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Abstract

Automatic structural test data generation is a real chal-
lenge of Software Testing. Statistical structural testing has
been proposed to address this problem. This testing method
aims at building an input probability distribution to max-
imize the coverage of some structural criteria. Under the
all paths testing objective, statistical structural testing aims
at selecting each feasible path of the program with the same
probability.

In this paper, we propose to model a uniform path se-
lector of feasible paths as a stochastic constraint program.
Stochastic constraint programming is an interesting frame-
work which combines stochastic decision problem and con-
straint solving. This paper reports on the translation of uni-
form feasible path selection problem into a stochastic con-
straint problem. An implementation which uses the library
PCC(FD) of SICStus Prolog designed for this problem is
detailed. First experimentations, conducted over a few aca-
demic examples, show the interest of our approach.

1 Introduction

Structural software testing aims at increasing our confi-
dence in the correctness of a given (imperative) program.
The major difficulties of Program Testing reside in a se-
lection of a test suite which is a representative sampling of
program behaviours. When the test suite is randomly gener-
ated according to a given probability distribution such as the
probability to cover each part of the program is maximized,
one speaks of statistical structural testing (SST) [14].

The SST problem lies in the difficulty of finding a proba-
bility distribution over the input domain that maximizes the
probability to cover each element of the testing criterion.
The structural testing criteria are based on the coverage of

�This work is part of the GENETTA project granted by the Brittany
region

the control flow or data flow graph model of the program
under test [17]. As an example, consider the all paths crite-
rion, the goal of statistical structural testing is to find a prob-
ability distribution such as each path has the same probabil-
ity to be executed. In this case, giving the same probability
to each path leads to maximize the probability of covering
each path but for other criteria this is not so simple.

A key problem of the statistical structural testing is to se-
lect a sequence of paths such as the probability to cover each
element of the testing criterion is maximized. This problem
was originally studied by Thévenod-Fosse andWaeselynck
[14] and more recently, Gouraud, Denis, Gaudel and Marre
proposed new automated solutions based on combinatorial
structures [7]. However, both approaches reason on a static
model of the program under test and does not consider in-
formation on infeasible paths. Indeed, path selector is built
on static information on the structure of the program under
test. As basic example, consider the foo program given in
Fig. 1. The SST problem for the all paths criterion can

int foo(int x, int y) �
1. if (� � � � ���)
2. . . .
3. else . . .
4. if (� � � � ���)
5. . . .
6. else . . .�

Figure 1. Program foo

be modelled as a dice draw between the four paths of the
foo program: 1-2-4-5, 1-2-4-6, 1-3-4-5 and 1-3-4-6. One
dice draw corresponds to a path selection. When reasoning
statically on a model like its control flow graph, the STT
problem can be solved with a fair 4-face dice.

��������� ��� �� �� ��� ��� �� �� ��� � � �����

The probabilistic choice operator ������ can modelled this
dice draw. This probabilistic choice operator introduces a



stochastic variable� where ��� �� �� �� represents its domain
and ��� �� �� �� its uniform probability distribution. The path
� � � � � � 	 is selected when � is equals to �, the path
�� �� �� 
 is selected when � is equals to �, and so on.
However, in this program, about one quarter of the selected
paths is an infeasible path.

In this paper, we propose a method to address the prob-
lem of selecting feasible paths of the program with the same
probability. A uniform path selector is extracted from a dy-
namic model of the program under test. Our approach is
based on the translation of the problem of a uniform path
selection of feasible paths (UPSFP) into a stochastic con-
straint problem. Stochastic constraint programming is a
convenient framework to deal with decision making prob-
lem under uncertainty. UPSFP problem can be modelled
as a biased dice drawing with an unknown bias and bias
is constrained dynamically during the constraint solving. In
the case of Foo program, the unknown bias can be modelled
by a list of weight variables �	��	��	��	�� that will be
constraint.

��������� ��� �� �� ��� �	��	��	��	��� � � �����

Outline of the paper. The paper is organized as fol-
lows : section 2 briefly describes the background on the
stochastic constraint programming required to understand
the rest of the paper. Section 3 presents the translation of
uniform path selection of feasible path into a stochastic con-
straint problem, while section 4 describes the implementa-
tion of the translation in SICStus Prolog. Finally, Section 5
indicates several perspectives to this work.

2 Background

In this section, we introduce the stochastic constraint
programming paradigm used to model the UPSFP problem.
Using constraint programming to address the problem of
structural testing [2, 5] or random testing [6] is not a new
idea but, according to our knowledge, Stochastic Constraint
Programming has not yet been used to address the UPSFP
problem.

2.1 Stochastic Constraint Programming

Stochastic Constraint Programming was introduced by
Walsh [15] to model combinatorial decision problems in-
volving uncertainty and probability: resource management,
network traffic analysis, energy trading. A stochastic con-
straint programs contain both decision variables, that can be
set, and stochastic variables, which follow a discrete proba-
bility distribution.

A stochastic constraint program can be described in
the formalism of the constraint satisfaction problem. A

stochastic constraint satisfaction problem consists of 6-
tuple �
� ���� �� � �� where 
 is a set of decision vari-
ables, � is a set stochastic variables, � is a function map-
ping each element of 
 and each element of � to a domain
of potential values. A decision variable in 
 is instantiated
to a value from its domain, � is a function mapping each
element of � to a probability distribution for its associated
domain.  is a set of constraints. Given random values for
the stochastic variables, the probability that all constraints
are satisfied equals or exceeds a threshold �. Solutions of
stochastic constraint satisfaction problem are obtained us-
ing an extended version of the algorithm used when doing
constraint solving: backtracking or forward checking algo-
rithm [15, 1].

In [9], Gupta et al. introduced a probabilistic choice
operator in the framework of Concurrent Constraint Pro-
gramming, named ������. The probabilistic choice op-
erator allows introducing a stochastic variable into a con-
straint program. This probabilistic extension of the Con-
current Constraint programming has proved to be useful to
model stochastic processes [8]. In [13], we proposed to
extend the declarativity of the probabilistic choice opera-
tor ������ to reason with probabilistic choice only partially
known. In this case, ������ operator is considered as a
probabilistic constraint combinator. We tunes a probabilis-
tic choice combinator, named ������ ��������, to address
the UPSFP problem.

2.2 ������ �������� combinator

������ �������� probabilistic constraint combinator
has been introduced to simulate the behaviour of condi-
tional statements into a constraint programming [11].

Probabilistic choice combinator models a boolean proba-
bilistic choice between two constraints. This boolean prob-
abilistic choice is represented as a list of two weights vari-
ables �	��	��.

������ ������������������� �	��	��� ����� �����

The probabilistic choice arises between ��������� �
���� and ���������� � ����. Note that
������ �������� has been defined as a probabilistic
combinator. The combinator allows dealing with problem
where 	� and 	� are only partially known.

Operationally, when 	� or 	� is not valuated,
the algorithm associated to the constraint solving of
������ �������� tries to prove that ��������� � ����
or ���������� � ���� is unsatisfiable. As unsatisfiabil-
ity checking of a constraint system is an expensive process,
only a partial unsatisfiability checking is associated to the
probabilistic constraint combinator.

Our usage of this probabilistic constraint combinator to
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address the UPSFP problem is described into the next sec-
tion.

3 Stochastic constraint model of imperative
programs

In this section, the translation of UPSFP problem into
a stochastic constraint problem is presented. This transla-
tion is done on a generic fragment of an imperative lan-
guage presented in the section 3.1. The stochastic constraint
model is obtained in two stages: 1) executions of the imper-
ative program are modelled as a probabilistic execution tree,
and 2) stochastic constraints are generated from this tree.

3.1 Language While

For sake of clarity, we decide to describe our approach on
a generic imperative language named While and composed
of: assignment statement, conditional statement, loop state-
ment, compound statement and skip statement. We discuss
possible extension of this language in the last section of the
paper. It assumes that programs have only a single return
point exit.

Note that the coverage of all execution paths is generally
an intractable testing criterion, due to the presence of loops.
As done in [16, 4], we limit the number of iterations in a
loop statement to a fixed number �. Hence in the following,
loop statements are considered as � imbricated conditional
statements.

3.2 Probabilistic execution tree

Uniform path selection of feasible paths is extracted
from information on the structure of the program � under
test. The probabilistic execution tree is a probabilistic ex-
tension of the execution tree proposed in [4] where branches
of the execution tree are labelled by the probability to transit
from a node to one of its successors.

Let  be the set of conditional statements, � be the set
assignments statements and � be the program under test.
������� � �� ����������� represents the set of the pos-
sible execution of a program � . An execution tree of �
is represented by a couple ����� where each statement of
������� � is considered as an element of � , named state-
ment node. The set � is a couple of statement nodes where
the node associated to an assignment statement node has
only one successor and to a conditional statement node have
two successors. Root node denotes the input of the pro-
gram. Leaves node of the execution tree are labelled by the
exit statement. A path execution of a program � is defined
as a sequence ���� � � � �� such as �� � � � ���� � � ,
�� � � � �� �� ���� ����� � � and �� is an exit node.

Execution tree has been extended to model the UPSFP
problem. We decided then to label each branch of the exe-
cution tree by the probability to transit from a node to one
of its successors. These transition probabilities are repre-
sented by unknown weights. Our purpose is to constrain
these unknown weights to model the testing objective.

Definition 1 (Probabilistic execution tree). Let � be a
program under test and ����� be its execution tree. A
probabilistic execution tree is a triplet �����	 � where
	�� an element of 	 associated to each element of
���� ��� � �. 	�� represents the probability to transit
from the node �� to the node �� .

In the following, we denotes by 	���� a subset of the
weights associated to an exit node.

Example. The probabilistic execution tree of the Foo pro-
gram is given by the Fig. 2.

1

2 3

4 5 6 7

W12 W13

W24 W25 W36 W37

X*Y<100 X*Y 100

X*Y=100 X*Y=100
X*Y 100

X*Y 100

The set of the weight variables associated to exit node state-
ments is:

	���� � 		���	���	���	��


Figure 2. Probabilistic execution of the foo
program

3.3 Stochastic constraint program generation

The stochastic constraint program generation is obtained
by a deep first search in the probabilistic execution tree. For
sake of clarity, we present the constraint generation in two
steps.

- translation of each statement node of the probabilistic
execution tree into stochastic constraint;

- generation of constraints on the weight variable to
model our testing objective.

In practice, stochastic constraints program generation is
done in a single step.
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3.3.1 Translation of the program into a stochastic con-
straint program

A logical variable is associated to each variable of the im-
perative program. A constraint domain is defined for a log-
ical variable from the variable type.

Assignment node Statement x:= expr is translated into
X#=E where E is the syntactic translation of ����. Branch
associated to the node output is translated into a logical con-
junction with generated constraints for the successor.

Conditional node A conditional node is translated into
a choose_decision(C,[W1,W2],Ctr1,Ctr2)
where C is the syntactic translation of the boolean ex-
pression associated to the conditional node, [W1,W2]
represents the probabilistic choice between the two succes-
sors and Ctr1 (resp. Ctr2) is the translation of the tree
associated to the first (resp. second) successor.

Exit node Statement x:= expr associated to the node is
translated into X#=E where E is the syntactic translation of
����.

From the constraint generation, path conditions of an
execution path can be extracted. Indeed, path condition
associated to an execution is a conjunction of constraints
generated by the assignment node and conditionnal node.
Suppose that ���� is an execution path of a program � ,
�������������� denotes ���� path conditions.

Propriety 1. Let � be a program. Then, for all ���� path
execution of the probabilistic execution tree associated to �

�������������� is satisfiable � ���� is a feasible path�

3.3.2 Uniform path selection of feasible paths

Our approach aims at constraining weight variables given a
testing objective. Under the testing objective: give the same
probability to each feasible paths to be activated, the weight
variables are defined as the number of the feasible paths
which activate the branch associated to the weight variable.
Indeed, a conditional statement introduces a flow transfer
between two possible parts of the program. The number of
the feasible paths which activate the conditional statement
node is divided by two. The probability to transit to one
of the successor of the conditional statement node is then
proportional to the number of the feasible paths which ac-
tivate the two different branches. Then, the definition of
the weight variable allows to give a greater probability to
branches which are activated by a lot of feasible paths than
branches which are activated by few feasible paths.

Obviously, given a branch of the execution tree, the
number of feasible paths which activates this branch is un-
known. Weight variables are constrained as follows.

Assignment node Suppose that 	� (resp. 	�) is the
weight variable associated to the branch which goes in

(resp. out) the node. Then, a constraint Wi #= Wo is gen-
erated because of the number feasible path stays unchanged.

Conditional node Suppose that 	� is the weight vari-
able associated to the branch which goes in the node
and 	�� and 	�� the weight variables associated to the
two branches which go out the node. Then, a constraint
Wi #= Wo1+Wo2 is generated because of the number of
feasible path is divided by two due to the conditional state-
ment.

Exit node Suppose that 	���� is the weight variable as-
sociated to the branch which goes in the exit node and ����
the execution path which contains this node. The constraint
We in 0..1 is generated because only a single feasible
path or a infeasible path activates this branch of the three.

3.4 A uniform path selector of feasible paths

A uniform path selector of feasible paths is obtained
when each weight variable is valuated. One approach con-
sists in testing the satisfiability of each execution path of
the program. By the result given by the property 1, this
approach allows to detect all feasible paths of the program
and then to find immediately of valuation of the weight vari-
ables. A major drawback of this approach reside in the fact
that we must restrict constraint domain to be in a decidable
theory and constraint solving to be obtained in polynomial
time. Moreover, there is a combinatorial explosion of con-
straint systems to resolve. Our approach consists in defining
the testing objective as an objective function to optimize.
The idea is to over-approximate the number of feasible path
and to refine the first valuation of the weight variables given
more information on the program under test. Information is
obtained as follows:

- partial unsatisfiability checking associated to
������ �������� permits to detect that some ex-
ecution paths are infeasible;

- test cases generation allows to detect that a path is fea-
sible.

By definition, each weight variable 	�� � 	���� repre-
sents that an execution path which activates the exit node
��� is feasible or infeasible. When 	�� is valuated to �, the
execution path has been detected as infeasible. When	�� is
valuated to �, the execution path has been detected as feasi-
ble. When 	�� in ����, constraint solving has not been able
to conclude that the execution path is feasible or infeasible.
Then, to conserve a sound uniform path selector of feasible
paths, the following objective function is maximizes.

�

��������

	�

Indeed, when
�

��������	� is maximized, weight vari-
ables of 	���� which are not valuated before the solution
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search are valuated to �. By this process, we obtain a uni-
form path selector on an over approximation of the feasible
paths set.

3.5 Example

Consider again the Foo program introduced by the Fig.
1 and its probabilistic execution tree given by the Fig. 2.
Here is the translation of the Foo program into a stochastic
constraint problem.

foo(X,Y,[W12,W24,W25,W13,W36,W37]) :-
X in - 2147483647..2147483648,
Y in - 2147483647..2147483648,
choose_decision(X*Y#<100,[W12,W13],

[choose_decision(X*Y#=100,
[W24,W25],[],[])],

[choose_decision(X*Y#=100,
[W36,W37],[],[])]).

W12+W13#>=0, W12 #= W24+W25,
W13 #= W36+W37, W24 in 0..1,
W25 in 0..1,W36 in 0..1,
W37 in 0..1.

Partial unsatisfiability checking of ������ �������� allows
to detect that the path ������� is infeasible. Then, W24
is valuated to �. Constraint propagation permits to reduce
the domain of each weight variables to:

W12 in 0..1,W13 in 0..2,
W24 #= 0,W25 in 0..1,
W36 in 0..1,W37 in 0..1

Uniform path selector of feasible paths for the foo program
is modelled by the following request:

?- foo(X,Y,[W12,W24,W25,W13,W36,W37]),
labeling([maximize(W24+W25+W36+W37],

[W12,W24,W25,W13,W36,W37]).

The predicate labeling/2 permits to find a valuation
the weights variable [W12,W24,W25,W13,W36,W37]
such as our objective function W24+W25+W36+W37 is op-
timized.

In reiterating the request 	��� times, the uniform
path selector constraint the variable X and Y to ver-
ify X*Y #<100,X*Y#\=100 with a probability 0.3522,
X*Y #>=100,X*Y#\=100 with a probability 0.3162
and X*Y #>=100,X*Y#=100 with a probability 0.3316.

4 Implementation

In this section, we detail the implementation of our ap-
proach. This implementation is done in SICStus Prolog. We
also present a first experimental validation conducted on an
academic program: Trityp.

4.1 Generation of a PCC(FD) request

The implementation uses two libraries of SICstus prolog:
clp(FD) and PCC(FD). The library clp(FD) is a constraint
solver finite domain that is used to resolve arithmetic con-
straints. The library PCC(FD) is a library of probabilistic
constraint combinators. The implementation takes as in-
put a program represented by its abstract syntax tree. The
stochastic constraint program and the objective function is
then generated from a deep first search algorithm in the tree.

The uniform path selector of feasible paths is modelled
by a simple request which calls the stochastic constraint
program and the labeling predicate. The labelling process is
looking for a weight variables valuation such as the objec-
tive function is maximized This predicate uses a branch and
bound algorithm. Note that before launched the labelling
process, domains of each weight variable are recorded.
Then, information on previous uniform path selector is con-
served during the selection of a new feasible path. Uniform
path selector of feasible paths is refined during the path se-
quence generation when a domain of the weight variable is
pruned.

4.2 First experimental result

The program trityp, initially proposed by Myers [10] and
fully studied by DeMillo and Offut [3], takes three non-
negative integers as arguments that represent the relative
lengths of the sides of a triangle and classifies the triangle
as scalene, isosceles, equilateral or illegal.

Although it implements a very simple specification, this
program is difficult to handle for test data generators as it
contains several nested conditionals structures and a lot of
infeasible paths (43 over a total of 57 our program version).
Moreover, it is usually considered as representative of the
more general class of decisional programs (programs with-
out iterative computations) that is mainly employed in the
development of real time embedded software.

Partial unsatisfiability checking associated to the prob-
abilistic constraint combinator ������ �������� allows to
detect �� of the infeasible paths. Then, this information
permits to build an efficient uniform path selector of fea-
sible paths because of only �

��
of the generated paths are

rejected. Moreover, the uniform path selector of feasible
path is refined to avoid the random draw of feasible paths
during test cases generation. This first experimental valida-
tion conducted on an academic example shows the practical
interest of our approach.

5 Further Work

In paper, we propose to define a dynamic model to ad-
dress the problem of the uniform path selection of feasible
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paths. UPSFP problem has been translated into a stochastic
constraint program. First experimental validations show the
interest the approach.

Our further works will focus on 1) generating a statis-
tical sequence of test cases extracted from a sequence of
uniformly selecting feasible paths and 2) extending our ap-
proach to an embedded Java language: Javacard. To address
the first problem, we are working on the combination of two
approaches: uniform path selection of feasible paths and
path oriented random testing [6]. Extending our approach
for Javacard allows us to proposed a statistical method to
test programs composed of method calls, exceptions which
are a real challenge for the statistical structural testing.
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