
Euclide: A Constraint-Based Testing framework for critical C programs∗

Arnaud Gotlieb
INRIA Rennes - Bretagne Atlantique

Campus Beaulieu, 35042 Rennes Cedex, France
Arnaud.Gotlieb@irisa.fr

Abstract

Euclide is a new Constraint-Based Testing tool for veri-
fying safety-critical C programs. By using a mixture of sym-
bolic and numerical analyses (namely static single assign-
ment form, constraint propagation, integer linear relaxation
and search-based test data generation), it addresses three
distinct applications in a single framework: structural test
data generation, counter-example generation and partial
program proving. This paper presents the main capabilities
of the tool and relates an experience we had when verify-
ing safety properties for a well-known critical C component
of the TCAS (Traffic Collision Avoidance System). Thanks
to Euclide, we found an unrevealed counter-example to a
given anti-collision property.

1 Introduction

Context. Safety-critical systems must be thoroughly
verified before being exploited in commercial applications.
In these systems, software is often considered as the weak-
est node of the chain and many efforts are deployed in order
to reach a satisfactory testing level. A challenge in this area
is the automation of the test data generation process for sat-
isfying functional and structural testing requirements. For
example, the standard document which currently governs
the development and verification process of software in air-
borne system (DO-178B) requires the coverage of all the
statements, all the decisions and MC/DC at the highest level
of criticality and it is well-known that DO-178B structural
coverage is a primary cost driver on avionics project.

In addition, the verification process of critical systems
often requires the verification of safety properties, as peo-
ple’s life may rely on these properties. For airborne sys-
tems, some safety properties can be extracted from specifi-

∗This work is partially supported by ANR through the RNTL CAT and
the CAVERN projects under the reference ANR-07-SESUR-003

cation documents that describe the so-called anti-collision
theory regulating the controlled airspace. Checking these
safety properties is mandatory and is usually preformed
by manual code reviews. Although they are widely used,
most of the existing testing tools on the market are cur-
rently restricted to test coverage monitoring and measure-
ments. Coverage monitoring answers to the question: what
are the statements or branches covered by the test suite ?
while coverage measurements answers to: how many state-
ments or branches have been covered ? But these tools
usually cannot find the test data that can execute a given
statement, branch or path in the source code. In most in-
dustrial projects, the generation of structural test data is still
performed manually and finding automatic methods for this
problem remains a holly grail for most testers. Neverthe-
less, several experimental tools exist for C programs in-
cluding INKA [20], PATHCRAWLER [32, 27], CUTE [30] or
PEX [31], but none of them can also check safety properties
or generate counter-examples that invalidate safety prop-
erties. Software model-checking tools such as SAVE [9],
MAGIC [6], BLAST [23] or CBMC [8] have been proposed
for checking properties over a piece of C code. But, these
tools usually cannot generate a test suite that covers selected
structural criteria. Finally, proof-based environments such
as WHY/CADUCEUS [18] can automatically prove proper-
ties for C programs. But these tools cannot generate test
cases or counter-examples.

Euclide. In this paper, we propose Euclide a constraint-
based testing tool that features three main applications:
structural test data generation, counter-example generation
and partial program proving for critical C programs. The
core algorithm of the tool takes as input a C program and
a point to reach somewhere in the code. As a result, it out-
comes either a test datum that reaches the selected point,
or an “unreachable” indication showing that the selected
point is unreachable. Optionally, the tool takes as input ad-
ditional safety properties that can be given under the form
of pre/post conditions or assertions directly written in the

1



code. In this case, Euclide can either prove that these prop-
erties or assertions are verified or find a counter-example
when there is one. As these problems are undecidable in
the general case, Euclide only provides a semi-correct pro-
cedure (when it terminates, it provides the right answer) for
them. Hopefully, by restricting the subset of C that the tool
can handle (no dynamic memory allocation, no recursion)
these non-termination problems remain infrequent in prac-
tice. In addition, Euclide implements several procedures
that combine atomic calls to the core algorithm. For exam-
ple, by selecting appropriate points to reach in the source
code, the tool can generate a complete test suite able to
cover the all statements or the all decisions criteria.

Providing a tool able to deal with these three applications
(structural test data generation, counter-example generation
and partial program proving) in a single framework offers
several advantages:

• For the developers having to maintain code they did
not wrote, using a tool able to generate a failure-
causing test datum that reaches a given point facilitates
the debugging process. In fact, the test datum can eas-
ily be submitted as input to a symbolic debugger that
will drive the computation towards the failure-causing
point in the code ;

• In the unit testing phase, achieving high coverage with
a test set that satisfies safety assertions improves the
quality of the test selection process. The issued test set
favorably enriches the set of tests to replay for future
versions of the software (Regression Testing) ;

• For certification purposes, it is convenient to work
only on a single certification product, namely the
source code along with its annotations (assertions and
pre/post conditions). Showing that the program satis-
fies all the required safety properties and that all parts
of the program are executable and have been tested
with respect to these properties is certainly a good way
to convince a certification authority that the developed
software is correct and reliable.

The underlying technology of Euclide is Constraint-Based
Testing (CBT). Constraint-Based Testing is a two-stage pro-
cess consisting first to generate a constraint system that cor-
responds to the testing objective we want to reach (for ex-
ample, a selected point in a source code) and then, second to
solve the constraint system by using well-recognized con-
straint programming techniques. CBT received consider-
able attention these latter years as constraint programming
emerged as a worthwhile programming paradigm and solv-
ing techniques have been much improved.

Contributions. The originality of Euclide comes from
its unique way of combining symbolic and numerical anal-
yses such as static single assignment form, constraint prop-

agation, integer linear relaxation and search-based test data
generation. Static single assignment form (SSA) relieves
the tool from using costly and path-oriented symbolic eval-
uation techniques for generating the constraint system. In-
deed, SSA allows considering several paths going through
the selected point to reach at the same time. Thanks to con-
straint propagation, Euclide nicely handles non-linear op-
erations such as multiplication between unknown variables,
division, conditional and loop statement within C programs.
Thanks to integer linear relaxation, the tool handles ef-
ficiently linear operations over integer variables. It also
detects some unsatisfiable (possibly non-linear) constraint
systems which were unbearable without this technique. Fi-
nally, thanks to its search-based test data generator that co-
operatively labels the variables according to distinct heuris-
tics, Euclide can generate test data or counter-examples in
very efficient way. In this paper, we do not claim that Eu-
clide is better than other more specialized test data gener-
ators or software model-checkers, but we show that this is
its combination of symbolic and numerical techniques that
offer the opportunity to get results outside of the scope of
other tools. We exemplify this statement by our recent ex-
perience on using Euclide to prove safety properties for a
well-known critical C component of the TCAS (Traffic Col-
lision Avoidance System). Thanks to Euclide, we found an
unrevealed counter-example to a given anti-collision prop-
erty.

Plan of the paper. The rest of the paper is organized
as follows: Section 2 reviews the main technologies used
in Euclide. Section 3 presents its architecture and imple-
mentation while Section 4 relates our experience in using
Euclide for generating test data and checking safety prop-
erties of a critical module of the TCAS. Section 5 presents
the related work and finally, Section 6 concludes and draws
some perspectives to this work.

2 Constraint generation and solving

2.1 Critical ISO/IEC compliant C pro-
grams

Our approach is dedicated to the testing of safety-critical
(and ISO/IEC compliant) C programs. These programs
share some characteristics such as being written in a re-
stricted subset of the C language that excludes recursion
and dynamic memory allocation among other things. The
C language, as defined by the ISO/IEC standard [33], has
also the considerable advantage to be well defined in terms
of syntax and semantics, even if several operations have still
an undefined behavior1 or a behavior defined by the imple-

1Exact behavior which arises is not specified by the standard, and ex-
actly what will happen does not have to be documented by the C imple-
mentation.



mentation (in particular for floating-point computations).
Euclide handles a subset of C that includes integer and

floating-point computations, pointers towards named loca-
tions, arrays of statically-allocated size, structures, function
calls, bit-to-bit operations such as masks, all control struc-
tures (including loops) and almost all operators (34 over
42). But, it also has some restrictions: it does not deal ac-
curately with unstructured statements such as gotos, uncon-
strained pointer arithmetic (such as using a physical address
of a memory segment or adding two unrelated addresses
as if they were integers), function pointers, functions with
a unknown number of parameters, volatiles, unions, mem-
ory type casting (such as reading an integer as it was an
address), library and external function calls (unavailable
source code).

2.2 Generating Euclide programs

Euclide is based on a constraint model of C programs.
This model, expressed in a dedicated language, is extracted
from the source code by several transformational passes:
parsing, normalization, pointer analysis, Static Single As-
signment form and constraint model generation. In this
section, we briefly review all these passes and discuss the
main technologies used in Euclide to generate and solve
constraint systems corresponding to testing objectives.

Parsing and normalization. This pass consists in
building a symbol table and an abstract syntax tree for
each compilation unit (preprocessed program). The sym-
bol table keeps track of the type, scope, memory allo-
cation class of each variable of the program while the
abstract syntax tree captures the syntax of all the (non-
declarative) statements of each function. Normalization
is a process that permits to break complex statement into
simpler ones. The rationale behind this pass is to sim-
plify other passes by considering a smaller set of state-
ments to analyze. Complex control structures are rewritten
into simpler ones, function calls and arguments are isolated
as well as side-effect expressions, multi-operators state-
ments are decomposed. For example, thanks to the intro-
duction of new temporary variables, a complex assignment
statement such as e=v1*v2*f()+v3; is decomposed
into t0=f(); t1=v1*v2; t2=t1*t0; e=t2+v3;
because the function call has a higher priority than * and +
and operands are evaluated from left to right. Note that such
decomposition correctly handles multi-occurrences in C ex-
pressions. In the presence of floating-point computations,
special attention must be paid to preserve the semantics. In
particular, the decomposition requires that intermediate re-
sults of an operation conform to the type of storage of its
operands2. In the previous example, if v1 and v2 are of

2This property is not a requirement of IEEE-754 which is the standard
that governs floating-point computations and consequently it is not always

single-format, then the temporary variable t1 must also be
single-format. For floating-point computations, this process
has been extensively presented in a dedicated paper [4].

Points-to analysis. Euclide implements a points–to
analysis that statically collects a set of variables that may
be pointed by the pointers of the program and determines
the set of memory locations that can be accessed through
a dereference [21]. We selected a flow-sensitive points-to
analysis previously introduced by Emami et al. [16] where
each points-to relation is a triple: pto(p, a, definite) or
pto(p, a, possible) where a denotes a variable pointed by
p. In the former case, p points definitely to a on any control
flow path that reaches the statement where the pointing re-
lation has been computed. In the latter case, p may points to
a only on some control flow paths. In a flow-sensitive anal-
ysis, the order on which the statements are executed is taken
into account and the analysis is computed on each statement
of the program.

Single Static Assignment form (SSA). A key-feature
of Euclide concerns its use of the SSA form to avoid the
usual costly path exploration phase of other tools. The SSA
form is a semantics-preserving transformation of a pro-
gram where each variable has a unique definition and every
use of this variable is reached by the definition. Perform-
ing this transformation requires to rename uses and defi-
nitions of the variables. For example i=i+1; j=j*i is
transformed into i2=i1+1; j2=j1*i2. At the junction
nodes of the control structures, SSA introduces special as-
signments called φ-functions, to merge several definitions
of the same variable : v3 = φ(v1,v2) assigns the value
of v1 in v3 if the flow comes from the first branch of the
decision, the value of v2 otherwise. SSA provides spe-
cial expressions to handle arrays : access(a,k) which
evaluates to the kth element of a, and update(a0,j,v)
which evaluates to an array a1 which has the same size and
the same elements as a0, except for j where value is v. In
the presence of pointers, special care must be taken when
expliciting the possible hidden definitions of variables. We
therefore defined a special form called Pointer SSA that
captures hidden definitions through the usage of new spe-
cial assignments exploiting the results of the flow-sensitive
points-to analysis. The interested reader can consult [21]
to get more details on our implementation of the so-called
Pointer SSA form which accurately captures hidden defini-
tions due to dereferences.

Constraint generation. Finally, statements under SSA
form are converted into constraints in a dedicated interme-
diate language (not very inventively called Euclide). Rela-
tions, which are units of the language, can be either user-
defined or primitive. User-defined relations correspond to
functions defined in the C program while primitive relations

true. For example, on Intel’s architectures extended formats are used by
default to store intermediate results



are relations provided by the language itself. A relation can
call other relations, allowing so to capture the C function
calling mechanism. Examples of primitive relations include
the ITE relation that models a conditional statement or the
W relation modeling iterative statements. We will discuss
the ITE relation in details in Sec.2.3 while details on W
can be found in [13]. Evaluating an Euclide program yields
either to true (= 1), or false (= 0) or suspend (= 0..1), cor-
responding to the truth value of the last evaluated relation
of the program. Evaluation is incremental and relations can
be awoken by additional relations. Fig.1 contains a simple
Euclide program that implements a relational version of the
greatest common divisor algorithm. Note that this Euclide
program has been automatically generated from the imper-
ative version of the gcd program.

rel GCD (X, Y, Z) iff % true iff Z = gcd(X, Y )
{

[X, Y, Z] in integers(unsigned, 32),
X > 0, Y > 0, Z > 0,
W(X > 0, [X, Y ], [X4, Y 2], [X5, Y 3],
{

ITE (X < Y, [X, Y ], [X2, Y 1], [X3, Y 2],
{

locals [X1], % X1 is local to the current bloc
X1 = X + Y ,
Y 1 = X1 − Y ,
X2 = X1 − Y 1,

},
{ } % There is no Else part
),

X4 = X3 − Y 2
} )

}

Figure 1. The Euclide GCD program

On the request GCD(X,Y,Z), X in 1..10, Y
in 10..20, Z in 1..1000, the constraint solvers of
Euclide reduce the bounds of Z to 1..10. Furthermore, if
we add the relation X=2*Y, then Euclide automatically de-
duces that Zmust be equal to Y to satisfy the request, which
is a strong deduction usually outside the scope of other con-
straint solvers. In addition, the Euclide language includes a
reach directive that is used to specify testing objectives. By
inserting a reach directive in an Euclide program, the user
unambiguously selects a location to reach within the source
code and constrains the solutions of the program to satisfy
this objective. For example, in the program of Fig.1, adding
a reach directive in the Then-part of the conditional rela-
tion, permits to generate a test datum (values for X,Y) that
reaches this part through an executable path. This reach
directive is a key point of Euclide as it permits to specify
various problems of reacheability, including structural test
data generation and counter-example generation.

An error-free semantics. The Euclide program cap-
tures an error-free relational semantics of its correspond-

ing C program. In other words, executions that yield errors
such as dividing-by-zero or null pointer dereferencing are
not considered when solutions of the Euclide program are
seeked. In fact, Euclide aims at finding functional faults and
not runtime errors (i.e. errors that cause exceptions at run-
time). Typically, a functional fault occurs in a program P
when P returns the value 3 when 2 was expected. Detecting
functional faults is crucial in the context of safety-critical
program verification as people’s life may rely on it. Note
that functional faults cannot be detected by existing static
analyzers as there is no oracle in these tools. By focusing
on functional faults only, our constraint model is also sim-
pler to implement and more efficient, as it does not have to
maintain spurious erroneous states.

2.3 Constraint solving

The most innovative part of Euclide concerns its con-
straint solving engine. As said previously, Euclide imple-
ments constraint propagation, dynamic linear relaxation and
search-based test data generation in order to satisfy testing
objectives. A testing objective can be either 1) to generate a
test datum that passes through a reach directive, 2) to gener-
ate a counter-example (i.e. a complete path that invalidates
a property) or 3) to prove that a given property is satisfied
by all executions of the program. Both former cases cor-
respond to find a solution of a constraint system while the
latter corresponds to show that a certain constraint system
is unsatisfiable. In the latter case, the proof is only par-
tial because all the domains on which the proof holds are
bounded.

Constraint Propagation (CP). Roughly speaking, CP
considers each constraint in isolation as a filter for the vari-
ation domain of the constraint variables. Once a reduction
is performed on the domain of a variable, CP is awaking
the other constraints that hold on this variable in order to
propagate the reduction. Technically, CP is incrementally
introducing constraints into a propagation queue. Then,
an iterative algorithm is managing each constraint one by
one into this queue by filtering the domains of their in-
consistent values. When the variation domain of variables
is too large, filtering algorithms consider usually only the
bounds of the domains for efficiency reasons: a domain
D = {v1, v2, . . . , vn−1, vn} is approximated by the range
v1..vn. When the domain of a variable is pruned then the
algorithm reintroduces in the queue all the constraints that
hold on this variable. The algorithm iterates until the queue
becomes empty, which corresponds to a state where no
more pruning can be performed. When selected in the prop-
agation queue, each constraint is added into a constraint–
store which memorizes all the considered constraints. The
constraint–store is contradictory if the domain of at least
one variable becomes empty. In this case the corresponding



testing objective is shown as being unsatisfiable.
Efficiency and completeness of CP. In the worst case,

constraint propagation runs in O(mn) where m denotes the
number of constraints and n denotes the size of the largest
domain. But constraint propagation alone does not guar-
antee satisfiability, as it just prunes the variation domains
without looking at potential solutions. And it must be cou-
pled with other mechanisms in order to find solutions or to
show inconsistency3

Dynamic Linear Relaxations (DLRs). In [14], we in-
troduced DLRs to relax dynamically all the constraints of
an Euclide program, including the non-linear ones, within
a Linear Programming framework. Linear Programming
techniques such as the simplex procedure can solve huge in-
stances of linear constraint systems very efficiently. Linear
relaxation can be understood as a systematic way to over-
approximate Euclide’s relations by linear constraints. We
integrated linear relaxations within the constraint propaga-
tion process, yielding to an optimized cooperation scheme
of the constraint solving process. For control structures
(conditionals, loops) we proposed specific DLRs based on
case-based reasoning and abstract interpretation techniques
[13]. For example, the DLR of the ITE relation uses the
following principles: given an ITE relation modeling a dis-
junction between two subpaths (Then–part and Else–part),
first try to prove that one of the two disjuncts is unsatisfiable
with the rest of the constraints and, thus, replace the overall
disjunction by the other disjunct. Second, when this case-
based reasoning fails, compute the union of both domains
as in the following example: from the disjunctive constraint
X = Y ∨X = 5 with domains DX = −1000..1000, DY =
0..1, one can deduce that DX = 0..5, DY = 0..1. In Eu-
clide, we extended the union principle with linear relations.
For example, considering X = Y + 10 ∨ X = Y − 10
with domains DX = DY = 0..20 we deduce that −10 ≤
X−Y ≤ 10 while the above reasoning over domains would
not have deduce anything new on the domains.

Test Data Generation. CP and DLRs cannot guaran-
tee satisfiability on their own as they both computes over-
approximations of the sets of solutions. Hence, it is nec-
essary to combine these processes with a labeling step in
order to exhibit a solution (a test data satisfying the test-
ing objective or a counter-example to a given property) or
to demonstrate unsatisfiability (a partial proof of the prop-
erty). Such a labelling step consists in exploring the input
search space. One remarkable feature of modern labelling
procedures is their ability to awake constraint propagation.
Once a value a is assigned to a variable v, a constraint v = a
is added to the constraint system and awakes other con-
straints holding on v. Thanks to CP, the input search space
is likely to be pruned before having to enumerate all the val-

3Proving a property over a piece of code in Constraint-Based Testing
requires showing that a constraint system is unsatisfiable.

ues of the variables domain. In Euclide, we implemented
and experimented several heuristics to choose the variable
and the value to enumerate first. Finally, we depicted a la-
belling procedure that enchains several heuristics: domain
constraints, domain splitting, exhaustive search, and ran-
dom choices. Domain constraints consists in exploring sub-
domains of the input search space by iteratively increasing
the size of the explored subdomains, while domain splitting
consists in dividing the subdomains by propagating division
constraints. For example, if x ∈ 0..232 − 1 then domain
splitting first adds the division constraint x ∈ 0..231 − 1
which will be propagated throughout the constraint system
and second it adds x ∈ 231..232 − 1. Exhaustive search is
the process that will enumerate all the values in the increas-
ing or decreasing order of a given single dimension subdo-
main while random choices will pick up values at random
within a domain. Thanks to these heuristics, search-based
test data generation allows to find solutions in most cases.
However, as the problem of finding solutions of a non-linear
constraint system over finite domain is NP hard [22], it may
happen that the search fails in a reasonable amount of time.
For these reasons, we implemented a parameterized time-
out process to the search.

3 Architecture and implementation

Euclide features three main applications: structural test
data generation, counter-example generation and partial
program proving. The tool architecture shown in Fig.2 and
its implementation were thought with these applications in
mind.

3.1 Architecture

The tool takes a set of C files as input, optionally anno-
tated by pre/post conditions and assertions (input column).
For each C function of the files, an intra-procedural control
flow graph is built and can be displayed through a graphi-
cal user interface (Control flow graph generator and CFGs
component of the output column). In addition, an Euclide
program is generated through the passes that have been
presented above (parsing, normalization, points-to analysis,
SSA form, constraint generation). Selecting either a node
or a branch to reach yields to add a reach directive within
the intermediate Euclide program (testing objectives of the
input column). From there, constraint solving is launched
according to some parameterization through an evaluator
component. When a test data is generated, the flow is mon-
itored either on the control flow graph or on a textual view
of the Euclide program. The value of each individual input
is shown and recorded when agreed by the user. Option-
ally, the linear relations that over-approximate each inter-
mediate state of the analysis are printed within an interme-



GUI (Tcl/Tk) /Core (PROLOG)

file.c +
compilation
command

C parser

Normalization
Points-to analysis

SSA form generator

Constraint
generation

Testing
objectives

(reach directives)

Output

Control flow 
graphs generatorPre/post

conditions

Test data
Test sets

CFGs

Evaluator

Coverage
monitoring

Symbol 
table

Input

Euclide
intermediate

program

Built-in
Relations

Counter-examples
Non-feasibility 
informations

Partial Proofs

Utilitaries

Figure 2. Euclide’s architecture

diate file. When the testing objective is unsatisfiable (non-
feasible point or unsatisfiable property), then this is reported
to the user. In addition, several automatic structural test data
generation procedures are available such as generating a test
set that covers all the executable statements or decisions.
These procedures use several algorithms that add reach di-
rectives in appropriate locations.

3.2 Implementation

The Euclide’s implementation includes 9 internal com-
ponents (inside the box of Fig.2) and two additional inter-
face components. The tool is mainly developed in Prolog
(∼10 KLOC), C (∼0.3 KLOC) and Tcl/Tk (∼0.5 KLOC).
The internal components include a backtrackable C parser
written with the Definite Clause Grammar of Prolog, a
SSA form generator based on the single-pass generator of
Brandis and Mossenbock [5], an Euclide program generator
and parser, a built-in relations library that implements most
of the C operations (conditionals, loops, bit-to-bit opera-
tors, logical operators, function call operator, access/update,
memory operations,...) and an utilitary component. The ad-
ditional interface components implement the graphical user
interface in Tcl/Tk and the batch mode in Prolog. Floating-
point low-level representation and operations are imple-
mented in C.

The evaluator component implements several constraint
solvers that make use of the two following libraries: the
clpfd library of Sicstus Prolog which implements a finite
domains constraint solver ; and the clpq library that imple-

ments a linear programming solver based on simplex over
the rationals. We made the two solvers cooperate by im-
plementing our own constraint propagation queue and by
building a dedicated constraint propagation solver.

4 Case study

Euclide is a Constraint-Based Testing tool dedicated to
the validation of critical C programs and besides the tradi-
tional validation on academic examples, we wanted to eval-
uate the capabilities of Euclide on a real-world program. A
typical (but small) example is the well-documented TCAS
component of the Siemens suite. This suite was initially
provided by Thomas Ostrand and its colleagues at Siemens
Corporate Research Unit for an experimental study of the
fault detection capabilities of coverage criteria [24]. It was
then exploited by both Industry and Academia to evalu-
ate testing strategies. Each component of the suite comes
with a set of test cases and a set of mutants that exemplify
typical faults. Recently, the suite was made publicly and
freely available through the Software-artifact Infrastructure
Repository [15].

TCAS (Traffic Alert and Collision Avoidance System)
is an on-board aircraft conflict detection and resolution sys-
tem embedded on all commercial aircrafts. The system is
intended to alert the pilot to the presence of nearby aircraft
that pose a mid-air collision threat and to propose maneu-
vers so as to resolve these potential conflicts. In cases of
collision threats, the TCAS enters some levels of alertness.
As shown on Fig.3, when an intruder aircraft enters a pro-
tected zone, the system issues a Traffic Advisory (TA) to
inform the pilot of potential threat. In addition, TCAS es-
timates the time remaining until the two aircrafts reach the
closest point of approach (CPA). If the danger of collision
increases then a Resolution Advisory (RA) is issued, pro-
viding the pilot with a proposed maneuver that is likely to
solve the conflict. The RAs issued by TCAS are currently
restricted to the vertical plane only (either climb or descend)
and their computation depends on time-to-go to CPA, range
and altitude tracks of the intruder.

Implementation. The main component (tcas.c), ex-
tracted from the Repository is responsible of the Resolu-
tion Advisories issuance. It is made up of 173 lines of C
code and contains nested conditionals, logical operators,
type definitions, macros and function calls. Fig.4 shows
the call graph of the program while Fig.5 shows the code
of the highest-level function Alt sep test which com-
putes the RAs. This function takes 14 global variables
as input, including Own Tracked Alt the altitude of the
TCAS equipped airplane, Other Tracked Alt the al-
titude of the “threat”, Positive RA Alt Thresh an
adequate separation threshold, Up Separation the esti-
mated separation altitude resulting from an upward maneu-



Figure 3. TCAS alarms

ver and Down Separation the estimated separation alti-
tude resulting from a downward maneuver.

Interestingly, any TCAS implementation should be cer-
tified under level B of the DO-178B standard4. This has
several implications w.r.t. the testing level required for cer-
tifying the TCAS. In particular, all the statements and deci-
sions of the source code must be executed at least once dur-
ing the testing process and any statement and decision must
be shown as being executable, because non-executable ele-
ments do not trace to any software requirements and do not
perform any required functionality.

Safety properties. In addition to these requirements,
any TCAS implementation should verify safety properties
that come from the aircraft anti-collision theory [28]. For
the considered component, several properties referring to
the possibility of issuing either an upward or a downward
RA have been previously formalized [26, 9]. Tab.1 shows
the five double properties extracted from [9]. For example,
property P1b says that if an upward maneuver does not pro-
duce an adequate separation while an downward maneuver
does, such as in Fig.6, then an upward RA should not been
produced.

Results and analysis. We conducted several experi-
ments on this program to evaluate the capabilities of Eu-
clide to serve as an aid for certification purposes. Firstly,
we evaluated structural test data generation for the cover-
age of the all decisions criterion. On an Intel Core Duo
2.4GHz clocked PC with 2GB of RAM, Euclide generated
a test set covering all the executable decisions of the tcas
program in 16.9 seconds, including time spent garbage col-

4The standard classifies systems under 5 criticality levels: from the
highest critical level A to the least critical E

Alt_sep_test

Non_Crossing_Biased_Climb Non_Crossing_Biased_Descend

Own_Below_Threat
Own_Above_Threat

Inhibit_Biased_Climb

Initialize

ALIM

main

Figure 4. Call graph of tcas.c

int alt sep test()
{

1. bool enabled, tcas equipped, intent not known;
2. bool need upward RA, need downward RA;
3. int alt sep;

4. enabled = High Confidence && (Own Tracked Alt Rate <= OLEV) && (Cur Vertical Sep > MAXALTDIFF);
5. tcas equipped = Other Capability == TCAS TA;
6. intent not known = Two of Three Reports Valid && Other RAC == NO INTENT;

7. alt sep = UNRESOLVED;

8. if (enabled && ((tcas equipped && intent not known) —— !tcas equipped))
{

9. need upward RA = Non Crossing Biased Climb() && Own Below Threat();
10. need downward RA = Non Crossing Biased Descend() && Own Above Threat();
11. if (need upward RA && need downward RA)

/* unreachable: requires Own Below Threat and Own Above Threat
to both be true*

12. alt sep = UNRESOLVED;
13. else if (need upward RA)
14. alt sep = UPWARD RA;
15. else if (need downward RA)
16. alt sep = DOWNWARD RA;
17. else alt sep = UNRESOLVED;

}

18. return alt sep;
}

Figure 5. Function alt sep test from tcas.c

lecting, stack shifting, or in system calls. It also showed
that the decision of line 11-12 of Fig.5 was non executable
in less than 0.2 second. Secondly, we evaluate partial pro-
gram proving on the safety properties of Tab.1. Results are
shown in Tab.2. Finding counter-examples to safety proper-
ties on a TCAS implementation could appear as being dra-
matic. But, the reader should be warned that this TCAS
implementation probably corresponds to a preliminary ver-
sion and that it has probably never been used in operational
conditions.

Surprisingly, we found that properties P2B, P3A and
P5B were not proved w.r.t. the implementation and, thanks
to Euclide, we exhibited verified counter-examples. These
counter-examples satisfy the preconditions but invalidate
the postconditions of the properties when submitted to the



Table 1. Safety properties for tcas.c
Num. Property Explanation Specifications

P1a Safe advisory selection
An downward RA is never issued when an down-
ward maneuver does not produce an adequate sepa-
ration

assumes Up Separation >= Positive RA Alt Tresh && Down Separation < Positive RA Alt Tresh;
ensures result ! = need Downward RA;

P1b Safe advisory selection
An upward RA is never issued when an upward ma-
neuver does not produce an adequate separation

assumes Up Separation < Positive RA Alt Tresh && Down Separation >= Positive RA Alt Tresh;
ensures result ! = need Upward RA;

P2a Best advisory selection
A downward RA is never issued when neither climb
or descend maneuvers produce adequate separation
and a downward maneuver produces less separation

assumes Up Separation < Positive RA Alt Tresh && Down Separation < Positive RA Alt Tresh &&
Down Separation < Up Separation; ensures result ! = need Downward RA;

P2b Best advisory selection
An upward RA is never issued when neither climb
or descend maneuvers produce adequate separation
and an upward maneuver produces less separation

assumes Up Separation < Positive RA Alt Tresh && Down Separation < Positive RA Alt Tresh &&
Down Separation > Up Separation; ensures result ! = need Upward RA;

P3a Avoid unnecessary crossing
A crossing RA is never issued when both climb or
descend maneuvers produce adequate separation

assumes Up Separation ≥ Positive RA Alt Tresh && Down Separation ≥ Positive RA Alt Tresh &&
Own Tracked Alt > Other Tracked Alt; ensures result ! = need Downward RA;

P3b Avoid unnecessary crossing
A crossing RA is never issued when both climb or
descend maneuvers produce adequate separation

assumes Up Separation ≥ Positive RA Alt Tresh && Down Separation ≥ Positive RA Alt Tresh &&
Own Tracked Alt < Other Tracked Alt; ensures result ! = need Upward RA;

P4a No crossing advisory selection A crossing RA is never issued assumes Own Tracked Alt > Other Tracked Alt; ensures result ! = need Downward RA;
P4b No crossing advisory selection A crossing RA is never issued assumes Own Tracked Alt < Other Tracked Alt; ensures result ! = need Upward RA;

P5a Optimal advisory selection
The RA that produces less separation is never is-
sued

assumes Down Separation < Up Separation; ensures result ! = need Downward RA;

P5b Optimal advisory selection
The RA that produces less separation is never is-
sued

assumes Down Separation > Up Separation; ensures result ! = need Upward RA;

A : Up_Separation
B : Down_Separation

Figure 6. Resolution Advisories

implementation. All the material of these experiments, in-
cluding the test data corresponding to counter-examples, is
available online5. In addition, counter-examples to prop-
erties P5B were not reported in the literature [9, 8, 6].
Moreover, we got these counter-examples and proofs very
quickly (all the counter-examples and proofs are generated
in less than 20s on our standard machine) which is encour-
aging for a future comparison with other more dedicated
tools.

5 Related work

Euclide addresses three distinct applications for C pro-
grams, namely test data generation for structural testing,
counter-example generation and partial program proving.
We are not aware of any tool having the same capabilities
for C programs. However, many tools exist for one or two
of these tasks.
Partial program proving. These tools usually apply
Floyd-Hoare logic or Dijkstra’s weakest preconditions cal-
culus to the formal verification of the so-called verification
conditions (VCs) extracted from programs and annotations.

5www.irisa.fr/lande/gotlieb/resources.html

Table 2. Verification of safety properties

Num Results
Time
(sec.)

Mem.
(MB)

P1a Property proved 0.7 4.6
P1b Property proved 0.7 4.6
P2a Property proved 0.6 4.6
P2b Counter-example found 0.7 4.6
P3a Counter-example found 5.4 6.3
P3b Property proved 1.2 4.6
P4a Counter-example found 6.8 6.9
P4b Counter-example found 2.7 5.9
P5a Property proved 0.6 4.6
P5b Counter-example found 1.0 4.6

Caduceus [18], which was pioneering deductive verifica-
tion of C programs, concurrently launches several interac-
tive proof assistants or theorem provers to prove a given
assertion. Spec# [25] infers loops invariants by using ab-
stract interpretation and infers VCs, even in the presence of
dynamic allocated objects on the heap. More recently, Dash
[2] exploits lightweight symbolic execution techniques and
a single call to a theorem prover to show that a given prop-
erty is satisfied on several paths of the implementation. Eu-
clide implements its own automated constraint solving pro-
cedures while Caduceus, Spec# and Dash exploit existing
interactive proof assistants and automated theorem provers.
As a result, Euclide deals more accurately with floating-
point computations [4] and more efficiently with integer-
based computations as it supposes every integer variable
to belong to a finite domain and implements its own ded-
icated constraint techniques. But Euclide is also harder to
develop and is less general because its proofs are only valid
for bounded integer variables.
Automatic test data generators. The test data generator
Godzilla was proposed very early [12] for Fortran programs
in the context of mutation testing. In a subsequent paper,
the dynamic domain reduction procedure was developed to



enrich the constraint solving capabilities of this approach
[29]. This procedure mimics the constraint propagation step
described in Sec.2.3. Constraint propagation is an old idea
that lates back to the beginning of the seventies and its use
has been proposed very early for test data generation [3].
InKa [20] was a pioneer in the use of Constraint Logic
Programming for generating test data for C programs. It
was able to generate test case for programs containing dy-
namic allocated structures as its memory model was rich
enough [7]. Euclide can be seen as a successor of InKa
as it shares many technical features with it (both are based
on SSA and Constraint Propagation). However, several dis-
tinct choices have been made for efficiency reasons. Us-
ing some apriori restrictions (no dynamic memory alloca-
tion, no recursion), the Euclide’s memory model is simpler
and permits to deal more efficiently with integer compu-
tations. PathCrawler [32], Dart [19] and CUTE [30] are
three modern path-oriented structural test data generators.
These three tools rely on path selection, symbolic execu-
tion and concolic execution. On the contrary, Euclide rely
on statement or decision selection (goal-oriented approach
[17]), static single assignment form and a mixture of sym-
bolic and numeric constraint solving procedures. The treat-
ment of loops is very different: while these path-based tools
unfold the control flow structure of loops to select a path,
Euclide handles a loop structure as a whole. By abstracting
the behavior of the loop structure (as done with abstract in-
terpretation techniques), the tool can deduce properties out-
side the scope of any path-based test data generator. For
example, Euclide can (sometimes) determine that a given
point, positioned after a loop structure, is unreachable. This
is impossible with a path-based tool that will enumerate in-
definitely all the paths through the loop structure. Recently,
Bardin and Herrmann performed a remarkable work on the
OSMOSE tool which aims at covering all executable paths
of a binary program by using constraint solving techniques
[1]. By addressing low-level binary-code, they opened a
door that we could benefit from for improving the coverage
of our own tool. In fact, C code often presents low-level
features that we cannot currently deal with (unconstrained
pointer arithmetic, dynamic jumps, ...).
Counter-example generation. Software model-checkers
such as Save [9], Blast [23], Magic [6] or Cbmc [8] per-
mit to find counter-examples to temporal properties over
C programs. These tools explore the paths of a bounded
model of programs in order to find a counter-example path
to the property. Some of them exploit predicate abstrac-
tion and counter-example refinement to boost the explo-
ration. Euclide contrasts with SAT-based or SMT-based
model-checkers as it does not abstract the program and does
not generate spurious counter-example paths. In particu-
lar it builds a high-level constraint model of C program
by capturing an error-free semantics without considering a

boolean abstraction of the program structure. Our approach
has more similarities with the CPBPV tool of Collavizza,
Rueher and Van Hentenryck [10, 11] that call several con-
straint solvers in sequence. Recently, its authors showed
that CPBPV could outperform the best model-checkers on
several classical benchmarks. As Euclide, CPBPV tool
is based on deductive constraint programming techniques.
However, research and experimental work remains to con-
firm these results obtained on a small set of academic pro-
grams.

6 Conclusion

In this paper, we introduced Euclide, a Constraint-based
testing platform for C programs. The capabilities of the
tool include structural test data generation, counter-example
generation and partial program proving and it combines nu-
merical and symbolic techniques, namely SSA, constraint
propagation, dynamic linear relaxations and search-based
test data generation. Euclide handles a large subset of C,
even if some apriori restrictions have been done (no recur-
sion, no dynamic allocation). The tool was applied to the
verification of a critical component of the TCAS, which
yields an unrevealed counter-example to a safety property.
However, the tool could be improved in many ways. Func-
tion calls are currently handled by inlining which prevents
Euclide from using efficient modular constraint-based anal-
ysis. Summaries of function calls could be exploited in the
test data generation process. Search-based test data genera-
tion currently exploits only complete heuristics that explore
the whole search space in the worst case. We could also
exploit local search techniques that are sometimes very effi-
cient. Other similar improvments are possible and requires
additional research works in order to increase the efficiency
of the tool.

7 Acknowledgment

Much of the choices and decisions taken within the de-
velopment of Euclide were discussed with other people, and
I am indebted to all of them. I would like to thanks es-
pecially Tristan Denmat who investigated the role of Ab-
stract Interpretation in the linear relaxation techniques we
employed. Many thanks also to Bernard Botella, Benjamin
Cama, Florence Charreteur, Nadjib Lazaar, Bruno Marre,
Matthieu Petit and Pierre Rousseau.

References

[1] Sebastien Bardin and Philippe Herrmann. Structural testing
of executables. In 1th Int. Conf. on Software Testing, Verifi-
cation and Validation (ICST’08), pages 22–31, 2008.



[2] N. Beckman, A. Nori, S. Rajamani, and R. Simmons. Proofs
from tests. In Proc. of ISSTA’08, pages 3–14, 2008.

[3] J. Bicevskis, J. Borzovs, U. Straujums, A. Zarins, and
E. Miller. SMOTL - a system to construct samples for data
processing program debugging. IEEE Transactions on Soft-
ware Engineering, 5(1):60–66, January 1979.

[4] B. Botella, A. Gotlieb, and C. Michel. Symbolic execution
of floating-point computations. The Software Testing, Verifi-
cation and Reliability journal, 16(2):pp 97–121, June 2006.

[5] M.M. Brandis and H. Mőssenbőck. Single-Pass Generation
of Static Single-Assignment Form for Structured Languages.
ACM Transactions on Programming Language and Systems,
16(6):1684–1698, Nov. 1994.

[6] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and
Helmut Veith. Modular verification of software components
in C. IEEE Transactions on Software Engineering (TSE),
30(6):388–402, June 2004.

[7] F. Charreteur, B. Botella, and A. Gotlieb. Modelling dy-
namic memory management in constraint-based testing. In
TAIC-PART (Testing: Academic and Industrial Conference),
Windsor, UK, Sep. 2007.

[8] Edmund Clarke and Daniel Kroening. Hardware verification
using ANSI-C programs as a reference. In Proc. of ASP-
DAC’03, pages 308–311, Jan. 2003.

[9] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Us-
ing symbolic execution for verifying safety-critical systems.
In Proceedings of the European Software Engineering Con-
ference (ESEC/FSE’01), pages 142–150, Vienna, Austria,
September 2001. ACM.

[10] H. Collavizza and M. Rueher. Exploration of the capabilities
of constraint programming for software verification. In Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’06), pages 182–196, 2006.

[11] H. Collavizza, M. Rueher, and P. Van Hentenryck. Cpbpv:
A constraint-programming framework for bounded program
verification. In Proc. of CP2008, LNCS 5202, pages 327–
341, 2008.

[12] R.A. DeMillo and J.A. Offut. Constraint-based automatic
test data generation. IEEE Transactions on Software Engi-
neering, 17(9):900–910, September 1991.

[13] T. Denmat, A. Gotlieb, and M. Ducasse. An abstract inter-
pretation based combinator for modeling while loops in con-
straint programming. In Proceedings of Principles and Prac-
tices of Constraint Programming (CP’07), Springer Verlag,
LNCS 4741, pages 241–255, Providence, USA, Sep. 2007.

[14] T. Denmat, A. Gotlieb, and M. Ducasse. Improving
constraint-based testing with dynamic linear relaxations. In
18th IEEE International Symposium on Software Reliability
Engineering (ISSRE’ 2007), Trollhttan, Sweden, Nov. 2007.

[15] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel.
Supporting controlled experimentation with testing tech-
niques: An infrastructure and its potential impact. Empirical
Software Engineering: An International Journal, 10(4):405–
435, 2005.

[16] E. Emami, R. Ghiya, and L.J. Hendren. Context–sensitive
interprocedural points–to analysis in the presence of function
pointers. In Proc. of PLDI’94, Orlando, FL, Jun. 1994.

[17] R. Ferguson and B. Korel. The chaining approach for soft-
ware test data generation. ACM Transactions on Software
Engineering Methodology, 5(1):63–86, Jan. 1996.

[18] J.C. Filliâtre and C. Marché. Multi-prover verification of c
programs. In 6th Int. Conf. on Formal Engineering Methods
(ICFEM’04), pages 15–29, Nov. 2004.

[19] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed auto-
mated random testing. In Proc. of PLDI’05, pages 213–223,
2005.

[20] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data
generation using constraint solving techniques. In Proc. of
ISSTA’98, pages 53–62, 1998.

[21] A. Gotlieb, T. Denmat, and B. Botella. Goal-oriented test
data generation for pointer programs. Information and Soft-
ware Technology, 49(9-10):1030–1044, Sep. 2007.

[22] P.V. Hentenryck, V. Saraswat, and Y. Deville. Design, imple-
mentation, and evaluation of the constraint language cc(fd).
Journal of Logic Programming, 37:139–164, 1998.

[23] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with blast. In Proc. of 10th Workshop on Model
Checking of Software (SPIN), pages 235–239, 2003.

[24] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas
Ostrand. Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. of ICSE
’94, pages 191–200, 1994.

[25] Rustan Leino. Efficient weakest preconditions. Inf. Process.
Lett., 93(6):281–288, 2005.

[26] C. Livadas, J. Lygeros, and N.A. Lynch. High-level mod-
eling and analysis of TCAS. In IEEE Real-Time Systems
Symposium, pages 115–125, 1999.

[27] Patricia Mouy, Bruno Marre, Nicky Williams, and Pas-
cale Le Gall. Generation of all-paths unit test with function
calls. In First International Conference on Software Testing,
Verification, and Validation, (ICST’08), pages 32–41, 2008.

[28] U.S. Department of transportation Federal Aviation Admin-
istration. Introduction to TCAS II - version 7, Nov. 2000.

[29] J.A. Offut, Z. Jin, and Pan J. The dynamic domain reduction
procedure for test data generation. Software–Practice and
Experience, 29(2):167–193, 1999.

[30] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a con-
colic unit testing engine for c. In Proc. of ESEC/FSE-13,
pages 263–272. ACM Press, 2005.

[31] Nikolai Tillmann and Wolfram Schulte. Parameterized unit
tests. In Proc. of ESEC/FSE-13, pages 253–262. ACM Press,
2005.

[32] N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler:
Automatic generation of path tests by combining static and
dynamic analysis. In In Proc. Dependable Computing -
EDCC’05, pages 281–292, 2005.

[33] www.open-std.org/JTC1/SC22/WG14/www/standards.
ISO/IEC 9899 - Programming languages - C, 1999.


