-empty finite
set of integers.

Informally speaking, the solving process of a CLP(FD)
goal is based on constraint propagation, which exploits the
constraints to narrow the search space, and a labelling pro-
cess that enumerates all the remaining values to eventually
find a solution to the set of constraints.
Constraint propagation. During this process, constraints
and combinators are incrementally introduced into a prop-
agation queue. An iterative algorithm manages each con-
straint one by one in this queue by filtering the domains
of FD variables of their inconsistent values. When the
domain of a FD variable is narrowed then the algorithm
reintroduces into the queue all the constraints where this
FD variable appears (awaken constraints). The algorithm
iterates until the queue becomes empty, which corresponds
to a state where no more narrowings can be performed. The
set of constraints is contradictory if the domain of at least
one FD variable becomes empty during the propagation.
A labelling procedure. As is usually the case with finite
domain constraint solvers, constraint propagation does not
ensure that the set of constraints is satisfiable. Enumeration
must be used to get particular solutions. This labelling pro-
cedure tries to give values to FD variables one by one and
propagates them throughout the constraint system. This is
done recursively until all the FD variables are instantiated.
If this valuation leads to a contradiction then the procedure
backtracks to other possible values.

2.3. Translating into a CLP(FD) programs

The idea behind our test data generation technique con-
sists in translating the imperative program into a CLP(FD)
program via the SSA form [5].

First, for each C function, a single clause is generated.
The clause takes as arguments several logical variables that
correspond to the input variables of the C function and the
variables which are used in the decisions of the program.
Second, each statement under SSA form is translated into
a constraint or a combinator. Assignments and decisions
are translated into arithmetical constraints. For example,
x � x � � is converted into X� � X� � �. For control
structures, we introduced in [5, 6] two specific combinators
for which only declarative semantics is given below.

1In the paper, the Prolog syntax is used for CLP(FD) programs

Original C code SSA form CLP(FD) program (where �j � �� and �k � ��)

int foo(int i) int foo(int i) foo�I� J�� :–
1. j � �, k � �, p � �j ; j� � �, k� � �, p� � �j ; J� � �, K� � �, P� � ��,

2. if (i �) j � � else p � �k ; if (i �) j� � � else p� � �k ; ite�I � 	�

�
J�
P�

�
�

�
J�
P�

�
�

�
J�
P�

�
� J� � �� P� � ����

j�
p�

�
� ��

�
j�
p�

�
�

�
j�
p�

�
�;

fi fi

3. r � �p; r� � �u�p��

�
�j
�k

�
�

�
j�
k�

�
� R� �
u�P��

�
��
��

�
�

�
J�
K�

�
�,

4. �p � r � i ;

�
j�
k�

�
� �d�p��

�
�j
�k

�
� r� � i�

�
j�
k�

�
�; R� � R� � I ,�

J�
K�

�
�
d�P��

�
��
��

�
� R��

�
J�
K�

�
�,

5. if (j � �) ... if (j� � �)... ite�J� � �� ����,

Figure 2. The foo example, its SSA form and the generated CLP(FD) program

Conditional statement. The conditional statement is
treated with a user–defined combinator ite adapted from
[6]. Arguments of ite are the variables that appear in the
�-functions and the constraints generated from the then–
and the else– parts of the statement. Note that other combi-
nators may be nested in the arguments of ite. An SSA if
statement : if (exp) f stmt g else f stmt g �v� � ���v�� �v��
is converted into ite(c� �v�� �v�� �v�� CThen� CElse) where c

is a constraint generated by the analysis of exp and CThen

(resp. CElse) is a set of constraints generated for the then–
part (resp. else–part). The user-defined combinator ite is :

Definition 1 ite (declarative semantics)
ite(c� �v�� �v�� �v�� CThen� CElse� 	 �
�c � CThen � �v� � �v�� � ��c � CElse � �v� � �v��

Iterative statement. The SSA while statement
�v� � ���v�� �v�� while (exp) f stmt g is treated with the
recursive user-defined combinator w�c� �v�� �v�� �v�� CBody�,
adapted from [6]. When evaluating w, it is necessary to
allow the generation of new constraints and new variables
with the help of a substitution mechanism. w is defined as2 :

Definition 2 w (declarative semantics)
w�c� �v�� �v�� �v�� CBody� 	 �
�c � CBody � w�c� �v�� �v�� �v�� CBody�� � ��c � �v� � �v��

Note that the vector �v� is a vector of fresh variables.

Goal-oriented Test data generation. The selection of
a branch in the C function defines a CLP goal. Control-
dependencies, which are decisions that must be evaluated
to “true” to reach a selected branch, are used to build the

2For the sake of clarity, the constraint c generated through the substitu-
tion mechanism is not distinguished from c itself

CLP goal. In well–structured programs (without goto state-
ment), they can easily be computed even if they must be de-
termined dynamically for the loop statements [6]. In the ex-
ample of Fig.1, the control-dependency associated with the
then-part of statement 4 is just i � �. The last phase of the
test data generation process consists in solving the resulting
CLP goal by using the techniques described in section 2.2.
As the semantics is modeled faithfully, any solution of the
CLP request is interpreted as a test datum that reaches the
selected branch. When the solving process shows that there
is no solution, the selected branch is declared unreachable.
This approach has been implemented in the INKA tool [1]
and evaluated on a set of academic and reasonably-sized in-
dustrial problems.

3. An overview of the approach

Consider the problem of generating a test datum that ex-
ecutes the then-part of statement 5 in the foo program of
Fig.2. Our goal-oriented test data generation process is
composed of three main steps. The first step aims at gen-
erating the SSA form of the C code, which is given in the
second column of Fig.2. The definition of SSA in the pres-
ence of pointer variables is mainly based on two ideas :

1. First, our approach exploits the results of a specific
pointer analysis, namely a points-to analysis, to per-
form all the hidden definitions. A points-to analysis
is a static analysis that determines the set of memory
locations that can be accessed through pointer derefer-
ences. For every variable p of pointer type, a points-
to analysis computes a set of variables that may be
pointed by p during the execution. For example, at
statement 4 of program foo, a points-to analysis says
that p can (only) point to j or k. Note that the analysis
usually overestimates the set of pointing relations that
exist during execution.

2. Second, we introduce two new forms of �–functions
to model the dereferencing process. �u–functions
model uses of dereferenced pointers. At statement 3,

�u�p��

�

j

k

�
�

�
j�
k�

�
� returns j� (resp. k�) if p points to

j (resp. k). �d–functions are used to reveal the hidden
definitions realized through dereferenced pointers. At
statement 4,�
j�
k�

�
� �d�p��

�

j

k

�
� r� � i�

�
j�
k�

�
�, assigns r� � i to

j� (resp. k�) if p points to j (resp. k) and assigns j�
(resp. k�) otherwise.

The second step of our approach translates the SSA form
into a CLP(FD) clause as shown in the third column of
Fig.2. In this translation, each variable’s address is associ-
ated with a unique key3 and specific CLP(FD) combinators
extend �u and �d functions. These combinators maintain
a relation between their arguments. So, partial informa-
tion such as the variation domain of an argument, can be
exploited to narrow the domain of the others.

Finally, the last step consists in generating a test-
data-generation request by making use of the control-
dependencies of the program. Reaching the then-part of
statement 5 requires J� � � hence the request shown in
Fig.3 is generated. 1 In this example, the result of the re-

?– J� � �� foo�I� J���
I � � ; /* first solution and backtracks */
no /* no other solution */

Figure 3. A test data generation request

quest says that there exists only a single test datum (i � �)
satisfying the request. If we examine the resolution process,
we see that the three constraints J� � f�� �g, J� � � and�
J�
K�

�
�
d�P��

�
��
��

�
� R��

�
J�
K�

�
� lead to P� � �� and

J� � R�. As a consequence, P� � P� is refuted and the
then-part of statement 2 must be executed, leading to I � �.
Finally, the constraints R� � J� and R� � R� � I implies
I � � which ends the process.

The interesting point is that the combinator
d provokes
the assignment of the pointer variable P�. In this example,
numeric information over integer variables is used to refine
pointer relationships.

4. SSA in the presence of multi-level pointers
In this paper, we confine ourselves to a simple language

over the pointers based on multi-level pointers toward stat-
ically named variables. The operations that are allowed
on pointers are (multiple) dereferencing (� � p), addressing
(
q), pointer assignment (p � q), and pointer comparison

3A variable’s address is noted �j even when j is decomposed in several
SSA names j�� j�� � � � as �j���j�� � � � represent the same constant.

(p �� q, p� � q). We suppose that programs do not con-
tain unconstrained pointer arithmetic, type casting through
pointers, pointers to functions and pointers to dynamically
allocated structures. Furthermore, this paper is devoted to
the treatment of pointers in the context of automated test-
ing of C programs at the unit level, meaning that function
calls are supposed to be stubbed or inlined. Extension to
the handling of function calls in the presence of conditional
aliasing problems is not trivial and is discussed in Sec.7.

4.1. Normalization

Normalizing a function consists in breaking complex
statements into a set of elementary statements by introduc-
ing temporary variables. In [3], it is shown that C programs
that respect the previous hypothesis, can be translated into
a set of fifteen elementary statements. In particular, a multi-
level dereferenced pointer can be translated into a set of sin-
gle dereferenced pointer by introducing temporary variables
without modifying the program semantics. Fig. 4 contains
a few examples of normalization that can easily be general-
ized to other statements. Note however that normalization is
not required when a statement holds over non-pointer types
(for example, �p � �q does not need to be normalized if p
and q are of pointer–to-integer type).

Original code Normalized code

p � � � �q ; tmp� � �q ; tmp� � �tmp� ; p � �tmp� ;
� � p � q ; tmp� � �p; �tmp� � q;
�p � �q ; tmp� � �q; �p � tmp�;
�p � �q ; tmp� � �q; �p � tmp�;

Figure 4. Examples of normalization

This normalization process allows to reason on a small
number of statements without any loss of generality. For
the presentation, only four assignment statements are con-
sidered : p �
q, p � q, p � �q, �p � q.

4.2. A Points–to analysis

As previously said, a points–to analysis statically col-
lects a set of variables that may be pointed by the pointers
of the program and determines the set of memory locations
that can be accessed through a dereferenced pointer. In our
work, we have chosen a points-to analysis formerly intro-
duced by Emami et al. [3]. A points-to relation is a triple :
pto�p� a� definite� or pto�p� a� possible� where a denotes
a variable pointed by p. In the former case, p points defi-
nitely to a on any control flow path that reaches the state-
ment where the pointing relation has been computed. In
the latter case, p may point to a only on some control flow
paths. In fact, the analysis does not even say whether there
exists a feasible control flow path that contains the point-
ing relation. Although it can be very imprecise, a points-to

analysis is always conservative, meaning that if p points-to
a during any execution of the program then the results of
the points–to analysis contains at least pto�p� a� rel� where
rel is either definite or possible.

There are two kinds of points–to analysis : flow-sensitive
and flow-insensitive. In the former case, the order in which
the statements are executed is taken into account and the
analysis is computed on each statement of the program.
In the second case, the order is just ignored and the re-
sults of the points-to analysis are the same for all the state-
ments. A flow-sensitive analysis is usually more precise
than a flow-insensitive but it is also more costly to compute.
Fig.5 shows the difference between these two analyses on
a very small piece of C code. In our approach, we use a

C Code Flow-sensitive Flow-insensitive
at statement 3

1. p � �a ; pto(p,a,possible)
2. q � p ; pto(p,b,possible)
3. p � �b ; pto(p,b,definite) pto(q,a,possible)

pto(q,a,definite) pto(q,b,possible)

Figure 5. Points-to analysis

flow-sensitive analysis. In fact, when a statement contains a
definition of a dereferenced pointer, every pointing relation
hides a possible definition, hence the precision of the anal-
ysis directly plays on the efficency of the overall approach.

In [3], an intraprocedural syntax-based algorithm that
computes the results of a flow-sensitive points–to analy-
sis for structured C programs is given. In the presence of
control flow structures, the results of the analysis of each
branch are merged into a single set. In this process, a def-
inite points–to relation can become a possible one. For the
loop statements, the set is computed by a fixpoint compu-
tation. The analysis is done by iterating on the body of the
loop until no more modification can be exercised. Existence
and unicity of the fixpoint is trivial as the merge process
cannot remove pointing relations and the number of such
relations is bounded, as dynamic allocation of pointer vari-
ables is forbidden.

4.3. �u– and �d– functions in SSA

In our SSA form, the �u–function models the use of a
dereferenced pointer. Let a�� ���� an and v�� ���vn be vari-
ables, let
a�� ����
an denote the distinct addresses of the
first set of variables and let p be a pointer variable, then

�u�p�

�
�
a���

an

�
� �

�
�v���
vn

�
�� returns vi iff p �
ai.

The �d–function models the definition of a derefer-
enced pointer. Let expr denotes an expression, then

�d�p�

�
�
a���

an

�
� � expr�

�
�v���
vn

�
�� returns a vector

�
�x���
xn

�
� where

xi � expr if p �
ai and xj � vj for all j 	� i. Although
very similar in appearance, the two functions differ by their
syntactical role : �u–functions model right hand side usages
whereas �d model left hand side usages.

5. Combinators � u and � d in CLP(FD)

As a result of the SSA translation, the operators ’&’ and
’*’ of the C language have been removed and two new func-
tions have been introduced : �u– and �d– functions. In
the CLP(FD) program, these functions are modeled by the
means of two relational combinators, namely
u and
d.
The
u combinator maintains a relation between a pointer,
the set of possibly pointed variables and a variable to be
assigned. It just exploits the fact that, during execution, a
pointer can only point to a single variable.
Definition 3
 u (declarative semantics)
Let X�P� V�� ��� Vn be FD variables and P�� ��� Pn be n be
distinct non null constants, then

X �
u�P�

�
�P���
Pn

�
� �

�
�V���
Vn

�
�� is true iff
ijP � Pi �X � Vi.

The
d combinator maintains a relation between a pointer, a
variable associated with the dereferenced pointer, the set of
possibly pointed variables, and possibly assigned variables.

Definition 4
 d (declarative semantics)
Let X�P� V�� ��� Vn be FD variables and P�� ��� Pn be n be
distinct non null constants, then�
�X�

��

Xn

�
� �
d�P�

�
�P���
Pn

�
� � DP�

�
�V���
Vn

�
�� is true iff
i such as

P � Pi �Xi � DP � fXj � Vjg�j ��i.

Note that when P is assigned to an invalid address (P � �),
then both
d and
u combinators fail during the solving
process. As usual in CLP, failure is interpreted as unsatisfi-
ability of the set of constraints.

6. Preliminary results
We implemented our approach in the goal-oriented test

data generator InKa [1]. The tool automatically gener-
ates test data for the coverage of several structural crite-
ria such as all statements, all branches, MC/DC. The tool
has several other functionalities, such as test coverage mea-
surements, control flow monitoring, test case management,
etc. Our implementation includes a pointer analyzer, a SSA
form generator and both combinators
u and
d.

To evaluate the approach, we generated test data for C
functions extracted from the literature that present condi-
tional pointer aliasing problems. In this paper, we only re-
port the results on the program shown in Fig.6. It is ex-
tracted from [9] and presents a conditional aliasing problem
with two-level indirection pointers. The points-to relations

Normalized C Code SSA form

int lh98(int h) int lh98(int h�)
int g� � � p� �q� �r; int g� � � p� �q� �r ;

1. g � �, q � �h ; g� � �, q� � �h ;
2. r � �g, p � �r ; r� � �g, p� � �r ;
3. if(h � ��) if(h� � ��)
4. g � �h
 �� � � ; g� � �h�
 �� � �
5. p � �q ; p� � �q ;�

g�
p�

�
� ��

�
g�
p�

�
�

�
g�
p�

�
�;

fi fi

6. t � �p ; t� � �u�p��

�
�q
�r

�
�

�
q�
r�

�
�;

tmp � �u�t��

�
�h
�g

�
�

�
h�
g�

�
�;

7. h � � � g
 �t ; h� � � � g�
 tmp;
8. if(h � ���) ... ; if(h� � ���) ... ;

Figure 6. SSA form of lh98

computed for program lh98 at statement 8 are given by the

following diagram: q
definite

�� h

p

possible

����������

possible

���
��

��
��

� t

possible

���������

possible

���
��

��
��

�

r
definite

�� g

Fig.7 shows the CLP(FD) program generated for lh98
and shows a request asking for a test data generation.

lh98�H� �H��:-
G� � �, Q� � ��, R� � ��, P� � ��,

ite(H� � ���

�
G�

P�

�
�

�
G�

P�

�
�

�
G�

P�

�
� G� � �H�
 �� � �

�P� � ��)

T� �
u�P��

�
��
��

�
�

�
Q�

R�

�
�,

TMP �
u�T��

�
��
��

�
�

�
H�

G�

�
�

H� � � �G�
 TMP ,
ite(H� � ���, ...).

?- H� � ���� lh98�H��H��� labelling��H����
H� � � ;
H� � � ;
no

Figure 7. CLP(FD) program for lh98

The results show that there are only two values for H�

able to reach the then-part of statement 8.

7. Conclusion

In this paper, we have presented a new method for au-
tomatically generating goal-oriented test data for programs
with multi-level pointer variables. Several extensions are

in progress to adress larger C programs. Firstly, our ap-
proach could be extended to function calls by exploiting
the results of an interprocedural pointer analysis. Although
a lot of work has been carried out in this area, technical
problems still need to be solved in order to properly han-
dle multiple function calls, function pointers and recursive
calls. Second, our approach could be extended to pointers
that address the heap. In the presence of dynamic alloca-
tion, the points-to analysis we used do not converge any-
more. Hence, it should be replaced by other pointer analysis
adapted to dynamic structures. However, dealing with these
constructs is yet a challenging problem.

References

[1] Axlog Ingenierie and Thales Airborne Systems. INKA–V1
User’s Manual, december 2002.

[2] R. Cytron, J. Ferrante, B. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficently Computing Static Single Assignment
Form and the Control Dependence Graph. ACM Trans. on
Prog. Language and Systems, 13(4):451–490, Oct. 1991.

[3] M. Emami, R. Ghiya, and L. J. Hendren. Context–Sensitive
Interprocedural Points–to Analysis in the Presence of Func-
tion Pointers. In Proc. of Programming Languages Design
and Implementation, Orlando, FL, Jun. 1994. ACM.

[4] R. Ferguson and B. Korel. The Chaining Approach for Soft-
ware Test Data Generation”. ACM Trans. on Software Engi-
neering and Methodology, 5(1):63–86, Jan. 1996.

[5] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data
generation using constraint solving techniques. In Proc. of
the Int. Symp. on Software Testing and Analysis (ISSTA’98),
pages 53–62, Clearwater Beach, FL, USA, March 1998.

[6] A. Gotlieb, B. Botella, and M. Rueher. A clp framework for
computing structural test data. In Proc. of Computational
Logic (CL’2000), LNAI 1891, pages 399–413, London, UK,
July 2000.

[7] P. V. Hentenryck, V. Saraswat, and Y. Deville. Design,
implementation, and evaluation of the constraint language
cc(fd). In LNCS 910, pages 293–316. Springer Verlag, 1995.

[8] B. Korel. Automated Software Test Data Generation. IEEE
Trans. on Software Engineering, 16(8):870–879, Aug. 1990.

[9] C. Lapkowski and L. Hendren. Extended SSA Numbering:
Introducing SSA Properties to Languages with Multi–level
Pointers. In 7th Proc. of the Conference on Compilers Con-
struction (CC’98), pages 128–143, Lisbon, Portugal, Mar.
1998. LNCS 1383 Kai Koshimies (Ed).

[10] B. Marre, P. Mouy, and N. Williams. On-the-fly generation
of k-path tests for c functions. In Proc. of the 19th IEEE Int.
Conf. on Automated Software Engineering (ASE’04), Linz,
Austria, September 2004.

[11] S. Visvanathan and N. Gupta. Generating test data for func-
tions with pointer inputs. In Proc. of the 17th IEEE Int. Conf.
on Automated Software Engineering (ASE’02), Edinburgh,
UK, September 2002.

[12] J. Zhang. Symbolic execution of program paths involving
pointer and structure variables. In Proc. of the 4th Int. Conf.
on Quality Software (QSIC’04), Braunschweig, Ge, Septem-
ber 2004.

